1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t, struct ifnet **); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i, vifi_cnt = 0; 625 struct ifnet *free_ptr; 626 627 MRW_WLOCK(); 628 629 if (V_ip_mrouter == NULL) { 630 MRW_WUNLOCK(); 631 return; 632 } 633 634 /* 635 * Tear down multicast forwarder state associated with this ifnet. 636 * 1. Walk the vif list, matching vifs against this ifnet. 637 * 2. Walk the multicast forwarding cache (mfc) looking for 638 * inner matches with this vif's index. 639 * 3. Expire any matching multicast forwarding cache entries. 640 * 4. Free vif state. This should disable ALLMULTI on the interface. 641 */ 642 for (vifi = 0; vifi < V_numvifs; vifi++) { 643 if (V_viftable[vifi].v_ifp != ifp) 644 continue; 645 for (i = 0; i < mfchashsize; i++) { 646 struct mfc *rt, *nrt; 647 648 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 649 if (rt->mfc_parent == vifi) { 650 expire_mfc(rt); 651 } 652 } 653 } 654 del_vif_locked(vifi, &free_ptr); 655 if (free_ptr != NULL) 656 vifi_cnt++; 657 } 658 659 MRW_WUNLOCK(); 660 661 /* 662 * Free IFP. We don't have to use free_ptr here as it is the same 663 * that ifp. Perform free as many times as required in case 664 * refcount is greater than 1. 665 */ 666 for (i = 0; i < vifi_cnt; i++) 667 if_free(ifp); 668 } 669 670 static void 671 ip_mrouter_upcall_thread(void *arg, int pending __unused) 672 { 673 CURVNET_SET((struct vnet *) arg); 674 675 MRW_WLOCK(); 676 bw_upcalls_send(); 677 MRW_WUNLOCK(); 678 679 CURVNET_RESTORE(); 680 } 681 682 /* 683 * Enable multicast forwarding. 684 */ 685 static int 686 ip_mrouter_init(struct socket *so, int version) 687 { 688 689 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 690 so->so_type, so->so_proto->pr_protocol); 691 692 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 693 return EOPNOTSUPP; 694 695 if (version != 1) 696 return ENOPROTOOPT; 697 698 MRW_WLOCK(); 699 700 if (ip_mrouter_unloading) { 701 MRW_WUNLOCK(); 702 return ENOPROTOOPT; 703 } 704 705 if (V_ip_mrouter != NULL) { 706 MRW_WUNLOCK(); 707 return EADDRINUSE; 708 } 709 710 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 711 HASH_NOWAIT); 712 713 /* Create upcall ring */ 714 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 715 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 716 M_NOWAIT, &V_bw_upcalls_ring_mtx); 717 if (!V_bw_upcalls_ring) { 718 MRW_WUNLOCK(); 719 return (ENOMEM); 720 } 721 722 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 723 taskqueue_cancel(V_task_queue, &V_task, NULL); 724 taskqueue_unblock(V_task_queue); 725 726 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 727 curvnet); 728 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 729 curvnet); 730 731 V_ip_mrouter = so; 732 atomic_add_int(&ip_mrouter_cnt, 1); 733 734 /* This is a mutex required by buf_ring init, but not used internally */ 735 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 736 737 MRW_WUNLOCK(); 738 739 CTR1(KTR_IPMF, "%s: done", __func__); 740 741 return 0; 742 } 743 744 /* 745 * Disable multicast forwarding. 746 */ 747 static int 748 X_ip_mrouter_done(void) 749 { 750 struct ifnet *ifp; 751 u_long i; 752 vifi_t vifi; 753 struct bw_upcall *bu; 754 755 if (V_ip_mrouter == NULL) 756 return (EINVAL); 757 758 /* 759 * Detach/disable hooks to the reset of the system. 760 */ 761 V_ip_mrouter = NULL; 762 atomic_subtract_int(&ip_mrouter_cnt, 1); 763 V_mrt_api_config = 0; 764 765 /* 766 * Wait for all epoch sections to complete to ensure 767 * V_ip_mrouter = NULL is visible to others. 768 */ 769 epoch_wait_preempt(net_epoch_preempt); 770 771 /* Stop and drain task queue */ 772 taskqueue_block(V_task_queue); 773 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 774 taskqueue_drain(V_task_queue, &V_task); 775 } 776 777 MRW_WLOCK(); 778 taskqueue_cancel(V_task_queue, &V_task, NULL); 779 780 /* Destroy upcall ring */ 781 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 782 free(bu, M_MRTABLE); 783 } 784 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 785 mtx_destroy(&V_bw_upcalls_ring_mtx); 786 787 /* 788 * For each phyint in use, disable promiscuous reception of all IP 789 * multicasts. 790 */ 791 for (vifi = 0; vifi < V_numvifs; vifi++) { 792 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 793 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 794 ifp = V_viftable[vifi].v_ifp; 795 if_allmulti(ifp, 0); 796 } 797 } 798 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 799 V_numvifs = 0; 800 V_pim_assert_enabled = 0; 801 802 callout_stop(&V_expire_upcalls_ch); 803 callout_stop(&V_bw_upcalls_ch); 804 805 /* 806 * Free all multicast forwarding cache entries. 807 * Do not use hashdestroy(), as we must perform other cleanup. 808 */ 809 for (i = 0; i < mfchashsize; i++) { 810 struct mfc *rt, *nrt; 811 812 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 813 expire_mfc(rt); 814 } 815 } 816 free(V_mfchashtbl, M_MRTABLE); 817 V_mfchashtbl = NULL; 818 819 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 820 821 V_reg_vif_num = VIFI_INVALID; 822 823 mtx_destroy(&V_buf_ring_mtx); 824 825 MRW_WUNLOCK(); 826 827 CTR1(KTR_IPMF, "%s: done", __func__); 828 829 return 0; 830 } 831 832 /* 833 * Set PIM assert processing global 834 */ 835 static int 836 set_assert(int i) 837 { 838 if ((i != 1) && (i != 0)) 839 return EINVAL; 840 841 V_pim_assert_enabled = i; 842 843 return 0; 844 } 845 846 /* 847 * Configure API capabilities 848 */ 849 int 850 set_api_config(uint32_t *apival) 851 { 852 u_long i; 853 854 /* 855 * We can set the API capabilities only if it is the first operation 856 * after MRT_INIT. I.e.: 857 * - there are no vifs installed 858 * - pim_assert is not enabled 859 * - the MFC table is empty 860 */ 861 if (V_numvifs > 0) { 862 *apival = 0; 863 return EPERM; 864 } 865 if (V_pim_assert_enabled) { 866 *apival = 0; 867 return EPERM; 868 } 869 870 MRW_RLOCK(); 871 872 for (i = 0; i < mfchashsize; i++) { 873 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 874 MRW_RUNLOCK(); 875 *apival = 0; 876 return EPERM; 877 } 878 } 879 880 MRW_RUNLOCK(); 881 882 V_mrt_api_config = *apival & mrt_api_support; 883 *apival = V_mrt_api_config; 884 885 return 0; 886 } 887 888 /* 889 * Add a vif to the vif table 890 */ 891 static int 892 add_vif(struct vifctl *vifcp) 893 { 894 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 895 struct sockaddr_in sin = {sizeof sin, AF_INET}; 896 struct ifaddr *ifa; 897 struct ifnet *ifp; 898 int error; 899 900 901 if (vifcp->vifc_vifi >= MAXVIFS) 902 return EINVAL; 903 /* rate limiting is no longer supported by this code */ 904 if (vifcp->vifc_rate_limit != 0) { 905 log(LOG_ERR, "rate limiting is no longer supported\n"); 906 return EINVAL; 907 } 908 909 if (in_nullhost(vifcp->vifc_lcl_addr)) 910 return EADDRNOTAVAIL; 911 912 /* Find the interface with an address in AF_INET family */ 913 if (vifcp->vifc_flags & VIFF_REGISTER) { 914 /* 915 * XXX: Because VIFF_REGISTER does not really need a valid 916 * local interface (e.g. it could be 127.0.0.2), we don't 917 * check its address. 918 */ 919 ifp = NULL; 920 } else { 921 struct epoch_tracker et; 922 923 sin.sin_addr = vifcp->vifc_lcl_addr; 924 NET_EPOCH_ENTER(et); 925 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 926 if (ifa == NULL) { 927 NET_EPOCH_EXIT(et); 928 return EADDRNOTAVAIL; 929 } 930 ifp = ifa->ifa_ifp; 931 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 932 NET_EPOCH_EXIT(et); 933 } 934 935 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 936 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 937 return EOPNOTSUPP; 938 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 939 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 940 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 941 if (V_reg_vif_num == VIFI_INVALID) { 942 if_initname(V_multicast_register_if, "register_vif", 0); 943 V_reg_vif_num = vifcp->vifc_vifi; 944 } 945 } else { /* Make sure the interface supports multicast */ 946 if ((ifp->if_flags & IFF_MULTICAST) == 0) 947 return EOPNOTSUPP; 948 949 /* Enable promiscuous reception of all IP multicasts from the if */ 950 error = if_allmulti(ifp, 1); 951 if (error) 952 return error; 953 } 954 955 MRW_WLOCK(); 956 957 if (!in_nullhost(vifp->v_lcl_addr)) { 958 if (ifp) 959 V_multicast_register_if = NULL; 960 MRW_WUNLOCK(); 961 if (ifp) 962 if_free(ifp); 963 return EADDRINUSE; 964 } 965 966 vifp->v_flags = vifcp->vifc_flags; 967 vifp->v_threshold = vifcp->vifc_threshold; 968 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 969 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 970 vifp->v_ifp = ifp; 971 /* initialize per vif pkt counters */ 972 vifp->v_pkt_in = 0; 973 vifp->v_pkt_out = 0; 974 vifp->v_bytes_in = 0; 975 vifp->v_bytes_out = 0; 976 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 977 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 978 979 /* Adjust numvifs up if the vifi is higher than numvifs */ 980 if (V_numvifs <= vifcp->vifc_vifi) 981 V_numvifs = vifcp->vifc_vifi + 1; 982 983 MRW_WUNLOCK(); 984 985 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 986 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 987 (int)vifcp->vifc_threshold); 988 989 return 0; 990 } 991 992 /* 993 * Delete a vif from the vif table 994 */ 995 static int 996 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 997 { 998 struct vif *vifp; 999 1000 *ifp_free = NULL; 1001 1002 MRW_WLOCK_ASSERT(); 1003 1004 if (vifi >= V_numvifs) { 1005 return EINVAL; 1006 } 1007 vifp = &V_viftable[vifi]; 1008 if (in_nullhost(vifp->v_lcl_addr)) { 1009 return EADDRNOTAVAIL; 1010 } 1011 1012 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1013 if_allmulti(vifp->v_ifp, 0); 1014 1015 if (vifp->v_flags & VIFF_REGISTER) { 1016 V_reg_vif_num = VIFI_INVALID; 1017 if (vifp->v_ifp) { 1018 if (vifp->v_ifp == V_multicast_register_if) 1019 V_multicast_register_if = NULL; 1020 *ifp_free = vifp->v_ifp; 1021 } 1022 } 1023 1024 mtx_destroy(&vifp->v_spin); 1025 1026 bzero((caddr_t)vifp, sizeof (*vifp)); 1027 1028 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1029 1030 /* Adjust numvifs down */ 1031 for (vifi = V_numvifs; vifi > 0; vifi--) 1032 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1033 break; 1034 V_numvifs = vifi; 1035 1036 return 0; 1037 } 1038 1039 static int 1040 del_vif(vifi_t vifi) 1041 { 1042 int cc; 1043 struct ifnet *free_ptr; 1044 1045 MRW_WLOCK(); 1046 cc = del_vif_locked(vifi, &free_ptr); 1047 MRW_WUNLOCK(); 1048 1049 if (free_ptr) 1050 if_free(free_ptr); 1051 1052 return cc; 1053 } 1054 1055 /* 1056 * update an mfc entry without resetting counters and S,G addresses. 1057 */ 1058 static void 1059 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1060 { 1061 int i; 1062 1063 rt->mfc_parent = mfccp->mfcc_parent; 1064 for (i = 0; i < V_numvifs; i++) { 1065 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1066 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1067 MRT_MFC_FLAGS_ALL; 1068 } 1069 /* set the RP address */ 1070 if (V_mrt_api_config & MRT_MFC_RP) 1071 rt->mfc_rp = mfccp->mfcc_rp; 1072 else 1073 rt->mfc_rp.s_addr = INADDR_ANY; 1074 } 1075 1076 /* 1077 * fully initialize an mfc entry from the parameter. 1078 */ 1079 static void 1080 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1081 { 1082 rt->mfc_origin = mfccp->mfcc_origin; 1083 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1084 1085 update_mfc_params(rt, mfccp); 1086 1087 /* initialize pkt counters per src-grp */ 1088 rt->mfc_pkt_cnt = 0; 1089 rt->mfc_byte_cnt = 0; 1090 rt->mfc_wrong_if = 0; 1091 timevalclear(&rt->mfc_last_assert); 1092 } 1093 1094 static void 1095 expire_mfc(struct mfc *rt) 1096 { 1097 struct rtdetq *rte; 1098 1099 MRW_WLOCK_ASSERT(); 1100 1101 free_bw_list(rt->mfc_bw_meter_leq); 1102 free_bw_list(rt->mfc_bw_meter_geq); 1103 1104 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1105 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1106 if (rte) { 1107 m_freem(rte->m); 1108 free(rte, M_MRTABLE); 1109 } 1110 } 1111 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1112 1113 LIST_REMOVE(rt, mfc_hash); 1114 free(rt, M_MRTABLE); 1115 } 1116 1117 /* 1118 * Add an mfc entry 1119 */ 1120 static int 1121 add_mfc(struct mfcctl2 *mfccp) 1122 { 1123 struct mfc *rt; 1124 struct rtdetq *rte; 1125 u_long hash = 0; 1126 u_short nstl; 1127 struct epoch_tracker et; 1128 1129 MRW_WLOCK(); 1130 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1131 1132 /* If an entry already exists, just update the fields */ 1133 if (rt) { 1134 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1135 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1136 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1137 mfccp->mfcc_parent); 1138 update_mfc_params(rt, mfccp); 1139 MRW_WUNLOCK(); 1140 return (0); 1141 } 1142 1143 /* 1144 * Find the entry for which the upcall was made and update 1145 */ 1146 nstl = 0; 1147 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1148 NET_EPOCH_ENTER(et); 1149 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1150 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1151 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1152 !buf_ring_empty(rt->mfc_stall_ring)) { 1153 CTR5(KTR_IPMF, 1154 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1155 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1156 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1157 mfccp->mfcc_parent, 1158 rt->mfc_stall_ring); 1159 if (nstl++) 1160 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1161 1162 init_mfc_params(rt, mfccp); 1163 rt->mfc_expire = 0; /* Don't clean this guy up */ 1164 V_nexpire[hash]--; 1165 1166 /* Free queued packets, but attempt to forward them first. */ 1167 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1168 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1169 if (rte->ifp != NULL) 1170 ip_mdq(rte->m, rte->ifp, rt, -1); 1171 m_freem(rte->m); 1172 free(rte, M_MRTABLE); 1173 } 1174 } 1175 } 1176 NET_EPOCH_EXIT(et); 1177 1178 /* 1179 * It is possible that an entry is being inserted without an upcall 1180 */ 1181 if (nstl == 0) { 1182 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1183 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1184 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1185 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1186 init_mfc_params(rt, mfccp); 1187 if (rt->mfc_expire) 1188 V_nexpire[hash]--; 1189 rt->mfc_expire = 0; 1190 break; /* XXX */ 1191 } 1192 } 1193 1194 if (rt == NULL) { /* no upcall, so make a new entry */ 1195 rt = mfc_alloc(); 1196 if (rt == NULL) { 1197 MRW_WUNLOCK(); 1198 return (ENOBUFS); 1199 } 1200 1201 init_mfc_params(rt, mfccp); 1202 1203 rt->mfc_expire = 0; 1204 rt->mfc_bw_meter_leq = NULL; 1205 rt->mfc_bw_meter_geq = NULL; 1206 1207 /* insert new entry at head of hash chain */ 1208 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1209 } 1210 } 1211 1212 MRW_WUNLOCK(); 1213 1214 return (0); 1215 } 1216 1217 /* 1218 * Delete an mfc entry 1219 */ 1220 static int 1221 del_mfc(struct mfcctl2 *mfccp) 1222 { 1223 struct in_addr origin; 1224 struct in_addr mcastgrp; 1225 struct mfc *rt; 1226 1227 origin = mfccp->mfcc_origin; 1228 mcastgrp = mfccp->mfcc_mcastgrp; 1229 1230 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1231 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1232 1233 MRW_WLOCK(); 1234 1235 rt = mfc_find(&origin, &mcastgrp); 1236 if (rt == NULL) { 1237 MRW_WUNLOCK(); 1238 return EADDRNOTAVAIL; 1239 } 1240 1241 /* 1242 * free the bw_meter entries 1243 */ 1244 free_bw_list(rt->mfc_bw_meter_leq); 1245 rt->mfc_bw_meter_leq = NULL; 1246 free_bw_list(rt->mfc_bw_meter_geq); 1247 rt->mfc_bw_meter_geq = NULL; 1248 1249 LIST_REMOVE(rt, mfc_hash); 1250 free(rt, M_MRTABLE); 1251 1252 MRW_WUNLOCK(); 1253 1254 return (0); 1255 } 1256 1257 /* 1258 * Send a message to the routing daemon on the multicast routing socket. 1259 */ 1260 static int 1261 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1262 { 1263 if (s) { 1264 SOCKBUF_LOCK(&s->so_rcv); 1265 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1266 NULL) != 0) { 1267 sorwakeup_locked(s); 1268 return 0; 1269 } 1270 soroverflow_locked(s); 1271 } 1272 m_freem(mm); 1273 return -1; 1274 } 1275 1276 /* 1277 * IP multicast forwarding function. This function assumes that the packet 1278 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1279 * pointed to by "ifp", and the packet is to be relayed to other networks 1280 * that have members of the packet's destination IP multicast group. 1281 * 1282 * The packet is returned unscathed to the caller, unless it is 1283 * erroneous, in which case a non-zero return value tells the caller to 1284 * discard it. 1285 */ 1286 1287 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1288 1289 static int 1290 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1291 struct ip_moptions *imo) 1292 { 1293 struct mfc *rt; 1294 int error; 1295 vifi_t vifi; 1296 struct mbuf *mb0; 1297 struct rtdetq *rte; 1298 u_long hash; 1299 int hlen; 1300 1301 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1302 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1303 1304 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1305 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1306 /* 1307 * Packet arrived via a physical interface or 1308 * an encapsulated tunnel or a register_vif. 1309 */ 1310 } else { 1311 /* 1312 * Packet arrived through a source-route tunnel. 1313 * Source-route tunnels are no longer supported. 1314 */ 1315 return (1); 1316 } 1317 1318 /* 1319 * BEGIN: MCAST ROUTING HOT PATH 1320 */ 1321 MRW_RLOCK(); 1322 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1323 if (ip->ip_ttl < MAXTTL) 1324 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1325 error = ip_mdq(m, ifp, NULL, vifi); 1326 MRW_RUNLOCK(); 1327 return error; 1328 } 1329 1330 /* 1331 * Don't forward a packet with time-to-live of zero or one, 1332 * or a packet destined to a local-only group. 1333 */ 1334 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1335 MRW_RUNLOCK(); 1336 return 0; 1337 } 1338 1339 mfc_find_retry: 1340 /* 1341 * Determine forwarding vifs from the forwarding cache table 1342 */ 1343 MRTSTAT_INC(mrts_mfc_lookups); 1344 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1345 1346 /* Entry exists, so forward if necessary */ 1347 if (rt != NULL) { 1348 error = ip_mdq(m, ifp, rt, -1); 1349 /* Generic unlock here as we might release R or W lock */ 1350 MRW_UNLOCK(); 1351 return error; 1352 } 1353 1354 /* 1355 * END: MCAST ROUTING HOT PATH 1356 */ 1357 1358 /* Further processing must be done with WLOCK taken */ 1359 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1360 MRW_RUNLOCK(); 1361 MRW_WLOCK(); 1362 goto mfc_find_retry; 1363 } 1364 1365 /* 1366 * If we don't have a route for packet's origin, 1367 * Make a copy of the packet & send message to routing daemon 1368 */ 1369 hlen = ip->ip_hl << 2; 1370 1371 MRTSTAT_INC(mrts_mfc_misses); 1372 MRTSTAT_INC(mrts_no_route); 1373 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1374 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1375 1376 /* 1377 * Allocate mbufs early so that we don't do extra work if we are 1378 * just going to fail anyway. Make sure to pullup the header so 1379 * that other people can't step on it. 1380 */ 1381 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1382 M_NOWAIT|M_ZERO); 1383 if (rte == NULL) { 1384 MRW_WUNLOCK(); 1385 return ENOBUFS; 1386 } 1387 1388 mb0 = m_copypacket(m, M_NOWAIT); 1389 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1390 mb0 = m_pullup(mb0, hlen); 1391 if (mb0 == NULL) { 1392 free(rte, M_MRTABLE); 1393 MRW_WUNLOCK(); 1394 return ENOBUFS; 1395 } 1396 1397 /* is there an upcall waiting for this flow ? */ 1398 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1399 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1400 { 1401 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1402 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1403 !buf_ring_empty(rt->mfc_stall_ring)) 1404 break; 1405 } 1406 1407 if (rt == NULL) { 1408 int i; 1409 struct igmpmsg *im; 1410 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1411 struct mbuf *mm; 1412 1413 /* 1414 * Locate the vifi for the incoming interface for this packet. 1415 * If none found, drop packet. 1416 */ 1417 for (vifi = 0; vifi < V_numvifs && 1418 V_viftable[vifi].v_ifp != ifp; vifi++) 1419 ; 1420 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1421 goto non_fatal; 1422 1423 /* no upcall, so make a new entry */ 1424 rt = mfc_alloc(); 1425 if (rt == NULL) 1426 goto fail; 1427 1428 /* Make a copy of the header to send to the user level process */ 1429 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1430 if (mm == NULL) 1431 goto fail1; 1432 1433 /* 1434 * Send message to routing daemon to install 1435 * a route into the kernel table 1436 */ 1437 1438 im = mtod(mm, struct igmpmsg*); 1439 im->im_msgtype = IGMPMSG_NOCACHE; 1440 im->im_mbz = 0; 1441 im->im_vif = vifi; 1442 1443 MRTSTAT_INC(mrts_upcalls); 1444 1445 k_igmpsrc.sin_addr = ip->ip_src; 1446 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1447 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1448 MRTSTAT_INC(mrts_upq_sockfull); 1449 fail1: free(rt, M_MRTABLE); 1450 fail: free(rte, M_MRTABLE); 1451 m_freem(mb0); 1452 MRW_WUNLOCK(); 1453 return ENOBUFS; 1454 } 1455 1456 /* insert new entry at head of hash chain */ 1457 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1458 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1459 rt->mfc_expire = UPCALL_EXPIRE; 1460 V_nexpire[hash]++; 1461 for (i = 0; i < V_numvifs; i++) { 1462 rt->mfc_ttls[i] = 0; 1463 rt->mfc_flags[i] = 0; 1464 } 1465 rt->mfc_parent = -1; 1466 1467 /* clear the RP address */ 1468 rt->mfc_rp.s_addr = INADDR_ANY; 1469 rt->mfc_bw_meter_leq = NULL; 1470 rt->mfc_bw_meter_geq = NULL; 1471 1472 /* initialize pkt counters per src-grp */ 1473 rt->mfc_pkt_cnt = 0; 1474 rt->mfc_byte_cnt = 0; 1475 rt->mfc_wrong_if = 0; 1476 timevalclear(&rt->mfc_last_assert); 1477 1478 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1479 1480 /* Add RT to hashtable as it didn't exist before */ 1481 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1482 } else { 1483 /* determine if queue has overflowed */ 1484 if (buf_ring_full(rt->mfc_stall_ring)) { 1485 MRTSTAT_INC(mrts_upq_ovflw); 1486 non_fatal: free(rte, M_MRTABLE); 1487 m_freem(mb0); 1488 MRW_WUNLOCK(); 1489 return (0); 1490 } 1491 1492 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1493 } 1494 1495 rte->m = mb0; 1496 rte->ifp = ifp; 1497 1498 MRW_WUNLOCK(); 1499 1500 return 0; 1501 } 1502 1503 /* 1504 * Clean up the cache entry if upcall is not serviced 1505 */ 1506 static void 1507 expire_upcalls(void *arg) 1508 { 1509 u_long i; 1510 1511 CURVNET_SET((struct vnet *) arg); 1512 1513 /*This callout is always run with MRW_WLOCK taken. */ 1514 1515 for (i = 0; i < mfchashsize; i++) { 1516 struct mfc *rt, *nrt; 1517 1518 if (V_nexpire[i] == 0) 1519 continue; 1520 1521 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1522 if (buf_ring_empty(rt->mfc_stall_ring)) 1523 continue; 1524 1525 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1526 continue; 1527 1528 MRTSTAT_INC(mrts_cache_cleanups); 1529 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1530 (u_long)ntohl(rt->mfc_origin.s_addr), 1531 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1532 1533 expire_mfc(rt); 1534 } 1535 } 1536 1537 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1538 curvnet); 1539 1540 CURVNET_RESTORE(); 1541 } 1542 1543 /* 1544 * Packet forwarding routine once entry in the cache is made 1545 */ 1546 static int 1547 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1548 { 1549 struct ip *ip = mtod(m, struct ip *); 1550 vifi_t vifi; 1551 int plen = ntohs(ip->ip_len); 1552 1553 MRW_LOCK_ASSERT(); 1554 NET_EPOCH_ASSERT(); 1555 1556 /* 1557 * If xmt_vif is not -1, send on only the requested vif. 1558 * 1559 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1560 */ 1561 if (xmt_vif < V_numvifs) { 1562 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1563 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1564 else 1565 phyint_send(ip, V_viftable + xmt_vif, m); 1566 return 1; 1567 } 1568 1569 /* 1570 * Don't forward if it didn't arrive from the parent vif for its origin. 1571 */ 1572 vifi = rt->mfc_parent; 1573 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1574 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1575 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1576 MRTSTAT_INC(mrts_wrong_if); 1577 ++rt->mfc_wrong_if; 1578 /* 1579 * If we are doing PIM assert processing, send a message 1580 * to the routing daemon. 1581 * 1582 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1583 * can complete the SPT switch, regardless of the type 1584 * of the iif (broadcast media, GRE tunnel, etc). 1585 */ 1586 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1587 V_viftable[vifi].v_ifp) { 1588 if (ifp == V_multicast_register_if) 1589 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1590 1591 /* Get vifi for the incoming packet */ 1592 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1593 vifi++) 1594 ; 1595 if (vifi >= V_numvifs) 1596 return 0; /* The iif is not found: ignore the packet. */ 1597 1598 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1599 return 0; /* WRONGVIF disabled: ignore the packet */ 1600 1601 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1602 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1603 struct igmpmsg *im; 1604 int hlen = ip->ip_hl << 2; 1605 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1606 1607 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1608 mm = m_pullup(mm, hlen); 1609 if (mm == NULL) 1610 return ENOBUFS; 1611 1612 im = mtod(mm, struct igmpmsg *); 1613 im->im_msgtype = IGMPMSG_WRONGVIF; 1614 im->im_mbz = 0; 1615 im->im_vif = vifi; 1616 1617 MRTSTAT_INC(mrts_upcalls); 1618 1619 k_igmpsrc.sin_addr = im->im_src; 1620 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1621 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1622 MRTSTAT_INC(mrts_upq_sockfull); 1623 return ENOBUFS; 1624 } 1625 } 1626 } 1627 return 0; 1628 } 1629 1630 /* If I sourced this packet, it counts as output, else it was input. */ 1631 mtx_lock_spin(&V_viftable[vifi].v_spin); 1632 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1633 V_viftable[vifi].v_pkt_out++; 1634 V_viftable[vifi].v_bytes_out += plen; 1635 } else { 1636 V_viftable[vifi].v_pkt_in++; 1637 V_viftable[vifi].v_bytes_in += plen; 1638 } 1639 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1640 1641 rt->mfc_pkt_cnt++; 1642 rt->mfc_byte_cnt += plen; 1643 1644 /* 1645 * For each vif, decide if a copy of the packet should be forwarded. 1646 * Forward if: 1647 * - the ttl exceeds the vif's threshold 1648 * - there are group members downstream on interface 1649 */ 1650 for (vifi = 0; vifi < V_numvifs; vifi++) 1651 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1652 V_viftable[vifi].v_pkt_out++; 1653 V_viftable[vifi].v_bytes_out += plen; 1654 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1655 pim_register_send(ip, V_viftable + vifi, m, rt); 1656 else 1657 phyint_send(ip, V_viftable + vifi, m); 1658 } 1659 1660 /* 1661 * Perform upcall-related bw measuring. 1662 */ 1663 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1664 struct bw_meter *x; 1665 struct timeval now; 1666 1667 microtime(&now); 1668 /* Process meters for Greater-or-EQual case */ 1669 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1670 bw_meter_geq_receive_packet(x, plen, &now); 1671 1672 /* Process meters for Lower-or-EQual case */ 1673 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1674 /* 1675 * Record that a packet is received. 1676 * Spin lock has to be taken as callout context 1677 * (expire_bw_meter_leq) might modify these fields 1678 * as well 1679 */ 1680 mtx_lock_spin(&x->bm_spin); 1681 x->bm_measured.b_packets++; 1682 x->bm_measured.b_bytes += plen; 1683 mtx_unlock_spin(&x->bm_spin); 1684 } 1685 } 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1692 */ 1693 static int 1694 X_legal_vif_num(int vif) 1695 { 1696 int ret; 1697 1698 ret = 0; 1699 if (vif < 0) 1700 return (ret); 1701 1702 MRW_RLOCK(); 1703 if (vif < V_numvifs) 1704 ret = 1; 1705 MRW_RUNLOCK(); 1706 1707 return (ret); 1708 } 1709 1710 /* 1711 * Return the local address used by this vif 1712 */ 1713 static u_long 1714 X_ip_mcast_src(int vifi) 1715 { 1716 in_addr_t addr; 1717 1718 addr = INADDR_ANY; 1719 if (vifi < 0) 1720 return (addr); 1721 1722 MRW_RLOCK(); 1723 if (vifi < V_numvifs) 1724 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1725 MRW_RUNLOCK(); 1726 1727 return (addr); 1728 } 1729 1730 static void 1731 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1732 { 1733 struct mbuf *mb_copy; 1734 int hlen = ip->ip_hl << 2; 1735 1736 MRW_LOCK_ASSERT(); 1737 1738 /* 1739 * Make a new reference to the packet; make sure that 1740 * the IP header is actually copied, not just referenced, 1741 * so that ip_output() only scribbles on the copy. 1742 */ 1743 mb_copy = m_copypacket(m, M_NOWAIT); 1744 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1745 mb_copy = m_pullup(mb_copy, hlen); 1746 if (mb_copy == NULL) 1747 return; 1748 1749 send_packet(vifp, mb_copy); 1750 } 1751 1752 static void 1753 send_packet(struct vif *vifp, struct mbuf *m) 1754 { 1755 struct ip_moptions imo; 1756 int error __unused; 1757 1758 MRW_LOCK_ASSERT(); 1759 NET_EPOCH_ASSERT(); 1760 1761 imo.imo_multicast_ifp = vifp->v_ifp; 1762 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1763 imo.imo_multicast_loop = !!in_mcast_loop; 1764 imo.imo_multicast_vif = -1; 1765 STAILQ_INIT(&imo.imo_head); 1766 1767 /* 1768 * Re-entrancy should not be a problem here, because 1769 * the packets that we send out and are looped back at us 1770 * should get rejected because they appear to come from 1771 * the loopback interface, thus preventing looping. 1772 */ 1773 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1774 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1775 (ptrdiff_t)(vifp - V_viftable), error); 1776 } 1777 1778 /* 1779 * Stubs for old RSVP socket shim implementation. 1780 */ 1781 1782 static int 1783 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1784 { 1785 1786 return (EOPNOTSUPP); 1787 } 1788 1789 static void 1790 X_ip_rsvp_force_done(struct socket *so __unused) 1791 { 1792 1793 } 1794 1795 static int 1796 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1797 { 1798 struct mbuf *m; 1799 1800 m = *mp; 1801 *mp = NULL; 1802 if (!V_rsvp_on) 1803 m_freem(m); 1804 return (IPPROTO_DONE); 1805 } 1806 1807 /* 1808 * Code for bandwidth monitors 1809 */ 1810 1811 /* 1812 * Define common interface for timeval-related methods 1813 */ 1814 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1815 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1816 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1817 1818 static uint32_t 1819 compute_bw_meter_flags(struct bw_upcall *req) 1820 { 1821 uint32_t flags = 0; 1822 1823 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1824 flags |= BW_METER_UNIT_PACKETS; 1825 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1826 flags |= BW_METER_UNIT_BYTES; 1827 if (req->bu_flags & BW_UPCALL_GEQ) 1828 flags |= BW_METER_GEQ; 1829 if (req->bu_flags & BW_UPCALL_LEQ) 1830 flags |= BW_METER_LEQ; 1831 1832 return flags; 1833 } 1834 1835 static void 1836 expire_bw_meter_leq(void *arg) 1837 { 1838 struct bw_meter *x = arg; 1839 struct timeval now; 1840 /* 1841 * INFO: 1842 * callout is always executed with MRW_WLOCK taken 1843 */ 1844 1845 CURVNET_SET((struct vnet *)x->arg); 1846 1847 microtime(&now); 1848 1849 /* 1850 * Test if we should deliver an upcall 1851 */ 1852 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1853 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1854 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1855 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1856 /* Prepare an upcall for delivery */ 1857 bw_meter_prepare_upcall(x, &now); 1858 } 1859 1860 /* Send all upcalls that are pending delivery */ 1861 taskqueue_enqueue(V_task_queue, &V_task); 1862 1863 /* Reset counters */ 1864 x->bm_start_time = now; 1865 /* Spin lock has to be taken as ip_forward context 1866 * might modify these fields as well 1867 */ 1868 mtx_lock_spin(&x->bm_spin); 1869 x->bm_measured.b_bytes = 0; 1870 x->bm_measured.b_packets = 0; 1871 mtx_unlock_spin(&x->bm_spin); 1872 1873 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1874 1875 CURVNET_RESTORE(); 1876 } 1877 1878 /* 1879 * Add a bw_meter entry 1880 */ 1881 static int 1882 add_bw_upcall(struct bw_upcall *req) 1883 { 1884 struct mfc *mfc; 1885 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1886 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1887 struct timeval now; 1888 struct bw_meter *x, **bwm_ptr; 1889 uint32_t flags; 1890 1891 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1892 return EOPNOTSUPP; 1893 1894 /* Test if the flags are valid */ 1895 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1896 return EINVAL; 1897 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1898 return EINVAL; 1899 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1900 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1901 return EINVAL; 1902 1903 /* Test if the threshold time interval is valid */ 1904 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1905 return EINVAL; 1906 1907 flags = compute_bw_meter_flags(req); 1908 1909 /* 1910 * Find if we have already same bw_meter entry 1911 */ 1912 MRW_WLOCK(); 1913 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1914 if (mfc == NULL) { 1915 MRW_WUNLOCK(); 1916 return EADDRNOTAVAIL; 1917 } 1918 1919 /* Choose an appropriate bw_meter list */ 1920 if (req->bu_flags & BW_UPCALL_GEQ) 1921 bwm_ptr = &mfc->mfc_bw_meter_geq; 1922 else 1923 bwm_ptr = &mfc->mfc_bw_meter_leq; 1924 1925 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1926 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1927 &req->bu_threshold.b_time, ==)) 1928 && (x->bm_threshold.b_packets 1929 == req->bu_threshold.b_packets) 1930 && (x->bm_threshold.b_bytes 1931 == req->bu_threshold.b_bytes) 1932 && (x->bm_flags & BW_METER_USER_FLAGS) 1933 == flags) { 1934 MRW_WUNLOCK(); 1935 return 0; /* XXX Already installed */ 1936 } 1937 } 1938 1939 /* Allocate the new bw_meter entry */ 1940 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1941 M_ZERO | M_NOWAIT); 1942 if (x == NULL) { 1943 MRW_WUNLOCK(); 1944 return ENOBUFS; 1945 } 1946 1947 /* Set the new bw_meter entry */ 1948 x->bm_threshold.b_time = req->bu_threshold.b_time; 1949 microtime(&now); 1950 x->bm_start_time = now; 1951 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1952 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1953 x->bm_measured.b_packets = 0; 1954 x->bm_measured.b_bytes = 0; 1955 x->bm_flags = flags; 1956 x->bm_time_next = NULL; 1957 x->bm_mfc = mfc; 1958 x->arg = curvnet; 1959 sprintf(x->bm_spin_name, "BM spin %p", x); 1960 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1961 1962 /* For LEQ case create periodic callout */ 1963 if (req->bu_flags & BW_UPCALL_LEQ) { 1964 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1965 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1966 expire_bw_meter_leq, x); 1967 } 1968 1969 /* Add the new bw_meter entry to the front of entries for this MFC */ 1970 x->bm_mfc_next = *bwm_ptr; 1971 *bwm_ptr = x; 1972 1973 MRW_WUNLOCK(); 1974 1975 return 0; 1976 } 1977 1978 static void 1979 free_bw_list(struct bw_meter *list) 1980 { 1981 while (list != NULL) { 1982 struct bw_meter *x = list; 1983 1984 /* MRW_WLOCK must be held here */ 1985 if (x->bm_flags & BW_METER_LEQ) { 1986 callout_drain(&x->bm_meter_callout); 1987 mtx_destroy(&x->bm_spin); 1988 } 1989 1990 list = list->bm_mfc_next; 1991 free(x, M_BWMETER); 1992 } 1993 } 1994 1995 /* 1996 * Delete one or multiple bw_meter entries 1997 */ 1998 static int 1999 del_bw_upcall(struct bw_upcall *req) 2000 { 2001 struct mfc *mfc; 2002 struct bw_meter *x, **bwm_ptr; 2003 2004 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2005 return EOPNOTSUPP; 2006 2007 MRW_WLOCK(); 2008 2009 /* Find the corresponding MFC entry */ 2010 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2011 if (mfc == NULL) { 2012 MRW_WUNLOCK(); 2013 return EADDRNOTAVAIL; 2014 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2015 /* 2016 * Delete all bw_meter entries for this mfc 2017 */ 2018 struct bw_meter *list; 2019 2020 /* Free LEQ list */ 2021 list = mfc->mfc_bw_meter_leq; 2022 mfc->mfc_bw_meter_leq = NULL; 2023 free_bw_list(list); 2024 2025 /* Free GEQ list */ 2026 list = mfc->mfc_bw_meter_geq; 2027 mfc->mfc_bw_meter_geq = NULL; 2028 free_bw_list(list); 2029 MRW_WUNLOCK(); 2030 return 0; 2031 } else { /* Delete a single bw_meter entry */ 2032 struct bw_meter *prev; 2033 uint32_t flags = 0; 2034 2035 flags = compute_bw_meter_flags(req); 2036 2037 /* Choose an appropriate bw_meter list */ 2038 if (req->bu_flags & BW_UPCALL_GEQ) 2039 bwm_ptr = &mfc->mfc_bw_meter_geq; 2040 else 2041 bwm_ptr = &mfc->mfc_bw_meter_leq; 2042 2043 /* Find the bw_meter entry to delete */ 2044 for (prev = NULL, x = *bwm_ptr; x != NULL; 2045 prev = x, x = x->bm_mfc_next) { 2046 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2047 &req->bu_threshold.b_time, ==)) && 2048 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2049 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2050 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2051 break; 2052 } 2053 if (x != NULL) { /* Delete entry from the list for this MFC */ 2054 if (prev != NULL) 2055 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2056 else 2057 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2058 2059 if (req->bu_flags & BW_UPCALL_LEQ) 2060 callout_stop(&x->bm_meter_callout); 2061 2062 MRW_WUNLOCK(); 2063 /* Free the bw_meter entry */ 2064 free(x, M_BWMETER); 2065 return 0; 2066 } else { 2067 MRW_WUNLOCK(); 2068 return EINVAL; 2069 } 2070 } 2071 /* NOTREACHED */ 2072 } 2073 2074 /* 2075 * Perform bandwidth measurement processing that may result in an upcall 2076 */ 2077 static void 2078 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2079 { 2080 struct timeval delta; 2081 2082 MRW_LOCK_ASSERT(); 2083 2084 delta = *nowp; 2085 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2086 2087 /* 2088 * Processing for ">=" type of bw_meter entry. 2089 * bm_spin does not have to be hold here as in GEQ 2090 * case this is the only context accessing bm_measured. 2091 */ 2092 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2093 /* Reset the bw_meter entry */ 2094 x->bm_start_time = *nowp; 2095 x->bm_measured.b_packets = 0; 2096 x->bm_measured.b_bytes = 0; 2097 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2098 } 2099 2100 /* Record that a packet is received */ 2101 x->bm_measured.b_packets++; 2102 x->bm_measured.b_bytes += plen; 2103 2104 /* 2105 * Test if we should deliver an upcall 2106 */ 2107 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2108 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2109 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2110 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2111 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2112 /* Prepare an upcall for delivery */ 2113 bw_meter_prepare_upcall(x, nowp); 2114 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2115 } 2116 } 2117 } 2118 2119 /* 2120 * Prepare a bandwidth-related upcall 2121 */ 2122 static void 2123 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2124 { 2125 struct timeval delta; 2126 struct bw_upcall *u; 2127 2128 MRW_LOCK_ASSERT(); 2129 2130 /* 2131 * Compute the measured time interval 2132 */ 2133 delta = *nowp; 2134 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2135 2136 /* 2137 * Set the bw_upcall entry 2138 */ 2139 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2140 if (!u) { 2141 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2142 return; 2143 } 2144 u->bu_src = x->bm_mfc->mfc_origin; 2145 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2146 u->bu_threshold.b_time = x->bm_threshold.b_time; 2147 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2148 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2149 u->bu_measured.b_time = delta; 2150 u->bu_measured.b_packets = x->bm_measured.b_packets; 2151 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2152 u->bu_flags = 0; 2153 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2154 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2155 if (x->bm_flags & BW_METER_UNIT_BYTES) 2156 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2157 if (x->bm_flags & BW_METER_GEQ) 2158 u->bu_flags |= BW_UPCALL_GEQ; 2159 if (x->bm_flags & BW_METER_LEQ) 2160 u->bu_flags |= BW_UPCALL_LEQ; 2161 2162 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2163 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2164 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2165 taskqueue_enqueue(V_task_queue, &V_task); 2166 } 2167 } 2168 /* 2169 * Send the pending bandwidth-related upcalls 2170 */ 2171 static void 2172 bw_upcalls_send(void) 2173 { 2174 struct mbuf *m; 2175 int len = 0; 2176 struct bw_upcall *bu; 2177 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2178 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2179 0, /* unused2 */ 2180 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2181 0, /* im_mbz */ 2182 0, /* im_vif */ 2183 0, /* unused3 */ 2184 { 0 }, /* im_src */ 2185 { 0 } }; /* im_dst */ 2186 2187 MRW_LOCK_ASSERT(); 2188 2189 if (buf_ring_empty(V_bw_upcalls_ring)) 2190 return; 2191 2192 /* 2193 * Allocate a new mbuf, initialize it with the header and 2194 * the payload for the pending calls. 2195 */ 2196 m = m_gethdr(M_NOWAIT, MT_DATA); 2197 if (m == NULL) { 2198 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2199 return; 2200 } 2201 2202 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2203 len += sizeof(struct igmpmsg); 2204 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2205 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2206 len += sizeof(struct bw_upcall); 2207 free(bu, M_MRTABLE); 2208 } 2209 2210 /* 2211 * Send the upcalls 2212 * XXX do we need to set the address in k_igmpsrc ? 2213 */ 2214 MRTSTAT_INC(mrts_upcalls); 2215 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2216 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2217 MRTSTAT_INC(mrts_upq_sockfull); 2218 } 2219 } 2220 2221 /* 2222 * A periodic function for sending all upcalls that are pending delivery 2223 */ 2224 static void 2225 expire_bw_upcalls_send(void *arg) 2226 { 2227 CURVNET_SET((struct vnet *) arg); 2228 2229 /* This callout is run with MRW_RLOCK taken */ 2230 2231 bw_upcalls_send(); 2232 2233 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2234 curvnet); 2235 CURVNET_RESTORE(); 2236 } 2237 2238 /* 2239 * End of bandwidth monitoring code 2240 */ 2241 2242 /* 2243 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2244 * 2245 */ 2246 static int 2247 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2248 struct mfc *rt) 2249 { 2250 struct mbuf *mb_copy, *mm; 2251 2252 /* 2253 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2254 * rendezvous point was unspecified, and we were told not to. 2255 */ 2256 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2257 in_nullhost(rt->mfc_rp)) 2258 return 0; 2259 2260 mb_copy = pim_register_prepare(ip, m); 2261 if (mb_copy == NULL) 2262 return ENOBUFS; 2263 2264 /* 2265 * Send all the fragments. Note that the mbuf for each fragment 2266 * is freed by the sending machinery. 2267 */ 2268 for (mm = mb_copy; mm; mm = mb_copy) { 2269 mb_copy = mm->m_nextpkt; 2270 mm->m_nextpkt = 0; 2271 mm = m_pullup(mm, sizeof(struct ip)); 2272 if (mm != NULL) { 2273 ip = mtod(mm, struct ip *); 2274 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2275 pim_register_send_rp(ip, vifp, mm, rt); 2276 } else { 2277 pim_register_send_upcall(ip, vifp, mm, rt); 2278 } 2279 } 2280 } 2281 2282 return 0; 2283 } 2284 2285 /* 2286 * Return a copy of the data packet that is ready for PIM Register 2287 * encapsulation. 2288 * XXX: Note that in the returned copy the IP header is a valid one. 2289 */ 2290 static struct mbuf * 2291 pim_register_prepare(struct ip *ip, struct mbuf *m) 2292 { 2293 struct mbuf *mb_copy = NULL; 2294 int mtu; 2295 2296 /* Take care of delayed checksums */ 2297 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2298 in_delayed_cksum(m); 2299 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2300 } 2301 2302 /* 2303 * Copy the old packet & pullup its IP header into the 2304 * new mbuf so we can modify it. 2305 */ 2306 mb_copy = m_copypacket(m, M_NOWAIT); 2307 if (mb_copy == NULL) 2308 return NULL; 2309 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2310 if (mb_copy == NULL) 2311 return NULL; 2312 2313 /* take care of the TTL */ 2314 ip = mtod(mb_copy, struct ip *); 2315 --ip->ip_ttl; 2316 2317 /* Compute the MTU after the PIM Register encapsulation */ 2318 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2319 2320 if (ntohs(ip->ip_len) <= mtu) { 2321 /* Turn the IP header into a valid one */ 2322 ip->ip_sum = 0; 2323 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2324 } else { 2325 /* Fragment the packet */ 2326 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2327 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2328 m_freem(mb_copy); 2329 return NULL; 2330 } 2331 } 2332 return mb_copy; 2333 } 2334 2335 /* 2336 * Send an upcall with the data packet to the user-level process. 2337 */ 2338 static int 2339 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2340 struct mbuf *mb_copy, struct mfc *rt) 2341 { 2342 struct mbuf *mb_first; 2343 int len = ntohs(ip->ip_len); 2344 struct igmpmsg *im; 2345 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2346 2347 MRW_LOCK_ASSERT(); 2348 2349 /* 2350 * Add a new mbuf with an upcall header 2351 */ 2352 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2353 if (mb_first == NULL) { 2354 m_freem(mb_copy); 2355 return ENOBUFS; 2356 } 2357 mb_first->m_data += max_linkhdr; 2358 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2359 mb_first->m_len = sizeof(struct igmpmsg); 2360 mb_first->m_next = mb_copy; 2361 2362 /* Send message to routing daemon */ 2363 im = mtod(mb_first, struct igmpmsg *); 2364 im->im_msgtype = IGMPMSG_WHOLEPKT; 2365 im->im_mbz = 0; 2366 im->im_vif = vifp - V_viftable; 2367 im->im_src = ip->ip_src; 2368 im->im_dst = ip->ip_dst; 2369 2370 k_igmpsrc.sin_addr = ip->ip_src; 2371 2372 MRTSTAT_INC(mrts_upcalls); 2373 2374 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2375 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2376 MRTSTAT_INC(mrts_upq_sockfull); 2377 return ENOBUFS; 2378 } 2379 2380 /* Keep statistics */ 2381 PIMSTAT_INC(pims_snd_registers_msgs); 2382 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2383 2384 return 0; 2385 } 2386 2387 /* 2388 * Encapsulate the data packet in PIM Register message and send it to the RP. 2389 */ 2390 static int 2391 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2392 struct mfc *rt) 2393 { 2394 struct mbuf *mb_first; 2395 struct ip *ip_outer; 2396 struct pim_encap_pimhdr *pimhdr; 2397 int len = ntohs(ip->ip_len); 2398 vifi_t vifi = rt->mfc_parent; 2399 2400 MRW_LOCK_ASSERT(); 2401 2402 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2403 m_freem(mb_copy); 2404 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2405 } 2406 2407 /* 2408 * Add a new mbuf with the encapsulating header 2409 */ 2410 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2411 if (mb_first == NULL) { 2412 m_freem(mb_copy); 2413 return ENOBUFS; 2414 } 2415 mb_first->m_data += max_linkhdr; 2416 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2417 mb_first->m_next = mb_copy; 2418 2419 mb_first->m_pkthdr.len = len + mb_first->m_len; 2420 2421 /* 2422 * Fill in the encapsulating IP and PIM header 2423 */ 2424 ip_outer = mtod(mb_first, struct ip *); 2425 *ip_outer = pim_encap_iphdr; 2426 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2427 sizeof(pim_encap_pimhdr)); 2428 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2429 ip_outer->ip_dst = rt->mfc_rp; 2430 /* 2431 * Copy the inner header TOS to the outer header, and take care of the 2432 * IP_DF bit. 2433 */ 2434 ip_outer->ip_tos = ip->ip_tos; 2435 if (ip->ip_off & htons(IP_DF)) 2436 ip_outer->ip_off |= htons(IP_DF); 2437 ip_fillid(ip_outer); 2438 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2439 + sizeof(pim_encap_iphdr)); 2440 *pimhdr = pim_encap_pimhdr; 2441 /* If the iif crosses a border, set the Border-bit */ 2442 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2443 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2444 2445 mb_first->m_data += sizeof(pim_encap_iphdr); 2446 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2447 mb_first->m_data -= sizeof(pim_encap_iphdr); 2448 2449 send_packet(vifp, mb_first); 2450 2451 /* Keep statistics */ 2452 PIMSTAT_INC(pims_snd_registers_msgs); 2453 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2454 2455 return 0; 2456 } 2457 2458 /* 2459 * pim_encapcheck() is called by the encap4_input() path at runtime to 2460 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2461 * into the kernel. 2462 */ 2463 static int 2464 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2465 int proto __unused, void *arg __unused) 2466 { 2467 2468 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2469 return (8); /* claim the datagram. */ 2470 } 2471 2472 /* 2473 * PIM-SMv2 and PIM-DM messages processing. 2474 * Receives and verifies the PIM control messages, and passes them 2475 * up to the listening socket, using rip_input(). 2476 * The only message with special processing is the PIM_REGISTER message 2477 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2478 * is passed to if_simloop(). 2479 */ 2480 static int 2481 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2482 { 2483 struct ip *ip = mtod(m, struct ip *); 2484 struct pim *pim; 2485 int iphlen = off; 2486 int minlen; 2487 int datalen = ntohs(ip->ip_len) - iphlen; 2488 int ip_tos; 2489 2490 /* Keep statistics */ 2491 PIMSTAT_INC(pims_rcv_total_msgs); 2492 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2493 2494 /* 2495 * Validate lengths 2496 */ 2497 if (datalen < PIM_MINLEN) { 2498 PIMSTAT_INC(pims_rcv_tooshort); 2499 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2500 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2501 m_freem(m); 2502 return (IPPROTO_DONE); 2503 } 2504 2505 /* 2506 * If the packet is at least as big as a REGISTER, go agead 2507 * and grab the PIM REGISTER header size, to avoid another 2508 * possible m_pullup() later. 2509 * 2510 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2511 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2512 */ 2513 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2514 /* 2515 * Get the IP and PIM headers in contiguous memory, and 2516 * possibly the PIM REGISTER header. 2517 */ 2518 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2519 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2520 return (IPPROTO_DONE); 2521 } 2522 2523 /* m_pullup() may have given us a new mbuf so reset ip. */ 2524 ip = mtod(m, struct ip *); 2525 ip_tos = ip->ip_tos; 2526 2527 /* adjust mbuf to point to the PIM header */ 2528 m->m_data += iphlen; 2529 m->m_len -= iphlen; 2530 pim = mtod(m, struct pim *); 2531 2532 /* 2533 * Validate checksum. If PIM REGISTER, exclude the data packet. 2534 * 2535 * XXX: some older PIMv2 implementations don't make this distinction, 2536 * so for compatibility reason perform the checksum over part of the 2537 * message, and if error, then over the whole message. 2538 */ 2539 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2540 /* do nothing, checksum okay */ 2541 } else if (in_cksum(m, datalen)) { 2542 PIMSTAT_INC(pims_rcv_badsum); 2543 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2544 m_freem(m); 2545 return (IPPROTO_DONE); 2546 } 2547 2548 /* PIM version check */ 2549 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2550 PIMSTAT_INC(pims_rcv_badversion); 2551 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2552 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2553 m_freem(m); 2554 return (IPPROTO_DONE); 2555 } 2556 2557 /* restore mbuf back to the outer IP */ 2558 m->m_data -= iphlen; 2559 m->m_len += iphlen; 2560 2561 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2562 /* 2563 * Since this is a REGISTER, we'll make a copy of the register 2564 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2565 * routing daemon. 2566 */ 2567 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2568 struct mbuf *mcp; 2569 struct ip *encap_ip; 2570 u_int32_t *reghdr; 2571 struct ifnet *vifp; 2572 2573 MRW_RLOCK(); 2574 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2575 MRW_RUNLOCK(); 2576 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2577 (int)V_reg_vif_num); 2578 m_freem(m); 2579 return (IPPROTO_DONE); 2580 } 2581 /* XXX need refcnt? */ 2582 vifp = V_viftable[V_reg_vif_num].v_ifp; 2583 MRW_RUNLOCK(); 2584 2585 /* 2586 * Validate length 2587 */ 2588 if (datalen < PIM_REG_MINLEN) { 2589 PIMSTAT_INC(pims_rcv_tooshort); 2590 PIMSTAT_INC(pims_rcv_badregisters); 2591 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2592 m_freem(m); 2593 return (IPPROTO_DONE); 2594 } 2595 2596 reghdr = (u_int32_t *)(pim + 1); 2597 encap_ip = (struct ip *)(reghdr + 1); 2598 2599 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2600 __func__, ntohl(encap_ip->ip_src.s_addr), 2601 ntohs(encap_ip->ip_len)); 2602 2603 /* verify the version number of the inner packet */ 2604 if (encap_ip->ip_v != IPVERSION) { 2605 PIMSTAT_INC(pims_rcv_badregisters); 2606 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2607 m_freem(m); 2608 return (IPPROTO_DONE); 2609 } 2610 2611 /* verify the inner packet is destined to a mcast group */ 2612 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2613 PIMSTAT_INC(pims_rcv_badregisters); 2614 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2615 ntohl(encap_ip->ip_dst.s_addr)); 2616 m_freem(m); 2617 return (IPPROTO_DONE); 2618 } 2619 2620 /* If a NULL_REGISTER, pass it to the daemon */ 2621 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2622 goto pim_input_to_daemon; 2623 2624 /* 2625 * Copy the TOS from the outer IP header to the inner IP header. 2626 */ 2627 if (encap_ip->ip_tos != ip_tos) { 2628 /* Outer TOS -> inner TOS */ 2629 encap_ip->ip_tos = ip_tos; 2630 /* Recompute the inner header checksum. Sigh... */ 2631 2632 /* adjust mbuf to point to the inner IP header */ 2633 m->m_data += (iphlen + PIM_MINLEN); 2634 m->m_len -= (iphlen + PIM_MINLEN); 2635 2636 encap_ip->ip_sum = 0; 2637 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2638 2639 /* restore mbuf to point back to the outer IP header */ 2640 m->m_data -= (iphlen + PIM_MINLEN); 2641 m->m_len += (iphlen + PIM_MINLEN); 2642 } 2643 2644 /* 2645 * Decapsulate the inner IP packet and loopback to forward it 2646 * as a normal multicast packet. Also, make a copy of the 2647 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2648 * to pass to the daemon later, so it can take the appropriate 2649 * actions (e.g., send back PIM_REGISTER_STOP). 2650 * XXX: here m->m_data points to the outer IP header. 2651 */ 2652 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2653 if (mcp == NULL) { 2654 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2655 m_freem(m); 2656 return (IPPROTO_DONE); 2657 } 2658 2659 /* Keep statistics */ 2660 /* XXX: registers_bytes include only the encap. mcast pkt */ 2661 PIMSTAT_INC(pims_rcv_registers_msgs); 2662 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2663 2664 /* 2665 * forward the inner ip packet; point m_data at the inner ip. 2666 */ 2667 m_adj(m, iphlen + PIM_MINLEN); 2668 2669 CTR4(KTR_IPMF, 2670 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2671 __func__, 2672 (u_long)ntohl(encap_ip->ip_src.s_addr), 2673 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2674 (int)V_reg_vif_num); 2675 2676 /* NB: vifp was collected above; can it change on us? */ 2677 if_simloop(vifp, m, dst.sin_family, 0); 2678 2679 /* prepare the register head to send to the mrouting daemon */ 2680 m = mcp; 2681 } 2682 2683 pim_input_to_daemon: 2684 /* 2685 * Pass the PIM message up to the daemon; if it is a Register message, 2686 * pass the 'head' only up to the daemon. This includes the 2687 * outer IP header, PIM header, PIM-Register header and the 2688 * inner IP header. 2689 * XXX: the outer IP header pkt size of a Register is not adjust to 2690 * reflect the fact that the inner multicast data is truncated. 2691 */ 2692 return (rip_input(&m, &off, proto)); 2693 } 2694 2695 static int 2696 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2697 { 2698 struct mfc *rt; 2699 int error, i; 2700 2701 if (req->newptr) 2702 return (EPERM); 2703 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2704 return (0); 2705 error = sysctl_wire_old_buffer(req, 0); 2706 if (error) 2707 return (error); 2708 2709 MRW_RLOCK(); 2710 for (i = 0; i < mfchashsize; i++) { 2711 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2712 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2713 if (error) 2714 goto out_locked; 2715 } 2716 } 2717 out_locked: 2718 MRW_RUNLOCK(); 2719 return (error); 2720 } 2721 2722 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2723 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2724 "IPv4 Multicast Forwarding Table " 2725 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2726 2727 static int 2728 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2729 { 2730 int error, i; 2731 2732 if (req->newptr) 2733 return (EPERM); 2734 if (V_viftable == NULL) /* XXX unlocked */ 2735 return (0); 2736 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2737 if (error) 2738 return (error); 2739 2740 MRW_RLOCK(); 2741 /* Copy out user-visible portion of vif entry. */ 2742 for (i = 0; i < MAXVIFS; i++) { 2743 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2744 if (error) 2745 break; 2746 } 2747 MRW_RUNLOCK(); 2748 return (error); 2749 } 2750 2751 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2752 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2753 sysctl_viflist, "S,vif[MAXVIFS]", 2754 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2755 2756 static void 2757 vnet_mroute_init(const void *unused __unused) 2758 { 2759 2760 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2761 2762 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2763 M_MRTABLE, M_WAITOK|M_ZERO); 2764 2765 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2766 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2767 2768 /* Prepare taskqueue */ 2769 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2770 taskqueue_thread_enqueue, &V_task_queue); 2771 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2772 } 2773 2774 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2775 NULL); 2776 2777 static void 2778 vnet_mroute_uninit(const void *unused __unused) 2779 { 2780 2781 /* Taskqueue should be cancelled and drained before freeing */ 2782 taskqueue_free(V_task_queue); 2783 2784 free(V_viftable, M_MRTABLE); 2785 free(V_nexpire, M_MRTABLE); 2786 V_nexpire = NULL; 2787 } 2788 2789 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2790 vnet_mroute_uninit, NULL); 2791 2792 static int 2793 ip_mroute_modevent(module_t mod, int type, void *unused) 2794 { 2795 2796 switch (type) { 2797 case MOD_LOAD: 2798 MRW_LOCK_INIT(); 2799 2800 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2801 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2802 if (if_detach_event_tag == NULL) { 2803 printf("ip_mroute: unable to register " 2804 "ifnet_departure_event handler\n"); 2805 MRW_LOCK_DESTROY(); 2806 return (EINVAL); 2807 } 2808 2809 mfchashsize = MFCHASHSIZE; 2810 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2811 !powerof2(mfchashsize)) { 2812 printf("WARNING: %s not a power of 2; using default\n", 2813 "net.inet.ip.mfchashsize"); 2814 mfchashsize = MFCHASHSIZE; 2815 } 2816 2817 pim_squelch_wholepkt = 0; 2818 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2819 &pim_squelch_wholepkt); 2820 2821 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2822 if (pim_encap_cookie == NULL) { 2823 printf("ip_mroute: unable to attach pim encap\n"); 2824 MRW_LOCK_DESTROY(); 2825 return (EINVAL); 2826 } 2827 2828 ip_mcast_src = X_ip_mcast_src; 2829 ip_mforward = X_ip_mforward; 2830 ip_mrouter_done = X_ip_mrouter_done; 2831 ip_mrouter_get = X_ip_mrouter_get; 2832 ip_mrouter_set = X_ip_mrouter_set; 2833 2834 ip_rsvp_force_done = X_ip_rsvp_force_done; 2835 ip_rsvp_vif = X_ip_rsvp_vif; 2836 2837 legal_vif_num = X_legal_vif_num; 2838 mrt_ioctl = X_mrt_ioctl; 2839 rsvp_input_p = X_rsvp_input; 2840 break; 2841 2842 case MOD_UNLOAD: 2843 /* 2844 * Typically module unload happens after the user-level 2845 * process has shutdown the kernel services (the check 2846 * below insures someone can't just yank the module out 2847 * from under a running process). But if the module is 2848 * just loaded and then unloaded w/o starting up a user 2849 * process we still need to cleanup. 2850 */ 2851 MRW_WLOCK(); 2852 if (ip_mrouter_cnt != 0) { 2853 MRW_WUNLOCK(); 2854 return (EINVAL); 2855 } 2856 ip_mrouter_unloading = 1; 2857 MRW_WUNLOCK(); 2858 2859 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2860 2861 if (pim_encap_cookie) { 2862 ip_encap_detach(pim_encap_cookie); 2863 pim_encap_cookie = NULL; 2864 } 2865 2866 ip_mcast_src = NULL; 2867 ip_mforward = NULL; 2868 ip_mrouter_done = NULL; 2869 ip_mrouter_get = NULL; 2870 ip_mrouter_set = NULL; 2871 2872 ip_rsvp_force_done = NULL; 2873 ip_rsvp_vif = NULL; 2874 2875 legal_vif_num = NULL; 2876 mrt_ioctl = NULL; 2877 rsvp_input_p = NULL; 2878 2879 MRW_LOCK_DESTROY(); 2880 break; 2881 2882 default: 2883 return EOPNOTSUPP; 2884 } 2885 return 0; 2886 } 2887 2888 static moduledata_t ip_mroutemod = { 2889 "ip_mroute", 2890 ip_mroute_modevent, 2891 0 2892 }; 2893 2894 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2895