xref: /freebsd/sys/netinet/ip_mroute.c (revision 588ff6c0cc9aaf10ba19080d9f8acbd8be36abf3)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  *
55  * $FreeBSD$
56  */
57 
58 #include "opt_mac.h"
59 #include "opt_mrouting.h"
60 
61 #define _PIM_VT 1
62 
63 #include <sys/param.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mbuf.h>
68 #include <sys/module.h>
69 #include <sys/priv.h>
70 #include <sys/protosw.h>
71 #include <sys/signalvar.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/sockio.h>
75 #include <sys/sx.h>
76 #include <sys/sysctl.h>
77 #include <sys/syslog.h>
78 #include <sys/systm.h>
79 #include <sys/time.h>
80 #include <net/if.h>
81 #include <net/netisr.h>
82 #include <net/route.h>
83 #include <netinet/in.h>
84 #include <netinet/igmp.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/in_var.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_encap.h>
89 #include <netinet/ip_mroute.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_options.h>
92 #include <netinet/pim.h>
93 #include <netinet/pim_var.h>
94 #include <netinet/udp.h>
95 #include <machine/in_cksum.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 /*
100  * Control debugging code for rsvp and multicast routing code.
101  * Can only set them with the debugger.
102  */
103 static u_int    rsvpdebug;		/* non-zero enables debugging	*/
104 
105 static u_int	mrtdebug;		/* any set of the flags below	*/
106 #define		DEBUG_MFC	0x02
107 #define		DEBUG_FORWARD	0x04
108 #define		DEBUG_EXPIRE	0x08
109 #define		DEBUG_XMIT	0x10
110 #define		DEBUG_PIM	0x20
111 
112 #define		VIFI_INVALID	((vifi_t) -1)
113 
114 #define M_HASCL(m)	((m)->m_flags & M_EXT)
115 
116 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
117 
118 /*
119  * Locking.  We use two locks: one for the virtual interface table and
120  * one for the forwarding table.  These locks may be nested in which case
121  * the VIF lock must always be taken first.  Note that each lock is used
122  * to cover not only the specific data structure but also related data
123  * structures.  It may be better to add more fine-grained locking later;
124  * it's not clear how performance-critical this code is.
125  *
126  * XXX: This module could particularly benefit from being cleaned
127  *      up to use the <sys/queue.h> macros.
128  *
129  */
130 
131 static struct mrtstat	mrtstat;
132 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
133     &mrtstat, mrtstat,
134     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
135 
136 static struct mfc	*mfctable[MFCTBLSIZ];
137 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
138     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
139     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
140 
141 static struct mtx mfc_mtx;
142 #define	MFC_LOCK()	mtx_lock(&mfc_mtx)
143 #define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
144 #define	MFC_LOCK_ASSERT()	do {					\
145 	mtx_assert(&mfc_mtx, MA_OWNED);					\
146 	NET_ASSERT_GIANT();						\
147 } while (0)
148 #define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
149 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
150 
151 static struct vif	viftable[MAXVIFS];
152 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
153     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
154     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
155 
156 static struct mtx vif_mtx;
157 #define	VIF_LOCK()	mtx_lock(&vif_mtx)
158 #define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
159 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
160 #define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
161 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
162 
163 static u_char		nexpire[MFCTBLSIZ];
164 
165 static eventhandler_tag if_detach_event_tag = NULL;
166 
167 static struct callout expire_upcalls_ch;
168 
169 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
170 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
171 
172 #define ENCAP_TTL 64
173 
174 /*
175  * Bandwidth meter variables and constants
176  */
177 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
178 /*
179  * Pending timeouts are stored in a hash table, the key being the
180  * expiration time. Periodically, the entries are analysed and processed.
181  */
182 #define BW_METER_BUCKETS	1024
183 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
184 static struct callout bw_meter_ch;
185 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
186 
187 /*
188  * Pending upcalls are stored in a vector which is flushed when
189  * full, or periodically
190  */
191 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
192 static u_int	bw_upcalls_n; /* # of pending upcalls */
193 static struct callout bw_upcalls_ch;
194 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
195 
196 static struct pimstat pimstat;
197 
198 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
199 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
200     &pimstat, pimstat,
201     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
202 
203 static u_long	pim_squelch_wholepkt = 0;
204 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
205     &pim_squelch_wholepkt, 0,
206     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
207 
208 extern  struct domain inetdomain;
209 struct protosw in_pim_protosw = {
210 	.pr_type =		SOCK_RAW,
211 	.pr_domain =		&inetdomain,
212 	.pr_protocol =		IPPROTO_PIM,
213 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
214 	.pr_input =		pim_input,
215 	.pr_output =		(pr_output_t*)rip_output,
216 	.pr_ctloutput =		rip_ctloutput,
217 	.pr_usrreqs =		&rip_usrreqs
218 };
219 static const struct encaptab *pim_encap_cookie;
220 static int pim_encapcheck(const struct mbuf *, int, int, void *);
221 
222 /*
223  * Note: the PIM Register encapsulation adds the following in front of a
224  * data packet:
225  *
226  * struct pim_encap_hdr {
227  *    struct ip ip;
228  *    struct pim_encap_pimhdr  pim;
229  * }
230  *
231  */
232 
233 struct pim_encap_pimhdr {
234 	struct pim pim;
235 	uint32_t   flags;
236 };
237 
238 static struct ip pim_encap_iphdr = {
239 #if BYTE_ORDER == LITTLE_ENDIAN
240 	sizeof(struct ip) >> 2,
241 	IPVERSION,
242 #else
243 	IPVERSION,
244 	sizeof(struct ip) >> 2,
245 #endif
246 	0,			/* tos */
247 	sizeof(struct ip),	/* total length */
248 	0,			/* id */
249 	0,			/* frag offset */
250 	ENCAP_TTL,
251 	IPPROTO_PIM,
252 	0,			/* checksum */
253 };
254 
255 static struct pim_encap_pimhdr pim_encap_pimhdr = {
256     {
257 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
258 	0,			/* reserved */
259 	0,			/* checksum */
260     },
261     0				/* flags */
262 };
263 
264 static struct ifnet multicast_register_if;
265 static vifi_t reg_vif_num = VIFI_INVALID;
266 
267 /*
268  * Private variables.
269  */
270 static vifi_t	   numvifs;
271 
272 static u_long	X_ip_mcast_src(int vifi);
273 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
274 			struct mbuf *m, struct ip_moptions *imo);
275 static int	X_ip_mrouter_done(void);
276 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
277 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
278 static int	X_legal_vif_num(int vif);
279 static int	X_mrt_ioctl(int cmd, caddr_t data);
280 
281 static int get_sg_cnt(struct sioc_sg_req *);
282 static int get_vif_cnt(struct sioc_vif_req *);
283 static void if_detached_event(void *arg __unused, struct ifnet *);
284 static int ip_mrouter_init(struct socket *, int);
285 static int add_vif(struct vifctl *);
286 static int del_vif_locked(vifi_t);
287 static int del_vif(vifi_t);
288 static int add_mfc(struct mfcctl2 *);
289 static int del_mfc(struct mfcctl2 *);
290 static int set_api_config(uint32_t *); /* chose API capabilities */
291 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
292 static int set_assert(int);
293 static void expire_upcalls(void *);
294 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
295 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
296 static void send_packet(struct vif *, struct mbuf *);
297 
298 /*
299  * Bandwidth monitoring
300  */
301 static void free_bw_list(struct bw_meter *list);
302 static int add_bw_upcall(struct bw_upcall *);
303 static int del_bw_upcall(struct bw_upcall *);
304 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
305 		struct timeval *nowp);
306 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
307 static void bw_upcalls_send(void);
308 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
309 static void unschedule_bw_meter(struct bw_meter *x);
310 static void bw_meter_process(void);
311 static void expire_bw_upcalls_send(void *);
312 static void expire_bw_meter_process(void *);
313 
314 static int pim_register_send(struct ip *, struct vif *,
315 		struct mbuf *, struct mfc *);
316 static int pim_register_send_rp(struct ip *, struct vif *,
317 		struct mbuf *, struct mfc *);
318 static int pim_register_send_upcall(struct ip *, struct vif *,
319 		struct mbuf *, struct mfc *);
320 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
321 
322 /*
323  * whether or not special PIM assert processing is enabled.
324  */
325 static int pim_assert;
326 /*
327  * Rate limit for assert notification messages, in usec
328  */
329 #define ASSERT_MSG_TIME		3000000
330 
331 /*
332  * Kernel multicast routing API capabilities and setup.
333  * If more API capabilities are added to the kernel, they should be
334  * recorded in `mrt_api_support'.
335  */
336 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
337 					 MRT_MFC_FLAGS_BORDER_VIF |
338 					 MRT_MFC_RP |
339 					 MRT_MFC_BW_UPCALL);
340 static uint32_t mrt_api_config = 0;
341 
342 /*
343  * Hash function for a source, group entry
344  */
345 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
346 			((g) >> 20) ^ ((g) >> 10) ^ (g))
347 
348 /*
349  * Find a route for a given origin IP address and Multicast group address
350  * Type of service parameter to be added in the future!!!
351  * Statistics are updated by the caller if needed
352  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
353  */
354 static struct mfc *
355 mfc_find(in_addr_t o, in_addr_t g)
356 {
357     struct mfc *rt;
358 
359     MFC_LOCK_ASSERT();
360 
361     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
362 	if ((rt->mfc_origin.s_addr == o) &&
363 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
364 	    break;
365     return rt;
366 }
367 
368 /*
369  * Macros to compute elapsed time efficiently
370  * Borrowed from Van Jacobson's scheduling code
371  */
372 #define TV_DELTA(a, b, delta) {					\
373 	int xxs;						\
374 	delta = (a).tv_usec - (b).tv_usec;			\
375 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
376 		switch (xxs) {					\
377 		case 2:						\
378 		      delta += 1000000;				\
379 		      /* FALLTHROUGH */				\
380 		case 1:						\
381 		      delta += 1000000;				\
382 		      break;					\
383 		default:					\
384 		      delta += (1000000 * xxs);			\
385 		}						\
386 	}							\
387 }
388 
389 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
390 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
391 
392 /*
393  * Handle MRT setsockopt commands to modify the multicast routing tables.
394  */
395 static int
396 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
397 {
398     int	error, optval;
399     vifi_t	vifi;
400     struct	vifctl vifc;
401     struct	mfcctl2 mfc;
402     struct	bw_upcall bw_upcall;
403     uint32_t	i;
404 
405     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
406 	return EPERM;
407 
408     error = 0;
409     switch (sopt->sopt_name) {
410     case MRT_INIT:
411 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
412 	if (error)
413 	    break;
414 	error = ip_mrouter_init(so, optval);
415 	break;
416 
417     case MRT_DONE:
418 	error = ip_mrouter_done();
419 	break;
420 
421     case MRT_ADD_VIF:
422 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
423 	if (error)
424 	    break;
425 	error = add_vif(&vifc);
426 	break;
427 
428     case MRT_DEL_VIF:
429 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
430 	if (error)
431 	    break;
432 	error = del_vif(vifi);
433 	break;
434 
435     case MRT_ADD_MFC:
436     case MRT_DEL_MFC:
437 	/*
438 	 * select data size depending on API version.
439 	 */
440 	if (sopt->sopt_name == MRT_ADD_MFC &&
441 		mrt_api_config & MRT_API_FLAGS_ALL) {
442 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
443 				sizeof(struct mfcctl2));
444 	} else {
445 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
446 				sizeof(struct mfcctl));
447 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
448 			sizeof(mfc) - sizeof(struct mfcctl));
449 	}
450 	if (error)
451 	    break;
452 	if (sopt->sopt_name == MRT_ADD_MFC)
453 	    error = add_mfc(&mfc);
454 	else
455 	    error = del_mfc(&mfc);
456 	break;
457 
458     case MRT_ASSERT:
459 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
460 	if (error)
461 	    break;
462 	set_assert(optval);
463 	break;
464 
465     case MRT_API_CONFIG:
466 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
467 	if (!error)
468 	    error = set_api_config(&i);
469 	if (!error)
470 	    error = sooptcopyout(sopt, &i, sizeof i);
471 	break;
472 
473     case MRT_ADD_BW_UPCALL:
474     case MRT_DEL_BW_UPCALL:
475 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
476 				sizeof bw_upcall);
477 	if (error)
478 	    break;
479 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
480 	    error = add_bw_upcall(&bw_upcall);
481 	else
482 	    error = del_bw_upcall(&bw_upcall);
483 	break;
484 
485     default:
486 	error = EOPNOTSUPP;
487 	break;
488     }
489     return error;
490 }
491 
492 /*
493  * Handle MRT getsockopt commands
494  */
495 static int
496 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
497 {
498     int error;
499     static int version = 0x0305; /* !!! why is this here? XXX */
500 
501     switch (sopt->sopt_name) {
502     case MRT_VERSION:
503 	error = sooptcopyout(sopt, &version, sizeof version);
504 	break;
505 
506     case MRT_ASSERT:
507 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
508 	break;
509 
510     case MRT_API_SUPPORT:
511 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
512 	break;
513 
514     case MRT_API_CONFIG:
515 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
516 	break;
517 
518     default:
519 	error = EOPNOTSUPP;
520 	break;
521     }
522     return error;
523 }
524 
525 /*
526  * Handle ioctl commands to obtain information from the cache
527  */
528 static int
529 X_mrt_ioctl(int cmd, caddr_t data)
530 {
531     int error = 0;
532 
533     /*
534      * Currently the only function calling this ioctl routine is rtioctl().
535      * Typically, only root can create the raw socket in order to execute
536      * this ioctl method, however the request might be coming from a prison
537      */
538     error = priv_check(curthread, PRIV_NETINET_MROUTE);
539     if (error)
540 	return (error);
541     switch (cmd) {
542     case (SIOCGETVIFCNT):
543 	error = get_vif_cnt((struct sioc_vif_req *)data);
544 	break;
545 
546     case (SIOCGETSGCNT):
547 	error = get_sg_cnt((struct sioc_sg_req *)data);
548 	break;
549 
550     default:
551 	error = EINVAL;
552 	break;
553     }
554     return error;
555 }
556 
557 /*
558  * returns the packet, byte, rpf-failure count for the source group provided
559  */
560 static int
561 get_sg_cnt(struct sioc_sg_req *req)
562 {
563     struct mfc *rt;
564 
565     MFC_LOCK();
566     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
567     if (rt == NULL) {
568 	MFC_UNLOCK();
569 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
570 	return EADDRNOTAVAIL;
571     }
572     req->pktcnt = rt->mfc_pkt_cnt;
573     req->bytecnt = rt->mfc_byte_cnt;
574     req->wrong_if = rt->mfc_wrong_if;
575     MFC_UNLOCK();
576     return 0;
577 }
578 
579 /*
580  * returns the input and output packet and byte counts on the vif provided
581  */
582 static int
583 get_vif_cnt(struct sioc_vif_req *req)
584 {
585     vifi_t vifi = req->vifi;
586 
587     VIF_LOCK();
588     if (vifi >= numvifs) {
589 	VIF_UNLOCK();
590 	return EINVAL;
591     }
592 
593     req->icount = viftable[vifi].v_pkt_in;
594     req->ocount = viftable[vifi].v_pkt_out;
595     req->ibytes = viftable[vifi].v_bytes_in;
596     req->obytes = viftable[vifi].v_bytes_out;
597     VIF_UNLOCK();
598 
599     return 0;
600 }
601 
602 static void
603 ip_mrouter_reset(void)
604 {
605     bzero((caddr_t)mfctable, sizeof(mfctable));
606     bzero((caddr_t)nexpire, sizeof(nexpire));
607 
608     pim_assert = 0;
609     mrt_api_config = 0;
610 
611     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
612 
613     bw_upcalls_n = 0;
614     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
615     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
616     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
617 }
618 
619 static struct mtx mrouter_mtx;
620 
621 static void
622 if_detached_event(void *arg __unused, struct ifnet *ifp)
623 {
624     vifi_t vifi;
625     int i;
626     struct mfc *mfc;
627     struct mfc *nmfc;
628     struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
629     struct rtdetq *pq;
630     struct rtdetq *npq;
631 
632     mtx_lock(&mrouter_mtx);
633     if (ip_mrouter == NULL) {
634 	mtx_unlock(&mrouter_mtx);
635     }
636 
637     /*
638      * Tear down multicast forwarder state associated with this ifnet.
639      * 1. Walk the vif list, matching vifs against this ifnet.
640      * 2. Walk the multicast forwarding cache (mfc) looking for
641      *    inner matches with this vif's index.
642      * 3. Free any pending mbufs for this mfc.
643      * 4. Free the associated mfc entry and state associated with this vif.
644      *    Be very careful about unlinking from a singly-linked list whose
645      *    "head node" is a pointer in a simple array.
646      * 5. Free vif state. This should disable ALLMULTI on the interface.
647      */
648     VIF_LOCK();
649     MFC_LOCK();
650     for (vifi = 0; vifi < numvifs; vifi++) {
651 	if (viftable[vifi].v_ifp != ifp)
652 		continue;
653 	for (i = 0; i < MFCTBLSIZ; i++) {
654 	    ppmfc = &mfctable[i];
655 	    for (mfc = mfctable[i]; mfc != NULL; ) {
656 		nmfc = mfc->mfc_next;
657 		if (mfc->mfc_parent == vifi) {
658 		    for (pq = mfc->mfc_stall; pq != NULL; ) {
659 			npq = pq->next;
660 			m_freem(pq->m);
661 			free(pq, M_MRTABLE);
662 			pq = npq;
663 		    }
664 		    free_bw_list(mfc->mfc_bw_meter);
665 		    free(mfc, M_MRTABLE);
666 		    *ppmfc = nmfc;
667 		} else {
668 		    ppmfc = &mfc->mfc_next;
669 		}
670 		mfc = nmfc;
671 	    }
672 	}
673 	del_vif_locked(vifi);
674     }
675     MFC_UNLOCK();
676     VIF_UNLOCK();
677 
678     mtx_unlock(&mrouter_mtx);
679 }
680 
681 /*
682  * Enable multicast routing
683  */
684 static int
685 ip_mrouter_init(struct socket *so, int version)
686 {
687     if (mrtdebug)
688 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
689 	    so->so_type, so->so_proto->pr_protocol);
690 
691     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
692 	return EOPNOTSUPP;
693 
694     if (version != 1)
695 	return ENOPROTOOPT;
696 
697     mtx_lock(&mrouter_mtx);
698 
699     if (ip_mrouter != NULL) {
700 	mtx_unlock(&mrouter_mtx);
701 	return EADDRINUSE;
702     }
703 
704     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
705         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
706     if (if_detach_event_tag == NULL)
707 	return (ENOMEM);
708 
709     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
710 
711     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
712 	expire_bw_upcalls_send, NULL);
713     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
714 
715     ip_mrouter = so;
716 
717     mtx_unlock(&mrouter_mtx);
718 
719     if (mrtdebug)
720 	log(LOG_DEBUG, "ip_mrouter_init\n");
721 
722     return 0;
723 }
724 
725 /*
726  * Disable multicast routing
727  */
728 static int
729 X_ip_mrouter_done(void)
730 {
731     vifi_t vifi;
732     int i;
733     struct ifnet *ifp;
734     struct ifreq ifr;
735     struct mfc *rt;
736     struct rtdetq *rte;
737 
738     mtx_lock(&mrouter_mtx);
739 
740     if (ip_mrouter == NULL) {
741 	mtx_unlock(&mrouter_mtx);
742 	return EINVAL;
743     }
744 
745     /*
746      * Detach/disable hooks to the reset of the system.
747      */
748     ip_mrouter = NULL;
749     mrt_api_config = 0;
750 
751     VIF_LOCK();
752     /*
753      * For each phyint in use, disable promiscuous reception of all IP
754      * multicasts.
755      */
756     for (vifi = 0; vifi < numvifs; vifi++) {
757 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
758 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
759 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
760 
761 	    so->sin_len = sizeof(struct sockaddr_in);
762 	    so->sin_family = AF_INET;
763 	    so->sin_addr.s_addr = INADDR_ANY;
764 	    ifp = viftable[vifi].v_ifp;
765 	    if_allmulti(ifp, 0);
766 	}
767     }
768     bzero((caddr_t)viftable, sizeof(viftable));
769     numvifs = 0;
770     pim_assert = 0;
771     VIF_UNLOCK();
772     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
773 
774     /*
775      * Free all multicast forwarding cache entries.
776      */
777     callout_stop(&expire_upcalls_ch);
778     callout_stop(&bw_upcalls_ch);
779     callout_stop(&bw_meter_ch);
780 
781     MFC_LOCK();
782     for (i = 0; i < MFCTBLSIZ; i++) {
783 	for (rt = mfctable[i]; rt != NULL; ) {
784 	    struct mfc *nr = rt->mfc_next;
785 
786 	    for (rte = rt->mfc_stall; rte != NULL; ) {
787 		struct rtdetq *n = rte->next;
788 
789 		m_freem(rte->m);
790 		free(rte, M_MRTABLE);
791 		rte = n;
792 	    }
793 	    free_bw_list(rt->mfc_bw_meter);
794 	    free(rt, M_MRTABLE);
795 	    rt = nr;
796 	}
797     }
798     bzero((caddr_t)mfctable, sizeof(mfctable));
799     bzero((caddr_t)nexpire, sizeof(nexpire));
800     bw_upcalls_n = 0;
801     bzero(bw_meter_timers, sizeof(bw_meter_timers));
802     MFC_UNLOCK();
803 
804     reg_vif_num = VIFI_INVALID;
805 
806     mtx_unlock(&mrouter_mtx);
807 
808     if (mrtdebug)
809 	log(LOG_DEBUG, "ip_mrouter_done\n");
810 
811     return 0;
812 }
813 
814 /*
815  * Set PIM assert processing global
816  */
817 static int
818 set_assert(int i)
819 {
820     if ((i != 1) && (i != 0))
821 	return EINVAL;
822 
823     pim_assert = i;
824 
825     return 0;
826 }
827 
828 /*
829  * Configure API capabilities
830  */
831 int
832 set_api_config(uint32_t *apival)
833 {
834     int i;
835 
836     /*
837      * We can set the API capabilities only if it is the first operation
838      * after MRT_INIT. I.e.:
839      *  - there are no vifs installed
840      *  - pim_assert is not enabled
841      *  - the MFC table is empty
842      */
843     if (numvifs > 0) {
844 	*apival = 0;
845 	return EPERM;
846     }
847     if (pim_assert) {
848 	*apival = 0;
849 	return EPERM;
850     }
851     for (i = 0; i < MFCTBLSIZ; i++) {
852 	if (mfctable[i] != NULL) {
853 	    *apival = 0;
854 	    return EPERM;
855 	}
856     }
857 
858     mrt_api_config = *apival & mrt_api_support;
859     *apival = mrt_api_config;
860 
861     return 0;
862 }
863 
864 /*
865  * Add a vif to the vif table
866  */
867 static int
868 add_vif(struct vifctl *vifcp)
869 {
870     struct vif *vifp = viftable + vifcp->vifc_vifi;
871     struct sockaddr_in sin = {sizeof sin, AF_INET};
872     struct ifaddr *ifa;
873     struct ifnet *ifp;
874     int error;
875 
876     VIF_LOCK();
877     if (vifcp->vifc_vifi >= MAXVIFS) {
878 	VIF_UNLOCK();
879 	return EINVAL;
880     }
881     /* rate limiting is no longer supported by this code */
882     if (vifcp->vifc_rate_limit != 0) {
883 	log(LOG_ERR, "rate limiting is no longer supported\n");
884 	VIF_UNLOCK();
885 	return EINVAL;
886     }
887     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
888 	VIF_UNLOCK();
889 	return EADDRINUSE;
890     }
891     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
892 	VIF_UNLOCK();
893 	return EADDRNOTAVAIL;
894     }
895 
896     /* Find the interface with an address in AF_INET family */
897     if (vifcp->vifc_flags & VIFF_REGISTER) {
898 	/*
899 	 * XXX: Because VIFF_REGISTER does not really need a valid
900 	 * local interface (e.g. it could be 127.0.0.2), we don't
901 	 * check its address.
902 	 */
903 	ifp = NULL;
904     } else {
905 	sin.sin_addr = vifcp->vifc_lcl_addr;
906 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
907 	if (ifa == NULL) {
908 	    VIF_UNLOCK();
909 	    return EADDRNOTAVAIL;
910 	}
911 	ifp = ifa->ifa_ifp;
912     }
913 
914     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
915 	log(LOG_ERR, "tunnels are no longer supported\n");
916 	VIF_UNLOCK();
917 	return EOPNOTSUPP;
918     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
919 	ifp = &multicast_register_if;
920 	if (mrtdebug)
921 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
922 		    (void *)&multicast_register_if);
923 	if (reg_vif_num == VIFI_INVALID) {
924 	    if_initname(&multicast_register_if, "register_vif", 0);
925 	    multicast_register_if.if_flags = IFF_LOOPBACK;
926 	    reg_vif_num = vifcp->vifc_vifi;
927 	}
928     } else {		/* Make sure the interface supports multicast */
929 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
930 	    VIF_UNLOCK();
931 	    return EOPNOTSUPP;
932 	}
933 
934 	/* Enable promiscuous reception of all IP multicasts from the if */
935 	error = if_allmulti(ifp, 1);
936 	if (error) {
937 	    VIF_UNLOCK();
938 	    return error;
939 	}
940     }
941 
942     vifp->v_flags     = vifcp->vifc_flags;
943     vifp->v_threshold = vifcp->vifc_threshold;
944     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
945     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
946     vifp->v_ifp       = ifp;
947     vifp->v_rsvp_on   = 0;
948     vifp->v_rsvpd     = NULL;
949     /* initialize per vif pkt counters */
950     vifp->v_pkt_in    = 0;
951     vifp->v_pkt_out   = 0;
952     vifp->v_bytes_in  = 0;
953     vifp->v_bytes_out = 0;
954     bzero(&vifp->v_route, sizeof(vifp->v_route));
955 
956     /* Adjust numvifs up if the vifi is higher than numvifs */
957     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
958 
959     VIF_UNLOCK();
960 
961     if (mrtdebug)
962 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
963 	    vifcp->vifc_vifi,
964 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
965 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
966 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
967 	    vifcp->vifc_threshold);
968 
969     return 0;
970 }
971 
972 /*
973  * Delete a vif from the vif table
974  */
975 static int
976 del_vif_locked(vifi_t vifi)
977 {
978     struct vif *vifp;
979 
980     VIF_LOCK_ASSERT();
981 
982     if (vifi >= numvifs) {
983 	return EINVAL;
984     }
985     vifp = &viftable[vifi];
986     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
987 	return EADDRNOTAVAIL;
988     }
989 
990     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
991 	if_allmulti(vifp->v_ifp, 0);
992 
993     if (vifp->v_flags & VIFF_REGISTER)
994 	reg_vif_num = VIFI_INVALID;
995 
996     bzero((caddr_t)vifp, sizeof (*vifp));
997 
998     if (mrtdebug)
999 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1000 
1001     /* Adjust numvifs down */
1002     for (vifi = numvifs; vifi > 0; vifi--)
1003 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1004 	    break;
1005     numvifs = vifi;
1006 
1007     return 0;
1008 }
1009 
1010 static int
1011 del_vif(vifi_t vifi)
1012 {
1013     int cc;
1014 
1015     VIF_LOCK();
1016     cc = del_vif_locked(vifi);
1017     VIF_UNLOCK();
1018 
1019     return cc;
1020 }
1021 
1022 /*
1023  * update an mfc entry without resetting counters and S,G addresses.
1024  */
1025 static void
1026 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1027 {
1028     int i;
1029 
1030     rt->mfc_parent = mfccp->mfcc_parent;
1031     for (i = 0; i < numvifs; i++) {
1032 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1033 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1034 	    MRT_MFC_FLAGS_ALL;
1035     }
1036     /* set the RP address */
1037     if (mrt_api_config & MRT_MFC_RP)
1038 	rt->mfc_rp = mfccp->mfcc_rp;
1039     else
1040 	rt->mfc_rp.s_addr = INADDR_ANY;
1041 }
1042 
1043 /*
1044  * fully initialize an mfc entry from the parameter.
1045  */
1046 static void
1047 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1048 {
1049     rt->mfc_origin     = mfccp->mfcc_origin;
1050     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1051 
1052     update_mfc_params(rt, mfccp);
1053 
1054     /* initialize pkt counters per src-grp */
1055     rt->mfc_pkt_cnt    = 0;
1056     rt->mfc_byte_cnt   = 0;
1057     rt->mfc_wrong_if   = 0;
1058     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1059 }
1060 
1061 
1062 /*
1063  * Add an mfc entry
1064  */
1065 static int
1066 add_mfc(struct mfcctl2 *mfccp)
1067 {
1068     struct mfc *rt;
1069     u_long hash;
1070     struct rtdetq *rte;
1071     u_short nstl;
1072 
1073     VIF_LOCK();
1074     MFC_LOCK();
1075 
1076     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1077 
1078     /* If an entry already exists, just update the fields */
1079     if (rt) {
1080 	if (mrtdebug & DEBUG_MFC)
1081 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1082 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1083 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1084 		mfccp->mfcc_parent);
1085 
1086 	update_mfc_params(rt, mfccp);
1087 	MFC_UNLOCK();
1088 	VIF_UNLOCK();
1089 	return 0;
1090     }
1091 
1092     /*
1093      * Find the entry for which the upcall was made and update
1094      */
1095     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1096     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1097 
1098 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1099 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1100 		(rt->mfc_stall != NULL)) {
1101 
1102 	    if (nstl++)
1103 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1104 		    "multiple kernel entries",
1105 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1106 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1107 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1108 
1109 	    if (mrtdebug & DEBUG_MFC)
1110 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1111 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1112 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1113 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1114 
1115 	    init_mfc_params(rt, mfccp);
1116 
1117 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1118 	    nexpire[hash]--;
1119 
1120 	    /* free packets Qed at the end of this entry */
1121 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1122 		struct rtdetq *n = rte->next;
1123 
1124 		ip_mdq(rte->m, rte->ifp, rt, -1);
1125 		m_freem(rte->m);
1126 		free(rte, M_MRTABLE);
1127 		rte = n;
1128 	    }
1129 	    rt->mfc_stall = NULL;
1130 	}
1131     }
1132 
1133     /*
1134      * It is possible that an entry is being inserted without an upcall
1135      */
1136     if (nstl == 0) {
1137 	if (mrtdebug & DEBUG_MFC)
1138 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1139 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1140 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1141 		mfccp->mfcc_parent);
1142 
1143 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1144 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1145 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1146 		init_mfc_params(rt, mfccp);
1147 		if (rt->mfc_expire)
1148 		    nexpire[hash]--;
1149 		rt->mfc_expire = 0;
1150 		break; /* XXX */
1151 	    }
1152 	}
1153 	if (rt == NULL) {		/* no upcall, so make a new entry */
1154 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1155 	    if (rt == NULL) {
1156 		MFC_UNLOCK();
1157 		VIF_UNLOCK();
1158 		return ENOBUFS;
1159 	    }
1160 
1161 	    init_mfc_params(rt, mfccp);
1162 	    rt->mfc_expire     = 0;
1163 	    rt->mfc_stall      = NULL;
1164 
1165 	    rt->mfc_bw_meter = NULL;
1166 	    /* insert new entry at head of hash chain */
1167 	    rt->mfc_next = mfctable[hash];
1168 	    mfctable[hash] = rt;
1169 	}
1170     }
1171     MFC_UNLOCK();
1172     VIF_UNLOCK();
1173     return 0;
1174 }
1175 
1176 /*
1177  * Delete an mfc entry
1178  */
1179 static int
1180 del_mfc(struct mfcctl2 *mfccp)
1181 {
1182     struct in_addr	origin;
1183     struct in_addr	mcastgrp;
1184     struct mfc		*rt;
1185     struct mfc		**nptr;
1186     u_long		hash;
1187     struct bw_meter	*list;
1188 
1189     origin = mfccp->mfcc_origin;
1190     mcastgrp = mfccp->mfcc_mcastgrp;
1191 
1192     if (mrtdebug & DEBUG_MFC)
1193 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1194 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1195 
1196     MFC_LOCK();
1197 
1198     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1199     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1200 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1201 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1202 		rt->mfc_stall == NULL)
1203 	    break;
1204     if (rt == NULL) {
1205 	MFC_UNLOCK();
1206 	return EADDRNOTAVAIL;
1207     }
1208 
1209     *nptr = rt->mfc_next;
1210 
1211     /*
1212      * free the bw_meter entries
1213      */
1214     list = rt->mfc_bw_meter;
1215     rt->mfc_bw_meter = NULL;
1216 
1217     free(rt, M_MRTABLE);
1218 
1219     free_bw_list(list);
1220 
1221     MFC_UNLOCK();
1222 
1223     return 0;
1224 }
1225 
1226 /*
1227  * Send a message to the routing daemon on the multicast routing socket
1228  */
1229 static int
1230 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1231 {
1232     if (s) {
1233 	SOCKBUF_LOCK(&s->so_rcv);
1234 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1235 	    NULL) != 0) {
1236 	    sorwakeup_locked(s);
1237 	    return 0;
1238 	}
1239 	SOCKBUF_UNLOCK(&s->so_rcv);
1240     }
1241     m_freem(mm);
1242     return -1;
1243 }
1244 
1245 /*
1246  * IP multicast forwarding function. This function assumes that the packet
1247  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1248  * pointed to by "ifp", and the packet is to be relayed to other networks
1249  * that have members of the packet's destination IP multicast group.
1250  *
1251  * The packet is returned unscathed to the caller, unless it is
1252  * erroneous, in which case a non-zero return value tells the caller to
1253  * discard it.
1254  */
1255 
1256 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1257 
1258 static int
1259 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1260     struct ip_moptions *imo)
1261 {
1262     struct mfc *rt;
1263     int error;
1264     vifi_t vifi;
1265 
1266     if (mrtdebug & DEBUG_FORWARD)
1267 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1268 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1269 	    (void *)ifp);
1270 
1271     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1272 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1273 	/*
1274 	 * Packet arrived via a physical interface or
1275 	 * an encapsulated tunnel or a register_vif.
1276 	 */
1277     } else {
1278 	/*
1279 	 * Packet arrived through a source-route tunnel.
1280 	 * Source-route tunnels are no longer supported.
1281 	 */
1282 	static int last_log;
1283 	if (last_log != time_uptime) {
1284 	    last_log = time_uptime;
1285 	    log(LOG_ERR,
1286 		"ip_mforward: received source-routed packet from %lx\n",
1287 		(u_long)ntohl(ip->ip_src.s_addr));
1288 	}
1289 	return 1;
1290     }
1291 
1292     VIF_LOCK();
1293     MFC_LOCK();
1294     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1295 	if (ip->ip_ttl < MAXTTL)
1296 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1297 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1298 	    struct vif *vifp = viftable + vifi;
1299 
1300 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1301 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1302 		vifi,
1303 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1304 		vifp->v_ifp->if_xname);
1305 	}
1306 	error = ip_mdq(m, ifp, NULL, vifi);
1307 	MFC_UNLOCK();
1308 	VIF_UNLOCK();
1309 	return error;
1310     }
1311     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1312 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1313 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1314 	if (!imo)
1315 	    printf("In fact, no options were specified at all\n");
1316     }
1317 
1318     /*
1319      * Don't forward a packet with time-to-live of zero or one,
1320      * or a packet destined to a local-only group.
1321      */
1322     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1323 	MFC_UNLOCK();
1324 	VIF_UNLOCK();
1325 	return 0;
1326     }
1327 
1328     /*
1329      * Determine forwarding vifs from the forwarding cache table
1330      */
1331     ++mrtstat.mrts_mfc_lookups;
1332     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1333 
1334     /* Entry exists, so forward if necessary */
1335     if (rt != NULL) {
1336 	error = ip_mdq(m, ifp, rt, -1);
1337 	MFC_UNLOCK();
1338 	VIF_UNLOCK();
1339 	return error;
1340     } else {
1341 	/*
1342 	 * If we don't have a route for packet's origin,
1343 	 * Make a copy of the packet & send message to routing daemon
1344 	 */
1345 
1346 	struct mbuf *mb0;
1347 	struct rtdetq *rte;
1348 	u_long hash;
1349 	int hlen = ip->ip_hl << 2;
1350 
1351 	++mrtstat.mrts_mfc_misses;
1352 
1353 	mrtstat.mrts_no_route++;
1354 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1355 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1356 		(u_long)ntohl(ip->ip_src.s_addr),
1357 		(u_long)ntohl(ip->ip_dst.s_addr));
1358 
1359 	/*
1360 	 * Allocate mbufs early so that we don't do extra work if we are
1361 	 * just going to fail anyway.  Make sure to pullup the header so
1362 	 * that other people can't step on it.
1363 	 */
1364 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1365 	if (rte == NULL) {
1366 	    MFC_UNLOCK();
1367 	    VIF_UNLOCK();
1368 	    return ENOBUFS;
1369 	}
1370 	mb0 = m_copypacket(m, M_DONTWAIT);
1371 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1372 	    mb0 = m_pullup(mb0, hlen);
1373 	if (mb0 == NULL) {
1374 	    free(rte, M_MRTABLE);
1375 	    MFC_UNLOCK();
1376 	    VIF_UNLOCK();
1377 	    return ENOBUFS;
1378 	}
1379 
1380 	/* is there an upcall waiting for this flow ? */
1381 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1382 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1383 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1384 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1385 		    (rt->mfc_stall != NULL))
1386 		break;
1387 	}
1388 
1389 	if (rt == NULL) {
1390 	    int i;
1391 	    struct igmpmsg *im;
1392 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1393 	    struct mbuf *mm;
1394 
1395 	    /*
1396 	     * Locate the vifi for the incoming interface for this packet.
1397 	     * If none found, drop packet.
1398 	     */
1399 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1400 		;
1401 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1402 		goto non_fatal;
1403 
1404 	    /* no upcall, so make a new entry */
1405 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1406 	    if (rt == NULL)
1407 		goto fail;
1408 	    /* Make a copy of the header to send to the user level process */
1409 	    mm = m_copy(mb0, 0, hlen);
1410 	    if (mm == NULL)
1411 		goto fail1;
1412 
1413 	    /*
1414 	     * Send message to routing daemon to install
1415 	     * a route into the kernel table
1416 	     */
1417 
1418 	    im = mtod(mm, struct igmpmsg *);
1419 	    im->im_msgtype = IGMPMSG_NOCACHE;
1420 	    im->im_mbz = 0;
1421 	    im->im_vif = vifi;
1422 
1423 	    mrtstat.mrts_upcalls++;
1424 
1425 	    k_igmpsrc.sin_addr = ip->ip_src;
1426 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1427 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1428 		++mrtstat.mrts_upq_sockfull;
1429 fail1:
1430 		free(rt, M_MRTABLE);
1431 fail:
1432 		free(rte, M_MRTABLE);
1433 		m_freem(mb0);
1434 		MFC_UNLOCK();
1435 		VIF_UNLOCK();
1436 		return ENOBUFS;
1437 	    }
1438 
1439 	    /* insert new entry at head of hash chain */
1440 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1441 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1442 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1443 	    nexpire[hash]++;
1444 	    for (i = 0; i < numvifs; i++) {
1445 		rt->mfc_ttls[i] = 0;
1446 		rt->mfc_flags[i] = 0;
1447 	    }
1448 	    rt->mfc_parent = -1;
1449 
1450 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1451 
1452 	    rt->mfc_bw_meter = NULL;
1453 
1454 	    /* link into table */
1455 	    rt->mfc_next   = mfctable[hash];
1456 	    mfctable[hash] = rt;
1457 	    rt->mfc_stall = rte;
1458 
1459 	} else {
1460 	    /* determine if q has overflowed */
1461 	    int npkts = 0;
1462 	    struct rtdetq **p;
1463 
1464 	    /*
1465 	     * XXX ouch! we need to append to the list, but we
1466 	     * only have a pointer to the front, so we have to
1467 	     * scan the entire list every time.
1468 	     */
1469 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1470 		npkts++;
1471 
1472 	    if (npkts > MAX_UPQ) {
1473 		mrtstat.mrts_upq_ovflw++;
1474 non_fatal:
1475 		free(rte, M_MRTABLE);
1476 		m_freem(mb0);
1477 		MFC_UNLOCK();
1478 		VIF_UNLOCK();
1479 		return 0;
1480 	    }
1481 
1482 	    /* Add this entry to the end of the queue */
1483 	    *p = rte;
1484 	}
1485 
1486 	rte->m			= mb0;
1487 	rte->ifp		= ifp;
1488 	rte->next		= NULL;
1489 
1490 	MFC_UNLOCK();
1491 	VIF_UNLOCK();
1492 
1493 	return 0;
1494     }
1495 }
1496 
1497 /*
1498  * Clean up the cache entry if upcall is not serviced
1499  */
1500 static void
1501 expire_upcalls(void *unused)
1502 {
1503     struct rtdetq *rte;
1504     struct mfc *mfc, **nptr;
1505     int i;
1506 
1507     MFC_LOCK();
1508     for (i = 0; i < MFCTBLSIZ; i++) {
1509 	if (nexpire[i] == 0)
1510 	    continue;
1511 	nptr = &mfctable[i];
1512 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1513 	    /*
1514 	     * Skip real cache entries
1515 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1516 	     * If it expires now
1517 	     */
1518 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1519 		    --mfc->mfc_expire == 0) {
1520 		if (mrtdebug & DEBUG_EXPIRE)
1521 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1522 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1523 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1524 		/*
1525 		 * drop all the packets
1526 		 * free the mbuf with the pkt, if, timing info
1527 		 */
1528 		for (rte = mfc->mfc_stall; rte; ) {
1529 		    struct rtdetq *n = rte->next;
1530 
1531 		    m_freem(rte->m);
1532 		    free(rte, M_MRTABLE);
1533 		    rte = n;
1534 		}
1535 		++mrtstat.mrts_cache_cleanups;
1536 		nexpire[i]--;
1537 
1538 		/*
1539 		 * free the bw_meter entries
1540 		 */
1541 		while (mfc->mfc_bw_meter != NULL) {
1542 		    struct bw_meter *x = mfc->mfc_bw_meter;
1543 
1544 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1545 		    free(x, M_BWMETER);
1546 		}
1547 
1548 		*nptr = mfc->mfc_next;
1549 		free(mfc, M_MRTABLE);
1550 	    } else {
1551 		nptr = &mfc->mfc_next;
1552 	    }
1553 	}
1554     }
1555     MFC_UNLOCK();
1556 
1557     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1558 }
1559 
1560 /*
1561  * Packet forwarding routine once entry in the cache is made
1562  */
1563 static int
1564 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1565 {
1566     struct ip  *ip = mtod(m, struct ip *);
1567     vifi_t vifi;
1568     int plen = ip->ip_len;
1569 
1570     VIF_LOCK_ASSERT();
1571 
1572     /*
1573      * If xmt_vif is not -1, send on only the requested vif.
1574      *
1575      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1576      */
1577     if (xmt_vif < numvifs) {
1578 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1579 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1580 	else
1581 		phyint_send(ip, viftable + xmt_vif, m);
1582 	return 1;
1583     }
1584 
1585     /*
1586      * Don't forward if it didn't arrive from the parent vif for its origin.
1587      */
1588     vifi = rt->mfc_parent;
1589     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1590 	/* came in the wrong interface */
1591 	if (mrtdebug & DEBUG_FORWARD)
1592 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1593 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1594 	++mrtstat.mrts_wrong_if;
1595 	++rt->mfc_wrong_if;
1596 	/*
1597 	 * If we are doing PIM assert processing, send a message
1598 	 * to the routing daemon.
1599 	 *
1600 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1601 	 * can complete the SPT switch, regardless of the type
1602 	 * of the iif (broadcast media, GRE tunnel, etc).
1603 	 */
1604 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1605 	    struct timeval now;
1606 	    u_long delta;
1607 
1608 	    if (ifp == &multicast_register_if)
1609 		pimstat.pims_rcv_registers_wrongiif++;
1610 
1611 	    /* Get vifi for the incoming packet */
1612 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1613 		;
1614 	    if (vifi >= numvifs)
1615 		return 0;	/* The iif is not found: ignore the packet. */
1616 
1617 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1618 		return 0;	/* WRONGVIF disabled: ignore the packet */
1619 
1620 	    GET_TIME(now);
1621 
1622 	    TV_DELTA(now, rt->mfc_last_assert, delta);
1623 
1624 	    if (delta > ASSERT_MSG_TIME) {
1625 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1626 		struct igmpmsg *im;
1627 		int hlen = ip->ip_hl << 2;
1628 		struct mbuf *mm = m_copy(m, 0, hlen);
1629 
1630 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1631 		    mm = m_pullup(mm, hlen);
1632 		if (mm == NULL)
1633 		    return ENOBUFS;
1634 
1635 		rt->mfc_last_assert = now;
1636 
1637 		im = mtod(mm, struct igmpmsg *);
1638 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1639 		im->im_mbz		= 0;
1640 		im->im_vif		= vifi;
1641 
1642 		mrtstat.mrts_upcalls++;
1643 
1644 		k_igmpsrc.sin_addr = im->im_src;
1645 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1646 		    log(LOG_WARNING,
1647 			"ip_mforward: ip_mrouter socket queue full\n");
1648 		    ++mrtstat.mrts_upq_sockfull;
1649 		    return ENOBUFS;
1650 		}
1651 	    }
1652 	}
1653 	return 0;
1654     }
1655 
1656     /* If I sourced this packet, it counts as output, else it was input. */
1657     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1658 	viftable[vifi].v_pkt_out++;
1659 	viftable[vifi].v_bytes_out += plen;
1660     } else {
1661 	viftable[vifi].v_pkt_in++;
1662 	viftable[vifi].v_bytes_in += plen;
1663     }
1664     rt->mfc_pkt_cnt++;
1665     rt->mfc_byte_cnt += plen;
1666 
1667     /*
1668      * For each vif, decide if a copy of the packet should be forwarded.
1669      * Forward if:
1670      *		- the ttl exceeds the vif's threshold
1671      *		- there are group members downstream on interface
1672      */
1673     for (vifi = 0; vifi < numvifs; vifi++)
1674 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1675 	    viftable[vifi].v_pkt_out++;
1676 	    viftable[vifi].v_bytes_out += plen;
1677 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1678 		pim_register_send(ip, viftable + vifi, m, rt);
1679 	    else
1680 		phyint_send(ip, viftable + vifi, m);
1681 	}
1682 
1683     /*
1684      * Perform upcall-related bw measuring.
1685      */
1686     if (rt->mfc_bw_meter != NULL) {
1687 	struct bw_meter *x;
1688 	struct timeval now;
1689 
1690 	GET_TIME(now);
1691 	MFC_LOCK_ASSERT();
1692 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1693 	    bw_meter_receive_packet(x, plen, &now);
1694     }
1695 
1696     return 0;
1697 }
1698 
1699 /*
1700  * check if a vif number is legal/ok. This is used by ip_output.
1701  */
1702 static int
1703 X_legal_vif_num(int vif)
1704 {
1705     /* XXX unlocked, matter? */
1706     return (vif >= 0 && vif < numvifs);
1707 }
1708 
1709 /*
1710  * Return the local address used by this vif
1711  */
1712 static u_long
1713 X_ip_mcast_src(int vifi)
1714 {
1715     /* XXX unlocked, matter? */
1716     if (vifi >= 0 && vifi < numvifs)
1717 	return viftable[vifi].v_lcl_addr.s_addr;
1718     else
1719 	return INADDR_ANY;
1720 }
1721 
1722 static void
1723 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1724 {
1725     struct mbuf *mb_copy;
1726     int hlen = ip->ip_hl << 2;
1727 
1728     VIF_LOCK_ASSERT();
1729 
1730     /*
1731      * Make a new reference to the packet; make sure that
1732      * the IP header is actually copied, not just referenced,
1733      * so that ip_output() only scribbles on the copy.
1734      */
1735     mb_copy = m_copypacket(m, M_DONTWAIT);
1736     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1737 	mb_copy = m_pullup(mb_copy, hlen);
1738     if (mb_copy == NULL)
1739 	return;
1740 
1741     send_packet(vifp, mb_copy);
1742 }
1743 
1744 static void
1745 send_packet(struct vif *vifp, struct mbuf *m)
1746 {
1747 	struct ip_moptions imo;
1748 	struct in_multi *imm[2];
1749 	int error;
1750 
1751 	VIF_LOCK_ASSERT();
1752 
1753 	imo.imo_multicast_ifp  = vifp->v_ifp;
1754 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1755 	imo.imo_multicast_loop = 1;
1756 	imo.imo_multicast_vif  = -1;
1757 	imo.imo_num_memberships = 0;
1758 	imo.imo_max_memberships = 2;
1759 	imo.imo_membership  = &imm[0];
1760 
1761 	/*
1762 	 * Re-entrancy should not be a problem here, because
1763 	 * the packets that we send out and are looped back at us
1764 	 * should get rejected because they appear to come from
1765 	 * the loopback interface, thus preventing looping.
1766 	 */
1767 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1768 	if (mrtdebug & DEBUG_XMIT) {
1769 	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1770 		vifp - viftable, error);
1771 	}
1772 }
1773 
1774 static int
1775 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1776 {
1777     int error, vifi;
1778 
1779     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1780 	return EOPNOTSUPP;
1781 
1782     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1783     if (error)
1784 	return error;
1785 
1786     VIF_LOCK();
1787 
1788     if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1789 	VIF_UNLOCK();
1790 	return EADDRNOTAVAIL;
1791     }
1792 
1793     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1794 	/* Check if socket is available. */
1795 	if (viftable[vifi].v_rsvpd != NULL) {
1796 	    VIF_UNLOCK();
1797 	    return EADDRINUSE;
1798 	}
1799 
1800 	viftable[vifi].v_rsvpd = so;
1801 	/* This may seem silly, but we need to be sure we don't over-increment
1802 	 * the RSVP counter, in case something slips up.
1803 	 */
1804 	if (!viftable[vifi].v_rsvp_on) {
1805 	    viftable[vifi].v_rsvp_on = 1;
1806 	    rsvp_on++;
1807 	}
1808     } else { /* must be VIF_OFF */
1809 	/*
1810 	 * XXX as an additional consistency check, one could make sure
1811 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1812 	 * first parameter is pretty useless.
1813 	 */
1814 	viftable[vifi].v_rsvpd = NULL;
1815 	/*
1816 	 * This may seem silly, but we need to be sure we don't over-decrement
1817 	 * the RSVP counter, in case something slips up.
1818 	 */
1819 	if (viftable[vifi].v_rsvp_on) {
1820 	    viftable[vifi].v_rsvp_on = 0;
1821 	    rsvp_on--;
1822 	}
1823     }
1824     VIF_UNLOCK();
1825     return 0;
1826 }
1827 
1828 static void
1829 X_ip_rsvp_force_done(struct socket *so)
1830 {
1831     int vifi;
1832 
1833     /* Don't bother if it is not the right type of socket. */
1834     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1835 	return;
1836 
1837     VIF_LOCK();
1838 
1839     /* The socket may be attached to more than one vif...this
1840      * is perfectly legal.
1841      */
1842     for (vifi = 0; vifi < numvifs; vifi++) {
1843 	if (viftable[vifi].v_rsvpd == so) {
1844 	    viftable[vifi].v_rsvpd = NULL;
1845 	    /* This may seem silly, but we need to be sure we don't
1846 	     * over-decrement the RSVP counter, in case something slips up.
1847 	     */
1848 	    if (viftable[vifi].v_rsvp_on) {
1849 		viftable[vifi].v_rsvp_on = 0;
1850 		rsvp_on--;
1851 	    }
1852 	}
1853     }
1854 
1855     VIF_UNLOCK();
1856 }
1857 
1858 static void
1859 X_rsvp_input(struct mbuf *m, int off)
1860 {
1861     int vifi;
1862     struct ip *ip = mtod(m, struct ip *);
1863     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1864     struct ifnet *ifp;
1865 
1866     if (rsvpdebug)
1867 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1868 
1869     /* Can still get packets with rsvp_on = 0 if there is a local member
1870      * of the group to which the RSVP packet is addressed.  But in this
1871      * case we want to throw the packet away.
1872      */
1873     if (!rsvp_on) {
1874 	m_freem(m);
1875 	return;
1876     }
1877 
1878     if (rsvpdebug)
1879 	printf("rsvp_input: check vifs\n");
1880 
1881 #ifdef DIAGNOSTIC
1882     M_ASSERTPKTHDR(m);
1883 #endif
1884 
1885     ifp = m->m_pkthdr.rcvif;
1886 
1887     VIF_LOCK();
1888     /* Find which vif the packet arrived on. */
1889     for (vifi = 0; vifi < numvifs; vifi++)
1890 	if (viftable[vifi].v_ifp == ifp)
1891 	    break;
1892 
1893     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1894 	/*
1895 	 * Drop the lock here to avoid holding it across rip_input.
1896 	 * This could make rsvpdebug printfs wrong.  If you care,
1897 	 * record the state of stuff before dropping the lock.
1898 	 */
1899 	VIF_UNLOCK();
1900 	/*
1901 	 * If the old-style non-vif-associated socket is set,
1902 	 * then use it.  Otherwise, drop packet since there
1903 	 * is no specific socket for this vif.
1904 	 */
1905 	if (ip_rsvpd != NULL) {
1906 	    if (rsvpdebug)
1907 		printf("rsvp_input: Sending packet up old-style socket\n");
1908 	    rip_input(m, off);  /* xxx */
1909 	} else {
1910 	    if (rsvpdebug && vifi == numvifs)
1911 		printf("rsvp_input: Can't find vif for packet.\n");
1912 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1913 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1914 	    m_freem(m);
1915 	}
1916 	return;
1917     }
1918     rsvp_src.sin_addr = ip->ip_src;
1919 
1920     if (rsvpdebug && m)
1921 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1922 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1923 
1924     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1925 	if (rsvpdebug)
1926 	    printf("rsvp_input: Failed to append to socket\n");
1927     } else {
1928 	if (rsvpdebug)
1929 	    printf("rsvp_input: send packet up\n");
1930     }
1931     VIF_UNLOCK();
1932 }
1933 
1934 /*
1935  * Code for bandwidth monitors
1936  */
1937 
1938 /*
1939  * Define common interface for timeval-related methods
1940  */
1941 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1942 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1943 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1944 
1945 static uint32_t
1946 compute_bw_meter_flags(struct bw_upcall *req)
1947 {
1948     uint32_t flags = 0;
1949 
1950     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1951 	flags |= BW_METER_UNIT_PACKETS;
1952     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1953 	flags |= BW_METER_UNIT_BYTES;
1954     if (req->bu_flags & BW_UPCALL_GEQ)
1955 	flags |= BW_METER_GEQ;
1956     if (req->bu_flags & BW_UPCALL_LEQ)
1957 	flags |= BW_METER_LEQ;
1958 
1959     return flags;
1960 }
1961 
1962 /*
1963  * Add a bw_meter entry
1964  */
1965 static int
1966 add_bw_upcall(struct bw_upcall *req)
1967 {
1968     struct mfc *mfc;
1969     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1970 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1971     struct timeval now;
1972     struct bw_meter *x;
1973     uint32_t flags;
1974 
1975     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1976 	return EOPNOTSUPP;
1977 
1978     /* Test if the flags are valid */
1979     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1980 	return EINVAL;
1981     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1982 	return EINVAL;
1983     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1984 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1985 	return EINVAL;
1986 
1987     /* Test if the threshold time interval is valid */
1988     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1989 	return EINVAL;
1990 
1991     flags = compute_bw_meter_flags(req);
1992 
1993     /*
1994      * Find if we have already same bw_meter entry
1995      */
1996     MFC_LOCK();
1997     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
1998     if (mfc == NULL) {
1999 	MFC_UNLOCK();
2000 	return EADDRNOTAVAIL;
2001     }
2002     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2003 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2004 			   &req->bu_threshold.b_time, ==)) &&
2005 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2006 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2007 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2008 	    MFC_UNLOCK();
2009 	    return 0;		/* XXX Already installed */
2010 	}
2011     }
2012 
2013     /* Allocate the new bw_meter entry */
2014     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2015     if (x == NULL) {
2016 	MFC_UNLOCK();
2017 	return ENOBUFS;
2018     }
2019 
2020     /* Set the new bw_meter entry */
2021     x->bm_threshold.b_time = req->bu_threshold.b_time;
2022     GET_TIME(now);
2023     x->bm_start_time = now;
2024     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2025     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2026     x->bm_measured.b_packets = 0;
2027     x->bm_measured.b_bytes = 0;
2028     x->bm_flags = flags;
2029     x->bm_time_next = NULL;
2030     x->bm_time_hash = BW_METER_BUCKETS;
2031 
2032     /* Add the new bw_meter entry to the front of entries for this MFC */
2033     x->bm_mfc = mfc;
2034     x->bm_mfc_next = mfc->mfc_bw_meter;
2035     mfc->mfc_bw_meter = x;
2036     schedule_bw_meter(x, &now);
2037     MFC_UNLOCK();
2038 
2039     return 0;
2040 }
2041 
2042 static void
2043 free_bw_list(struct bw_meter *list)
2044 {
2045     while (list != NULL) {
2046 	struct bw_meter *x = list;
2047 
2048 	list = list->bm_mfc_next;
2049 	unschedule_bw_meter(x);
2050 	free(x, M_BWMETER);
2051     }
2052 }
2053 
2054 /*
2055  * Delete one or multiple bw_meter entries
2056  */
2057 static int
2058 del_bw_upcall(struct bw_upcall *req)
2059 {
2060     struct mfc *mfc;
2061     struct bw_meter *x;
2062 
2063     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2064 	return EOPNOTSUPP;
2065 
2066     MFC_LOCK();
2067     /* Find the corresponding MFC entry */
2068     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2069     if (mfc == NULL) {
2070 	MFC_UNLOCK();
2071 	return EADDRNOTAVAIL;
2072     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2073 	/*
2074 	 * Delete all bw_meter entries for this mfc
2075 	 */
2076 	struct bw_meter *list;
2077 
2078 	list = mfc->mfc_bw_meter;
2079 	mfc->mfc_bw_meter = NULL;
2080 	free_bw_list(list);
2081 	MFC_UNLOCK();
2082 	return 0;
2083     } else {			/* Delete a single bw_meter entry */
2084 	struct bw_meter *prev;
2085 	uint32_t flags = 0;
2086 
2087 	flags = compute_bw_meter_flags(req);
2088 
2089 	/* Find the bw_meter entry to delete */
2090 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2091 	     prev = x, x = x->bm_mfc_next) {
2092 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2093 			       &req->bu_threshold.b_time, ==)) &&
2094 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2095 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2096 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2097 		break;
2098 	}
2099 	if (x != NULL) { /* Delete entry from the list for this MFC */
2100 	    if (prev != NULL)
2101 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2102 	    else
2103 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2104 
2105 	    unschedule_bw_meter(x);
2106 	    MFC_UNLOCK();
2107 	    /* Free the bw_meter entry */
2108 	    free(x, M_BWMETER);
2109 	    return 0;
2110 	} else {
2111 	    MFC_UNLOCK();
2112 	    return EINVAL;
2113 	}
2114     }
2115     /* NOTREACHED */
2116 }
2117 
2118 /*
2119  * Perform bandwidth measurement processing that may result in an upcall
2120  */
2121 static void
2122 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2123 {
2124     struct timeval delta;
2125 
2126     MFC_LOCK_ASSERT();
2127 
2128     delta = *nowp;
2129     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2130 
2131     if (x->bm_flags & BW_METER_GEQ) {
2132 	/*
2133 	 * Processing for ">=" type of bw_meter entry
2134 	 */
2135 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2136 	    /* Reset the bw_meter entry */
2137 	    x->bm_start_time = *nowp;
2138 	    x->bm_measured.b_packets = 0;
2139 	    x->bm_measured.b_bytes = 0;
2140 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2141 	}
2142 
2143 	/* Record that a packet is received */
2144 	x->bm_measured.b_packets++;
2145 	x->bm_measured.b_bytes += plen;
2146 
2147 	/*
2148 	 * Test if we should deliver an upcall
2149 	 */
2150 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2151 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2152 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2153 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2154 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2155 		/* Prepare an upcall for delivery */
2156 		bw_meter_prepare_upcall(x, nowp);
2157 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2158 	    }
2159 	}
2160     } else if (x->bm_flags & BW_METER_LEQ) {
2161 	/*
2162 	 * Processing for "<=" type of bw_meter entry
2163 	 */
2164 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2165 	    /*
2166 	     * We are behind time with the multicast forwarding table
2167 	     * scanning for "<=" type of bw_meter entries, so test now
2168 	     * if we should deliver an upcall.
2169 	     */
2170 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2171 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2172 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2173 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2174 		/* Prepare an upcall for delivery */
2175 		bw_meter_prepare_upcall(x, nowp);
2176 	    }
2177 	    /* Reschedule the bw_meter entry */
2178 	    unschedule_bw_meter(x);
2179 	    schedule_bw_meter(x, nowp);
2180 	}
2181 
2182 	/* Record that a packet is received */
2183 	x->bm_measured.b_packets++;
2184 	x->bm_measured.b_bytes += plen;
2185 
2186 	/*
2187 	 * Test if we should restart the measuring interval
2188 	 */
2189 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2190 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2191 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2192 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2193 	    /* Don't restart the measuring interval */
2194 	} else {
2195 	    /* Do restart the measuring interval */
2196 	    /*
2197 	     * XXX: note that we don't unschedule and schedule, because this
2198 	     * might be too much overhead per packet. Instead, when we process
2199 	     * all entries for a given timer hash bin, we check whether it is
2200 	     * really a timeout. If not, we reschedule at that time.
2201 	     */
2202 	    x->bm_start_time = *nowp;
2203 	    x->bm_measured.b_packets = 0;
2204 	    x->bm_measured.b_bytes = 0;
2205 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2206 	}
2207     }
2208 }
2209 
2210 /*
2211  * Prepare a bandwidth-related upcall
2212  */
2213 static void
2214 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2215 {
2216     struct timeval delta;
2217     struct bw_upcall *u;
2218 
2219     MFC_LOCK_ASSERT();
2220 
2221     /*
2222      * Compute the measured time interval
2223      */
2224     delta = *nowp;
2225     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2226 
2227     /*
2228      * If there are too many pending upcalls, deliver them now
2229      */
2230     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2231 	bw_upcalls_send();
2232 
2233     /*
2234      * Set the bw_upcall entry
2235      */
2236     u = &bw_upcalls[bw_upcalls_n++];
2237     u->bu_src = x->bm_mfc->mfc_origin;
2238     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2239     u->bu_threshold.b_time = x->bm_threshold.b_time;
2240     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2241     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2242     u->bu_measured.b_time = delta;
2243     u->bu_measured.b_packets = x->bm_measured.b_packets;
2244     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2245     u->bu_flags = 0;
2246     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2247 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2248     if (x->bm_flags & BW_METER_UNIT_BYTES)
2249 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2250     if (x->bm_flags & BW_METER_GEQ)
2251 	u->bu_flags |= BW_UPCALL_GEQ;
2252     if (x->bm_flags & BW_METER_LEQ)
2253 	u->bu_flags |= BW_UPCALL_LEQ;
2254 }
2255 
2256 /*
2257  * Send the pending bandwidth-related upcalls
2258  */
2259 static void
2260 bw_upcalls_send(void)
2261 {
2262     struct mbuf *m;
2263     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2264     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2265     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2266 				      0,		/* unused2 */
2267 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2268 				      0,		/* im_mbz  */
2269 				      0,		/* im_vif  */
2270 				      0,		/* unused3 */
2271 				      { 0 },		/* im_src  */
2272 				      { 0 } };		/* im_dst  */
2273 
2274     MFC_LOCK_ASSERT();
2275 
2276     if (bw_upcalls_n == 0)
2277 	return;			/* No pending upcalls */
2278 
2279     bw_upcalls_n = 0;
2280 
2281     /*
2282      * Allocate a new mbuf, initialize it with the header and
2283      * the payload for the pending calls.
2284      */
2285     MGETHDR(m, M_DONTWAIT, MT_DATA);
2286     if (m == NULL) {
2287 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2288 	return;
2289     }
2290 
2291     m->m_len = m->m_pkthdr.len = 0;
2292     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2293     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2294 
2295     /*
2296      * Send the upcalls
2297      * XXX do we need to set the address in k_igmpsrc ?
2298      */
2299     mrtstat.mrts_upcalls++;
2300     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2301 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2302 	++mrtstat.mrts_upq_sockfull;
2303     }
2304 }
2305 
2306 /*
2307  * Compute the timeout hash value for the bw_meter entries
2308  */
2309 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2310     do {								\
2311 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2312 									\
2313 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2314 	(hash) = next_timeval.tv_sec;					\
2315 	if (next_timeval.tv_usec)					\
2316 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2317 	(hash) %= BW_METER_BUCKETS;					\
2318     } while (0)
2319 
2320 /*
2321  * Schedule a timer to process periodically bw_meter entry of type "<="
2322  * by linking the entry in the proper hash bucket.
2323  */
2324 static void
2325 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2326 {
2327     int time_hash;
2328 
2329     MFC_LOCK_ASSERT();
2330 
2331     if (!(x->bm_flags & BW_METER_LEQ))
2332 	return;		/* XXX: we schedule timers only for "<=" entries */
2333 
2334     /*
2335      * Reset the bw_meter entry
2336      */
2337     x->bm_start_time = *nowp;
2338     x->bm_measured.b_packets = 0;
2339     x->bm_measured.b_bytes = 0;
2340     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2341 
2342     /*
2343      * Compute the timeout hash value and insert the entry
2344      */
2345     BW_METER_TIMEHASH(x, time_hash);
2346     x->bm_time_next = bw_meter_timers[time_hash];
2347     bw_meter_timers[time_hash] = x;
2348     x->bm_time_hash = time_hash;
2349 }
2350 
2351 /*
2352  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2353  * by removing the entry from the proper hash bucket.
2354  */
2355 static void
2356 unschedule_bw_meter(struct bw_meter *x)
2357 {
2358     int time_hash;
2359     struct bw_meter *prev, *tmp;
2360 
2361     MFC_LOCK_ASSERT();
2362 
2363     if (!(x->bm_flags & BW_METER_LEQ))
2364 	return;		/* XXX: we schedule timers only for "<=" entries */
2365 
2366     /*
2367      * Compute the timeout hash value and delete the entry
2368      */
2369     time_hash = x->bm_time_hash;
2370     if (time_hash >= BW_METER_BUCKETS)
2371 	return;		/* Entry was not scheduled */
2372 
2373     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2374 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2375 	if (tmp == x)
2376 	    break;
2377 
2378     if (tmp == NULL)
2379 	panic("unschedule_bw_meter: bw_meter entry not found");
2380 
2381     if (prev != NULL)
2382 	prev->bm_time_next = x->bm_time_next;
2383     else
2384 	bw_meter_timers[time_hash] = x->bm_time_next;
2385 
2386     x->bm_time_next = NULL;
2387     x->bm_time_hash = BW_METER_BUCKETS;
2388 }
2389 
2390 
2391 /*
2392  * Process all "<=" type of bw_meter that should be processed now,
2393  * and for each entry prepare an upcall if necessary. Each processed
2394  * entry is rescheduled again for the (periodic) processing.
2395  *
2396  * This is run periodically (once per second normally). On each round,
2397  * all the potentially matching entries are in the hash slot that we are
2398  * looking at.
2399  */
2400 static void
2401 bw_meter_process()
2402 {
2403     static uint32_t last_tv_sec;	/* last time we processed this */
2404 
2405     uint32_t loops;
2406     int i;
2407     struct timeval now, process_endtime;
2408 
2409     GET_TIME(now);
2410     if (last_tv_sec == now.tv_sec)
2411 	return;		/* nothing to do */
2412 
2413     loops = now.tv_sec - last_tv_sec;
2414     last_tv_sec = now.tv_sec;
2415     if (loops > BW_METER_BUCKETS)
2416 	loops = BW_METER_BUCKETS;
2417 
2418     MFC_LOCK();
2419     /*
2420      * Process all bins of bw_meter entries from the one after the last
2421      * processed to the current one. On entry, i points to the last bucket
2422      * visited, so we need to increment i at the beginning of the loop.
2423      */
2424     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2425 	struct bw_meter *x, *tmp_list;
2426 
2427 	if (++i >= BW_METER_BUCKETS)
2428 	    i = 0;
2429 
2430 	/* Disconnect the list of bw_meter entries from the bin */
2431 	tmp_list = bw_meter_timers[i];
2432 	bw_meter_timers[i] = NULL;
2433 
2434 	/* Process the list of bw_meter entries */
2435 	while (tmp_list != NULL) {
2436 	    x = tmp_list;
2437 	    tmp_list = tmp_list->bm_time_next;
2438 
2439 	    /* Test if the time interval is over */
2440 	    process_endtime = x->bm_start_time;
2441 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2442 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2443 		/* Not yet: reschedule, but don't reset */
2444 		int time_hash;
2445 
2446 		BW_METER_TIMEHASH(x, time_hash);
2447 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2448 		    /*
2449 		     * XXX: somehow the bin processing is a bit ahead of time.
2450 		     * Put the entry in the next bin.
2451 		     */
2452 		    if (++time_hash >= BW_METER_BUCKETS)
2453 			time_hash = 0;
2454 		}
2455 		x->bm_time_next = bw_meter_timers[time_hash];
2456 		bw_meter_timers[time_hash] = x;
2457 		x->bm_time_hash = time_hash;
2458 
2459 		continue;
2460 	    }
2461 
2462 	    /*
2463 	     * Test if we should deliver an upcall
2464 	     */
2465 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2466 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2467 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2468 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2469 		/* Prepare an upcall for delivery */
2470 		bw_meter_prepare_upcall(x, &now);
2471 	    }
2472 
2473 	    /*
2474 	     * Reschedule for next processing
2475 	     */
2476 	    schedule_bw_meter(x, &now);
2477 	}
2478     }
2479 
2480     /* Send all upcalls that are pending delivery */
2481     bw_upcalls_send();
2482 
2483     MFC_UNLOCK();
2484 }
2485 
2486 /*
2487  * A periodic function for sending all upcalls that are pending delivery
2488  */
2489 static void
2490 expire_bw_upcalls_send(void *unused)
2491 {
2492     MFC_LOCK();
2493     bw_upcalls_send();
2494     MFC_UNLOCK();
2495 
2496     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2497 	expire_bw_upcalls_send, NULL);
2498 }
2499 
2500 /*
2501  * A periodic function for periodic scanning of the multicast forwarding
2502  * table for processing all "<=" bw_meter entries.
2503  */
2504 static void
2505 expire_bw_meter_process(void *unused)
2506 {
2507     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2508 	bw_meter_process();
2509 
2510     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2511 }
2512 
2513 /*
2514  * End of bandwidth monitoring code
2515  */
2516 
2517 /*
2518  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2519  *
2520  */
2521 static int
2522 pim_register_send(struct ip *ip, struct vif *vifp,
2523 	struct mbuf *m, struct mfc *rt)
2524 {
2525     struct mbuf *mb_copy, *mm;
2526 
2527     if (mrtdebug & DEBUG_PIM)
2528 	log(LOG_DEBUG, "pim_register_send: ");
2529 
2530     /*
2531      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2532      * rendezvous point was unspecified, and we were told not to.
2533      */
2534     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2535 	(rt->mfc_rp.s_addr == INADDR_ANY))
2536 	return 0;
2537 
2538     mb_copy = pim_register_prepare(ip, m);
2539     if (mb_copy == NULL)
2540 	return ENOBUFS;
2541 
2542     /*
2543      * Send all the fragments. Note that the mbuf for each fragment
2544      * is freed by the sending machinery.
2545      */
2546     for (mm = mb_copy; mm; mm = mb_copy) {
2547 	mb_copy = mm->m_nextpkt;
2548 	mm->m_nextpkt = 0;
2549 	mm = m_pullup(mm, sizeof(struct ip));
2550 	if (mm != NULL) {
2551 	    ip = mtod(mm, struct ip *);
2552 	    if ((mrt_api_config & MRT_MFC_RP) &&
2553 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2554 		pim_register_send_rp(ip, vifp, mm, rt);
2555 	    } else {
2556 		pim_register_send_upcall(ip, vifp, mm, rt);
2557 	    }
2558 	}
2559     }
2560 
2561     return 0;
2562 }
2563 
2564 /*
2565  * Return a copy of the data packet that is ready for PIM Register
2566  * encapsulation.
2567  * XXX: Note that in the returned copy the IP header is a valid one.
2568  */
2569 static struct mbuf *
2570 pim_register_prepare(struct ip *ip, struct mbuf *m)
2571 {
2572     struct mbuf *mb_copy = NULL;
2573     int mtu;
2574 
2575     /* Take care of delayed checksums */
2576     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2577 	in_delayed_cksum(m);
2578 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2579     }
2580 
2581     /*
2582      * Copy the old packet & pullup its IP header into the
2583      * new mbuf so we can modify it.
2584      */
2585     mb_copy = m_copypacket(m, M_DONTWAIT);
2586     if (mb_copy == NULL)
2587 	return NULL;
2588     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2589     if (mb_copy == NULL)
2590 	return NULL;
2591 
2592     /* take care of the TTL */
2593     ip = mtod(mb_copy, struct ip *);
2594     --ip->ip_ttl;
2595 
2596     /* Compute the MTU after the PIM Register encapsulation */
2597     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2598 
2599     if (ip->ip_len <= mtu) {
2600 	/* Turn the IP header into a valid one */
2601 	ip->ip_len = htons(ip->ip_len);
2602 	ip->ip_off = htons(ip->ip_off);
2603 	ip->ip_sum = 0;
2604 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2605     } else {
2606 	/* Fragment the packet */
2607 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2608 	    m_freem(mb_copy);
2609 	    return NULL;
2610 	}
2611     }
2612     return mb_copy;
2613 }
2614 
2615 /*
2616  * Send an upcall with the data packet to the user-level process.
2617  */
2618 static int
2619 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2620 	struct mbuf *mb_copy, struct mfc *rt)
2621 {
2622     struct mbuf *mb_first;
2623     int len = ntohs(ip->ip_len);
2624     struct igmpmsg *im;
2625     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2626 
2627     VIF_LOCK_ASSERT();
2628 
2629     /*
2630      * Add a new mbuf with an upcall header
2631      */
2632     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2633     if (mb_first == NULL) {
2634 	m_freem(mb_copy);
2635 	return ENOBUFS;
2636     }
2637     mb_first->m_data += max_linkhdr;
2638     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2639     mb_first->m_len = sizeof(struct igmpmsg);
2640     mb_first->m_next = mb_copy;
2641 
2642     /* Send message to routing daemon */
2643     im = mtod(mb_first, struct igmpmsg *);
2644     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2645     im->im_mbz		= 0;
2646     im->im_vif		= vifp - viftable;
2647     im->im_src		= ip->ip_src;
2648     im->im_dst		= ip->ip_dst;
2649 
2650     k_igmpsrc.sin_addr	= ip->ip_src;
2651 
2652     mrtstat.mrts_upcalls++;
2653 
2654     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2655 	if (mrtdebug & DEBUG_PIM)
2656 	    log(LOG_WARNING,
2657 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2658 	++mrtstat.mrts_upq_sockfull;
2659 	return ENOBUFS;
2660     }
2661 
2662     /* Keep statistics */
2663     pimstat.pims_snd_registers_msgs++;
2664     pimstat.pims_snd_registers_bytes += len;
2665 
2666     return 0;
2667 }
2668 
2669 /*
2670  * Encapsulate the data packet in PIM Register message and send it to the RP.
2671  */
2672 static int
2673 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2674 	struct mbuf *mb_copy, struct mfc *rt)
2675 {
2676     struct mbuf *mb_first;
2677     struct ip *ip_outer;
2678     struct pim_encap_pimhdr *pimhdr;
2679     int len = ntohs(ip->ip_len);
2680     vifi_t vifi = rt->mfc_parent;
2681 
2682     VIF_LOCK_ASSERT();
2683 
2684     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2685 	m_freem(mb_copy);
2686 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2687     }
2688 
2689     /*
2690      * Add a new mbuf with the encapsulating header
2691      */
2692     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2693     if (mb_first == NULL) {
2694 	m_freem(mb_copy);
2695 	return ENOBUFS;
2696     }
2697     mb_first->m_data += max_linkhdr;
2698     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2699     mb_first->m_next = mb_copy;
2700 
2701     mb_first->m_pkthdr.len = len + mb_first->m_len;
2702 
2703     /*
2704      * Fill in the encapsulating IP and PIM header
2705      */
2706     ip_outer = mtod(mb_first, struct ip *);
2707     *ip_outer = pim_encap_iphdr;
2708     ip_outer->ip_id = ip_newid();
2709     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2710     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2711     ip_outer->ip_dst = rt->mfc_rp;
2712     /*
2713      * Copy the inner header TOS to the outer header, and take care of the
2714      * IP_DF bit.
2715      */
2716     ip_outer->ip_tos = ip->ip_tos;
2717     if (ntohs(ip->ip_off) & IP_DF)
2718 	ip_outer->ip_off |= IP_DF;
2719     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2720 					 + sizeof(pim_encap_iphdr));
2721     *pimhdr = pim_encap_pimhdr;
2722     /* If the iif crosses a border, set the Border-bit */
2723     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2724 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2725 
2726     mb_first->m_data += sizeof(pim_encap_iphdr);
2727     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2728     mb_first->m_data -= sizeof(pim_encap_iphdr);
2729 
2730     send_packet(vifp, mb_first);
2731 
2732     /* Keep statistics */
2733     pimstat.pims_snd_registers_msgs++;
2734     pimstat.pims_snd_registers_bytes += len;
2735 
2736     return 0;
2737 }
2738 
2739 /*
2740  * pim_encapcheck() is called by the encap4_input() path at runtime to
2741  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2742  * into the kernel.
2743  */
2744 static int
2745 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2746 {
2747 
2748 #ifdef DIAGNOSTIC
2749     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2750 #endif
2751     if (proto != IPPROTO_PIM)
2752 	return 0;	/* not for us; reject the datagram. */
2753 
2754     return 64;		/* claim the datagram. */
2755 }
2756 
2757 /*
2758  * PIM-SMv2 and PIM-DM messages processing.
2759  * Receives and verifies the PIM control messages, and passes them
2760  * up to the listening socket, using rip_input().
2761  * The only message with special processing is the PIM_REGISTER message
2762  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2763  * is passed to if_simloop().
2764  */
2765 void
2766 pim_input(struct mbuf *m, int off)
2767 {
2768     struct ip *ip = mtod(m, struct ip *);
2769     struct pim *pim;
2770     int minlen;
2771     int datalen = ip->ip_len;
2772     int ip_tos;
2773     int iphlen = off;
2774 
2775     /* Keep statistics */
2776     pimstat.pims_rcv_total_msgs++;
2777     pimstat.pims_rcv_total_bytes += datalen;
2778 
2779     /*
2780      * Validate lengths
2781      */
2782     if (datalen < PIM_MINLEN) {
2783 	pimstat.pims_rcv_tooshort++;
2784 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2785 	    datalen, (u_long)ip->ip_src.s_addr);
2786 	m_freem(m);
2787 	return;
2788     }
2789 
2790     /*
2791      * If the packet is at least as big as a REGISTER, go agead
2792      * and grab the PIM REGISTER header size, to avoid another
2793      * possible m_pullup() later.
2794      *
2795      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2796      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2797      */
2798     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2799     /*
2800      * Get the IP and PIM headers in contiguous memory, and
2801      * possibly the PIM REGISTER header.
2802      */
2803     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2804 	(m = m_pullup(m, minlen)) == 0) {
2805 	log(LOG_ERR, "pim_input: m_pullup failure\n");
2806 	return;
2807     }
2808     /* m_pullup() may have given us a new mbuf so reset ip. */
2809     ip = mtod(m, struct ip *);
2810     ip_tos = ip->ip_tos;
2811 
2812     /* adjust mbuf to point to the PIM header */
2813     m->m_data += iphlen;
2814     m->m_len  -= iphlen;
2815     pim = mtod(m, struct pim *);
2816 
2817     /*
2818      * Validate checksum. If PIM REGISTER, exclude the data packet.
2819      *
2820      * XXX: some older PIMv2 implementations don't make this distinction,
2821      * so for compatibility reason perform the checksum over part of the
2822      * message, and if error, then over the whole message.
2823      */
2824     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2825 	/* do nothing, checksum okay */
2826     } else if (in_cksum(m, datalen)) {
2827 	pimstat.pims_rcv_badsum++;
2828 	if (mrtdebug & DEBUG_PIM)
2829 	    log(LOG_DEBUG, "pim_input: invalid checksum");
2830 	m_freem(m);
2831 	return;
2832     }
2833 
2834     /* PIM version check */
2835     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2836 	pimstat.pims_rcv_badversion++;
2837 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2838 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2839 	m_freem(m);
2840 	return;
2841     }
2842 
2843     /* restore mbuf back to the outer IP */
2844     m->m_data -= iphlen;
2845     m->m_len  += iphlen;
2846 
2847     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2848 	/*
2849 	 * Since this is a REGISTER, we'll make a copy of the register
2850 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2851 	 * routing daemon.
2852 	 */
2853 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2854 	struct mbuf *mcp;
2855 	struct ip *encap_ip;
2856 	u_int32_t *reghdr;
2857 	struct ifnet *vifp;
2858 
2859 	VIF_LOCK();
2860 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2861 	    VIF_UNLOCK();
2862 	    if (mrtdebug & DEBUG_PIM)
2863 		log(LOG_DEBUG,
2864 		    "pim_input: register vif not set: %d\n", reg_vif_num);
2865 	    m_freem(m);
2866 	    return;
2867 	}
2868 	/* XXX need refcnt? */
2869 	vifp = viftable[reg_vif_num].v_ifp;
2870 	VIF_UNLOCK();
2871 
2872 	/*
2873 	 * Validate length
2874 	 */
2875 	if (datalen < PIM_REG_MINLEN) {
2876 	    pimstat.pims_rcv_tooshort++;
2877 	    pimstat.pims_rcv_badregisters++;
2878 	    log(LOG_ERR,
2879 		"pim_input: register packet size too small %d from %lx\n",
2880 		datalen, (u_long)ip->ip_src.s_addr);
2881 	    m_freem(m);
2882 	    return;
2883 	}
2884 
2885 	reghdr = (u_int32_t *)(pim + 1);
2886 	encap_ip = (struct ip *)(reghdr + 1);
2887 
2888 	if (mrtdebug & DEBUG_PIM) {
2889 	    log(LOG_DEBUG,
2890 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2891 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2892 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2893 		ntohs(encap_ip->ip_len));
2894 	}
2895 
2896 	/* verify the version number of the inner packet */
2897 	if (encap_ip->ip_v != IPVERSION) {
2898 	    pimstat.pims_rcv_badregisters++;
2899 	    if (mrtdebug & DEBUG_PIM) {
2900 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2901 		    "of the inner packet\n", encap_ip->ip_v);
2902 	    }
2903 	    m_freem(m);
2904 	    return;
2905 	}
2906 
2907 	/* verify the inner packet is destined to a mcast group */
2908 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2909 	    pimstat.pims_rcv_badregisters++;
2910 	    if (mrtdebug & DEBUG_PIM)
2911 		log(LOG_DEBUG,
2912 		    "pim_input: inner packet of register is not "
2913 		    "multicast %lx\n",
2914 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2915 	    m_freem(m);
2916 	    return;
2917 	}
2918 
2919 	/* If a NULL_REGISTER, pass it to the daemon */
2920 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2921 	    goto pim_input_to_daemon;
2922 
2923 	/*
2924 	 * Copy the TOS from the outer IP header to the inner IP header.
2925 	 */
2926 	if (encap_ip->ip_tos != ip_tos) {
2927 	    /* Outer TOS -> inner TOS */
2928 	    encap_ip->ip_tos = ip_tos;
2929 	    /* Recompute the inner header checksum. Sigh... */
2930 
2931 	    /* adjust mbuf to point to the inner IP header */
2932 	    m->m_data += (iphlen + PIM_MINLEN);
2933 	    m->m_len  -= (iphlen + PIM_MINLEN);
2934 
2935 	    encap_ip->ip_sum = 0;
2936 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2937 
2938 	    /* restore mbuf to point back to the outer IP header */
2939 	    m->m_data -= (iphlen + PIM_MINLEN);
2940 	    m->m_len  += (iphlen + PIM_MINLEN);
2941 	}
2942 
2943 	/*
2944 	 * Decapsulate the inner IP packet and loopback to forward it
2945 	 * as a normal multicast packet. Also, make a copy of the
2946 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2947 	 * to pass to the daemon later, so it can take the appropriate
2948 	 * actions (e.g., send back PIM_REGISTER_STOP).
2949 	 * XXX: here m->m_data points to the outer IP header.
2950 	 */
2951 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2952 	if (mcp == NULL) {
2953 	    log(LOG_ERR,
2954 		"pim_input: pim register: could not copy register head\n");
2955 	    m_freem(m);
2956 	    return;
2957 	}
2958 
2959 	/* Keep statistics */
2960 	/* XXX: registers_bytes include only the encap. mcast pkt */
2961 	pimstat.pims_rcv_registers_msgs++;
2962 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2963 
2964 	/*
2965 	 * forward the inner ip packet; point m_data at the inner ip.
2966 	 */
2967 	m_adj(m, iphlen + PIM_MINLEN);
2968 
2969 	if (mrtdebug & DEBUG_PIM) {
2970 	    log(LOG_DEBUG,
2971 		"pim_input: forwarding decapsulated register: "
2972 		"src %lx, dst %lx, vif %d\n",
2973 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2974 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2975 		reg_vif_num);
2976 	}
2977 	/* NB: vifp was collected above; can it change on us? */
2978 	if_simloop(vifp, m, dst.sin_family, 0);
2979 
2980 	/* prepare the register head to send to the mrouting daemon */
2981 	m = mcp;
2982     }
2983 
2984 pim_input_to_daemon:
2985     /*
2986      * Pass the PIM message up to the daemon; if it is a Register message,
2987      * pass the 'head' only up to the daemon. This includes the
2988      * outer IP header, PIM header, PIM-Register header and the
2989      * inner IP header.
2990      * XXX: the outer IP header pkt size of a Register is not adjust to
2991      * reflect the fact that the inner multicast data is truncated.
2992      */
2993     rip_input(m, iphlen);
2994 
2995     return;
2996 }
2997 
2998 static int
2999 ip_mroute_modevent(module_t mod, int type, void *unused)
3000 {
3001     switch (type) {
3002     case MOD_LOAD:
3003 	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3004 	MFC_LOCK_INIT();
3005 	VIF_LOCK_INIT();
3006 	ip_mrouter_reset();
3007 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3008 	    &pim_squelch_wholepkt);
3009 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3010 	    pim_encapcheck, &in_pim_protosw, NULL);
3011 	if (pim_encap_cookie == NULL) {
3012 		printf("ip_mroute: unable to attach pim encap\n");
3013 		VIF_LOCK_DESTROY();
3014 		MFC_LOCK_DESTROY();
3015 		mtx_destroy(&mrouter_mtx);
3016 		return (EINVAL);
3017 	}
3018 	ip_mcast_src = X_ip_mcast_src;
3019 	ip_mforward = X_ip_mforward;
3020 	ip_mrouter_done = X_ip_mrouter_done;
3021 	ip_mrouter_get = X_ip_mrouter_get;
3022 	ip_mrouter_set = X_ip_mrouter_set;
3023 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3024 	ip_rsvp_vif = X_ip_rsvp_vif;
3025 	legal_vif_num = X_legal_vif_num;
3026 	mrt_ioctl = X_mrt_ioctl;
3027 	rsvp_input_p = X_rsvp_input;
3028 	break;
3029 
3030     case MOD_UNLOAD:
3031 	/*
3032 	 * Typically module unload happens after the user-level
3033 	 * process has shutdown the kernel services (the check
3034 	 * below insures someone can't just yank the module out
3035 	 * from under a running process).  But if the module is
3036 	 * just loaded and then unloaded w/o starting up a user
3037 	 * process we still need to cleanup.
3038 	 */
3039 	if (ip_mrouter)
3040 	    return EINVAL;
3041 
3042 	if (pim_encap_cookie) {
3043 	    encap_detach(pim_encap_cookie);
3044 	    pim_encap_cookie = NULL;
3045 	}
3046 
3047 	X_ip_mrouter_done();
3048 	ip_mcast_src = NULL;
3049 	ip_mforward = NULL;
3050 	ip_mrouter_done = NULL;
3051 	ip_mrouter_get = NULL;
3052 	ip_mrouter_set = NULL;
3053 	ip_rsvp_force_done = NULL;
3054 	ip_rsvp_vif = NULL;
3055 	legal_vif_num = NULL;
3056 	mrt_ioctl = NULL;
3057 	rsvp_input_p = NULL;
3058 	VIF_LOCK_DESTROY();
3059 	MFC_LOCK_DESTROY();
3060 	mtx_destroy(&mrouter_mtx);
3061 	break;
3062     default:
3063 	return EOPNOTSUPP;
3064     }
3065     return 0;
3066 }
3067 
3068 static moduledata_t ip_mroutemod = {
3069     "ip_mroute",
3070     ip_mroute_modevent,
3071     0
3072 };
3073 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3074