xref: /freebsd/sys/netinet/ip_mroute.c (revision 54ab3ed82b639b593fb0fe6db845e38a9d18970e)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $FreeBSD$
13  */
14 
15 #include "opt_mrouting.h"
16 #include "opt_random_ip_id.h"
17 
18 #include <sys/param.h>
19 #include <sys/systm.h>
20 #include <sys/malloc.h>
21 #include <sys/mbuf.h>
22 #include <sys/socket.h>
23 #include <sys/socketvar.h>
24 #include <sys/protosw.h>
25 #include <sys/time.h>
26 #include <sys/kernel.h>
27 #include <sys/sysctl.h>
28 #include <sys/sockio.h>
29 #include <sys/syslog.h>
30 #include <net/if.h>
31 #include <net/route.h>
32 #include <netinet/in.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_var.h>
37 #include <netinet/igmp.h>
38 #include <netinet/ip_encap.h>
39 #include <netinet/ip_mroute.h>
40 #include <netinet/udp.h>
41 #include <machine/in_cksum.h>
42 
43 #ifndef MROUTING
44 extern u_long	_ip_mcast_src __P((int vifi));
45 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
46 				  struct mbuf *m, struct ip_moptions *imo));
47 extern int	_ip_mrouter_done __P((void));
48 extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
49 extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
50 extern int	_mrt_ioctl __P((int req, caddr_t data));
51 
52 /*
53  * Dummy routines and globals used when multicast routing is not compiled in.
54  */
55 
56 struct socket  *ip_mrouter  = NULL;
57 u_int		rsvpdebug = 0;
58 
59 int
60 _ip_mrouter_set(so, sopt)
61 	struct socket *so;
62 	struct sockopt *sopt;
63 {
64 	return(EOPNOTSUPP);
65 }
66 
67 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
68 
69 
70 int
71 _ip_mrouter_get(so, sopt)
72 	struct socket *so;
73 	struct sockopt *sopt;
74 {
75 	return(EOPNOTSUPP);
76 }
77 
78 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
79 
80 int
81 _ip_mrouter_done()
82 {
83 	return(0);
84 }
85 
86 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
87 
88 int
89 _ip_mforward(ip, ifp, m, imo)
90 	struct ip *ip;
91 	struct ifnet *ifp;
92 	struct mbuf *m;
93 	struct ip_moptions *imo;
94 {
95 	return(0);
96 }
97 
98 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
99 		   struct ip_moptions *) = _ip_mforward;
100 
101 int
102 _mrt_ioctl(int req, caddr_t data)
103 {
104 	return EOPNOTSUPP;
105 }
106 
107 int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
108 
109 void
110 rsvp_input(m, off)		/* XXX must fixup manually */
111 	struct mbuf *m;
112 	int off;
113 {
114     /* Can still get packets with rsvp_on = 0 if there is a local member
115      * of the group to which the RSVP packet is addressed.  But in this
116      * case we want to throw the packet away.
117      */
118     if (!rsvp_on) {
119 	m_freem(m);
120 	return;
121     }
122 
123     if (ip_rsvpd != NULL) {
124 	if (rsvpdebug)
125 	    printf("rsvp_input: Sending packet up old-style socket\n");
126 	rip_input(m, off);
127 	return;
128     }
129     /* Drop the packet */
130     m_freem(m);
131 }
132 
133 int (*legal_vif_num)(int) = 0;
134 
135 /*
136  * This should never be called, since IP_MULTICAST_VIF should fail, but
137  * just in case it does get called, the code a little lower in ip_output
138  * will assign the packet a local address.
139  */
140 u_long
141 _ip_mcast_src(int vifi) { return INADDR_ANY; }
142 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
143 
144 int
145 ip_rsvp_vif_init(so, sopt)
146     struct socket *so;
147     struct sockopt *sopt;
148 {
149     return(EINVAL);
150 }
151 
152 int
153 ip_rsvp_vif_done(so, sopt)
154     struct socket *so;
155     struct sockopt *sopt;
156 {
157     return(EINVAL);
158 }
159 
160 void
161 ip_rsvp_force_done(so)
162     struct socket *so;
163 {
164     return;
165 }
166 
167 #else /* MROUTING */
168 
169 #define M_HASCL(m)	((m)->m_flags & M_EXT)
170 
171 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
172 
173 #ifndef MROUTE_KLD
174 /* The socket used to communicate with the multicast routing daemon.  */
175 struct socket  *ip_mrouter  = NULL;
176 #endif
177 
178 #if defined(MROUTING) || defined(MROUTE_KLD)
179 static struct mrtstat	mrtstat;
180 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
181     &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
182 #endif
183 
184 static struct mfc	*mfctable[MFCTBLSIZ];
185 static u_char		nexpire[MFCTBLSIZ];
186 static struct vif	viftable[MAXVIFS];
187 static u_int	mrtdebug = 0;	  /* debug level 	*/
188 #define		DEBUG_MFC	0x02
189 #define		DEBUG_FORWARD	0x04
190 #define		DEBUG_EXPIRE	0x08
191 #define		DEBUG_XMIT	0x10
192 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
193 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
194 
195 static struct callout_handle expire_upcalls_ch;
196 
197 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
198 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
199 
200 /*
201  * Define the token bucket filter structures
202  * tbftable -> each vif has one of these for storing info
203  */
204 
205 static struct tbf tbftable[MAXVIFS];
206 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
207 
208 /*
209  * 'Interfaces' associated with decapsulator (so we can tell
210  * packets that went through it from ones that get reflected
211  * by a broken gateway).  These interfaces are never linked into
212  * the system ifnet list & no routes point to them.  I.e., packets
213  * can't be sent this way.  They only exist as a placeholder for
214  * multicast source verification.
215  */
216 static struct ifnet multicast_decap_if[MAXVIFS];
217 
218 #define ENCAP_TTL 64
219 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
220 
221 /* prototype IP hdr for encapsulated packets */
222 static struct ip multicast_encap_iphdr = {
223 #if BYTE_ORDER == LITTLE_ENDIAN
224 	sizeof(struct ip) >> 2, IPVERSION,
225 #else
226 	IPVERSION, sizeof(struct ip) >> 2,
227 #endif
228 	0,				/* tos */
229 	sizeof(struct ip),		/* total length */
230 	0,				/* id */
231 	0,				/* frag offset */
232 	ENCAP_TTL, ENCAP_PROTO,
233 	0,				/* checksum */
234 };
235 
236 /*
237  * Private variables.
238  */
239 static vifi_t	   numvifs = 0;
240 static const struct encaptab *encap_cookie = NULL;
241 
242 /*
243  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
244  * given a datagram's src ip address.
245  */
246 static u_long last_encap_src;
247 static struct vif *last_encap_vif;
248 
249 static u_long	X_ip_mcast_src __P((int vifi));
250 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
251 static int	X_ip_mrouter_done __P((void));
252 static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
253 static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
254 static int	X_legal_vif_num __P((int vif));
255 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
256 
257 static int get_sg_cnt(struct sioc_sg_req *);
258 static int get_vif_cnt(struct sioc_vif_req *);
259 static int ip_mrouter_init(struct socket *, int);
260 static int add_vif(struct vifctl *);
261 static int del_vif(vifi_t);
262 static int add_mfc(struct mfcctl *);
263 static int del_mfc(struct mfcctl *);
264 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
265 static int set_assert(int);
266 static void expire_upcalls(void *);
267 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
268 		  vifi_t);
269 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
270 static void encap_send(struct ip *, struct vif *, struct mbuf *);
271 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
272 static void tbf_queue(struct vif *, struct mbuf *);
273 static void tbf_process_q(struct vif *);
274 static void tbf_reprocess_q(void *);
275 static int tbf_dq_sel(struct vif *, struct ip *);
276 static void tbf_send_packet(struct vif *, struct mbuf *);
277 static void tbf_update_tokens(struct vif *);
278 static int priority(struct vif *, struct ip *);
279 
280 /*
281  * whether or not special PIM assert processing is enabled.
282  */
283 static int pim_assert;
284 /*
285  * Rate limit for assert notification messages, in usec
286  */
287 #define ASSERT_MSG_TIME		3000000
288 
289 /*
290  * Hash function for a source, group entry
291  */
292 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
293 			((g) >> 20) ^ ((g) >> 10) ^ (g))
294 
295 /*
296  * Find a route for a given origin IP address and Multicast group address
297  * Type of service parameter to be added in the future!!!
298  */
299 
300 #define MFCFIND(o, g, rt) { \
301 	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
302 	rt = NULL; \
303 	++mrtstat.mrts_mfc_lookups; \
304 	while (_rt) { \
305 		if ((_rt->mfc_origin.s_addr == o) && \
306 		    (_rt->mfc_mcastgrp.s_addr == g) && \
307 		    (_rt->mfc_stall == NULL)) { \
308 			rt = _rt; \
309 			break; \
310 		} \
311 		_rt = _rt->mfc_next; \
312 	} \
313 	if (rt == NULL) { \
314 		++mrtstat.mrts_mfc_misses; \
315 	} \
316 }
317 
318 
319 /*
320  * Macros to compute elapsed time efficiently
321  * Borrowed from Van Jacobson's scheduling code
322  */
323 #define TV_DELTA(a, b, delta) { \
324 	    register int xxs; \
325 		\
326 	    delta = (a).tv_usec - (b).tv_usec; \
327 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
328 	       switch (xxs) { \
329 		      case 2: \
330 			  delta += 1000000; \
331 			      /* fall through */ \
332 		      case 1: \
333 			  delta += 1000000; \
334 			  break; \
335 		      default: \
336 			  delta += (1000000 * xxs); \
337 	       } \
338 	    } \
339 }
340 
341 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
342 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
343 
344 #ifdef UPCALL_TIMING
345 u_long upcall_data[51];
346 static void collate(struct timeval *);
347 #endif /* UPCALL_TIMING */
348 
349 
350 /*
351  * Handle MRT setsockopt commands to modify the multicast routing tables.
352  */
353 static int
354 X_ip_mrouter_set(so, sopt)
355 	struct socket *so;
356 	struct sockopt *sopt;
357 {
358 	int	error, optval;
359 	vifi_t	vifi;
360 	struct	vifctl vifc;
361 	struct	mfcctl mfc;
362 
363 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
364 		return (EPERM);
365 
366 	error = 0;
367 	switch (sopt->sopt_name) {
368 	case MRT_INIT:
369 		error = sooptcopyin(sopt, &optval, sizeof optval,
370 				    sizeof optval);
371 		if (error)
372 			break;
373 		error = ip_mrouter_init(so, optval);
374 		break;
375 
376 	case MRT_DONE:
377 		error = ip_mrouter_done();
378 		break;
379 
380 	case MRT_ADD_VIF:
381 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
382 		if (error)
383 			break;
384 		error = add_vif(&vifc);
385 		break;
386 
387 	case MRT_DEL_VIF:
388 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
389 		if (error)
390 			break;
391 		error = del_vif(vifi);
392 		break;
393 
394 	case MRT_ADD_MFC:
395 	case MRT_DEL_MFC:
396 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
397 		if (error)
398 			break;
399 		if (sopt->sopt_name == MRT_ADD_MFC)
400 			error = add_mfc(&mfc);
401 		else
402 			error = del_mfc(&mfc);
403 		break;
404 
405 	case MRT_ASSERT:
406 		error = sooptcopyin(sopt, &optval, sizeof optval,
407 				    sizeof optval);
408 		if (error)
409 			break;
410 		set_assert(optval);
411 		break;
412 
413 	default:
414 		error = EOPNOTSUPP;
415 		break;
416 	}
417 	return (error);
418 }
419 
420 #ifndef MROUTE_KLD
421 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
422 #endif
423 
424 /*
425  * Handle MRT getsockopt commands
426  */
427 static int
428 X_ip_mrouter_get(so, sopt)
429 	struct socket *so;
430 	struct sockopt *sopt;
431 {
432 	int error;
433 	static int version = 0x0305; /* !!! why is this here? XXX */
434 
435 	switch (sopt->sopt_name) {
436 	case MRT_VERSION:
437 		error = sooptcopyout(sopt, &version, sizeof version);
438 		break;
439 
440 	case MRT_ASSERT:
441 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
442 		break;
443 	default:
444 		error = EOPNOTSUPP;
445 		break;
446 	}
447 	return (error);
448 }
449 
450 #ifndef MROUTE_KLD
451 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
452 #endif
453 
454 /*
455  * Handle ioctl commands to obtain information from the cache
456  */
457 static int
458 X_mrt_ioctl(cmd, data)
459     int cmd;
460     caddr_t data;
461 {
462     int error = 0;
463 
464     switch (cmd) {
465 	case (SIOCGETVIFCNT):
466 	    return (get_vif_cnt((struct sioc_vif_req *)data));
467 	    break;
468 	case (SIOCGETSGCNT):
469 	    return (get_sg_cnt((struct sioc_sg_req *)data));
470 	    break;
471 	default:
472 	    return (EINVAL);
473 	    break;
474     }
475     return error;
476 }
477 
478 #ifndef MROUTE_KLD
479 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
480 #endif
481 
482 /*
483  * returns the packet, byte, rpf-failure count for the source group provided
484  */
485 static int
486 get_sg_cnt(req)
487     register struct sioc_sg_req *req;
488 {
489     register struct mfc *rt;
490     int s;
491 
492     s = splnet();
493     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
494     splx(s);
495     if (rt != NULL) {
496 	req->pktcnt = rt->mfc_pkt_cnt;
497 	req->bytecnt = rt->mfc_byte_cnt;
498 	req->wrong_if = rt->mfc_wrong_if;
499     } else
500 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
501 
502     return 0;
503 }
504 
505 /*
506  * returns the input and output packet and byte counts on the vif provided
507  */
508 static int
509 get_vif_cnt(req)
510     register struct sioc_vif_req *req;
511 {
512     register vifi_t vifi = req->vifi;
513 
514     if (vifi >= numvifs) return EINVAL;
515 
516     req->icount = viftable[vifi].v_pkt_in;
517     req->ocount = viftable[vifi].v_pkt_out;
518     req->ibytes = viftable[vifi].v_bytes_in;
519     req->obytes = viftable[vifi].v_bytes_out;
520 
521     return 0;
522 }
523 
524 /*
525  * Enable multicast routing
526  */
527 static int
528 ip_mrouter_init(so, version)
529 	struct socket *so;
530 	int version;
531 {
532     if (mrtdebug)
533 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
534 		so->so_type, so->so_proto->pr_protocol);
535 
536     if (so->so_type != SOCK_RAW ||
537 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
538 
539     if (version != 1)
540 	return ENOPROTOOPT;
541 
542     if (ip_mrouter != NULL) return EADDRINUSE;
543 
544     ip_mrouter = so;
545 
546     bzero((caddr_t)mfctable, sizeof(mfctable));
547     bzero((caddr_t)nexpire, sizeof(nexpire));
548 
549     pim_assert = 0;
550 
551     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
552 
553     if (mrtdebug)
554 	log(LOG_DEBUG, "ip_mrouter_init\n");
555 
556     return 0;
557 }
558 
559 /*
560  * Disable multicast routing
561  */
562 static int
563 X_ip_mrouter_done()
564 {
565     vifi_t vifi;
566     int i;
567     struct ifnet *ifp;
568     struct ifreq ifr;
569     struct mfc *rt;
570     struct rtdetq *rte;
571     int s;
572 
573     s = splnet();
574 
575     /*
576      * For each phyint in use, disable promiscuous reception of all IP
577      * multicasts.
578      */
579     for (vifi = 0; vifi < numvifs; vifi++) {
580 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
581 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
582 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
583 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
584 								= INADDR_ANY;
585 	    ifp = viftable[vifi].v_ifp;
586 	    if_allmulti(ifp, 0);
587 	}
588     }
589     bzero((caddr_t)tbftable, sizeof(tbftable));
590     bzero((caddr_t)viftable, sizeof(viftable));
591     numvifs = 0;
592     pim_assert = 0;
593 
594     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
595 
596     /*
597      * Free all multicast forwarding cache entries.
598      */
599     for (i = 0; i < MFCTBLSIZ; i++) {
600 	for (rt = mfctable[i]; rt != NULL; ) {
601 	    struct mfc *nr = rt->mfc_next;
602 
603 	    for (rte = rt->mfc_stall; rte != NULL; ) {
604 		struct rtdetq *n = rte->next;
605 
606 		m_freem(rte->m);
607 		free(rte, M_MRTABLE);
608 		rte = n;
609 	    }
610 	    free(rt, M_MRTABLE);
611 	    rt = nr;
612 	}
613     }
614 
615     bzero((caddr_t)mfctable, sizeof(mfctable));
616 
617     /*
618      * Reset de-encapsulation cache
619      */
620     last_encap_src = 0;
621     last_encap_vif = NULL;
622     if (encap_cookie) {
623 	encap_detach(encap_cookie);
624 	encap_cookie = NULL;
625     }
626 
627     ip_mrouter = NULL;
628 
629     splx(s);
630 
631     if (mrtdebug)
632 	log(LOG_DEBUG, "ip_mrouter_done\n");
633 
634     return 0;
635 }
636 
637 #ifndef MROUTE_KLD
638 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
639 #endif
640 
641 /*
642  * Set PIM assert processing global
643  */
644 static int
645 set_assert(i)
646 	int i;
647 {
648     if ((i != 1) && (i != 0))
649 	return EINVAL;
650 
651     pim_assert = i;
652 
653     return 0;
654 }
655 
656 /*
657  * Decide if a packet is from a tunnelled peer.
658  * Return 0 if not, 64 if so.
659  */
660 static int
661 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
662 {
663     struct ip *ip = mtod(m, struct ip *);
664     int hlen = ip->ip_hl << 2;
665     register struct vif *vifp;
666 
667     /*
668      * don't claim the packet if it's not to a multicast destination or if
669      * we don't have an encapsulating tunnel with the source.
670      * Note:  This code assumes that the remote site IP address
671      * uniquely identifies the tunnel (i.e., that this site has
672      * at most one tunnel with the remote site).
673      */
674     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
675 	return 0;
676     }
677     if (ip->ip_src.s_addr != last_encap_src) {
678 	register struct vif *vife;
679 
680 	vifp = viftable;
681 	vife = vifp + numvifs;
682 	last_encap_src = ip->ip_src.s_addr;
683 	last_encap_vif = 0;
684 	for ( ; vifp < vife; ++vifp)
685 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
686 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
687 		    == VIFF_TUNNEL)
688 		    last_encap_vif = vifp;
689 		break;
690 	    }
691     }
692     if ((vifp = last_encap_vif) == 0) {
693 	last_encap_src = 0;
694 	return 0;
695     }
696     return 64;
697 }
698 
699 /*
700  * De-encapsulate a packet and feed it back through ip input (this
701  * routine is called whenever IP gets a packet that mroute_encap_func()
702  * claimed).
703  */
704 static void
705 mroute_encap_input(struct mbuf *m, int off)
706 {
707     struct ip *ip = mtod(m, struct ip *);
708     int hlen = ip->ip_hl << 2;
709 
710     if (hlen > sizeof(struct ip))
711       ip_stripoptions(m, (struct mbuf *) 0);
712     m->m_data += sizeof(struct ip);
713     m->m_len -= sizeof(struct ip);
714     m->m_pkthdr.len -= sizeof(struct ip);
715 
716     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
717 
718     (void) IF_HANDOFF(&ipintrq, m, NULL);
719 	/*
720 	 * normally we would need a "schednetisr(NETISR_IP)"
721 	 * here but we were called by ip_input and it is going
722 	 * to loop back & try to dequeue the packet we just
723 	 * queued as soon as we return so we avoid the
724 	 * unnecessary software interrrupt.
725 	 */
726 }
727 
728 extern struct domain inetdomain;
729 static struct protosw mroute_encap_protosw =
730 { SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
731   mroute_encap_input,	0,	0,		rip_ctloutput,
732   0,
733   0,		0,		0,		0,
734   &rip_usrreqs
735 };
736 
737 /*
738  * Add a vif to the vif table
739  */
740 static int
741 add_vif(vifcp)
742     register struct vifctl *vifcp;
743 {
744     register struct vif *vifp = viftable + vifcp->vifc_vifi;
745     static struct sockaddr_in sin = {sizeof sin, AF_INET};
746     struct ifaddr *ifa;
747     struct ifnet *ifp;
748     int error, s;
749     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
750 
751     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
752     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
753 
754     /* Find the interface with an address in AF_INET family */
755     sin.sin_addr = vifcp->vifc_lcl_addr;
756     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
757     if (ifa == 0) return EADDRNOTAVAIL;
758     ifp = ifa->ifa_ifp;
759 
760     if (vifcp->vifc_flags & VIFF_TUNNEL) {
761 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
762 		/*
763 		 * An encapsulating tunnel is wanted.  Tell
764 		 * mroute_encap_input() to start paying attention
765 		 * to encapsulated packets.
766 		 */
767 		if (encap_cookie == NULL) {
768 			encap_cookie = encap_attach_func(AF_INET, -1,
769 				mroute_encapcheck,
770 				(struct protosw *)&mroute_encap_protosw, NULL);
771 
772 			if (encap_cookie == NULL) {
773 				printf("ip_mroute: unable to attach encap\n");
774 				return (EIO);	/* XXX */
775 			}
776 			for (s = 0; s < MAXVIFS; ++s) {
777 				multicast_decap_if[s].if_name = "mdecap";
778 				multicast_decap_if[s].if_unit = s;
779 			}
780 		}
781 		/*
782 		 * Set interface to fake encapsulator interface
783 		 */
784 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
785 		/*
786 		 * Prepare cached route entry
787 		 */
788 		bzero(&vifp->v_route, sizeof(vifp->v_route));
789 	} else {
790 	    log(LOG_ERR, "source routed tunnels not supported\n");
791 	    return EOPNOTSUPP;
792 	}
793     } else {
794 	/* Make sure the interface supports multicast */
795 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
796 	    return EOPNOTSUPP;
797 
798 	/* Enable promiscuous reception of all IP multicasts from the if */
799 	s = splnet();
800 	error = if_allmulti(ifp, 1);
801 	splx(s);
802 	if (error)
803 	    return error;
804     }
805 
806     s = splnet();
807     /* define parameters for the tbf structure */
808     vifp->v_tbf = v_tbf;
809     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
810     vifp->v_tbf->tbf_n_tok = 0;
811     vifp->v_tbf->tbf_q_len = 0;
812     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
813     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
814 
815     vifp->v_flags     = vifcp->vifc_flags;
816     vifp->v_threshold = vifcp->vifc_threshold;
817     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
818     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
819     vifp->v_ifp       = ifp;
820     /* scaling up here allows division by 1024 in critical code */
821     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
822     vifp->v_rsvp_on   = 0;
823     vifp->v_rsvpd     = NULL;
824     /* initialize per vif pkt counters */
825     vifp->v_pkt_in    = 0;
826     vifp->v_pkt_out   = 0;
827     vifp->v_bytes_in  = 0;
828     vifp->v_bytes_out = 0;
829     splx(s);
830 
831     /* Adjust numvifs up if the vifi is higher than numvifs */
832     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
833 
834     if (mrtdebug)
835 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
836 	    vifcp->vifc_vifi,
837 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
838 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
839 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
840 	    vifcp->vifc_threshold,
841 	    vifcp->vifc_rate_limit);
842 
843     return 0;
844 }
845 
846 /*
847  * Delete a vif from the vif table
848  */
849 static int
850 del_vif(vifi)
851 	vifi_t vifi;
852 {
853     register struct vif *vifp = &viftable[vifi];
854     register struct mbuf *m;
855     struct ifnet *ifp;
856     struct ifreq ifr;
857     int s;
858 
859     if (vifi >= numvifs) return EINVAL;
860     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
861 
862     s = splnet();
863 
864     if (!(vifp->v_flags & VIFF_TUNNEL)) {
865 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
866 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
867 	ifp = vifp->v_ifp;
868 	if_allmulti(ifp, 0);
869     }
870 
871     if (vifp == last_encap_vif) {
872 	last_encap_vif = 0;
873 	last_encap_src = 0;
874     }
875 
876     /*
877      * Free packets queued at the interface
878      */
879     while (vifp->v_tbf->tbf_q) {
880 	m = vifp->v_tbf->tbf_q;
881 	vifp->v_tbf->tbf_q = m->m_act;
882 	m_freem(m);
883     }
884 
885     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
886     bzero((caddr_t)vifp, sizeof (*vifp));
887 
888     if (mrtdebug)
889       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
890 
891     /* Adjust numvifs down */
892     for (vifi = numvifs; vifi > 0; vifi--)
893 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
894     numvifs = vifi;
895 
896     splx(s);
897 
898     return 0;
899 }
900 
901 /*
902  * Add an mfc entry
903  */
904 static int
905 add_mfc(mfccp)
906     struct mfcctl *mfccp;
907 {
908     struct mfc *rt;
909     u_long hash;
910     struct rtdetq *rte;
911     register u_short nstl;
912     int s;
913     int i;
914 
915     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
916 
917     /* If an entry already exists, just update the fields */
918     if (rt) {
919 	if (mrtdebug & DEBUG_MFC)
920 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
921 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
922 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
923 		mfccp->mfcc_parent);
924 
925 	s = splnet();
926 	rt->mfc_parent = mfccp->mfcc_parent;
927 	for (i = 0; i < numvifs; i++)
928 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
929 	splx(s);
930 	return 0;
931     }
932 
933     /*
934      * Find the entry for which the upcall was made and update
935      */
936     s = splnet();
937     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
938     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
939 
940 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
941 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
942 	    (rt->mfc_stall != NULL)) {
943 
944 	    if (nstl++)
945 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
946 		    "multiple kernel entries",
947 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
948 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
949 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
950 
951 	    if (mrtdebug & DEBUG_MFC)
952 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
953 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
954 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
955 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
956 
957 	    rt->mfc_origin     = mfccp->mfcc_origin;
958 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
959 	    rt->mfc_parent     = mfccp->mfcc_parent;
960 	    for (i = 0; i < numvifs; i++)
961 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
962 	    /* initialize pkt counters per src-grp */
963 	    rt->mfc_pkt_cnt    = 0;
964 	    rt->mfc_byte_cnt   = 0;
965 	    rt->mfc_wrong_if   = 0;
966 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
967 
968 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
969 	    nexpire[hash]--;
970 
971 	    /* free packets Qed at the end of this entry */
972 	    for (rte = rt->mfc_stall; rte != NULL; ) {
973 		struct rtdetq *n = rte->next;
974 
975 		ip_mdq(rte->m, rte->ifp, rt, -1);
976 		m_freem(rte->m);
977 #ifdef UPCALL_TIMING
978 		collate(&(rte->t));
979 #endif /* UPCALL_TIMING */
980 		free(rte, M_MRTABLE);
981 		rte = n;
982 	    }
983 	    rt->mfc_stall = NULL;
984 	}
985     }
986 
987     /*
988      * It is possible that an entry is being inserted without an upcall
989      */
990     if (nstl == 0) {
991 	if (mrtdebug & DEBUG_MFC)
992 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
993 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
994 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
995 		mfccp->mfcc_parent);
996 
997 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
998 
999 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1000 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1001 
1002 		rt->mfc_origin     = mfccp->mfcc_origin;
1003 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1004 		rt->mfc_parent     = mfccp->mfcc_parent;
1005 		for (i = 0; i < numvifs; i++)
1006 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1007 		/* initialize pkt counters per src-grp */
1008 		rt->mfc_pkt_cnt    = 0;
1009 		rt->mfc_byte_cnt   = 0;
1010 		rt->mfc_wrong_if   = 0;
1011 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1012 		if (rt->mfc_expire)
1013 		    nexpire[hash]--;
1014 		rt->mfc_expire	   = 0;
1015 	    }
1016 	}
1017 	if (rt == NULL) {
1018 	    /* no upcall, so make a new entry */
1019 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1020 	    if (rt == NULL) {
1021 		splx(s);
1022 		return ENOBUFS;
1023 	    }
1024 
1025 	    /* insert new entry at head of hash chain */
1026 	    rt->mfc_origin     = mfccp->mfcc_origin;
1027 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1028 	    rt->mfc_parent     = mfccp->mfcc_parent;
1029 	    for (i = 0; i < numvifs; i++)
1030 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1031 	    /* initialize pkt counters per src-grp */
1032 	    rt->mfc_pkt_cnt    = 0;
1033 	    rt->mfc_byte_cnt   = 0;
1034 	    rt->mfc_wrong_if   = 0;
1035 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1036 	    rt->mfc_expire     = 0;
1037 	    rt->mfc_stall      = NULL;
1038 
1039 	    /* link into table */
1040 	    rt->mfc_next = mfctable[hash];
1041 	    mfctable[hash] = rt;
1042 	}
1043     }
1044     splx(s);
1045     return 0;
1046 }
1047 
1048 #ifdef UPCALL_TIMING
1049 /*
1050  * collect delay statistics on the upcalls
1051  */
1052 static void collate(t)
1053 register struct timeval *t;
1054 {
1055     register u_long d;
1056     register struct timeval tp;
1057     register u_long delta;
1058 
1059     GET_TIME(tp);
1060 
1061     if (TV_LT(*t, tp))
1062     {
1063 	TV_DELTA(tp, *t, delta);
1064 
1065 	d = delta >> 10;
1066 	if (d > 50)
1067 	    d = 50;
1068 
1069 	++upcall_data[d];
1070     }
1071 }
1072 #endif /* UPCALL_TIMING */
1073 
1074 /*
1075  * Delete an mfc entry
1076  */
1077 static int
1078 del_mfc(mfccp)
1079     struct mfcctl *mfccp;
1080 {
1081     struct in_addr 	origin;
1082     struct in_addr 	mcastgrp;
1083     struct mfc 		*rt;
1084     struct mfc	 	**nptr;
1085     u_long 		hash;
1086     int s;
1087 
1088     origin = mfccp->mfcc_origin;
1089     mcastgrp = mfccp->mfcc_mcastgrp;
1090     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1091 
1092     if (mrtdebug & DEBUG_MFC)
1093 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1094 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1095 
1096     s = splnet();
1097 
1098     nptr = &mfctable[hash];
1099     while ((rt = *nptr) != NULL) {
1100 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1101 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1102 	    rt->mfc_stall == NULL)
1103 	    break;
1104 
1105 	nptr = &rt->mfc_next;
1106     }
1107     if (rt == NULL) {
1108 	splx(s);
1109 	return EADDRNOTAVAIL;
1110     }
1111 
1112     *nptr = rt->mfc_next;
1113     free(rt, M_MRTABLE);
1114 
1115     splx(s);
1116 
1117     return 0;
1118 }
1119 
1120 /*
1121  * Send a message to mrouted on the multicast routing socket
1122  */
1123 static int
1124 socket_send(s, mm, src)
1125 	struct socket *s;
1126 	struct mbuf *mm;
1127 	struct sockaddr_in *src;
1128 {
1129 	if (s) {
1130 		if (sbappendaddr(&s->so_rcv,
1131 				 (struct sockaddr *)src,
1132 				 mm, (struct mbuf *)0) != 0) {
1133 			sorwakeup(s);
1134 			return 0;
1135 		}
1136 	}
1137 	m_freem(mm);
1138 	return -1;
1139 }
1140 
1141 /*
1142  * IP multicast forwarding function. This function assumes that the packet
1143  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1144  * pointed to by "ifp", and the packet is to be relayed to other networks
1145  * that have members of the packet's destination IP multicast group.
1146  *
1147  * The packet is returned unscathed to the caller, unless it is
1148  * erroneous, in which case a non-zero return value tells the caller to
1149  * discard it.
1150  */
1151 
1152 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1153 
1154 static int
1155 X_ip_mforward(ip, ifp, m, imo)
1156     register struct ip *ip;
1157     struct ifnet *ifp;
1158     struct mbuf *m;
1159     struct ip_moptions *imo;
1160 {
1161     register struct mfc *rt;
1162     register u_char *ipoptions;
1163     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1164     static int srctun = 0;
1165     register struct mbuf *mm;
1166     int s;
1167     vifi_t vifi;
1168     struct vif *vifp;
1169 
1170     if (mrtdebug & DEBUG_FORWARD)
1171 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1172 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1173 	    (void *)ifp);
1174 
1175     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1176 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1177 	/*
1178 	 * Packet arrived via a physical interface or
1179 	 * an encapsulated tunnel.
1180 	 */
1181     } else {
1182 	/*
1183 	 * Packet arrived through a source-route tunnel.
1184 	 * Source-route tunnels are no longer supported.
1185 	 */
1186 	if ((srctun++ % 1000) == 0)
1187 	    log(LOG_ERR,
1188 		"ip_mforward: received source-routed packet from %lx\n",
1189 		(u_long)ntohl(ip->ip_src.s_addr));
1190 
1191 	return 1;
1192     }
1193 
1194     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1195 	if (ip->ip_ttl < 255)
1196 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1197 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1198 	    vifp = viftable + vifi;
1199 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1200 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1201 		vifi,
1202 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1203 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1204 	}
1205 	return (ip_mdq(m, ifp, NULL, vifi));
1206     }
1207     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1208 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1209 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1210 	if(!imo)
1211 		printf("In fact, no options were specified at all\n");
1212     }
1213 
1214     /*
1215      * Don't forward a packet with time-to-live of zero or one,
1216      * or a packet destined to a local-only group.
1217      */
1218     if (ip->ip_ttl <= 1 ||
1219 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1220 	return 0;
1221 
1222     /*
1223      * Determine forwarding vifs from the forwarding cache table
1224      */
1225     s = splnet();
1226     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1227 
1228     /* Entry exists, so forward if necessary */
1229     if (rt != NULL) {
1230 	splx(s);
1231 	return (ip_mdq(m, ifp, rt, -1));
1232     } else {
1233 	/*
1234 	 * If we don't have a route for packet's origin,
1235 	 * Make a copy of the packet &
1236 	 * send message to routing daemon
1237 	 */
1238 
1239 	register struct mbuf *mb0;
1240 	register struct rtdetq *rte;
1241 	register u_long hash;
1242 	int hlen = ip->ip_hl << 2;
1243 #ifdef UPCALL_TIMING
1244 	struct timeval tp;
1245 
1246 	GET_TIME(tp);
1247 #endif
1248 
1249 	mrtstat.mrts_no_route++;
1250 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1251 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1252 		(u_long)ntohl(ip->ip_src.s_addr),
1253 		(u_long)ntohl(ip->ip_dst.s_addr));
1254 
1255 	/*
1256 	 * Allocate mbufs early so that we don't do extra work if we are
1257 	 * just going to fail anyway.  Make sure to pullup the header so
1258 	 * that other people can't step on it.
1259 	 */
1260 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1261 	if (rte == NULL) {
1262 	    splx(s);
1263 	    return ENOBUFS;
1264 	}
1265 	mb0 = m_copy(m, 0, M_COPYALL);
1266 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1267 	    mb0 = m_pullup(mb0, hlen);
1268 	if (mb0 == NULL) {
1269 	    free(rte, M_MRTABLE);
1270 	    splx(s);
1271 	    return ENOBUFS;
1272 	}
1273 
1274 	/* is there an upcall waiting for this packet? */
1275 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1276 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1277 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1278 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1279 		(rt->mfc_stall != NULL))
1280 		break;
1281 	}
1282 
1283 	if (rt == NULL) {
1284 	    int i;
1285 	    struct igmpmsg *im;
1286 
1287 	    /* no upcall, so make a new entry */
1288 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1289 	    if (rt == NULL) {
1290 		free(rte, M_MRTABLE);
1291 		m_freem(mb0);
1292 		splx(s);
1293 		return ENOBUFS;
1294 	    }
1295 	    /* Make a copy of the header to send to the user level process */
1296 	    mm = m_copy(mb0, 0, hlen);
1297 	    if (mm == NULL) {
1298 		free(rte, M_MRTABLE);
1299 		m_freem(mb0);
1300 		free(rt, M_MRTABLE);
1301 		splx(s);
1302 		return ENOBUFS;
1303 	    }
1304 
1305 	    /*
1306 	     * Send message to routing daemon to install
1307 	     * a route into the kernel table
1308 	     */
1309 	    k_igmpsrc.sin_addr = ip->ip_src;
1310 
1311 	    im = mtod(mm, struct igmpmsg *);
1312 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1313 	    im->im_mbz		= 0;
1314 
1315 	    mrtstat.mrts_upcalls++;
1316 
1317 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1318 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1319 		++mrtstat.mrts_upq_sockfull;
1320 		free(rte, M_MRTABLE);
1321 		m_freem(mb0);
1322 		free(rt, M_MRTABLE);
1323 		splx(s);
1324 		return ENOBUFS;
1325 	    }
1326 
1327 	    /* insert new entry at head of hash chain */
1328 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1329 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1330 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1331 	    nexpire[hash]++;
1332 	    for (i = 0; i < numvifs; i++)
1333 		rt->mfc_ttls[i] = 0;
1334 	    rt->mfc_parent = -1;
1335 
1336 	    /* link into table */
1337 	    rt->mfc_next   = mfctable[hash];
1338 	    mfctable[hash] = rt;
1339 	    rt->mfc_stall = rte;
1340 
1341 	} else {
1342 	    /* determine if q has overflowed */
1343 	    int npkts = 0;
1344 	    struct rtdetq **p;
1345 
1346 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1347 		npkts++;
1348 
1349 	    if (npkts > MAX_UPQ) {
1350 		mrtstat.mrts_upq_ovflw++;
1351 		free(rte, M_MRTABLE);
1352 		m_freem(mb0);
1353 		splx(s);
1354 		return 0;
1355 	    }
1356 
1357 	    /* Add this entry to the end of the queue */
1358 	    *p = rte;
1359 	}
1360 
1361 	rte->m 			= mb0;
1362 	rte->ifp 		= ifp;
1363 #ifdef UPCALL_TIMING
1364 	rte->t			= tp;
1365 #endif
1366 	rte->next		= NULL;
1367 
1368 	splx(s);
1369 
1370 	return 0;
1371     }
1372 }
1373 
1374 #ifndef MROUTE_KLD
1375 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1376 		   struct ip_moptions *) = X_ip_mforward;
1377 #endif
1378 
1379 /*
1380  * Clean up the cache entry if upcall is not serviced
1381  */
1382 static void
1383 expire_upcalls(void *unused)
1384 {
1385     struct rtdetq *rte;
1386     struct mfc *mfc, **nptr;
1387     int i;
1388     int s;
1389 
1390     s = splnet();
1391     for (i = 0; i < MFCTBLSIZ; i++) {
1392 	if (nexpire[i] == 0)
1393 	    continue;
1394 	nptr = &mfctable[i];
1395 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1396 	    /*
1397 	     * Skip real cache entries
1398 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1399 	     * If it expires now
1400 	     */
1401 	    if (mfc->mfc_stall != NULL &&
1402 	        mfc->mfc_expire != 0 &&
1403 		--mfc->mfc_expire == 0) {
1404 		if (mrtdebug & DEBUG_EXPIRE)
1405 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1406 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1407 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1408 		/*
1409 		 * drop all the packets
1410 		 * free the mbuf with the pkt, if, timing info
1411 		 */
1412 		for (rte = mfc->mfc_stall; rte; ) {
1413 		    struct rtdetq *n = rte->next;
1414 
1415 		    m_freem(rte->m);
1416 		    free(rte, M_MRTABLE);
1417 		    rte = n;
1418 		}
1419 		++mrtstat.mrts_cache_cleanups;
1420 		nexpire[i]--;
1421 
1422 		*nptr = mfc->mfc_next;
1423 		free(mfc, M_MRTABLE);
1424 	    } else {
1425 		nptr = &mfc->mfc_next;
1426 	    }
1427 	}
1428     }
1429     splx(s);
1430     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1431 }
1432 
1433 /*
1434  * Packet forwarding routine once entry in the cache is made
1435  */
1436 static int
1437 ip_mdq(m, ifp, rt, xmt_vif)
1438     register struct mbuf *m;
1439     register struct ifnet *ifp;
1440     register struct mfc *rt;
1441     register vifi_t xmt_vif;
1442 {
1443     register struct ip  *ip = mtod(m, struct ip *);
1444     register vifi_t vifi;
1445     register struct vif *vifp;
1446     register int plen = ip->ip_len;
1447 
1448 /*
1449  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1450  * input, they shouldn't get counted on output, so statistics keeping is
1451  * separate.
1452  */
1453 #define MC_SEND(ip,vifp,m) {                             \
1454                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1455                     encap_send((ip), (vifp), (m));       \
1456                 else                                     \
1457                     phyint_send((ip), (vifp), (m));      \
1458 }
1459 
1460     /*
1461      * If xmt_vif is not -1, send on only the requested vif.
1462      *
1463      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1464      */
1465     if (xmt_vif < numvifs) {
1466 	MC_SEND(ip, viftable + xmt_vif, m);
1467 	return 1;
1468     }
1469 
1470     /*
1471      * Don't forward if it didn't arrive from the parent vif for its origin.
1472      */
1473     vifi = rt->mfc_parent;
1474     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1475 	/* came in the wrong interface */
1476 	if (mrtdebug & DEBUG_FORWARD)
1477 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1478 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1479 	++mrtstat.mrts_wrong_if;
1480 	++rt->mfc_wrong_if;
1481 	/*
1482 	 * If we are doing PIM assert processing, and we are forwarding
1483 	 * packets on this interface, and it is a broadcast medium
1484 	 * interface (and not a tunnel), send a message to the routing daemon.
1485 	 */
1486 	if (pim_assert && rt->mfc_ttls[vifi] &&
1487 		(ifp->if_flags & IFF_BROADCAST) &&
1488 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1489 	    struct sockaddr_in k_igmpsrc;
1490 	    struct mbuf *mm;
1491 	    struct igmpmsg *im;
1492 	    int hlen = ip->ip_hl << 2;
1493 	    struct timeval now;
1494 	    register u_long delta;
1495 
1496 	    GET_TIME(now);
1497 
1498 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1499 
1500 	    if (delta > ASSERT_MSG_TIME) {
1501 		mm = m_copy(m, 0, hlen);
1502 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1503 		    mm = m_pullup(mm, hlen);
1504 		if (mm == NULL) {
1505 		    return ENOBUFS;
1506 		}
1507 
1508 		rt->mfc_last_assert = now;
1509 
1510 		im = mtod(mm, struct igmpmsg *);
1511 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1512 		im->im_mbz		= 0;
1513 		im->im_vif		= vifi;
1514 
1515 		k_igmpsrc.sin_addr = im->im_src;
1516 
1517 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1518 	    }
1519 	}
1520 	return 0;
1521     }
1522 
1523     /* If I sourced this packet, it counts as output, else it was input. */
1524     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1525 	viftable[vifi].v_pkt_out++;
1526 	viftable[vifi].v_bytes_out += plen;
1527     } else {
1528 	viftable[vifi].v_pkt_in++;
1529 	viftable[vifi].v_bytes_in += plen;
1530     }
1531     rt->mfc_pkt_cnt++;
1532     rt->mfc_byte_cnt += plen;
1533 
1534     /*
1535      * For each vif, decide if a copy of the packet should be forwarded.
1536      * Forward if:
1537      *		- the ttl exceeds the vif's threshold
1538      *		- there are group members downstream on interface
1539      */
1540     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1541 	if ((rt->mfc_ttls[vifi] > 0) &&
1542 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1543 	    vifp->v_pkt_out++;
1544 	    vifp->v_bytes_out += plen;
1545 	    MC_SEND(ip, vifp, m);
1546 	}
1547 
1548     return 0;
1549 }
1550 
1551 /*
1552  * check if a vif number is legal/ok. This is used by ip_output, to export
1553  * numvifs there,
1554  */
1555 static int
1556 X_legal_vif_num(vif)
1557     int vif;
1558 {
1559     if (vif >= 0 && vif < numvifs)
1560        return(1);
1561     else
1562        return(0);
1563 }
1564 
1565 #ifndef MROUTE_KLD
1566 int (*legal_vif_num)(int) = X_legal_vif_num;
1567 #endif
1568 
1569 /*
1570  * Return the local address used by this vif
1571  */
1572 static u_long
1573 X_ip_mcast_src(vifi)
1574     int vifi;
1575 {
1576     if (vifi >= 0 && vifi < numvifs)
1577 	return viftable[vifi].v_lcl_addr.s_addr;
1578     else
1579 	return INADDR_ANY;
1580 }
1581 
1582 #ifndef MROUTE_KLD
1583 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1584 #endif
1585 
1586 static void
1587 phyint_send(ip, vifp, m)
1588     struct ip *ip;
1589     struct vif *vifp;
1590     struct mbuf *m;
1591 {
1592     register struct mbuf *mb_copy;
1593     register int hlen = ip->ip_hl << 2;
1594 
1595     /*
1596      * Make a new reference to the packet; make sure that
1597      * the IP header is actually copied, not just referenced,
1598      * so that ip_output() only scribbles on the copy.
1599      */
1600     mb_copy = m_copy(m, 0, M_COPYALL);
1601     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1602 	mb_copy = m_pullup(mb_copy, hlen);
1603     if (mb_copy == NULL)
1604 	return;
1605 
1606     if (vifp->v_rate_limit == 0)
1607 	tbf_send_packet(vifp, mb_copy);
1608     else
1609 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1610 }
1611 
1612 static void
1613 encap_send(ip, vifp, m)
1614     register struct ip *ip;
1615     register struct vif *vifp;
1616     register struct mbuf *m;
1617 {
1618     register struct mbuf *mb_copy;
1619     register struct ip *ip_copy;
1620     register int i, len = ip->ip_len;
1621 
1622     /*
1623      * copy the old packet & pullup its IP header into the
1624      * new mbuf so we can modify it.  Try to fill the new
1625      * mbuf since if we don't the ethernet driver will.
1626      */
1627     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1628     if (mb_copy == NULL)
1629 	return;
1630     mb_copy->m_data += max_linkhdr;
1631     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1632 
1633     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1634 	m_freem(mb_copy);
1635 	return;
1636     }
1637     i = MHLEN - M_LEADINGSPACE(mb_copy);
1638     if (i > len)
1639 	i = len;
1640     mb_copy = m_pullup(mb_copy, i);
1641     if (mb_copy == NULL)
1642 	return;
1643     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1644 
1645     /*
1646      * fill in the encapsulating IP header.
1647      */
1648     ip_copy = mtod(mb_copy, struct ip *);
1649     *ip_copy = multicast_encap_iphdr;
1650 #ifdef RANDOM_IP_ID
1651     ip_copy->ip_id = ip_randomid();
1652 #else
1653     ip_copy->ip_id = htons(ip_id++);
1654 #endif
1655     ip_copy->ip_len += len;
1656     ip_copy->ip_src = vifp->v_lcl_addr;
1657     ip_copy->ip_dst = vifp->v_rmt_addr;
1658 
1659     /*
1660      * turn the encapsulated IP header back into a valid one.
1661      */
1662     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1663     --ip->ip_ttl;
1664     HTONS(ip->ip_len);
1665     HTONS(ip->ip_off);
1666     ip->ip_sum = 0;
1667     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1668     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1669     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1670 
1671     if (vifp->v_rate_limit == 0)
1672 	tbf_send_packet(vifp, mb_copy);
1673     else
1674 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1675 }
1676 
1677 /*
1678  * Token bucket filter module
1679  */
1680 
1681 static void
1682 tbf_control(vifp, m, ip, p_len)
1683 	register struct vif *vifp;
1684 	register struct mbuf *m;
1685 	register struct ip *ip;
1686 	register u_long p_len;
1687 {
1688     register struct tbf *t = vifp->v_tbf;
1689 
1690     if (p_len > MAX_BKT_SIZE) {
1691 	/* drop if packet is too large */
1692 	mrtstat.mrts_pkt2large++;
1693 	m_freem(m);
1694 	return;
1695     }
1696 
1697     tbf_update_tokens(vifp);
1698 
1699     /* if there are enough tokens,
1700      * and the queue is empty,
1701      * send this packet out
1702      */
1703 
1704     if (t->tbf_q_len == 0) {
1705 	/* queue empty, send packet if enough tokens */
1706 	if (p_len <= t->tbf_n_tok) {
1707 	    t->tbf_n_tok -= p_len;
1708 	    tbf_send_packet(vifp, m);
1709 	} else {
1710 	    /* queue packet and timeout till later */
1711 	    tbf_queue(vifp, m);
1712 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1713 	}
1714     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1715 	/* finite queue length, so queue pkts and process queue */
1716 	tbf_queue(vifp, m);
1717 	tbf_process_q(vifp);
1718     } else {
1719 	/* queue length too much, try to dq and queue and process */
1720 	if (!tbf_dq_sel(vifp, ip)) {
1721 	    mrtstat.mrts_q_overflow++;
1722 	    m_freem(m);
1723 	    return;
1724 	} else {
1725 	    tbf_queue(vifp, m);
1726 	    tbf_process_q(vifp);
1727 	}
1728     }
1729     return;
1730 }
1731 
1732 /*
1733  * adds a packet to the queue at the interface
1734  */
1735 static void
1736 tbf_queue(vifp, m)
1737 	register struct vif *vifp;
1738 	register struct mbuf *m;
1739 {
1740     register int s = splnet();
1741     register struct tbf *t = vifp->v_tbf;
1742 
1743     if (t->tbf_t == NULL) {
1744 	/* Queue was empty */
1745 	t->tbf_q = m;
1746     } else {
1747 	/* Insert at tail */
1748 	t->tbf_t->m_act = m;
1749     }
1750 
1751     /* Set new tail pointer */
1752     t->tbf_t = m;
1753 
1754 #ifdef DIAGNOSTIC
1755     /* Make sure we didn't get fed a bogus mbuf */
1756     if (m->m_act)
1757 	panic("tbf_queue: m_act");
1758 #endif
1759     m->m_act = NULL;
1760 
1761     t->tbf_q_len++;
1762 
1763     splx(s);
1764 }
1765 
1766 
1767 /*
1768  * processes the queue at the interface
1769  */
1770 static void
1771 tbf_process_q(vifp)
1772     register struct vif *vifp;
1773 {
1774     register struct mbuf *m;
1775     register int len;
1776     register int s = splnet();
1777     register struct tbf *t = vifp->v_tbf;
1778 
1779     /* loop through the queue at the interface and send as many packets
1780      * as possible
1781      */
1782     while (t->tbf_q_len > 0) {
1783 	m = t->tbf_q;
1784 
1785 	len = mtod(m, struct ip *)->ip_len;
1786 
1787 	/* determine if the packet can be sent */
1788 	if (len <= t->tbf_n_tok) {
1789 	    /* if so,
1790 	     * reduce no of tokens, dequeue the packet,
1791 	     * send the packet.
1792 	     */
1793 	    t->tbf_n_tok -= len;
1794 
1795 	    t->tbf_q = m->m_act;
1796 	    if (--t->tbf_q_len == 0)
1797 		t->tbf_t = NULL;
1798 
1799 	    m->m_act = NULL;
1800 	    tbf_send_packet(vifp, m);
1801 
1802 	} else break;
1803     }
1804     splx(s);
1805 }
1806 
1807 static void
1808 tbf_reprocess_q(xvifp)
1809 	void *xvifp;
1810 {
1811     register struct vif *vifp = xvifp;
1812     if (ip_mrouter == NULL)
1813 	return;
1814 
1815     tbf_update_tokens(vifp);
1816 
1817     tbf_process_q(vifp);
1818 
1819     if (vifp->v_tbf->tbf_q_len)
1820 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1821 }
1822 
1823 /* function that will selectively discard a member of the queue
1824  * based on the precedence value and the priority
1825  */
1826 static int
1827 tbf_dq_sel(vifp, ip)
1828     register struct vif *vifp;
1829     register struct ip *ip;
1830 {
1831     register int s = splnet();
1832     register u_int p;
1833     register struct mbuf *m, *last;
1834     register struct mbuf **np;
1835     register struct tbf *t = vifp->v_tbf;
1836 
1837     p = priority(vifp, ip);
1838 
1839     np = &t->tbf_q;
1840     last = NULL;
1841     while ((m = *np) != NULL) {
1842 	if (p > priority(vifp, mtod(m, struct ip *))) {
1843 	    *np = m->m_act;
1844 	    /* If we're removing the last packet, fix the tail pointer */
1845 	    if (m == t->tbf_t)
1846 		t->tbf_t = last;
1847 	    m_freem(m);
1848 	    /* it's impossible for the queue to be empty, but
1849 	     * we check anyway. */
1850 	    if (--t->tbf_q_len == 0)
1851 		t->tbf_t = NULL;
1852 	    splx(s);
1853 	    mrtstat.mrts_drop_sel++;
1854 	    return(1);
1855 	}
1856 	np = &m->m_act;
1857 	last = m;
1858     }
1859     splx(s);
1860     return(0);
1861 }
1862 
1863 static void
1864 tbf_send_packet(vifp, m)
1865     register struct vif *vifp;
1866     register struct mbuf *m;
1867 {
1868     struct ip_moptions imo;
1869     int error;
1870     int s = splnet();
1871 
1872     if (vifp->v_flags & VIFF_TUNNEL) {
1873 	/* If tunnel options */
1874 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1875 		  IP_FORWARDING, (struct ip_moptions *)0);
1876     } else {
1877 	imo.imo_multicast_ifp  = vifp->v_ifp;
1878 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1879 	imo.imo_multicast_loop = 1;
1880 	imo.imo_multicast_vif  = -1;
1881 
1882 	/*
1883 	 * Re-entrancy should not be a problem here, because
1884 	 * the packets that we send out and are looped back at us
1885 	 * should get rejected because they appear to come from
1886 	 * the loopback interface, thus preventing looping.
1887 	 */
1888 	error = ip_output(m, (struct mbuf *)0, NULL,
1889 			  IP_FORWARDING, &imo);
1890 
1891 	if (mrtdebug & DEBUG_XMIT)
1892 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1893 		vifp - viftable, error);
1894     }
1895     splx(s);
1896 }
1897 
1898 /* determine the current time and then
1899  * the elapsed time (between the last time and time now)
1900  * in milliseconds & update the no. of tokens in the bucket
1901  */
1902 static void
1903 tbf_update_tokens(vifp)
1904     register struct vif *vifp;
1905 {
1906     struct timeval tp;
1907     register u_long tm;
1908     register int s = splnet();
1909     register struct tbf *t = vifp->v_tbf;
1910 
1911     GET_TIME(tp);
1912 
1913     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1914 
1915     /*
1916      * This formula is actually
1917      * "time in seconds" * "bytes/second".
1918      *
1919      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1920      *
1921      * The (1000/1024) was introduced in add_vif to optimize
1922      * this divide into a shift.
1923      */
1924     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1925     t->tbf_last_pkt_t = tp;
1926 
1927     if (t->tbf_n_tok > MAX_BKT_SIZE)
1928 	t->tbf_n_tok = MAX_BKT_SIZE;
1929 
1930     splx(s);
1931 }
1932 
1933 static int
1934 priority(vifp, ip)
1935     register struct vif *vifp;
1936     register struct ip *ip;
1937 {
1938     register int prio;
1939 
1940     /* temporary hack; may add general packet classifier some day */
1941 
1942     /*
1943      * The UDP port space is divided up into four priority ranges:
1944      * [0, 16384)     : unclassified - lowest priority
1945      * [16384, 32768) : audio - highest priority
1946      * [32768, 49152) : whiteboard - medium priority
1947      * [49152, 65536) : video - low priority
1948      */
1949     if (ip->ip_p == IPPROTO_UDP) {
1950 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1951 	switch (ntohs(udp->uh_dport) & 0xc000) {
1952 	    case 0x4000:
1953 		prio = 70;
1954 		break;
1955 	    case 0x8000:
1956 		prio = 60;
1957 		break;
1958 	    case 0xc000:
1959 		prio = 55;
1960 		break;
1961 	    default:
1962 		prio = 50;
1963 		break;
1964 	}
1965 	if (tbfdebug > 1)
1966 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1967     } else {
1968 	    prio = 50;
1969     }
1970     return prio;
1971 }
1972 
1973 /*
1974  * End of token bucket filter modifications
1975  */
1976 
1977 int
1978 ip_rsvp_vif_init(so, sopt)
1979 	struct socket *so;
1980 	struct sockopt *sopt;
1981 {
1982     int error, i, s;
1983 
1984     if (rsvpdebug)
1985 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1986 	       so->so_type, so->so_proto->pr_protocol);
1987 
1988     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1989 	return EOPNOTSUPP;
1990 
1991     /* Check mbuf. */
1992     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1993     if (error)
1994 	    return (error);
1995 
1996     if (rsvpdebug)
1997 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
1998 
1999     s = splnet();
2000 
2001     /* Check vif. */
2002     if (!legal_vif_num(i)) {
2003 	splx(s);
2004 	return EADDRNOTAVAIL;
2005     }
2006 
2007     /* Check if socket is available. */
2008     if (viftable[i].v_rsvpd != NULL) {
2009 	splx(s);
2010 	return EADDRINUSE;
2011     }
2012 
2013     viftable[i].v_rsvpd = so;
2014     /* This may seem silly, but we need to be sure we don't over-increment
2015      * the RSVP counter, in case something slips up.
2016      */
2017     if (!viftable[i].v_rsvp_on) {
2018 	viftable[i].v_rsvp_on = 1;
2019 	rsvp_on++;
2020     }
2021 
2022     splx(s);
2023     return 0;
2024 }
2025 
2026 int
2027 ip_rsvp_vif_done(so, sopt)
2028 	struct socket *so;
2029 	struct sockopt *sopt;
2030 {
2031 	int error, i, s;
2032 
2033 	if (rsvpdebug)
2034 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2035 		       so->so_type, so->so_proto->pr_protocol);
2036 
2037 	if (so->so_type != SOCK_RAW ||
2038 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2039 		return EOPNOTSUPP;
2040 
2041 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2042 	if (error)
2043 		return (error);
2044 
2045 	s = splnet();
2046 
2047 	/* Check vif. */
2048 	if (!legal_vif_num(i)) {
2049 		splx(s);
2050 		return EADDRNOTAVAIL;
2051 	}
2052 
2053 	if (rsvpdebug)
2054 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2055 		       viftable[i].v_rsvpd, so);
2056 
2057 	viftable[i].v_rsvpd = NULL;
2058 	/*
2059 	 * This may seem silly, but we need to be sure we don't over-decrement
2060 	 * the RSVP counter, in case something slips up.
2061 	 */
2062 	if (viftable[i].v_rsvp_on) {
2063 		viftable[i].v_rsvp_on = 0;
2064 		rsvp_on--;
2065 	}
2066 
2067 	splx(s);
2068 	return 0;
2069 }
2070 
2071 void
2072 ip_rsvp_force_done(so)
2073     struct socket *so;
2074 {
2075     int vifi;
2076     register int s;
2077 
2078     /* Don't bother if it is not the right type of socket. */
2079     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2080 	return;
2081 
2082     s = splnet();
2083 
2084     /* The socket may be attached to more than one vif...this
2085      * is perfectly legal.
2086      */
2087     for (vifi = 0; vifi < numvifs; vifi++) {
2088 	if (viftable[vifi].v_rsvpd == so) {
2089 	    viftable[vifi].v_rsvpd = NULL;
2090 	    /* This may seem silly, but we need to be sure we don't
2091 	     * over-decrement the RSVP counter, in case something slips up.
2092 	     */
2093 	    if (viftable[vifi].v_rsvp_on) {
2094 		viftable[vifi].v_rsvp_on = 0;
2095 		rsvp_on--;
2096 	    }
2097 	}
2098     }
2099 
2100     splx(s);
2101     return;
2102 }
2103 
2104 void
2105 rsvp_input(m, off)
2106 	struct mbuf *m;
2107 	int off;
2108 {
2109     int vifi;
2110     register struct ip *ip = mtod(m, struct ip *);
2111     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2112     register int s;
2113     struct ifnet *ifp;
2114 
2115     if (rsvpdebug)
2116 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2117 
2118     /* Can still get packets with rsvp_on = 0 if there is a local member
2119      * of the group to which the RSVP packet is addressed.  But in this
2120      * case we want to throw the packet away.
2121      */
2122     if (!rsvp_on) {
2123 	m_freem(m);
2124 	return;
2125     }
2126 
2127     s = splnet();
2128 
2129     if (rsvpdebug)
2130 	printf("rsvp_input: check vifs\n");
2131 
2132 #ifdef DIAGNOSTIC
2133     if (!(m->m_flags & M_PKTHDR))
2134 	    panic("rsvp_input no hdr");
2135 #endif
2136 
2137     ifp = m->m_pkthdr.rcvif;
2138     /* Find which vif the packet arrived on. */
2139     for (vifi = 0; vifi < numvifs; vifi++)
2140 	if (viftable[vifi].v_ifp == ifp)
2141 	    break;
2142 
2143     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2144 	/*
2145 	 * If the old-style non-vif-associated socket is set,
2146 	 * then use it.  Otherwise, drop packet since there
2147 	 * is no specific socket for this vif.
2148 	 */
2149 	if (ip_rsvpd != NULL) {
2150 	    if (rsvpdebug)
2151 		printf("rsvp_input: Sending packet up old-style socket\n");
2152 	    rip_input(m, off);  /* xxx */
2153 	} else {
2154 	    if (rsvpdebug && vifi == numvifs)
2155 		printf("rsvp_input: Can't find vif for packet.\n");
2156 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2157 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2158 	    m_freem(m);
2159 	}
2160 	splx(s);
2161 	return;
2162     }
2163     rsvp_src.sin_addr = ip->ip_src;
2164 
2165     if (rsvpdebug && m)
2166 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2167 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2168 
2169     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2170 	if (rsvpdebug)
2171 	    printf("rsvp_input: Failed to append to socket\n");
2172     } else {
2173 	if (rsvpdebug)
2174 	    printf("rsvp_input: send packet up\n");
2175     }
2176 
2177     splx(s);
2178 }
2179 
2180 #ifdef MROUTE_KLD
2181 
2182 static int
2183 ip_mroute_modevent(module_t mod, int type, void *unused)
2184 {
2185 	int s;
2186 
2187 	switch (type) {
2188 		static u_long (*old_ip_mcast_src)(int);
2189 		static int (*old_ip_mrouter_set)(struct socket *,
2190 			struct sockopt *);
2191 		static int (*old_ip_mrouter_get)(struct socket *,
2192 			struct sockopt *);
2193 		static int (*old_ip_mrouter_done)(void);
2194 		static int (*old_ip_mforward)(struct ip *, struct ifnet *,
2195 			struct mbuf *, struct ip_moptions *);
2196 		static int (*old_mrt_ioctl)(int, caddr_t);
2197 		static int (*old_legal_vif_num)(int);
2198 
2199 	case MOD_LOAD:
2200 		s = splnet();
2201 		/* XXX Protect against multiple loading */
2202 		old_ip_mcast_src = ip_mcast_src;
2203 		ip_mcast_src = X_ip_mcast_src;
2204 		old_ip_mrouter_get = ip_mrouter_get;
2205 		ip_mrouter_get = X_ip_mrouter_get;
2206 		old_ip_mrouter_set = ip_mrouter_set;
2207 		ip_mrouter_set = X_ip_mrouter_set;
2208 		old_ip_mrouter_done = ip_mrouter_done;
2209 		ip_mrouter_done = X_ip_mrouter_done;
2210 		old_ip_mforward = ip_mforward;
2211 		ip_mforward = X_ip_mforward;
2212 		old_mrt_ioctl = mrt_ioctl;
2213 		mrt_ioctl = X_mrt_ioctl;
2214 		old_legal_vif_num = legal_vif_num;
2215 		legal_vif_num = X_legal_vif_num;
2216 
2217 		splx(s);
2218 		return 0;
2219 
2220 	case MOD_UNLOAD:
2221 		if (ip_mrouter)
2222 		  return EINVAL;
2223 
2224 		s = splnet();
2225 		ip_mrouter_get = old_ip_mrouter_get;
2226 		ip_mrouter_set = old_ip_mrouter_set;
2227 		ip_mrouter_done = old_ip_mrouter_done;
2228 		ip_mforward = old_ip_mforward;
2229 		mrt_ioctl = old_mrt_ioctl;
2230 		legal_vif_num = old_legal_vif_num;
2231 		splx(s);
2232 		return 0;
2233 
2234 	default:
2235 		break;
2236 	}
2237 	return 0;
2238 }
2239 
2240 static moduledata_t ip_mroutemod = {
2241 	"ip_mroute",
2242 	ip_mroute_modevent,
2243 	0
2244 };
2245 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2246 
2247 #endif /* MROUTE_KLD */
2248 #endif /* MROUTING */
2249