1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * Modified by Wojciech Macek, Semihalf, May 2021 51 * 52 * MROUTING Revision: 3.5 53 * and PIM-SMv2 and PIM-DM support, advanced API support, 54 * bandwidth metering and signaling 55 */ 56 57 /* 58 * TODO: Prefix functions with ipmf_. 59 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 60 * domain attachment (if_afdata) so we can track consumers of that service. 61 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 62 * move it to socket options. 63 * TODO: Cleanup LSRR removal further. 64 * TODO: Push RSVP stubs into raw_ip.c. 65 * TODO: Use bitstring.h for vif set. 66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 67 * TODO: Sync ip6_mroute.c with this file. 68 */ 69 70 #include <sys/cdefs.h> 71 #include "opt_inet.h" 72 #include "opt_mrouting.h" 73 74 #define _PIM_VT 1 75 76 #include <sys/types.h> 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/condvar.h> 81 #include <sys/eventhandler.h> 82 #include <sys/lock.h> 83 #include <sys/kthread.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/taskqueue.h> 99 #include <sys/time.h> 100 #include <sys/counter.h> 101 #include <machine/atomic.h> 102 103 #include <net/if.h> 104 #include <net/if_var.h> 105 #include <net/if_private.h> 106 #include <net/if_types.h> 107 #include <net/netisr.h> 108 #include <net/route.h> 109 #include <net/vnet.h> 110 111 #include <netinet/in.h> 112 #include <netinet/igmp.h> 113 #include <netinet/in_systm.h> 114 #include <netinet/in_var.h> 115 #include <netinet/ip.h> 116 #include <netinet/ip_encap.h> 117 #include <netinet/ip_mroute.h> 118 #include <netinet/ip_var.h> 119 #include <netinet/ip_options.h> 120 #include <netinet/pim.h> 121 #include <netinet/pim_var.h> 122 #include <netinet/udp.h> 123 124 #include <machine/in_cksum.h> 125 126 #ifndef KTR_IPMF 127 #define KTR_IPMF KTR_INET 128 #endif 129 130 #define VIFI_INVALID ((vifi_t) -1) 131 132 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 133 134 /* 135 * Locking. We use two locks: one for the virtual interface table and 136 * one for the forwarding table. These locks may be nested in which case 137 * the VIF lock must always be taken first. Note that each lock is used 138 * to cover not only the specific data structure but also related data 139 * structures. 140 */ 141 142 static struct rwlock mrouter_lock; 143 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 144 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 145 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 146 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 147 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 148 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 149 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 150 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 151 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 152 #define MRW_LOCK_INIT() \ 153 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 154 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 155 156 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 157 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 158 159 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 160 VNET_PCPUSTAT_SYSINIT(mrtstat); 161 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 162 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 163 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 164 "netinet/ip_mroute.h)"); 165 166 VNET_DEFINE_STATIC(u_long, mfchash); 167 #define V_mfchash VNET(mfchash) 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 171 #define MFCHASHSIZE 256 172 173 static u_long mfchashsize = MFCHASHSIZE; /* Hash size */ 174 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN, 175 &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size"); 176 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 177 #define V_nexpire VNET(nexpire) 178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 179 #define V_mfchashtbl VNET(mfchashtbl) 180 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 181 #define V_task_queue VNET(task_queue) 182 VNET_DEFINE_STATIC(struct task, task); 183 #define V_task VNET(task) 184 185 VNET_DEFINE_STATIC(vifi_t, numvifs); 186 #define V_numvifs VNET(numvifs) 187 VNET_DEFINE_STATIC(struct vif *, viftable); 188 #define V_viftable VNET(viftable) 189 190 static eventhandler_tag if_detach_event_tag = NULL; 191 192 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 193 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 194 195 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 196 #define V_buf_ring_mtx VNET(buf_ring_mtx) 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Bandwidth meter variables and constants 203 */ 204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 205 206 /* 207 * Pending upcalls are stored in a ring which is flushed when 208 * full, or periodically 209 */ 210 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 211 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 212 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 213 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 214 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 215 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 216 217 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 218 219 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 220 VNET_PCPUSTAT_SYSINIT(pimstat); 221 VNET_PCPUSTAT_SYSUNINIT(pimstat); 222 223 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 224 "PIM"); 225 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 226 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 227 228 static u_long pim_squelch_wholepkt = 0; 229 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN, 230 &pim_squelch_wholepkt, 0, 231 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 232 233 static const struct encaptab *pim_encap_cookie; 234 static int pim_encapcheck(const struct mbuf *, int, int, void *); 235 static int pim_input(struct mbuf *, int, int, void *); 236 237 extern int in_mcast_loop; 238 239 static const struct encap_config ipv4_encap_cfg = { 240 .proto = IPPROTO_PIM, 241 .min_length = sizeof(struct ip) + PIM_MINLEN, 242 .exact_match = 8, 243 .check = pim_encapcheck, 244 .input = pim_input 245 }; 246 247 /* 248 * Note: the PIM Register encapsulation adds the following in front of a 249 * data packet: 250 * 251 * struct pim_encap_hdr { 252 * struct ip ip; 253 * struct pim_encap_pimhdr pim; 254 * } 255 * 256 */ 257 258 struct pim_encap_pimhdr { 259 struct pim pim; 260 uint32_t flags; 261 }; 262 #define PIM_ENCAP_TTL 64 263 264 static struct ip pim_encap_iphdr = { 265 #if BYTE_ORDER == LITTLE_ENDIAN 266 sizeof(struct ip) >> 2, 267 IPVERSION, 268 #else 269 IPVERSION, 270 sizeof(struct ip) >> 2, 271 #endif 272 0, /* tos */ 273 sizeof(struct ip), /* total length */ 274 0, /* id */ 275 0, /* frag offset */ 276 PIM_ENCAP_TTL, 277 IPPROTO_PIM, 278 0, /* checksum */ 279 }; 280 281 static struct pim_encap_pimhdr pim_encap_pimhdr = { 282 { 283 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 284 0, /* reserved */ 285 0, /* checksum */ 286 }, 287 0 /* flags */ 288 }; 289 290 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 291 #define V_reg_vif_num VNET(reg_vif_num) 292 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 293 #define V_multicast_register_if VNET(multicast_register_if) 294 295 /* 296 * Private variables. 297 */ 298 299 static u_long X_ip_mcast_src(int); 300 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 301 struct ip_moptions *); 302 static int X_ip_mrouter_done(void); 303 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 304 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 305 static int X_legal_vif_num(int); 306 static int X_mrt_ioctl(u_long, caddr_t, int); 307 308 static int add_bw_upcall(struct bw_upcall *); 309 static int add_mfc(struct mfcctl2 *); 310 static int add_vif(struct vifctl *); 311 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 312 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 313 struct timeval *); 314 static void bw_upcalls_send(void); 315 static int del_bw_upcall(struct bw_upcall *); 316 static int del_mfc(struct mfcctl2 *); 317 static int del_vif(vifi_t); 318 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **); 319 static void expire_bw_upcalls_send(void *); 320 static void expire_mfc(struct mfc *); 321 static void expire_upcalls(void *); 322 static void free_bw_list(struct bw_meter *); 323 static int get_sg_cnt(struct sioc_sg_req *); 324 static int get_vif_cnt(struct sioc_vif_req *); 325 static void if_detached_event(void *, struct ifnet *); 326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 327 static int ip_mrouter_init(struct socket *, int); 328 static __inline struct mfc * 329 mfc_find(struct in_addr *, struct in_addr *); 330 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 331 static struct mbuf * 332 pim_register_prepare(struct ip *, struct mbuf *); 333 static int pim_register_send(struct ip *, struct vif *, 334 struct mbuf *, struct mfc *); 335 static int pim_register_send_rp(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_upcall(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static void send_packet(struct vif *, struct mbuf *); 340 static int set_api_config(uint32_t *); 341 static int set_assert(int); 342 static int socket_send(struct socket *, struct mbuf *, 343 struct sockaddr_in *); 344 345 /* 346 * Kernel multicast forwarding API capabilities and setup. 347 * If more API capabilities are added to the kernel, they should be 348 * recorded in `mrt_api_support'. 349 */ 350 #define MRT_API_VERSION 0x0305 351 352 static const int mrt_api_version = MRT_API_VERSION; 353 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 354 MRT_MFC_FLAGS_BORDER_VIF | 355 MRT_MFC_RP | 356 MRT_MFC_BW_UPCALL); 357 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 358 #define V_mrt_api_config VNET(mrt_api_config) 359 VNET_DEFINE_STATIC(int, pim_assert_enabled); 360 #define V_pim_assert_enabled VNET(pim_assert_enabled) 361 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 362 363 /* 364 * Find a route for a given origin IP address and multicast group address. 365 * Statistics must be updated by the caller. 366 */ 367 static __inline struct mfc * 368 mfc_find(struct in_addr *o, struct in_addr *g) 369 { 370 struct mfc *rt; 371 372 /* 373 * Might be called both RLOCK and WLOCK. 374 * Check if any, it's caller responsibility 375 * to choose correct option. 376 */ 377 MRW_LOCK_ASSERT(); 378 379 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 380 if (in_hosteq(rt->mfc_origin, *o) && 381 in_hosteq(rt->mfc_mcastgrp, *g) && 382 buf_ring_empty(rt->mfc_stall_ring)) 383 break; 384 } 385 386 return (rt); 387 } 388 389 static __inline struct mfc * 390 mfc_alloc(void) 391 { 392 struct mfc *rt; 393 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 394 if (rt == NULL) 395 return rt; 396 397 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 398 M_NOWAIT, &V_buf_ring_mtx); 399 if (rt->mfc_stall_ring == NULL) { 400 free(rt, M_MRTABLE); 401 return NULL; 402 } 403 404 return rt; 405 } 406 407 /* 408 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 409 */ 410 static int 411 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 412 { 413 int error, optval; 414 vifi_t vifi; 415 struct vifctl vifc; 416 struct mfcctl2 mfc; 417 struct bw_upcall bw_upcall; 418 uint32_t i; 419 420 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 421 return EPERM; 422 423 error = 0; 424 switch (sopt->sopt_name) { 425 case MRT_INIT: 426 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 427 if (error) 428 break; 429 error = ip_mrouter_init(so, optval); 430 break; 431 case MRT_DONE: 432 error = ip_mrouter_done(); 433 break; 434 case MRT_ADD_VIF: 435 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 436 if (error) 437 break; 438 error = add_vif(&vifc); 439 break; 440 case MRT_DEL_VIF: 441 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 442 if (error) 443 break; 444 error = del_vif(vifi); 445 break; 446 case MRT_ADD_MFC: 447 case MRT_DEL_MFC: 448 /* 449 * select data size depending on API version. 450 */ 451 if (sopt->sopt_name == MRT_ADD_MFC && 452 V_mrt_api_config & MRT_API_FLAGS_ALL) { 453 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 454 sizeof(struct mfcctl2)); 455 } else { 456 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 457 sizeof(struct mfcctl)); 458 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 459 sizeof(mfc) - sizeof(struct mfcctl)); 460 } 461 if (error) 462 break; 463 if (sopt->sopt_name == MRT_ADD_MFC) 464 error = add_mfc(&mfc); 465 else 466 error = del_mfc(&mfc); 467 break; 468 469 case MRT_ASSERT: 470 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 471 if (error) 472 break; 473 set_assert(optval); 474 break; 475 476 case MRT_API_CONFIG: 477 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 478 if (!error) 479 error = set_api_config(&i); 480 if (!error) 481 error = sooptcopyout(sopt, &i, sizeof i); 482 break; 483 484 case MRT_ADD_BW_UPCALL: 485 case MRT_DEL_BW_UPCALL: 486 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 487 sizeof bw_upcall); 488 if (error) 489 break; 490 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 491 error = add_bw_upcall(&bw_upcall); 492 else 493 error = del_bw_upcall(&bw_upcall); 494 break; 495 496 default: 497 error = EOPNOTSUPP; 498 break; 499 } 500 return error; 501 } 502 503 /* 504 * Handle MRT getsockopt commands 505 */ 506 static int 507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 508 { 509 int error; 510 511 switch (sopt->sopt_name) { 512 case MRT_VERSION: 513 error = sooptcopyout(sopt, &mrt_api_version, 514 sizeof mrt_api_version); 515 break; 516 case MRT_ASSERT: 517 error = sooptcopyout(sopt, &V_pim_assert_enabled, 518 sizeof V_pim_assert_enabled); 519 break; 520 case MRT_API_SUPPORT: 521 error = sooptcopyout(sopt, &mrt_api_support, 522 sizeof mrt_api_support); 523 break; 524 case MRT_API_CONFIG: 525 error = sooptcopyout(sopt, &V_mrt_api_config, 526 sizeof V_mrt_api_config); 527 break; 528 default: 529 error = EOPNOTSUPP; 530 break; 531 } 532 return error; 533 } 534 535 /* 536 * Handle ioctl commands to obtain information from the cache 537 */ 538 static int 539 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 540 { 541 int error; 542 543 /* 544 * Currently the only function calling this ioctl routine is rtioctl_fib(). 545 * Typically, only root can create the raw socket in order to execute 546 * this ioctl method, however the request might be coming from a prison 547 */ 548 error = priv_check(curthread, PRIV_NETINET_MROUTE); 549 if (error) 550 return (error); 551 switch (cmd) { 552 case (SIOCGETVIFCNT): 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 556 case (SIOCGETSGCNT): 557 error = get_sg_cnt((struct sioc_sg_req *)data); 558 break; 559 560 default: 561 error = EINVAL; 562 break; 563 } 564 return error; 565 } 566 567 /* 568 * returns the packet, byte, rpf-failure count for the source group provided 569 */ 570 static int 571 get_sg_cnt(struct sioc_sg_req *req) 572 { 573 struct mfc *rt; 574 575 MRW_RLOCK(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 MRW_RUNLOCK(); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return EADDRNOTAVAIL; 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 MRW_RUNLOCK(); 586 return 0; 587 } 588 589 /* 590 * returns the input and output packet and byte counts on the vif provided 591 */ 592 static int 593 get_vif_cnt(struct sioc_vif_req *req) 594 { 595 vifi_t vifi = req->vifi; 596 597 MRW_RLOCK(); 598 if (vifi >= V_numvifs) { 599 MRW_RUNLOCK(); 600 return EINVAL; 601 } 602 603 mtx_lock_spin(&V_viftable[vifi].v_spin); 604 req->icount = V_viftable[vifi].v_pkt_in; 605 req->ocount = V_viftable[vifi].v_pkt_out; 606 req->ibytes = V_viftable[vifi].v_bytes_in; 607 req->obytes = V_viftable[vifi].v_bytes_out; 608 mtx_unlock_spin(&V_viftable[vifi].v_spin); 609 MRW_RUNLOCK(); 610 611 return 0; 612 } 613 614 static void 615 if_detached_event(void *arg __unused, struct ifnet *ifp) 616 { 617 vifi_t vifi; 618 u_long i, vifi_cnt = 0; 619 struct ifnet *free_ptr, *multi_leave; 620 621 MRW_WLOCK(); 622 623 if (V_ip_mrouter == NULL) { 624 MRW_WUNLOCK(); 625 return; 626 } 627 628 /* 629 * Tear down multicast forwarder state associated with this ifnet. 630 * 1. Walk the vif list, matching vifs against this ifnet. 631 * 2. Walk the multicast forwarding cache (mfc) looking for 632 * inner matches with this vif's index. 633 * 3. Expire any matching multicast forwarding cache entries. 634 * 4. Free vif state. This should disable ALLMULTI on the interface. 635 */ 636 restart: 637 for (vifi = 0; vifi < V_numvifs; vifi++) { 638 if (V_viftable[vifi].v_ifp != ifp) 639 continue; 640 for (i = 0; i < mfchashsize; i++) { 641 struct mfc *rt, *nrt; 642 643 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 644 if (rt->mfc_parent == vifi) { 645 expire_mfc(rt); 646 } 647 } 648 } 649 del_vif_locked(vifi, &multi_leave, &free_ptr); 650 if (free_ptr != NULL) 651 vifi_cnt++; 652 if (multi_leave) { 653 MRW_WUNLOCK(); 654 if_allmulti(multi_leave, 0); 655 MRW_WLOCK(); 656 goto restart; 657 } 658 } 659 660 MRW_WUNLOCK(); 661 662 /* 663 * Free IFP. We don't have to use free_ptr here as it is the same 664 * that ifp. Perform free as many times as required in case 665 * refcount is greater than 1. 666 */ 667 for (i = 0; i < vifi_cnt; i++) 668 if_free(ifp); 669 } 670 671 static void 672 ip_mrouter_upcall_thread(void *arg, int pending __unused) 673 { 674 CURVNET_SET((struct vnet *) arg); 675 676 MRW_WLOCK(); 677 bw_upcalls_send(); 678 MRW_WUNLOCK(); 679 680 CURVNET_RESTORE(); 681 } 682 683 /* 684 * Enable multicast forwarding. 685 */ 686 static int 687 ip_mrouter_init(struct socket *so, int version) 688 { 689 690 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 691 692 if (version != 1) 693 return ENOPROTOOPT; 694 695 MRW_WLOCK(); 696 697 if (ip_mrouter_unloading) { 698 MRW_WUNLOCK(); 699 return ENOPROTOOPT; 700 } 701 702 if (V_ip_mrouter != NULL) { 703 MRW_WUNLOCK(); 704 return EADDRINUSE; 705 } 706 707 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 708 HASH_NOWAIT); 709 if (V_mfchashtbl == NULL) { 710 MRW_WUNLOCK(); 711 return (ENOMEM); 712 } 713 714 /* Create upcall ring */ 715 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 716 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 717 M_NOWAIT, &V_bw_upcalls_ring_mtx); 718 if (!V_bw_upcalls_ring) { 719 MRW_WUNLOCK(); 720 return (ENOMEM); 721 } 722 723 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 724 taskqueue_cancel(V_task_queue, &V_task, NULL); 725 taskqueue_unblock(V_task_queue); 726 727 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 728 curvnet); 729 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 730 curvnet); 731 732 V_ip_mrouter = so; 733 atomic_add_int(&ip_mrouter_cnt, 1); 734 735 /* This is a mutex required by buf_ring init, but not used internally */ 736 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 737 738 MRW_WUNLOCK(); 739 740 CTR1(KTR_IPMF, "%s: done", __func__); 741 742 return 0; 743 } 744 745 /* 746 * Disable multicast forwarding. 747 */ 748 static int 749 X_ip_mrouter_done(void) 750 { 751 struct ifnet **ifps; 752 int nifp; 753 u_long i; 754 vifi_t vifi; 755 struct bw_upcall *bu; 756 757 if (V_ip_mrouter == NULL) 758 return (EINVAL); 759 760 /* 761 * Detach/disable hooks to the reset of the system. 762 */ 763 V_ip_mrouter = NULL; 764 atomic_subtract_int(&ip_mrouter_cnt, 1); 765 V_mrt_api_config = 0; 766 767 /* 768 * Wait for all epoch sections to complete to ensure 769 * V_ip_mrouter = NULL is visible to others. 770 */ 771 epoch_wait_preempt(net_epoch_preempt); 772 773 /* Stop and drain task queue */ 774 taskqueue_block(V_task_queue); 775 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 776 taskqueue_drain(V_task_queue, &V_task); 777 } 778 779 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 780 781 MRW_WLOCK(); 782 taskqueue_cancel(V_task_queue, &V_task, NULL); 783 784 /* Destroy upcall ring */ 785 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 786 free(bu, M_MRTABLE); 787 } 788 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 789 mtx_destroy(&V_bw_upcalls_ring_mtx); 790 791 /* 792 * For each phyint in use, prepare to disable promiscuous reception 793 * of all IP multicasts. Defer the actual call until the lock is released; 794 * just record the list of interfaces while locked. Some interfaces use 795 * sx locks in their ioctl routines, which is not allowed while holding 796 * a non-sleepable lock. 797 */ 798 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 799 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 800 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 801 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 802 ifps[nifp++] = V_viftable[vifi].v_ifp; 803 } 804 } 805 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 806 V_numvifs = 0; 807 V_pim_assert_enabled = 0; 808 809 callout_stop(&V_expire_upcalls_ch); 810 callout_stop(&V_bw_upcalls_ch); 811 812 /* 813 * Free all multicast forwarding cache entries. 814 * Do not use hashdestroy(), as we must perform other cleanup. 815 */ 816 for (i = 0; i < mfchashsize; i++) { 817 struct mfc *rt, *nrt; 818 819 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 820 expire_mfc(rt); 821 } 822 } 823 free(V_mfchashtbl, M_MRTABLE); 824 V_mfchashtbl = NULL; 825 826 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 827 828 V_reg_vif_num = VIFI_INVALID; 829 830 mtx_destroy(&V_buf_ring_mtx); 831 832 MRW_WUNLOCK(); 833 834 /* 835 * Now drop our claim on promiscuous multicast on the interfaces recorded 836 * above. This is safe to do now because ALLMULTI is reference counted. 837 */ 838 for (vifi = 0; vifi < nifp; vifi++) 839 if_allmulti(ifps[vifi], 0); 840 free(ifps, M_TEMP); 841 842 CTR1(KTR_IPMF, "%s: done", __func__); 843 844 return 0; 845 } 846 847 /* 848 * Set PIM assert processing global 849 */ 850 static int 851 set_assert(int i) 852 { 853 if ((i != 1) && (i != 0)) 854 return EINVAL; 855 856 V_pim_assert_enabled = i; 857 858 return 0; 859 } 860 861 /* 862 * Configure API capabilities 863 */ 864 int 865 set_api_config(uint32_t *apival) 866 { 867 u_long i; 868 869 /* 870 * We can set the API capabilities only if it is the first operation 871 * after MRT_INIT. I.e.: 872 * - there are no vifs installed 873 * - pim_assert is not enabled 874 * - the MFC table is empty 875 */ 876 if (V_numvifs > 0) { 877 *apival = 0; 878 return EPERM; 879 } 880 if (V_pim_assert_enabled) { 881 *apival = 0; 882 return EPERM; 883 } 884 885 MRW_RLOCK(); 886 887 for (i = 0; i < mfchashsize; i++) { 888 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 889 MRW_RUNLOCK(); 890 *apival = 0; 891 return EPERM; 892 } 893 } 894 895 MRW_RUNLOCK(); 896 897 V_mrt_api_config = *apival & mrt_api_support; 898 *apival = V_mrt_api_config; 899 900 return 0; 901 } 902 903 /* 904 * Add a vif to the vif table 905 */ 906 static int 907 add_vif(struct vifctl *vifcp) 908 { 909 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 910 struct sockaddr_in sin = {sizeof sin, AF_INET}; 911 struct ifaddr *ifa; 912 struct ifnet *ifp; 913 int error; 914 915 if (vifcp->vifc_vifi >= MAXVIFS) 916 return EINVAL; 917 /* rate limiting is no longer supported by this code */ 918 if (vifcp->vifc_rate_limit != 0) { 919 log(LOG_ERR, "rate limiting is no longer supported\n"); 920 return EINVAL; 921 } 922 923 if (in_nullhost(vifcp->vifc_lcl_addr)) 924 return EADDRNOTAVAIL; 925 926 /* Find the interface with an address in AF_INET family */ 927 if (vifcp->vifc_flags & VIFF_REGISTER) { 928 /* 929 * XXX: Because VIFF_REGISTER does not really need a valid 930 * local interface (e.g. it could be 127.0.0.2), we don't 931 * check its address. 932 */ 933 ifp = NULL; 934 } else { 935 struct epoch_tracker et; 936 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 NET_EPOCH_ENTER(et); 939 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 940 if (ifa == NULL) { 941 NET_EPOCH_EXIT(et); 942 return EADDRNOTAVAIL; 943 } 944 ifp = ifa->ifa_ifp; 945 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 946 NET_EPOCH_EXIT(et); 947 } 948 949 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 950 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 951 return EOPNOTSUPP; 952 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 953 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 954 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 955 if (V_reg_vif_num == VIFI_INVALID) { 956 if_initname(V_multicast_register_if, "register_vif", 0); 957 V_reg_vif_num = vifcp->vifc_vifi; 958 } 959 } else { /* Make sure the interface supports multicast */ 960 if ((ifp->if_flags & IFF_MULTICAST) == 0) 961 return EOPNOTSUPP; 962 963 /* Enable promiscuous reception of all IP multicasts from the if */ 964 error = if_allmulti(ifp, 1); 965 if (error) 966 return error; 967 } 968 969 MRW_WLOCK(); 970 971 if (!in_nullhost(vifp->v_lcl_addr)) { 972 if (ifp) 973 V_multicast_register_if = NULL; 974 MRW_WUNLOCK(); 975 if (ifp) 976 if_free(ifp); 977 return EADDRINUSE; 978 } 979 980 vifp->v_flags = vifcp->vifc_flags; 981 vifp->v_threshold = vifcp->vifc_threshold; 982 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 983 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 984 vifp->v_ifp = ifp; 985 /* initialize per vif pkt counters */ 986 vifp->v_pkt_in = 0; 987 vifp->v_pkt_out = 0; 988 vifp->v_bytes_in = 0; 989 vifp->v_bytes_out = 0; 990 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 991 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 992 993 /* Adjust numvifs up if the vifi is higher than numvifs */ 994 if (V_numvifs <= vifcp->vifc_vifi) 995 V_numvifs = vifcp->vifc_vifi + 1; 996 997 MRW_WUNLOCK(); 998 999 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 1000 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 1001 (int)vifcp->vifc_threshold); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Delete a vif from the vif table 1008 */ 1009 static int 1010 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free) 1011 { 1012 struct vif *vifp; 1013 1014 *ifp_free = NULL; 1015 *ifp_multi_leave = NULL; 1016 1017 MRW_WLOCK_ASSERT(); 1018 1019 if (vifi >= V_numvifs) { 1020 return EINVAL; 1021 } 1022 vifp = &V_viftable[vifi]; 1023 if (in_nullhost(vifp->v_lcl_addr)) { 1024 return EADDRNOTAVAIL; 1025 } 1026 1027 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1028 *ifp_multi_leave = vifp->v_ifp; 1029 1030 if (vifp->v_flags & VIFF_REGISTER) { 1031 V_reg_vif_num = VIFI_INVALID; 1032 if (vifp->v_ifp) { 1033 if (vifp->v_ifp == V_multicast_register_if) 1034 V_multicast_register_if = NULL; 1035 *ifp_free = vifp->v_ifp; 1036 } 1037 } 1038 1039 mtx_destroy(&vifp->v_spin); 1040 1041 bzero((caddr_t)vifp, sizeof (*vifp)); 1042 1043 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1044 1045 /* Adjust numvifs down */ 1046 for (vifi = V_numvifs; vifi > 0; vifi--) 1047 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1048 break; 1049 V_numvifs = vifi; 1050 1051 return 0; 1052 } 1053 1054 static int 1055 del_vif(vifi_t vifi) 1056 { 1057 int cc; 1058 struct ifnet *free_ptr, *multi_leave; 1059 1060 MRW_WLOCK(); 1061 cc = del_vif_locked(vifi, &multi_leave, &free_ptr); 1062 MRW_WUNLOCK(); 1063 1064 if (multi_leave) 1065 if_allmulti(multi_leave, 0); 1066 if (free_ptr) { 1067 if_free(free_ptr); 1068 } 1069 1070 return cc; 1071 } 1072 1073 /* 1074 * update an mfc entry without resetting counters and S,G addresses. 1075 */ 1076 static void 1077 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1078 { 1079 int i; 1080 1081 rt->mfc_parent = mfccp->mfcc_parent; 1082 for (i = 0; i < V_numvifs; i++) { 1083 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1084 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1085 MRT_MFC_FLAGS_ALL; 1086 } 1087 /* set the RP address */ 1088 if (V_mrt_api_config & MRT_MFC_RP) 1089 rt->mfc_rp = mfccp->mfcc_rp; 1090 else 1091 rt->mfc_rp.s_addr = INADDR_ANY; 1092 } 1093 1094 /* 1095 * fully initialize an mfc entry from the parameter. 1096 */ 1097 static void 1098 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1099 { 1100 rt->mfc_origin = mfccp->mfcc_origin; 1101 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1102 1103 update_mfc_params(rt, mfccp); 1104 1105 /* initialize pkt counters per src-grp */ 1106 rt->mfc_pkt_cnt = 0; 1107 rt->mfc_byte_cnt = 0; 1108 rt->mfc_wrong_if = 0; 1109 timevalclear(&rt->mfc_last_assert); 1110 } 1111 1112 static void 1113 expire_mfc(struct mfc *rt) 1114 { 1115 struct rtdetq *rte; 1116 1117 MRW_WLOCK_ASSERT(); 1118 1119 free_bw_list(rt->mfc_bw_meter_leq); 1120 free_bw_list(rt->mfc_bw_meter_geq); 1121 1122 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1123 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1124 if (rte) { 1125 m_freem(rte->m); 1126 free(rte, M_MRTABLE); 1127 } 1128 } 1129 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1130 1131 LIST_REMOVE(rt, mfc_hash); 1132 free(rt, M_MRTABLE); 1133 } 1134 1135 /* 1136 * Add an mfc entry 1137 */ 1138 static int 1139 add_mfc(struct mfcctl2 *mfccp) 1140 { 1141 struct mfc *rt; 1142 struct rtdetq *rte; 1143 u_long hash = 0; 1144 u_short nstl; 1145 struct epoch_tracker et; 1146 1147 MRW_WLOCK(); 1148 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1149 1150 /* If an entry already exists, just update the fields */ 1151 if (rt) { 1152 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1153 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1154 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1155 mfccp->mfcc_parent); 1156 update_mfc_params(rt, mfccp); 1157 MRW_WUNLOCK(); 1158 return (0); 1159 } 1160 1161 /* 1162 * Find the entry for which the upcall was made and update 1163 */ 1164 nstl = 0; 1165 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1166 NET_EPOCH_ENTER(et); 1167 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1168 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1169 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1170 !buf_ring_empty(rt->mfc_stall_ring)) { 1171 CTR5(KTR_IPMF, 1172 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1173 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1174 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1175 mfccp->mfcc_parent, 1176 rt->mfc_stall_ring); 1177 if (nstl++) 1178 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1179 1180 init_mfc_params(rt, mfccp); 1181 rt->mfc_expire = 0; /* Don't clean this guy up */ 1182 V_nexpire[hash]--; 1183 1184 /* Free queued packets, but attempt to forward them first. */ 1185 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1186 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1187 if (rte->ifp != NULL) 1188 ip_mdq(rte->m, rte->ifp, rt, -1); 1189 m_freem(rte->m); 1190 free(rte, M_MRTABLE); 1191 } 1192 } 1193 } 1194 NET_EPOCH_EXIT(et); 1195 1196 /* 1197 * It is possible that an entry is being inserted without an upcall 1198 */ 1199 if (nstl == 0) { 1200 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1201 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1202 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1203 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1204 init_mfc_params(rt, mfccp); 1205 if (rt->mfc_expire) 1206 V_nexpire[hash]--; 1207 rt->mfc_expire = 0; 1208 break; /* XXX */ 1209 } 1210 } 1211 1212 if (rt == NULL) { /* no upcall, so make a new entry */ 1213 rt = mfc_alloc(); 1214 if (rt == NULL) { 1215 MRW_WUNLOCK(); 1216 return (ENOBUFS); 1217 } 1218 1219 init_mfc_params(rt, mfccp); 1220 1221 rt->mfc_expire = 0; 1222 rt->mfc_bw_meter_leq = NULL; 1223 rt->mfc_bw_meter_geq = NULL; 1224 1225 /* insert new entry at head of hash chain */ 1226 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1227 } 1228 } 1229 1230 MRW_WUNLOCK(); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Delete an mfc entry 1237 */ 1238 static int 1239 del_mfc(struct mfcctl2 *mfccp) 1240 { 1241 struct in_addr origin; 1242 struct in_addr mcastgrp; 1243 struct mfc *rt; 1244 1245 origin = mfccp->mfcc_origin; 1246 mcastgrp = mfccp->mfcc_mcastgrp; 1247 1248 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1249 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1250 1251 MRW_WLOCK(); 1252 1253 rt = mfc_find(&origin, &mcastgrp); 1254 if (rt == NULL) { 1255 MRW_WUNLOCK(); 1256 return EADDRNOTAVAIL; 1257 } 1258 1259 /* 1260 * free the bw_meter entries 1261 */ 1262 free_bw_list(rt->mfc_bw_meter_leq); 1263 rt->mfc_bw_meter_leq = NULL; 1264 free_bw_list(rt->mfc_bw_meter_geq); 1265 rt->mfc_bw_meter_geq = NULL; 1266 1267 LIST_REMOVE(rt, mfc_hash); 1268 free(rt, M_MRTABLE); 1269 1270 MRW_WUNLOCK(); 1271 1272 return (0); 1273 } 1274 1275 /* 1276 * Send a message to the routing daemon on the multicast routing socket. 1277 */ 1278 static int 1279 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1280 { 1281 if (s) { 1282 SOCKBUF_LOCK(&s->so_rcv); 1283 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1284 NULL) != 0) { 1285 sorwakeup_locked(s); 1286 return 0; 1287 } 1288 soroverflow_locked(s); 1289 } 1290 m_freem(mm); 1291 return -1; 1292 } 1293 1294 /* 1295 * IP multicast forwarding function. This function assumes that the packet 1296 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1297 * pointed to by "ifp", and the packet is to be relayed to other networks 1298 * that have members of the packet's destination IP multicast group. 1299 * 1300 * The packet is returned unscathed to the caller, unless it is 1301 * erroneous, in which case a non-zero return value tells the caller to 1302 * discard it. 1303 */ 1304 1305 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1306 1307 static int 1308 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1309 struct ip_moptions *imo) 1310 { 1311 struct mfc *rt; 1312 int error; 1313 vifi_t vifi; 1314 struct mbuf *mb0; 1315 struct rtdetq *rte; 1316 u_long hash; 1317 int hlen; 1318 1319 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1320 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1321 1322 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1323 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1324 /* 1325 * Packet arrived via a physical interface or 1326 * an encapsulated tunnel or a register_vif. 1327 */ 1328 } else { 1329 /* 1330 * Packet arrived through a source-route tunnel. 1331 * Source-route tunnels are no longer supported. 1332 */ 1333 return (1); 1334 } 1335 1336 /* 1337 * BEGIN: MCAST ROUTING HOT PATH 1338 */ 1339 MRW_RLOCK(); 1340 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1341 if (ip->ip_ttl < MAXTTL) 1342 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1343 error = ip_mdq(m, ifp, NULL, vifi); 1344 MRW_RUNLOCK(); 1345 return error; 1346 } 1347 1348 /* 1349 * Don't forward a packet with time-to-live of zero or one, 1350 * or a packet destined to a local-only group. 1351 */ 1352 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1353 MRW_RUNLOCK(); 1354 return 0; 1355 } 1356 1357 mfc_find_retry: 1358 /* 1359 * Determine forwarding vifs from the forwarding cache table 1360 */ 1361 MRTSTAT_INC(mrts_mfc_lookups); 1362 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1363 1364 /* Entry exists, so forward if necessary */ 1365 if (rt != NULL) { 1366 error = ip_mdq(m, ifp, rt, -1); 1367 /* Generic unlock here as we might release R or W lock */ 1368 MRW_UNLOCK(); 1369 return error; 1370 } 1371 1372 /* 1373 * END: MCAST ROUTING HOT PATH 1374 */ 1375 1376 /* Further processing must be done with WLOCK taken */ 1377 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1378 MRW_RUNLOCK(); 1379 MRW_WLOCK(); 1380 goto mfc_find_retry; 1381 } 1382 1383 /* 1384 * If we don't have a route for packet's origin, 1385 * Make a copy of the packet & send message to routing daemon 1386 */ 1387 hlen = ip->ip_hl << 2; 1388 1389 MRTSTAT_INC(mrts_mfc_misses); 1390 MRTSTAT_INC(mrts_no_route); 1391 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1392 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1393 1394 /* 1395 * Allocate mbufs early so that we don't do extra work if we are 1396 * just going to fail anyway. Make sure to pullup the header so 1397 * that other people can't step on it. 1398 */ 1399 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1400 if (rte == NULL) { 1401 MRW_WUNLOCK(); 1402 return ENOBUFS; 1403 } 1404 1405 mb0 = m_copypacket(m, M_NOWAIT); 1406 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1407 mb0 = m_pullup(mb0, hlen); 1408 if (mb0 == NULL) { 1409 free(rte, M_MRTABLE); 1410 MRW_WUNLOCK(); 1411 return ENOBUFS; 1412 } 1413 1414 /* is there an upcall waiting for this flow ? */ 1415 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1416 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1417 { 1418 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1419 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1420 !buf_ring_empty(rt->mfc_stall_ring)) 1421 break; 1422 } 1423 1424 if (rt == NULL) { 1425 int i; 1426 struct igmpmsg *im; 1427 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1428 struct mbuf *mm; 1429 1430 /* 1431 * Locate the vifi for the incoming interface for this packet. 1432 * If none found, drop packet. 1433 */ 1434 for (vifi = 0; vifi < V_numvifs && 1435 V_viftable[vifi].v_ifp != ifp; vifi++) 1436 ; 1437 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1438 goto non_fatal; 1439 1440 /* no upcall, so make a new entry */ 1441 rt = mfc_alloc(); 1442 if (rt == NULL) 1443 goto fail; 1444 1445 /* Make a copy of the header to send to the user level process */ 1446 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1447 if (mm == NULL) 1448 goto fail1; 1449 1450 /* 1451 * Send message to routing daemon to install 1452 * a route into the kernel table 1453 */ 1454 1455 im = mtod(mm, struct igmpmsg*); 1456 im->im_msgtype = IGMPMSG_NOCACHE; 1457 im->im_mbz = 0; 1458 im->im_vif = vifi; 1459 1460 MRTSTAT_INC(mrts_upcalls); 1461 1462 k_igmpsrc.sin_addr = ip->ip_src; 1463 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1464 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1465 MRTSTAT_INC(mrts_upq_sockfull); 1466 fail1: free(rt, M_MRTABLE); 1467 fail: free(rte, M_MRTABLE); 1468 m_freem(mb0); 1469 MRW_WUNLOCK(); 1470 return ENOBUFS; 1471 } 1472 1473 /* insert new entry at head of hash chain */ 1474 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1475 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1476 rt->mfc_expire = UPCALL_EXPIRE; 1477 V_nexpire[hash]++; 1478 for (i = 0; i < V_numvifs; i++) { 1479 rt->mfc_ttls[i] = 0; 1480 rt->mfc_flags[i] = 0; 1481 } 1482 rt->mfc_parent = -1; 1483 1484 /* clear the RP address */ 1485 rt->mfc_rp.s_addr = INADDR_ANY; 1486 rt->mfc_bw_meter_leq = NULL; 1487 rt->mfc_bw_meter_geq = NULL; 1488 1489 /* initialize pkt counters per src-grp */ 1490 rt->mfc_pkt_cnt = 0; 1491 rt->mfc_byte_cnt = 0; 1492 rt->mfc_wrong_if = 0; 1493 timevalclear(&rt->mfc_last_assert); 1494 1495 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1496 1497 /* Add RT to hashtable as it didn't exist before */ 1498 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1499 } else { 1500 /* determine if queue has overflowed */ 1501 if (buf_ring_full(rt->mfc_stall_ring)) { 1502 MRTSTAT_INC(mrts_upq_ovflw); 1503 non_fatal: free(rte, M_MRTABLE); 1504 m_freem(mb0); 1505 MRW_WUNLOCK(); 1506 return (0); 1507 } 1508 1509 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1510 } 1511 1512 rte->m = mb0; 1513 rte->ifp = ifp; 1514 1515 MRW_WUNLOCK(); 1516 1517 return 0; 1518 } 1519 1520 /* 1521 * Clean up the cache entry if upcall is not serviced 1522 */ 1523 static void 1524 expire_upcalls(void *arg) 1525 { 1526 u_long i; 1527 1528 CURVNET_SET((struct vnet *) arg); 1529 1530 /*This callout is always run with MRW_WLOCK taken. */ 1531 1532 for (i = 0; i < mfchashsize; i++) { 1533 struct mfc *rt, *nrt; 1534 1535 if (V_nexpire[i] == 0) 1536 continue; 1537 1538 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1539 if (buf_ring_empty(rt->mfc_stall_ring)) 1540 continue; 1541 1542 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1543 continue; 1544 1545 MRTSTAT_INC(mrts_cache_cleanups); 1546 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1547 (u_long)ntohl(rt->mfc_origin.s_addr), 1548 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1549 1550 expire_mfc(rt); 1551 } 1552 } 1553 1554 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1555 curvnet); 1556 1557 CURVNET_RESTORE(); 1558 } 1559 1560 /* 1561 * Packet forwarding routine once entry in the cache is made 1562 */ 1563 static int 1564 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1565 { 1566 struct ip *ip = mtod(m, struct ip *); 1567 vifi_t vifi; 1568 int plen = ntohs(ip->ip_len); 1569 1570 MRW_LOCK_ASSERT(); 1571 NET_EPOCH_ASSERT(); 1572 1573 /* 1574 * If xmt_vif is not -1, send on only the requested vif. 1575 * 1576 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1577 */ 1578 if (xmt_vif < V_numvifs) { 1579 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1580 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1581 else 1582 phyint_send(ip, V_viftable + xmt_vif, m); 1583 return 1; 1584 } 1585 1586 /* 1587 * Don't forward if it didn't arrive from the parent vif for its origin. 1588 */ 1589 vifi = rt->mfc_parent; 1590 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1591 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1592 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1593 MRTSTAT_INC(mrts_wrong_if); 1594 ++rt->mfc_wrong_if; 1595 /* 1596 * If we are doing PIM assert processing, send a message 1597 * to the routing daemon. 1598 * 1599 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1600 * can complete the SPT switch, regardless of the type 1601 * of the iif (broadcast media, GRE tunnel, etc). 1602 */ 1603 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1604 V_viftable[vifi].v_ifp) { 1605 if (ifp == V_multicast_register_if) 1606 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1607 1608 /* Get vifi for the incoming packet */ 1609 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1610 ; 1611 if (vifi >= V_numvifs) 1612 return 0; /* The iif is not found: ignore the packet. */ 1613 1614 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1615 return 0; /* WRONGVIF disabled: ignore the packet */ 1616 1617 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1618 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1619 struct igmpmsg *im; 1620 int hlen = ip->ip_hl << 2; 1621 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1622 1623 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1624 mm = m_pullup(mm, hlen); 1625 if (mm == NULL) 1626 return ENOBUFS; 1627 1628 im = mtod(mm, struct igmpmsg *); 1629 im->im_msgtype = IGMPMSG_WRONGVIF; 1630 im->im_mbz = 0; 1631 im->im_vif = vifi; 1632 1633 MRTSTAT_INC(mrts_upcalls); 1634 1635 k_igmpsrc.sin_addr = im->im_src; 1636 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1637 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1638 MRTSTAT_INC(mrts_upq_sockfull); 1639 return ENOBUFS; 1640 } 1641 } 1642 } 1643 return 0; 1644 } 1645 1646 /* If I sourced this packet, it counts as output, else it was input. */ 1647 mtx_lock_spin(&V_viftable[vifi].v_spin); 1648 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1649 V_viftable[vifi].v_pkt_out++; 1650 V_viftable[vifi].v_bytes_out += plen; 1651 } else { 1652 V_viftable[vifi].v_pkt_in++; 1653 V_viftable[vifi].v_bytes_in += plen; 1654 } 1655 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1656 1657 rt->mfc_pkt_cnt++; 1658 rt->mfc_byte_cnt += plen; 1659 1660 /* 1661 * For each vif, decide if a copy of the packet should be forwarded. 1662 * Forward if: 1663 * - the ttl exceeds the vif's threshold 1664 * - there are group members downstream on interface 1665 */ 1666 for (vifi = 0; vifi < V_numvifs; vifi++) 1667 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1668 V_viftable[vifi].v_pkt_out++; 1669 V_viftable[vifi].v_bytes_out += plen; 1670 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1671 pim_register_send(ip, V_viftable + vifi, m, rt); 1672 else 1673 phyint_send(ip, V_viftable + vifi, m); 1674 } 1675 1676 /* 1677 * Perform upcall-related bw measuring. 1678 */ 1679 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1680 struct bw_meter *x; 1681 struct timeval now; 1682 1683 microtime(&now); 1684 /* Process meters for Greater-or-EQual case */ 1685 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1686 bw_meter_geq_receive_packet(x, plen, &now); 1687 1688 /* Process meters for Lower-or-EQual case */ 1689 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1690 /* 1691 * Record that a packet is received. 1692 * Spin lock has to be taken as callout context 1693 * (expire_bw_meter_leq) might modify these fields 1694 * as well 1695 */ 1696 mtx_lock_spin(&x->bm_spin); 1697 x->bm_measured.b_packets++; 1698 x->bm_measured.b_bytes += plen; 1699 mtx_unlock_spin(&x->bm_spin); 1700 } 1701 } 1702 1703 return 0; 1704 } 1705 1706 /* 1707 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1708 */ 1709 static int 1710 X_legal_vif_num(int vif) 1711 { 1712 int ret; 1713 1714 ret = 0; 1715 if (vif < 0) 1716 return (ret); 1717 1718 MRW_RLOCK(); 1719 if (vif < V_numvifs) 1720 ret = 1; 1721 MRW_RUNLOCK(); 1722 1723 return (ret); 1724 } 1725 1726 /* 1727 * Return the local address used by this vif 1728 */ 1729 static u_long 1730 X_ip_mcast_src(int vifi) 1731 { 1732 in_addr_t addr; 1733 1734 addr = INADDR_ANY; 1735 if (vifi < 0) 1736 return (addr); 1737 1738 MRW_RLOCK(); 1739 if (vifi < V_numvifs) 1740 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1741 MRW_RUNLOCK(); 1742 1743 return (addr); 1744 } 1745 1746 static void 1747 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1748 { 1749 struct mbuf *mb_copy; 1750 int hlen = ip->ip_hl << 2; 1751 1752 MRW_LOCK_ASSERT(); 1753 1754 /* 1755 * Make a new reference to the packet; make sure that 1756 * the IP header is actually copied, not just referenced, 1757 * so that ip_output() only scribbles on the copy. 1758 */ 1759 mb_copy = m_copypacket(m, M_NOWAIT); 1760 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1761 mb_copy = m_pullup(mb_copy, hlen); 1762 if (mb_copy == NULL) 1763 return; 1764 1765 send_packet(vifp, mb_copy); 1766 } 1767 1768 static void 1769 send_packet(struct vif *vifp, struct mbuf *m) 1770 { 1771 struct ip_moptions imo; 1772 int error __unused; 1773 1774 MRW_LOCK_ASSERT(); 1775 NET_EPOCH_ASSERT(); 1776 1777 imo.imo_multicast_ifp = vifp->v_ifp; 1778 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1779 imo.imo_multicast_loop = !!in_mcast_loop; 1780 imo.imo_multicast_vif = -1; 1781 STAILQ_INIT(&imo.imo_head); 1782 1783 /* 1784 * Re-entrancy should not be a problem here, because 1785 * the packets that we send out and are looped back at us 1786 * should get rejected because they appear to come from 1787 * the loopback interface, thus preventing looping. 1788 */ 1789 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1790 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1791 (ptrdiff_t)(vifp - V_viftable), error); 1792 } 1793 1794 /* 1795 * Stubs for old RSVP socket shim implementation. 1796 */ 1797 1798 static int 1799 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1800 { 1801 1802 return (EOPNOTSUPP); 1803 } 1804 1805 static void 1806 X_ip_rsvp_force_done(struct socket *so __unused) 1807 { 1808 1809 } 1810 1811 static int 1812 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1813 { 1814 struct mbuf *m; 1815 1816 m = *mp; 1817 *mp = NULL; 1818 if (!V_rsvp_on) 1819 m_freem(m); 1820 return (IPPROTO_DONE); 1821 } 1822 1823 /* 1824 * Code for bandwidth monitors 1825 */ 1826 1827 /* 1828 * Define common interface for timeval-related methods 1829 */ 1830 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1831 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1832 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1833 1834 static uint32_t 1835 compute_bw_meter_flags(struct bw_upcall *req) 1836 { 1837 uint32_t flags = 0; 1838 1839 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1840 flags |= BW_METER_UNIT_PACKETS; 1841 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1842 flags |= BW_METER_UNIT_BYTES; 1843 if (req->bu_flags & BW_UPCALL_GEQ) 1844 flags |= BW_METER_GEQ; 1845 if (req->bu_flags & BW_UPCALL_LEQ) 1846 flags |= BW_METER_LEQ; 1847 1848 return flags; 1849 } 1850 1851 static void 1852 expire_bw_meter_leq(void *arg) 1853 { 1854 struct bw_meter *x = arg; 1855 struct timeval now; 1856 /* 1857 * INFO: 1858 * callout is always executed with MRW_WLOCK taken 1859 */ 1860 1861 CURVNET_SET((struct vnet *)x->arg); 1862 1863 microtime(&now); 1864 1865 /* 1866 * Test if we should deliver an upcall 1867 */ 1868 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1869 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1870 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1871 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1872 /* Prepare an upcall for delivery */ 1873 bw_meter_prepare_upcall(x, &now); 1874 } 1875 1876 /* Send all upcalls that are pending delivery */ 1877 taskqueue_enqueue(V_task_queue, &V_task); 1878 1879 /* Reset counters */ 1880 x->bm_start_time = now; 1881 /* Spin lock has to be taken as ip_forward context 1882 * might modify these fields as well 1883 */ 1884 mtx_lock_spin(&x->bm_spin); 1885 x->bm_measured.b_bytes = 0; 1886 x->bm_measured.b_packets = 0; 1887 mtx_unlock_spin(&x->bm_spin); 1888 1889 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1890 1891 CURVNET_RESTORE(); 1892 } 1893 1894 /* 1895 * Add a bw_meter entry 1896 */ 1897 static int 1898 add_bw_upcall(struct bw_upcall *req) 1899 { 1900 struct mfc *mfc; 1901 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1902 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1903 struct timeval now; 1904 struct bw_meter *x, **bwm_ptr; 1905 uint32_t flags; 1906 1907 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1908 return EOPNOTSUPP; 1909 1910 /* Test if the flags are valid */ 1911 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1912 return EINVAL; 1913 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1914 return EINVAL; 1915 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1916 return EINVAL; 1917 1918 /* Test if the threshold time interval is valid */ 1919 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1920 return EINVAL; 1921 1922 flags = compute_bw_meter_flags(req); 1923 1924 /* 1925 * Find if we have already same bw_meter entry 1926 */ 1927 MRW_WLOCK(); 1928 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1929 if (mfc == NULL) { 1930 MRW_WUNLOCK(); 1931 return EADDRNOTAVAIL; 1932 } 1933 1934 /* Choose an appropriate bw_meter list */ 1935 if (req->bu_flags & BW_UPCALL_GEQ) 1936 bwm_ptr = &mfc->mfc_bw_meter_geq; 1937 else 1938 bwm_ptr = &mfc->mfc_bw_meter_leq; 1939 1940 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1941 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1942 &req->bu_threshold.b_time, ==)) 1943 && (x->bm_threshold.b_packets 1944 == req->bu_threshold.b_packets) 1945 && (x->bm_threshold.b_bytes 1946 == req->bu_threshold.b_bytes) 1947 && (x->bm_flags & BW_METER_USER_FLAGS) 1948 == flags) { 1949 MRW_WUNLOCK(); 1950 return 0; /* XXX Already installed */ 1951 } 1952 } 1953 1954 /* Allocate the new bw_meter entry */ 1955 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1956 if (x == NULL) { 1957 MRW_WUNLOCK(); 1958 return ENOBUFS; 1959 } 1960 1961 /* Set the new bw_meter entry */ 1962 x->bm_threshold.b_time = req->bu_threshold.b_time; 1963 microtime(&now); 1964 x->bm_start_time = now; 1965 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1966 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1967 x->bm_measured.b_packets = 0; 1968 x->bm_measured.b_bytes = 0; 1969 x->bm_flags = flags; 1970 x->bm_time_next = NULL; 1971 x->bm_mfc = mfc; 1972 x->arg = curvnet; 1973 sprintf(x->bm_spin_name, "BM spin %p", x); 1974 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1975 1976 /* For LEQ case create periodic callout */ 1977 if (req->bu_flags & BW_UPCALL_LEQ) { 1978 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1979 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1980 expire_bw_meter_leq, x); 1981 } 1982 1983 /* Add the new bw_meter entry to the front of entries for this MFC */ 1984 x->bm_mfc_next = *bwm_ptr; 1985 *bwm_ptr = x; 1986 1987 MRW_WUNLOCK(); 1988 1989 return 0; 1990 } 1991 1992 static void 1993 free_bw_list(struct bw_meter *list) 1994 { 1995 while (list != NULL) { 1996 struct bw_meter *x = list; 1997 1998 /* MRW_WLOCK must be held here */ 1999 if (x->bm_flags & BW_METER_LEQ) { 2000 callout_drain(&x->bm_meter_callout); 2001 mtx_destroy(&x->bm_spin); 2002 } 2003 2004 list = list->bm_mfc_next; 2005 free(x, M_BWMETER); 2006 } 2007 } 2008 2009 /* 2010 * Delete one or multiple bw_meter entries 2011 */ 2012 static int 2013 del_bw_upcall(struct bw_upcall *req) 2014 { 2015 struct mfc *mfc; 2016 struct bw_meter *x, **bwm_ptr; 2017 2018 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2019 return EOPNOTSUPP; 2020 2021 MRW_WLOCK(); 2022 2023 /* Find the corresponding MFC entry */ 2024 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2025 if (mfc == NULL) { 2026 MRW_WUNLOCK(); 2027 return EADDRNOTAVAIL; 2028 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2029 /* 2030 * Delete all bw_meter entries for this mfc 2031 */ 2032 struct bw_meter *list; 2033 2034 /* Free LEQ list */ 2035 list = mfc->mfc_bw_meter_leq; 2036 mfc->mfc_bw_meter_leq = NULL; 2037 free_bw_list(list); 2038 2039 /* Free GEQ list */ 2040 list = mfc->mfc_bw_meter_geq; 2041 mfc->mfc_bw_meter_geq = NULL; 2042 free_bw_list(list); 2043 MRW_WUNLOCK(); 2044 return 0; 2045 } else { /* Delete a single bw_meter entry */ 2046 struct bw_meter *prev; 2047 uint32_t flags = 0; 2048 2049 flags = compute_bw_meter_flags(req); 2050 2051 /* Choose an appropriate bw_meter list */ 2052 if (req->bu_flags & BW_UPCALL_GEQ) 2053 bwm_ptr = &mfc->mfc_bw_meter_geq; 2054 else 2055 bwm_ptr = &mfc->mfc_bw_meter_leq; 2056 2057 /* Find the bw_meter entry to delete */ 2058 for (prev = NULL, x = *bwm_ptr; x != NULL; 2059 prev = x, x = x->bm_mfc_next) { 2060 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2061 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2062 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2063 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2064 break; 2065 } 2066 if (x != NULL) { /* Delete entry from the list for this MFC */ 2067 if (prev != NULL) 2068 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2069 else 2070 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2071 2072 if (req->bu_flags & BW_UPCALL_LEQ) 2073 callout_stop(&x->bm_meter_callout); 2074 2075 MRW_WUNLOCK(); 2076 /* Free the bw_meter entry */ 2077 free(x, M_BWMETER); 2078 return 0; 2079 } else { 2080 MRW_WUNLOCK(); 2081 return EINVAL; 2082 } 2083 } 2084 __assert_unreachable(); 2085 } 2086 2087 /* 2088 * Perform bandwidth measurement processing that may result in an upcall 2089 */ 2090 static void 2091 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2092 { 2093 struct timeval delta; 2094 2095 MRW_LOCK_ASSERT(); 2096 2097 delta = *nowp; 2098 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2099 2100 /* 2101 * Processing for ">=" type of bw_meter entry. 2102 * bm_spin does not have to be hold here as in GEQ 2103 * case this is the only context accessing bm_measured. 2104 */ 2105 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2106 /* Reset the bw_meter entry */ 2107 x->bm_start_time = *nowp; 2108 x->bm_measured.b_packets = 0; 2109 x->bm_measured.b_bytes = 0; 2110 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2111 } 2112 2113 /* Record that a packet is received */ 2114 x->bm_measured.b_packets++; 2115 x->bm_measured.b_bytes += plen; 2116 2117 /* 2118 * Test if we should deliver an upcall 2119 */ 2120 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2121 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2122 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2123 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2124 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2125 /* Prepare an upcall for delivery */ 2126 bw_meter_prepare_upcall(x, nowp); 2127 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2128 } 2129 } 2130 } 2131 2132 /* 2133 * Prepare a bandwidth-related upcall 2134 */ 2135 static void 2136 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2137 { 2138 struct timeval delta; 2139 struct bw_upcall *u; 2140 2141 MRW_LOCK_ASSERT(); 2142 2143 /* 2144 * Compute the measured time interval 2145 */ 2146 delta = *nowp; 2147 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2148 2149 /* 2150 * Set the bw_upcall entry 2151 */ 2152 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2153 if (!u) { 2154 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2155 return; 2156 } 2157 u->bu_src = x->bm_mfc->mfc_origin; 2158 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2159 u->bu_threshold.b_time = x->bm_threshold.b_time; 2160 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2161 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2162 u->bu_measured.b_time = delta; 2163 u->bu_measured.b_packets = x->bm_measured.b_packets; 2164 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2165 u->bu_flags = 0; 2166 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2167 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2168 if (x->bm_flags & BW_METER_UNIT_BYTES) 2169 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2170 if (x->bm_flags & BW_METER_GEQ) 2171 u->bu_flags |= BW_UPCALL_GEQ; 2172 if (x->bm_flags & BW_METER_LEQ) 2173 u->bu_flags |= BW_UPCALL_LEQ; 2174 2175 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2176 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2177 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2178 taskqueue_enqueue(V_task_queue, &V_task); 2179 } 2180 } 2181 /* 2182 * Send the pending bandwidth-related upcalls 2183 */ 2184 static void 2185 bw_upcalls_send(void) 2186 { 2187 struct mbuf *m; 2188 int len = 0; 2189 struct bw_upcall *bu; 2190 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2191 static struct igmpmsg igmpmsg = { 2192 0, /* unused1 */ 2193 0, /* unused2 */ 2194 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2195 0, /* im_mbz */ 2196 0, /* im_vif */ 2197 0, /* unused3 */ 2198 { 0 }, /* im_src */ 2199 { 0 } /* im_dst */ 2200 }; 2201 2202 MRW_LOCK_ASSERT(); 2203 2204 if (buf_ring_empty(V_bw_upcalls_ring)) 2205 return; 2206 2207 /* 2208 * Allocate a new mbuf, initialize it with the header and 2209 * the payload for the pending calls. 2210 */ 2211 m = m_gethdr(M_NOWAIT, MT_DATA); 2212 if (m == NULL) { 2213 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2214 return; 2215 } 2216 2217 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2218 len += sizeof(struct igmpmsg); 2219 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2220 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2221 len += sizeof(struct bw_upcall); 2222 free(bu, M_MRTABLE); 2223 } 2224 2225 /* 2226 * Send the upcalls 2227 * XXX do we need to set the address in k_igmpsrc ? 2228 */ 2229 MRTSTAT_INC(mrts_upcalls); 2230 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2231 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2232 MRTSTAT_INC(mrts_upq_sockfull); 2233 } 2234 } 2235 2236 /* 2237 * A periodic function for sending all upcalls that are pending delivery 2238 */ 2239 static void 2240 expire_bw_upcalls_send(void *arg) 2241 { 2242 CURVNET_SET((struct vnet *) arg); 2243 2244 /* This callout is run with MRW_RLOCK taken */ 2245 2246 bw_upcalls_send(); 2247 2248 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2249 curvnet); 2250 CURVNET_RESTORE(); 2251 } 2252 2253 /* 2254 * End of bandwidth monitoring code 2255 */ 2256 2257 /* 2258 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2259 * 2260 */ 2261 static int 2262 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2263 struct mfc *rt) 2264 { 2265 struct mbuf *mb_copy, *mm; 2266 2267 /* 2268 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2269 * rendezvous point was unspecified, and we were told not to. 2270 */ 2271 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2272 in_nullhost(rt->mfc_rp)) 2273 return 0; 2274 2275 mb_copy = pim_register_prepare(ip, m); 2276 if (mb_copy == NULL) 2277 return ENOBUFS; 2278 2279 /* 2280 * Send all the fragments. Note that the mbuf for each fragment 2281 * is freed by the sending machinery. 2282 */ 2283 for (mm = mb_copy; mm; mm = mb_copy) { 2284 mb_copy = mm->m_nextpkt; 2285 mm->m_nextpkt = 0; 2286 mm = m_pullup(mm, sizeof(struct ip)); 2287 if (mm != NULL) { 2288 ip = mtod(mm, struct ip *); 2289 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2290 pim_register_send_rp(ip, vifp, mm, rt); 2291 } else { 2292 pim_register_send_upcall(ip, vifp, mm, rt); 2293 } 2294 } 2295 } 2296 2297 return 0; 2298 } 2299 2300 /* 2301 * Return a copy of the data packet that is ready for PIM Register 2302 * encapsulation. 2303 * XXX: Note that in the returned copy the IP header is a valid one. 2304 */ 2305 static struct mbuf * 2306 pim_register_prepare(struct ip *ip, struct mbuf *m) 2307 { 2308 struct mbuf *mb_copy = NULL; 2309 int mtu; 2310 2311 /* Take care of delayed checksums */ 2312 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2313 in_delayed_cksum(m); 2314 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2315 } 2316 2317 /* 2318 * Copy the old packet & pullup its IP header into the 2319 * new mbuf so we can modify it. 2320 */ 2321 mb_copy = m_copypacket(m, M_NOWAIT); 2322 if (mb_copy == NULL) 2323 return NULL; 2324 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2325 if (mb_copy == NULL) 2326 return NULL; 2327 2328 /* take care of the TTL */ 2329 ip = mtod(mb_copy, struct ip *); 2330 --ip->ip_ttl; 2331 2332 /* Compute the MTU after the PIM Register encapsulation */ 2333 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2334 2335 if (ntohs(ip->ip_len) <= mtu) { 2336 /* Turn the IP header into a valid one */ 2337 ip->ip_sum = 0; 2338 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2339 } else { 2340 /* Fragment the packet */ 2341 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2342 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2343 m_freem(mb_copy); 2344 return NULL; 2345 } 2346 } 2347 return mb_copy; 2348 } 2349 2350 /* 2351 * Send an upcall with the data packet to the user-level process. 2352 */ 2353 static int 2354 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2355 struct mbuf *mb_copy, struct mfc *rt) 2356 { 2357 struct mbuf *mb_first; 2358 int len = ntohs(ip->ip_len); 2359 struct igmpmsg *im; 2360 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2361 2362 MRW_LOCK_ASSERT(); 2363 2364 /* 2365 * Add a new mbuf with an upcall header 2366 */ 2367 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2368 if (mb_first == NULL) { 2369 m_freem(mb_copy); 2370 return ENOBUFS; 2371 } 2372 mb_first->m_data += max_linkhdr; 2373 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2374 mb_first->m_len = sizeof(struct igmpmsg); 2375 mb_first->m_next = mb_copy; 2376 2377 /* Send message to routing daemon */ 2378 im = mtod(mb_first, struct igmpmsg *); 2379 im->im_msgtype = IGMPMSG_WHOLEPKT; 2380 im->im_mbz = 0; 2381 im->im_vif = vifp - V_viftable; 2382 im->im_src = ip->ip_src; 2383 im->im_dst = ip->ip_dst; 2384 2385 k_igmpsrc.sin_addr = ip->ip_src; 2386 2387 MRTSTAT_INC(mrts_upcalls); 2388 2389 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2390 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2391 MRTSTAT_INC(mrts_upq_sockfull); 2392 return ENOBUFS; 2393 } 2394 2395 /* Keep statistics */ 2396 PIMSTAT_INC(pims_snd_registers_msgs); 2397 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2398 2399 return 0; 2400 } 2401 2402 /* 2403 * Encapsulate the data packet in PIM Register message and send it to the RP. 2404 */ 2405 static int 2406 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2407 struct mfc *rt) 2408 { 2409 struct mbuf *mb_first; 2410 struct ip *ip_outer; 2411 struct pim_encap_pimhdr *pimhdr; 2412 int len = ntohs(ip->ip_len); 2413 vifi_t vifi = rt->mfc_parent; 2414 2415 MRW_LOCK_ASSERT(); 2416 2417 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2418 m_freem(mb_copy); 2419 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2420 } 2421 2422 /* 2423 * Add a new mbuf with the encapsulating header 2424 */ 2425 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2426 if (mb_first == NULL) { 2427 m_freem(mb_copy); 2428 return ENOBUFS; 2429 } 2430 mb_first->m_data += max_linkhdr; 2431 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2432 mb_first->m_next = mb_copy; 2433 2434 mb_first->m_pkthdr.len = len + mb_first->m_len; 2435 2436 /* 2437 * Fill in the encapsulating IP and PIM header 2438 */ 2439 ip_outer = mtod(mb_first, struct ip *); 2440 *ip_outer = pim_encap_iphdr; 2441 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2442 sizeof(pim_encap_pimhdr)); 2443 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2444 ip_outer->ip_dst = rt->mfc_rp; 2445 /* 2446 * Copy the inner header TOS to the outer header, and take care of the 2447 * IP_DF bit. 2448 */ 2449 ip_outer->ip_tos = ip->ip_tos; 2450 if (ip->ip_off & htons(IP_DF)) 2451 ip_outer->ip_off |= htons(IP_DF); 2452 ip_fillid(ip_outer); 2453 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2454 + sizeof(pim_encap_iphdr)); 2455 *pimhdr = pim_encap_pimhdr; 2456 /* If the iif crosses a border, set the Border-bit */ 2457 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2458 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2459 2460 mb_first->m_data += sizeof(pim_encap_iphdr); 2461 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2462 mb_first->m_data -= sizeof(pim_encap_iphdr); 2463 2464 send_packet(vifp, mb_first); 2465 2466 /* Keep statistics */ 2467 PIMSTAT_INC(pims_snd_registers_msgs); 2468 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2469 2470 return 0; 2471 } 2472 2473 /* 2474 * pim_encapcheck() is called by the encap4_input() path at runtime to 2475 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2476 * into the kernel. 2477 */ 2478 static int 2479 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2480 int proto __unused, void *arg __unused) 2481 { 2482 2483 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2484 return (8); /* claim the datagram. */ 2485 } 2486 2487 /* 2488 * PIM-SMv2 and PIM-DM messages processing. 2489 * Receives and verifies the PIM control messages, and passes them 2490 * up to the listening socket, using rip_input(). 2491 * The only message with special processing is the PIM_REGISTER message 2492 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2493 * is passed to if_simloop(). 2494 */ 2495 static int 2496 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2497 { 2498 struct ip *ip = mtod(m, struct ip *); 2499 struct pim *pim; 2500 int iphlen = off; 2501 int minlen; 2502 int datalen = ntohs(ip->ip_len) - iphlen; 2503 int ip_tos; 2504 2505 /* Keep statistics */ 2506 PIMSTAT_INC(pims_rcv_total_msgs); 2507 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2508 2509 /* 2510 * Validate lengths 2511 */ 2512 if (datalen < PIM_MINLEN) { 2513 PIMSTAT_INC(pims_rcv_tooshort); 2514 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2515 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2516 m_freem(m); 2517 return (IPPROTO_DONE); 2518 } 2519 2520 /* 2521 * If the packet is at least as big as a REGISTER, go agead 2522 * and grab the PIM REGISTER header size, to avoid another 2523 * possible m_pullup() later. 2524 * 2525 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2526 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2527 */ 2528 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2529 /* 2530 * Get the IP and PIM headers in contiguous memory, and 2531 * possibly the PIM REGISTER header. 2532 */ 2533 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2534 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2535 return (IPPROTO_DONE); 2536 } 2537 2538 /* m_pullup() may have given us a new mbuf so reset ip. */ 2539 ip = mtod(m, struct ip *); 2540 ip_tos = ip->ip_tos; 2541 2542 /* adjust mbuf to point to the PIM header */ 2543 m->m_data += iphlen; 2544 m->m_len -= iphlen; 2545 pim = mtod(m, struct pim *); 2546 2547 /* 2548 * Validate checksum. If PIM REGISTER, exclude the data packet. 2549 * 2550 * XXX: some older PIMv2 implementations don't make this distinction, 2551 * so for compatibility reason perform the checksum over part of the 2552 * message, and if error, then over the whole message. 2553 */ 2554 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2555 /* do nothing, checksum okay */ 2556 } else if (in_cksum(m, datalen)) { 2557 PIMSTAT_INC(pims_rcv_badsum); 2558 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2559 m_freem(m); 2560 return (IPPROTO_DONE); 2561 } 2562 2563 /* PIM version check */ 2564 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2565 PIMSTAT_INC(pims_rcv_badversion); 2566 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2567 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2568 m_freem(m); 2569 return (IPPROTO_DONE); 2570 } 2571 2572 /* restore mbuf back to the outer IP */ 2573 m->m_data -= iphlen; 2574 m->m_len += iphlen; 2575 2576 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2577 /* 2578 * Since this is a REGISTER, we'll make a copy of the register 2579 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2580 * routing daemon. 2581 */ 2582 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2583 struct mbuf *mcp; 2584 struct ip *encap_ip; 2585 u_int32_t *reghdr; 2586 struct ifnet *vifp; 2587 2588 MRW_RLOCK(); 2589 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2590 MRW_RUNLOCK(); 2591 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2592 (int)V_reg_vif_num); 2593 m_freem(m); 2594 return (IPPROTO_DONE); 2595 } 2596 /* XXX need refcnt? */ 2597 vifp = V_viftable[V_reg_vif_num].v_ifp; 2598 MRW_RUNLOCK(); 2599 2600 /* 2601 * Validate length 2602 */ 2603 if (datalen < PIM_REG_MINLEN) { 2604 PIMSTAT_INC(pims_rcv_tooshort); 2605 PIMSTAT_INC(pims_rcv_badregisters); 2606 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2607 m_freem(m); 2608 return (IPPROTO_DONE); 2609 } 2610 2611 reghdr = (u_int32_t *)(pim + 1); 2612 encap_ip = (struct ip *)(reghdr + 1); 2613 2614 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2615 __func__, ntohl(encap_ip->ip_src.s_addr), 2616 ntohs(encap_ip->ip_len)); 2617 2618 /* verify the version number of the inner packet */ 2619 if (encap_ip->ip_v != IPVERSION) { 2620 PIMSTAT_INC(pims_rcv_badregisters); 2621 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2622 m_freem(m); 2623 return (IPPROTO_DONE); 2624 } 2625 2626 /* verify the inner packet is destined to a mcast group */ 2627 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2628 PIMSTAT_INC(pims_rcv_badregisters); 2629 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2630 ntohl(encap_ip->ip_dst.s_addr)); 2631 m_freem(m); 2632 return (IPPROTO_DONE); 2633 } 2634 2635 /* If a NULL_REGISTER, pass it to the daemon */ 2636 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2637 goto pim_input_to_daemon; 2638 2639 /* 2640 * Copy the TOS from the outer IP header to the inner IP header. 2641 */ 2642 if (encap_ip->ip_tos != ip_tos) { 2643 /* Outer TOS -> inner TOS */ 2644 encap_ip->ip_tos = ip_tos; 2645 /* Recompute the inner header checksum. Sigh... */ 2646 2647 /* adjust mbuf to point to the inner IP header */ 2648 m->m_data += (iphlen + PIM_MINLEN); 2649 m->m_len -= (iphlen + PIM_MINLEN); 2650 2651 encap_ip->ip_sum = 0; 2652 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2653 2654 /* restore mbuf to point back to the outer IP header */ 2655 m->m_data -= (iphlen + PIM_MINLEN); 2656 m->m_len += (iphlen + PIM_MINLEN); 2657 } 2658 2659 /* 2660 * Decapsulate the inner IP packet and loopback to forward it 2661 * as a normal multicast packet. Also, make a copy of the 2662 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2663 * to pass to the daemon later, so it can take the appropriate 2664 * actions (e.g., send back PIM_REGISTER_STOP). 2665 * XXX: here m->m_data points to the outer IP header. 2666 */ 2667 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2668 if (mcp == NULL) { 2669 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2670 m_freem(m); 2671 return (IPPROTO_DONE); 2672 } 2673 2674 /* Keep statistics */ 2675 /* XXX: registers_bytes include only the encap. mcast pkt */ 2676 PIMSTAT_INC(pims_rcv_registers_msgs); 2677 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2678 2679 /* 2680 * forward the inner ip packet; point m_data at the inner ip. 2681 */ 2682 m_adj(m, iphlen + PIM_MINLEN); 2683 2684 CTR4(KTR_IPMF, 2685 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2686 __func__, 2687 (u_long)ntohl(encap_ip->ip_src.s_addr), 2688 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2689 (int)V_reg_vif_num); 2690 2691 /* NB: vifp was collected above; can it change on us? */ 2692 if_simloop(vifp, m, dst.sin_family, 0); 2693 2694 /* prepare the register head to send to the mrouting daemon */ 2695 m = mcp; 2696 } 2697 2698 pim_input_to_daemon: 2699 /* 2700 * Pass the PIM message up to the daemon; if it is a Register message, 2701 * pass the 'head' only up to the daemon. This includes the 2702 * outer IP header, PIM header, PIM-Register header and the 2703 * inner IP header. 2704 * XXX: the outer IP header pkt size of a Register is not adjust to 2705 * reflect the fact that the inner multicast data is truncated. 2706 */ 2707 return (rip_input(&m, &off, proto)); 2708 } 2709 2710 static int 2711 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2712 { 2713 struct mfc *rt; 2714 int error, i; 2715 2716 if (req->newptr) 2717 return (EPERM); 2718 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2719 return (0); 2720 error = sysctl_wire_old_buffer(req, 0); 2721 if (error) 2722 return (error); 2723 2724 MRW_RLOCK(); 2725 for (i = 0; i < mfchashsize; i++) { 2726 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2727 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2728 if (error) 2729 goto out_locked; 2730 } 2731 } 2732 out_locked: 2733 MRW_RUNLOCK(); 2734 return (error); 2735 } 2736 2737 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2738 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2739 "IPv4 Multicast Forwarding Table " 2740 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2741 2742 static int 2743 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2744 { 2745 int error, i; 2746 2747 if (req->newptr) 2748 return (EPERM); 2749 if (V_viftable == NULL) /* XXX unlocked */ 2750 return (0); 2751 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2752 if (error) 2753 return (error); 2754 2755 MRW_RLOCK(); 2756 /* Copy out user-visible portion of vif entry. */ 2757 for (i = 0; i < MAXVIFS; i++) { 2758 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2759 if (error) 2760 break; 2761 } 2762 MRW_RUNLOCK(); 2763 return (error); 2764 } 2765 2766 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2767 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2768 sysctl_viflist, "S,vif[MAXVIFS]", 2769 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2770 2771 static void 2772 vnet_mroute_init(const void *unused __unused) 2773 { 2774 2775 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2776 2777 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2778 M_MRTABLE, M_WAITOK|M_ZERO); 2779 2780 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2781 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2782 2783 /* Prepare taskqueue */ 2784 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2785 taskqueue_thread_enqueue, &V_task_queue); 2786 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2787 } 2788 2789 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2790 NULL); 2791 2792 static void 2793 vnet_mroute_uninit(const void *unused __unused) 2794 { 2795 2796 /* Taskqueue should be cancelled and drained before freeing */ 2797 taskqueue_free(V_task_queue); 2798 2799 free(V_viftable, M_MRTABLE); 2800 free(V_nexpire, M_MRTABLE); 2801 V_nexpire = NULL; 2802 } 2803 2804 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2805 vnet_mroute_uninit, NULL); 2806 2807 static int 2808 ip_mroute_modevent(module_t mod, int type, void *unused) 2809 { 2810 2811 switch (type) { 2812 case MOD_LOAD: 2813 MRW_LOCK_INIT(); 2814 2815 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2816 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2817 if (if_detach_event_tag == NULL) { 2818 printf("ip_mroute: unable to register " 2819 "ifnet_departure_event handler\n"); 2820 MRW_LOCK_DESTROY(); 2821 return (EINVAL); 2822 } 2823 2824 if (!powerof2(mfchashsize)) { 2825 printf("WARNING: %s not a power of 2; using default\n", 2826 "net.inet.ip.mfchashsize"); 2827 mfchashsize = MFCHASHSIZE; 2828 } 2829 2830 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2831 2832 ip_mcast_src = X_ip_mcast_src; 2833 ip_mforward = X_ip_mforward; 2834 ip_mrouter_done = X_ip_mrouter_done; 2835 ip_mrouter_get = X_ip_mrouter_get; 2836 ip_mrouter_set = X_ip_mrouter_set; 2837 2838 ip_rsvp_force_done = X_ip_rsvp_force_done; 2839 ip_rsvp_vif = X_ip_rsvp_vif; 2840 2841 legal_vif_num = X_legal_vif_num; 2842 mrt_ioctl = X_mrt_ioctl; 2843 rsvp_input_p = X_rsvp_input; 2844 break; 2845 2846 case MOD_UNLOAD: 2847 /* 2848 * Typically module unload happens after the user-level 2849 * process has shutdown the kernel services (the check 2850 * below insures someone can't just yank the module out 2851 * from under a running process). But if the module is 2852 * just loaded and then unloaded w/o starting up a user 2853 * process we still need to cleanup. 2854 */ 2855 MRW_WLOCK(); 2856 if (ip_mrouter_cnt != 0) { 2857 MRW_WUNLOCK(); 2858 return (EINVAL); 2859 } 2860 ip_mrouter_unloading = 1; 2861 MRW_WUNLOCK(); 2862 2863 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2864 2865 if (pim_encap_cookie) { 2866 ip_encap_detach(pim_encap_cookie); 2867 pim_encap_cookie = NULL; 2868 } 2869 2870 ip_mcast_src = NULL; 2871 ip_mforward = NULL; 2872 ip_mrouter_done = NULL; 2873 ip_mrouter_get = NULL; 2874 ip_mrouter_set = NULL; 2875 2876 ip_rsvp_force_done = NULL; 2877 ip_rsvp_vif = NULL; 2878 2879 legal_vif_num = NULL; 2880 mrt_ioctl = NULL; 2881 rsvp_input_p = NULL; 2882 2883 MRW_LOCK_DESTROY(); 2884 break; 2885 2886 default: 2887 return EOPNOTSUPP; 2888 } 2889 return 0; 2890 } 2891 2892 static moduledata_t ip_mroutemod = { 2893 "ip_mroute", 2894 ip_mroute_modevent, 2895 0 2896 }; 2897 2898 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2899