1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/param.h> 81 #include <sys/kernel.h> 82 #include <sys/stddef.h> 83 #include <sys/eventhandler.h> 84 #include <sys/lock.h> 85 #include <sys/ktr.h> 86 #include <sys/malloc.h> 87 #include <sys/mbuf.h> 88 #include <sys/module.h> 89 #include <sys/priv.h> 90 #include <sys/protosw.h> 91 #include <sys/signalvar.h> 92 #include <sys/socket.h> 93 #include <sys/socketvar.h> 94 #include <sys/sockio.h> 95 #include <sys/sx.h> 96 #include <sys/sysctl.h> 97 #include <sys/syslog.h> 98 #include <sys/systm.h> 99 #include <sys/time.h> 100 #include <sys/counter.h> 101 102 #include <net/if.h> 103 #include <net/if_var.h> 104 #include <net/netisr.h> 105 #include <net/route.h> 106 #include <net/vnet.h> 107 108 #include <netinet/in.h> 109 #include <netinet/igmp.h> 110 #include <netinet/in_systm.h> 111 #include <netinet/in_var.h> 112 #include <netinet/ip.h> 113 #include <netinet/ip_encap.h> 114 #include <netinet/ip_mroute.h> 115 #include <netinet/ip_var.h> 116 #include <netinet/ip_options.h> 117 #include <netinet/pim.h> 118 #include <netinet/pim_var.h> 119 #include <netinet/udp.h> 120 121 #include <machine/in_cksum.h> 122 123 #ifndef KTR_IPMF 124 #define KTR_IPMF KTR_INET 125 #endif 126 127 #define VIFI_INVALID ((vifi_t) -1) 128 129 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 130 131 /* 132 * Locking. We use two locks: one for the virtual interface table and 133 * one for the forwarding table. These locks may be nested in which case 134 * the VIF lock must always be taken first. Note that each lock is used 135 * to cover not only the specific data structure but also related data 136 * structures. 137 */ 138 139 static struct mtx mrouter_mtx; 140 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 141 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 142 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 143 #define MROUTER_LOCK_INIT() \ 144 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 145 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 146 147 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 148 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 149 150 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 151 VNET_PCPUSTAT_SYSINIT(mrtstat); 152 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 153 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 154 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 155 "netinet/ip_mroute.h)"); 156 157 VNET_DEFINE_STATIC(u_long, mfchash); 158 #define V_mfchash VNET(mfchash) 159 #define MFCHASH(a, g) \ 160 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 161 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 162 #define MFCHASHSIZE 256 163 164 static u_long mfchashsize; /* Hash size */ 165 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 166 #define V_nexpire VNET(nexpire) 167 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 168 #define V_mfchashtbl VNET(mfchashtbl) 169 170 static struct mtx mfc_mtx; 171 #define MFC_LOCK() mtx_lock(&mfc_mtx) 172 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 173 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 174 #define MFC_LOCK_INIT() \ 175 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 176 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 177 178 VNET_DEFINE_STATIC(vifi_t, numvifs); 179 #define V_numvifs VNET(numvifs) 180 VNET_DEFINE_STATIC(struct vif *, viftable); 181 #define V_viftable VNET(viftable) 182 183 static struct mtx vif_mtx; 184 #define VIF_LOCK() mtx_lock(&vif_mtx) 185 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 186 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 187 #define VIF_LOCK_INIT() \ 188 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 189 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 197 #define UPCALL_EXPIRE 6 /* number of timeouts */ 198 199 /* 200 * Bandwidth meter variables and constants 201 */ 202 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 203 204 /* 205 * Pending upcalls are stored in a vector which is flushed when 206 * full, or periodically 207 */ 208 VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls); 209 #define V_bw_upcalls VNET(bw_upcalls) 210 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */ 211 #define V_bw_upcalls_n VNET(bw_upcalls_n) 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 215 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 216 217 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 218 VNET_PCPUSTAT_SYSINIT(pimstat); 219 VNET_PCPUSTAT_SYSUNINIT(pimstat); 220 221 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 222 "PIM"); 223 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 224 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 225 226 static u_long pim_squelch_wholepkt = 0; 227 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 228 &pim_squelch_wholepkt, 0, 229 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 230 231 static const struct encaptab *pim_encap_cookie; 232 static int pim_encapcheck(const struct mbuf *, int, int, void *); 233 static int pim_input(struct mbuf *, int, int, void *); 234 235 extern int in_mcast_loop; 236 237 static const struct encap_config ipv4_encap_cfg = { 238 .proto = IPPROTO_PIM, 239 .min_length = sizeof(struct ip) + PIM_MINLEN, 240 .exact_match = 8, 241 .check = pim_encapcheck, 242 .input = pim_input 243 }; 244 245 /* 246 * Note: the PIM Register encapsulation adds the following in front of a 247 * data packet: 248 * 249 * struct pim_encap_hdr { 250 * struct ip ip; 251 * struct pim_encap_pimhdr pim; 252 * } 253 * 254 */ 255 256 struct pim_encap_pimhdr { 257 struct pim pim; 258 uint32_t flags; 259 }; 260 #define PIM_ENCAP_TTL 64 261 262 static struct ip pim_encap_iphdr = { 263 #if BYTE_ORDER == LITTLE_ENDIAN 264 sizeof(struct ip) >> 2, 265 IPVERSION, 266 #else 267 IPVERSION, 268 sizeof(struct ip) >> 2, 269 #endif 270 0, /* tos */ 271 sizeof(struct ip), /* total length */ 272 0, /* id */ 273 0, /* frag offset */ 274 PIM_ENCAP_TTL, 275 IPPROTO_PIM, 276 0, /* checksum */ 277 }; 278 279 static struct pim_encap_pimhdr pim_encap_pimhdr = { 280 { 281 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 282 0, /* reserved */ 283 0, /* checksum */ 284 }, 285 0 /* flags */ 286 }; 287 288 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 289 #define V_reg_vif_num VNET(reg_vif_num) 290 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if); 291 #define V_multicast_register_if VNET(multicast_register_if) 292 293 /* 294 * Private variables. 295 */ 296 297 static u_long X_ip_mcast_src(int); 298 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 299 struct ip_moptions *); 300 static int X_ip_mrouter_done(void); 301 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 302 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 303 static int X_legal_vif_num(int); 304 static int X_mrt_ioctl(u_long, caddr_t, int); 305 306 static int add_bw_upcall(struct bw_upcall *); 307 static int add_mfc(struct mfcctl2 *); 308 static int add_vif(struct vifctl *); 309 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 310 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 311 struct timeval *); 312 static void bw_upcalls_send(void); 313 static int del_bw_upcall(struct bw_upcall *); 314 static int del_mfc(struct mfcctl2 *); 315 static int del_vif(vifi_t); 316 static int del_vif_locked(vifi_t); 317 static void expire_bw_upcalls_send(void *); 318 static void expire_mfc(struct mfc *); 319 static void expire_upcalls(void *); 320 static void free_bw_list(struct bw_meter *); 321 static int get_sg_cnt(struct sioc_sg_req *); 322 static int get_vif_cnt(struct sioc_vif_req *); 323 static void if_detached_event(void *, struct ifnet *); 324 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 325 static int ip_mrouter_init(struct socket *, int); 326 static __inline struct mfc * 327 mfc_find(struct in_addr *, struct in_addr *); 328 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 329 static struct mbuf * 330 pim_register_prepare(struct ip *, struct mbuf *); 331 static int pim_register_send(struct ip *, struct vif *, 332 struct mbuf *, struct mfc *); 333 static int pim_register_send_rp(struct ip *, struct vif *, 334 struct mbuf *, struct mfc *); 335 static int pim_register_send_upcall(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static void send_packet(struct vif *, struct mbuf *); 338 static int set_api_config(uint32_t *); 339 static int set_assert(int); 340 static int socket_send(struct socket *, struct mbuf *, 341 struct sockaddr_in *); 342 343 /* 344 * Kernel multicast forwarding API capabilities and setup. 345 * If more API capabilities are added to the kernel, they should be 346 * recorded in `mrt_api_support'. 347 */ 348 #define MRT_API_VERSION 0x0305 349 350 static const int mrt_api_version = MRT_API_VERSION; 351 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 352 MRT_MFC_FLAGS_BORDER_VIF | 353 MRT_MFC_RP | 354 MRT_MFC_BW_UPCALL); 355 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 356 #define V_mrt_api_config VNET(mrt_api_config) 357 VNET_DEFINE_STATIC(int, pim_assert_enabled); 358 #define V_pim_assert_enabled VNET(pim_assert_enabled) 359 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 360 361 /* 362 * Find a route for a given origin IP address and multicast group address. 363 * Statistics must be updated by the caller. 364 */ 365 static __inline struct mfc * 366 mfc_find(struct in_addr *o, struct in_addr *g) 367 { 368 struct mfc *rt; 369 370 MFC_LOCK_ASSERT(); 371 372 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 373 if (in_hosteq(rt->mfc_origin, *o) && 374 in_hosteq(rt->mfc_mcastgrp, *g) && 375 TAILQ_EMPTY(&rt->mfc_stall)) 376 break; 377 } 378 379 return (rt); 380 } 381 382 /* 383 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 384 */ 385 static int 386 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 387 { 388 int error, optval; 389 vifi_t vifi; 390 struct vifctl vifc; 391 struct mfcctl2 mfc; 392 struct bw_upcall bw_upcall; 393 uint32_t i; 394 395 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 396 return EPERM; 397 398 error = 0; 399 switch (sopt->sopt_name) { 400 case MRT_INIT: 401 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 402 if (error) 403 break; 404 error = ip_mrouter_init(so, optval); 405 break; 406 407 case MRT_DONE: 408 error = ip_mrouter_done(); 409 break; 410 411 case MRT_ADD_VIF: 412 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 413 if (error) 414 break; 415 error = add_vif(&vifc); 416 break; 417 418 case MRT_DEL_VIF: 419 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 420 if (error) 421 break; 422 error = del_vif(vifi); 423 break; 424 425 case MRT_ADD_MFC: 426 case MRT_DEL_MFC: 427 /* 428 * select data size depending on API version. 429 */ 430 if (sopt->sopt_name == MRT_ADD_MFC && 431 V_mrt_api_config & MRT_API_FLAGS_ALL) { 432 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 433 sizeof(struct mfcctl2)); 434 } else { 435 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 436 sizeof(struct mfcctl)); 437 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 438 sizeof(mfc) - sizeof(struct mfcctl)); 439 } 440 if (error) 441 break; 442 if (sopt->sopt_name == MRT_ADD_MFC) 443 error = add_mfc(&mfc); 444 else 445 error = del_mfc(&mfc); 446 break; 447 448 case MRT_ASSERT: 449 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 450 if (error) 451 break; 452 set_assert(optval); 453 break; 454 455 case MRT_API_CONFIG: 456 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 457 if (!error) 458 error = set_api_config(&i); 459 if (!error) 460 error = sooptcopyout(sopt, &i, sizeof i); 461 break; 462 463 case MRT_ADD_BW_UPCALL: 464 case MRT_DEL_BW_UPCALL: 465 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 466 sizeof bw_upcall); 467 if (error) 468 break; 469 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 470 error = add_bw_upcall(&bw_upcall); 471 else 472 error = del_bw_upcall(&bw_upcall); 473 break; 474 475 default: 476 error = EOPNOTSUPP; 477 break; 478 } 479 return error; 480 } 481 482 /* 483 * Handle MRT getsockopt commands 484 */ 485 static int 486 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 487 { 488 int error; 489 490 switch (sopt->sopt_name) { 491 case MRT_VERSION: 492 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 493 break; 494 495 case MRT_ASSERT: 496 error = sooptcopyout(sopt, &V_pim_assert_enabled, 497 sizeof V_pim_assert_enabled); 498 break; 499 500 case MRT_API_SUPPORT: 501 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 502 break; 503 504 case MRT_API_CONFIG: 505 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 506 break; 507 508 default: 509 error = EOPNOTSUPP; 510 break; 511 } 512 return error; 513 } 514 515 /* 516 * Handle ioctl commands to obtain information from the cache 517 */ 518 static int 519 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 520 { 521 int error = 0; 522 523 /* 524 * Currently the only function calling this ioctl routine is rtioctl_fib(). 525 * Typically, only root can create the raw socket in order to execute 526 * this ioctl method, however the request might be coming from a prison 527 */ 528 error = priv_check(curthread, PRIV_NETINET_MROUTE); 529 if (error) 530 return (error); 531 switch (cmd) { 532 case (SIOCGETVIFCNT): 533 error = get_vif_cnt((struct sioc_vif_req *)data); 534 break; 535 536 case (SIOCGETSGCNT): 537 error = get_sg_cnt((struct sioc_sg_req *)data); 538 break; 539 540 default: 541 error = EINVAL; 542 break; 543 } 544 return error; 545 } 546 547 /* 548 * returns the packet, byte, rpf-failure count for the source group provided 549 */ 550 static int 551 get_sg_cnt(struct sioc_sg_req *req) 552 { 553 struct mfc *rt; 554 555 MFC_LOCK(); 556 rt = mfc_find(&req->src, &req->grp); 557 if (rt == NULL) { 558 MFC_UNLOCK(); 559 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 560 return EADDRNOTAVAIL; 561 } 562 req->pktcnt = rt->mfc_pkt_cnt; 563 req->bytecnt = rt->mfc_byte_cnt; 564 req->wrong_if = rt->mfc_wrong_if; 565 MFC_UNLOCK(); 566 return 0; 567 } 568 569 /* 570 * returns the input and output packet and byte counts on the vif provided 571 */ 572 static int 573 get_vif_cnt(struct sioc_vif_req *req) 574 { 575 vifi_t vifi = req->vifi; 576 577 VIF_LOCK(); 578 if (vifi >= V_numvifs) { 579 VIF_UNLOCK(); 580 return EINVAL; 581 } 582 583 req->icount = V_viftable[vifi].v_pkt_in; 584 req->ocount = V_viftable[vifi].v_pkt_out; 585 req->ibytes = V_viftable[vifi].v_bytes_in; 586 req->obytes = V_viftable[vifi].v_bytes_out; 587 VIF_UNLOCK(); 588 589 return 0; 590 } 591 592 static void 593 if_detached_event(void *arg __unused, struct ifnet *ifp) 594 { 595 vifi_t vifi; 596 u_long i; 597 598 MROUTER_LOCK(); 599 600 if (V_ip_mrouter == NULL) { 601 MROUTER_UNLOCK(); 602 return; 603 } 604 605 VIF_LOCK(); 606 MFC_LOCK(); 607 608 /* 609 * Tear down multicast forwarder state associated with this ifnet. 610 * 1. Walk the vif list, matching vifs against this ifnet. 611 * 2. Walk the multicast forwarding cache (mfc) looking for 612 * inner matches with this vif's index. 613 * 3. Expire any matching multicast forwarding cache entries. 614 * 4. Free vif state. This should disable ALLMULTI on the interface. 615 */ 616 for (vifi = 0; vifi < V_numvifs; vifi++) { 617 if (V_viftable[vifi].v_ifp != ifp) 618 continue; 619 for (i = 0; i < mfchashsize; i++) { 620 struct mfc *rt, *nrt; 621 622 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 623 if (rt->mfc_parent == vifi) { 624 expire_mfc(rt); 625 } 626 } 627 } 628 del_vif_locked(vifi); 629 } 630 631 MFC_UNLOCK(); 632 VIF_UNLOCK(); 633 634 MROUTER_UNLOCK(); 635 } 636 637 /* 638 * Enable multicast forwarding. 639 */ 640 static int 641 ip_mrouter_init(struct socket *so, int version) 642 { 643 644 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 645 so->so_type, so->so_proto->pr_protocol); 646 647 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 648 return EOPNOTSUPP; 649 650 if (version != 1) 651 return ENOPROTOOPT; 652 653 MROUTER_LOCK(); 654 655 if (ip_mrouter_unloading) { 656 MROUTER_UNLOCK(); 657 return ENOPROTOOPT; 658 } 659 660 if (V_ip_mrouter != NULL) { 661 MROUTER_UNLOCK(); 662 return EADDRINUSE; 663 } 664 665 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 666 HASH_NOWAIT); 667 668 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 669 curvnet); 670 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 671 curvnet); 672 673 V_ip_mrouter = so; 674 ip_mrouter_cnt++; 675 676 MROUTER_UNLOCK(); 677 678 CTR1(KTR_IPMF, "%s: done", __func__); 679 680 return 0; 681 } 682 683 /* 684 * Disable multicast forwarding. 685 */ 686 static int 687 X_ip_mrouter_done(void) 688 { 689 struct ifnet *ifp; 690 u_long i; 691 vifi_t vifi; 692 693 MROUTER_LOCK(); 694 695 if (V_ip_mrouter == NULL) { 696 MROUTER_UNLOCK(); 697 return EINVAL; 698 } 699 700 /* 701 * Detach/disable hooks to the reset of the system. 702 */ 703 V_ip_mrouter = NULL; 704 ip_mrouter_cnt--; 705 V_mrt_api_config = 0; 706 707 MROUTER_WAIT(); 708 709 VIF_LOCK(); 710 711 /* 712 * For each phyint in use, disable promiscuous reception of all IP 713 * multicasts. 714 */ 715 for (vifi = 0; vifi < V_numvifs; vifi++) { 716 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 717 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 718 ifp = V_viftable[vifi].v_ifp; 719 if_allmulti(ifp, 0); 720 } 721 } 722 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 723 V_numvifs = 0; 724 V_pim_assert_enabled = 0; 725 726 VIF_UNLOCK(); 727 728 callout_stop(&V_expire_upcalls_ch); 729 callout_stop(&V_bw_upcalls_ch); 730 731 MFC_LOCK(); 732 733 /* 734 * Free all multicast forwarding cache entries. 735 * Do not use hashdestroy(), as we must perform other cleanup. 736 */ 737 for (i = 0; i < mfchashsize; i++) { 738 struct mfc *rt, *nrt; 739 740 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 741 expire_mfc(rt); 742 } 743 } 744 free(V_mfchashtbl, M_MRTABLE); 745 V_mfchashtbl = NULL; 746 747 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 748 749 V_bw_upcalls_n = 0; 750 751 MFC_UNLOCK(); 752 753 V_reg_vif_num = VIFI_INVALID; 754 755 MROUTER_UNLOCK(); 756 757 CTR1(KTR_IPMF, "%s: done", __func__); 758 759 return 0; 760 } 761 762 /* 763 * Set PIM assert processing global 764 */ 765 static int 766 set_assert(int i) 767 { 768 if ((i != 1) && (i != 0)) 769 return EINVAL; 770 771 V_pim_assert_enabled = i; 772 773 return 0; 774 } 775 776 /* 777 * Configure API capabilities 778 */ 779 int 780 set_api_config(uint32_t *apival) 781 { 782 u_long i; 783 784 /* 785 * We can set the API capabilities only if it is the first operation 786 * after MRT_INIT. I.e.: 787 * - there are no vifs installed 788 * - pim_assert is not enabled 789 * - the MFC table is empty 790 */ 791 if (V_numvifs > 0) { 792 *apival = 0; 793 return EPERM; 794 } 795 if (V_pim_assert_enabled) { 796 *apival = 0; 797 return EPERM; 798 } 799 800 MFC_LOCK(); 801 802 for (i = 0; i < mfchashsize; i++) { 803 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 804 MFC_UNLOCK(); 805 *apival = 0; 806 return EPERM; 807 } 808 } 809 810 MFC_UNLOCK(); 811 812 V_mrt_api_config = *apival & mrt_api_support; 813 *apival = V_mrt_api_config; 814 815 return 0; 816 } 817 818 /* 819 * Add a vif to the vif table 820 */ 821 static int 822 add_vif(struct vifctl *vifcp) 823 { 824 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 825 struct sockaddr_in sin = {sizeof sin, AF_INET}; 826 struct ifaddr *ifa; 827 struct ifnet *ifp; 828 int error; 829 830 VIF_LOCK(); 831 if (vifcp->vifc_vifi >= MAXVIFS) { 832 VIF_UNLOCK(); 833 return EINVAL; 834 } 835 /* rate limiting is no longer supported by this code */ 836 if (vifcp->vifc_rate_limit != 0) { 837 log(LOG_ERR, "rate limiting is no longer supported\n"); 838 VIF_UNLOCK(); 839 return EINVAL; 840 } 841 if (!in_nullhost(vifp->v_lcl_addr)) { 842 VIF_UNLOCK(); 843 return EADDRINUSE; 844 } 845 if (in_nullhost(vifcp->vifc_lcl_addr)) { 846 VIF_UNLOCK(); 847 return EADDRNOTAVAIL; 848 } 849 850 /* Find the interface with an address in AF_INET family */ 851 if (vifcp->vifc_flags & VIFF_REGISTER) { 852 /* 853 * XXX: Because VIFF_REGISTER does not really need a valid 854 * local interface (e.g. it could be 127.0.0.2), we don't 855 * check its address. 856 */ 857 ifp = NULL; 858 } else { 859 struct epoch_tracker et; 860 861 sin.sin_addr = vifcp->vifc_lcl_addr; 862 NET_EPOCH_ENTER(et); 863 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 864 if (ifa == NULL) { 865 NET_EPOCH_EXIT(et); 866 VIF_UNLOCK(); 867 return EADDRNOTAVAIL; 868 } 869 ifp = ifa->ifa_ifp; 870 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 871 NET_EPOCH_EXIT(et); 872 } 873 874 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 875 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 876 VIF_UNLOCK(); 877 return EOPNOTSUPP; 878 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 879 ifp = &V_multicast_register_if; 880 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 881 if (V_reg_vif_num == VIFI_INVALID) { 882 if_initname(&V_multicast_register_if, "register_vif", 0); 883 V_multicast_register_if.if_flags = IFF_LOOPBACK; 884 V_reg_vif_num = vifcp->vifc_vifi; 885 } 886 } else { /* Make sure the interface supports multicast */ 887 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 888 VIF_UNLOCK(); 889 return EOPNOTSUPP; 890 } 891 892 /* Enable promiscuous reception of all IP multicasts from the if */ 893 error = if_allmulti(ifp, 1); 894 if (error) { 895 VIF_UNLOCK(); 896 return error; 897 } 898 } 899 900 vifp->v_flags = vifcp->vifc_flags; 901 vifp->v_threshold = vifcp->vifc_threshold; 902 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 903 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 904 vifp->v_ifp = ifp; 905 /* initialize per vif pkt counters */ 906 vifp->v_pkt_in = 0; 907 vifp->v_pkt_out = 0; 908 vifp->v_bytes_in = 0; 909 vifp->v_bytes_out = 0; 910 911 /* Adjust numvifs up if the vifi is higher than numvifs */ 912 if (V_numvifs <= vifcp->vifc_vifi) 913 V_numvifs = vifcp->vifc_vifi + 1; 914 915 VIF_UNLOCK(); 916 917 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 918 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 919 (int)vifcp->vifc_threshold); 920 921 return 0; 922 } 923 924 /* 925 * Delete a vif from the vif table 926 */ 927 static int 928 del_vif_locked(vifi_t vifi) 929 { 930 struct vif *vifp; 931 932 VIF_LOCK_ASSERT(); 933 934 if (vifi >= V_numvifs) { 935 return EINVAL; 936 } 937 vifp = &V_viftable[vifi]; 938 if (in_nullhost(vifp->v_lcl_addr)) { 939 return EADDRNOTAVAIL; 940 } 941 942 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 943 if_allmulti(vifp->v_ifp, 0); 944 945 if (vifp->v_flags & VIFF_REGISTER) 946 V_reg_vif_num = VIFI_INVALID; 947 948 bzero((caddr_t)vifp, sizeof (*vifp)); 949 950 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 951 952 /* Adjust numvifs down */ 953 for (vifi = V_numvifs; vifi > 0; vifi--) 954 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 955 break; 956 V_numvifs = vifi; 957 958 return 0; 959 } 960 961 static int 962 del_vif(vifi_t vifi) 963 { 964 int cc; 965 966 VIF_LOCK(); 967 cc = del_vif_locked(vifi); 968 VIF_UNLOCK(); 969 970 return cc; 971 } 972 973 /* 974 * update an mfc entry without resetting counters and S,G addresses. 975 */ 976 static void 977 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 978 { 979 int i; 980 981 rt->mfc_parent = mfccp->mfcc_parent; 982 for (i = 0; i < V_numvifs; i++) { 983 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 984 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 985 MRT_MFC_FLAGS_ALL; 986 } 987 /* set the RP address */ 988 if (V_mrt_api_config & MRT_MFC_RP) 989 rt->mfc_rp = mfccp->mfcc_rp; 990 else 991 rt->mfc_rp.s_addr = INADDR_ANY; 992 } 993 994 /* 995 * fully initialize an mfc entry from the parameter. 996 */ 997 static void 998 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 999 { 1000 rt->mfc_origin = mfccp->mfcc_origin; 1001 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1002 1003 update_mfc_params(rt, mfccp); 1004 1005 /* initialize pkt counters per src-grp */ 1006 rt->mfc_pkt_cnt = 0; 1007 rt->mfc_byte_cnt = 0; 1008 rt->mfc_wrong_if = 0; 1009 timevalclear(&rt->mfc_last_assert); 1010 } 1011 1012 static void 1013 expire_mfc(struct mfc *rt) 1014 { 1015 struct rtdetq *rte, *nrte; 1016 1017 MFC_LOCK_ASSERT(); 1018 1019 free_bw_list(rt->mfc_bw_meter_leq); 1020 free_bw_list(rt->mfc_bw_meter_geq); 1021 1022 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1023 m_freem(rte->m); 1024 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1025 free(rte, M_MRTABLE); 1026 } 1027 1028 LIST_REMOVE(rt, mfc_hash); 1029 free(rt, M_MRTABLE); 1030 } 1031 1032 /* 1033 * Add an mfc entry 1034 */ 1035 static int 1036 add_mfc(struct mfcctl2 *mfccp) 1037 { 1038 struct mfc *rt; 1039 struct rtdetq *rte, *nrte; 1040 u_long hash = 0; 1041 u_short nstl; 1042 1043 VIF_LOCK(); 1044 MFC_LOCK(); 1045 1046 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1047 1048 /* If an entry already exists, just update the fields */ 1049 if (rt) { 1050 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1051 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1052 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1053 mfccp->mfcc_parent); 1054 update_mfc_params(rt, mfccp); 1055 MFC_UNLOCK(); 1056 VIF_UNLOCK(); 1057 return (0); 1058 } 1059 1060 /* 1061 * Find the entry for which the upcall was made and update 1062 */ 1063 nstl = 0; 1064 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1065 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1066 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1067 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1068 !TAILQ_EMPTY(&rt->mfc_stall)) { 1069 CTR5(KTR_IPMF, 1070 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1071 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1072 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1073 mfccp->mfcc_parent, 1074 TAILQ_FIRST(&rt->mfc_stall)); 1075 if (nstl++) 1076 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1077 1078 init_mfc_params(rt, mfccp); 1079 rt->mfc_expire = 0; /* Don't clean this guy up */ 1080 V_nexpire[hash]--; 1081 1082 /* Free queued packets, but attempt to forward them first. */ 1083 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1084 if (rte->ifp != NULL) 1085 ip_mdq(rte->m, rte->ifp, rt, -1); 1086 m_freem(rte->m); 1087 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1088 rt->mfc_nstall--; 1089 free(rte, M_MRTABLE); 1090 } 1091 } 1092 } 1093 1094 /* 1095 * It is possible that an entry is being inserted without an upcall 1096 */ 1097 if (nstl == 0) { 1098 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1099 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1100 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1101 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1102 init_mfc_params(rt, mfccp); 1103 if (rt->mfc_expire) 1104 V_nexpire[hash]--; 1105 rt->mfc_expire = 0; 1106 break; /* XXX */ 1107 } 1108 } 1109 1110 if (rt == NULL) { /* no upcall, so make a new entry */ 1111 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1112 if (rt == NULL) { 1113 MFC_UNLOCK(); 1114 VIF_UNLOCK(); 1115 return (ENOBUFS); 1116 } 1117 1118 init_mfc_params(rt, mfccp); 1119 TAILQ_INIT(&rt->mfc_stall); 1120 rt->mfc_nstall = 0; 1121 1122 rt->mfc_expire = 0; 1123 rt->mfc_bw_meter_leq = NULL; 1124 rt->mfc_bw_meter_geq = NULL; 1125 1126 /* insert new entry at head of hash chain */ 1127 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1128 } 1129 } 1130 1131 MFC_UNLOCK(); 1132 VIF_UNLOCK(); 1133 1134 return (0); 1135 } 1136 1137 /* 1138 * Delete an mfc entry 1139 */ 1140 static int 1141 del_mfc(struct mfcctl2 *mfccp) 1142 { 1143 struct in_addr origin; 1144 struct in_addr mcastgrp; 1145 struct mfc *rt; 1146 1147 origin = mfccp->mfcc_origin; 1148 mcastgrp = mfccp->mfcc_mcastgrp; 1149 1150 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1151 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1152 1153 MFC_LOCK(); 1154 1155 rt = mfc_find(&origin, &mcastgrp); 1156 if (rt == NULL) { 1157 MFC_UNLOCK(); 1158 return EADDRNOTAVAIL; 1159 } 1160 1161 /* 1162 * free the bw_meter entries 1163 */ 1164 free_bw_list(rt->mfc_bw_meter_leq); 1165 rt->mfc_bw_meter_leq = NULL; 1166 free_bw_list(rt->mfc_bw_meter_geq); 1167 rt->mfc_bw_meter_geq = NULL; 1168 1169 LIST_REMOVE(rt, mfc_hash); 1170 free(rt, M_MRTABLE); 1171 1172 MFC_UNLOCK(); 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Send a message to the routing daemon on the multicast routing socket. 1179 */ 1180 static int 1181 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1182 { 1183 if (s) { 1184 SOCKBUF_LOCK(&s->so_rcv); 1185 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1186 NULL) != 0) { 1187 sorwakeup_locked(s); 1188 return 0; 1189 } 1190 SOCKBUF_UNLOCK(&s->so_rcv); 1191 } 1192 m_freem(mm); 1193 return -1; 1194 } 1195 1196 /* 1197 * IP multicast forwarding function. This function assumes that the packet 1198 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1199 * pointed to by "ifp", and the packet is to be relayed to other networks 1200 * that have members of the packet's destination IP multicast group. 1201 * 1202 * The packet is returned unscathed to the caller, unless it is 1203 * erroneous, in which case a non-zero return value tells the caller to 1204 * discard it. 1205 */ 1206 1207 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1208 1209 static int 1210 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1211 struct ip_moptions *imo) 1212 { 1213 struct mfc *rt; 1214 int error; 1215 vifi_t vifi; 1216 1217 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1218 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1219 1220 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1221 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1222 /* 1223 * Packet arrived via a physical interface or 1224 * an encapsulated tunnel or a register_vif. 1225 */ 1226 } else { 1227 /* 1228 * Packet arrived through a source-route tunnel. 1229 * Source-route tunnels are no longer supported. 1230 */ 1231 return (1); 1232 } 1233 1234 VIF_LOCK(); 1235 MFC_LOCK(); 1236 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1237 if (ip->ip_ttl < MAXTTL) 1238 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1239 error = ip_mdq(m, ifp, NULL, vifi); 1240 MFC_UNLOCK(); 1241 VIF_UNLOCK(); 1242 return error; 1243 } 1244 1245 /* 1246 * Don't forward a packet with time-to-live of zero or one, 1247 * or a packet destined to a local-only group. 1248 */ 1249 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1250 MFC_UNLOCK(); 1251 VIF_UNLOCK(); 1252 return 0; 1253 } 1254 1255 /* 1256 * Determine forwarding vifs from the forwarding cache table 1257 */ 1258 MRTSTAT_INC(mrts_mfc_lookups); 1259 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1260 1261 /* Entry exists, so forward if necessary */ 1262 if (rt != NULL) { 1263 error = ip_mdq(m, ifp, rt, -1); 1264 MFC_UNLOCK(); 1265 VIF_UNLOCK(); 1266 return error; 1267 } else { 1268 /* 1269 * If we don't have a route for packet's origin, 1270 * Make a copy of the packet & send message to routing daemon 1271 */ 1272 1273 struct mbuf *mb0; 1274 struct rtdetq *rte; 1275 u_long hash; 1276 int hlen = ip->ip_hl << 2; 1277 1278 MRTSTAT_INC(mrts_mfc_misses); 1279 MRTSTAT_INC(mrts_no_route); 1280 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1281 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1282 1283 /* 1284 * Allocate mbufs early so that we don't do extra work if we are 1285 * just going to fail anyway. Make sure to pullup the header so 1286 * that other people can't step on it. 1287 */ 1288 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1289 M_NOWAIT|M_ZERO); 1290 if (rte == NULL) { 1291 MFC_UNLOCK(); 1292 VIF_UNLOCK(); 1293 return ENOBUFS; 1294 } 1295 1296 mb0 = m_copypacket(m, M_NOWAIT); 1297 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1298 mb0 = m_pullup(mb0, hlen); 1299 if (mb0 == NULL) { 1300 free(rte, M_MRTABLE); 1301 MFC_UNLOCK(); 1302 VIF_UNLOCK(); 1303 return ENOBUFS; 1304 } 1305 1306 /* is there an upcall waiting for this flow ? */ 1307 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1308 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1309 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1310 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1311 !TAILQ_EMPTY(&rt->mfc_stall)) 1312 break; 1313 } 1314 1315 if (rt == NULL) { 1316 int i; 1317 struct igmpmsg *im; 1318 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1319 struct mbuf *mm; 1320 1321 /* 1322 * Locate the vifi for the incoming interface for this packet. 1323 * If none found, drop packet. 1324 */ 1325 for (vifi = 0; vifi < V_numvifs && 1326 V_viftable[vifi].v_ifp != ifp; vifi++) 1327 ; 1328 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1329 goto non_fatal; 1330 1331 /* no upcall, so make a new entry */ 1332 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1333 if (rt == NULL) 1334 goto fail; 1335 1336 /* Make a copy of the header to send to the user level process */ 1337 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1338 if (mm == NULL) 1339 goto fail1; 1340 1341 /* 1342 * Send message to routing daemon to install 1343 * a route into the kernel table 1344 */ 1345 1346 im = mtod(mm, struct igmpmsg *); 1347 im->im_msgtype = IGMPMSG_NOCACHE; 1348 im->im_mbz = 0; 1349 im->im_vif = vifi; 1350 1351 MRTSTAT_INC(mrts_upcalls); 1352 1353 k_igmpsrc.sin_addr = ip->ip_src; 1354 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1355 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1356 MRTSTAT_INC(mrts_upq_sockfull); 1357 fail1: 1358 free(rt, M_MRTABLE); 1359 fail: 1360 free(rte, M_MRTABLE); 1361 m_freem(mb0); 1362 MFC_UNLOCK(); 1363 VIF_UNLOCK(); 1364 return ENOBUFS; 1365 } 1366 1367 /* insert new entry at head of hash chain */ 1368 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1369 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1370 rt->mfc_expire = UPCALL_EXPIRE; 1371 V_nexpire[hash]++; 1372 for (i = 0; i < V_numvifs; i++) { 1373 rt->mfc_ttls[i] = 0; 1374 rt->mfc_flags[i] = 0; 1375 } 1376 rt->mfc_parent = -1; 1377 1378 /* clear the RP address */ 1379 rt->mfc_rp.s_addr = INADDR_ANY; 1380 rt->mfc_bw_meter_leq = NULL; 1381 rt->mfc_bw_meter_geq = NULL; 1382 1383 /* initialize pkt counters per src-grp */ 1384 rt->mfc_pkt_cnt = 0; 1385 rt->mfc_byte_cnt = 0; 1386 rt->mfc_wrong_if = 0; 1387 timevalclear(&rt->mfc_last_assert); 1388 1389 TAILQ_INIT(&rt->mfc_stall); 1390 rt->mfc_nstall = 0; 1391 1392 /* link into table */ 1393 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1394 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1395 rt->mfc_nstall++; 1396 1397 } else { 1398 /* determine if queue has overflowed */ 1399 if (rt->mfc_nstall > MAX_UPQ) { 1400 MRTSTAT_INC(mrts_upq_ovflw); 1401 non_fatal: 1402 free(rte, M_MRTABLE); 1403 m_freem(mb0); 1404 MFC_UNLOCK(); 1405 VIF_UNLOCK(); 1406 return (0); 1407 } 1408 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1409 rt->mfc_nstall++; 1410 } 1411 1412 rte->m = mb0; 1413 rte->ifp = ifp; 1414 1415 MFC_UNLOCK(); 1416 VIF_UNLOCK(); 1417 1418 return 0; 1419 } 1420 } 1421 1422 /* 1423 * Clean up the cache entry if upcall is not serviced 1424 */ 1425 static void 1426 expire_upcalls(void *arg) 1427 { 1428 u_long i; 1429 1430 CURVNET_SET((struct vnet *) arg); 1431 1432 MFC_LOCK(); 1433 1434 for (i = 0; i < mfchashsize; i++) { 1435 struct mfc *rt, *nrt; 1436 1437 if (V_nexpire[i] == 0) 1438 continue; 1439 1440 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1441 if (TAILQ_EMPTY(&rt->mfc_stall)) 1442 continue; 1443 1444 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1445 continue; 1446 1447 MRTSTAT_INC(mrts_cache_cleanups); 1448 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1449 (u_long)ntohl(rt->mfc_origin.s_addr), 1450 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1451 1452 expire_mfc(rt); 1453 } 1454 } 1455 1456 MFC_UNLOCK(); 1457 1458 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1459 curvnet); 1460 1461 CURVNET_RESTORE(); 1462 } 1463 1464 /* 1465 * Packet forwarding routine once entry in the cache is made 1466 */ 1467 static int 1468 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1469 { 1470 struct ip *ip = mtod(m, struct ip *); 1471 vifi_t vifi; 1472 int plen = ntohs(ip->ip_len); 1473 1474 VIF_LOCK_ASSERT(); 1475 1476 /* 1477 * If xmt_vif is not -1, send on only the requested vif. 1478 * 1479 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1480 */ 1481 if (xmt_vif < V_numvifs) { 1482 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1483 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1484 else 1485 phyint_send(ip, V_viftable + xmt_vif, m); 1486 return 1; 1487 } 1488 1489 /* 1490 * Don't forward if it didn't arrive from the parent vif for its origin. 1491 */ 1492 vifi = rt->mfc_parent; 1493 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1494 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1495 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1496 MRTSTAT_INC(mrts_wrong_if); 1497 ++rt->mfc_wrong_if; 1498 /* 1499 * If we are doing PIM assert processing, send a message 1500 * to the routing daemon. 1501 * 1502 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1503 * can complete the SPT switch, regardless of the type 1504 * of the iif (broadcast media, GRE tunnel, etc). 1505 */ 1506 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1507 V_viftable[vifi].v_ifp) { 1508 if (ifp == &V_multicast_register_if) 1509 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1510 1511 /* Get vifi for the incoming packet */ 1512 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1513 vifi++) 1514 ; 1515 if (vifi >= V_numvifs) 1516 return 0; /* The iif is not found: ignore the packet. */ 1517 1518 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1519 return 0; /* WRONGVIF disabled: ignore the packet */ 1520 1521 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1522 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1523 struct igmpmsg *im; 1524 int hlen = ip->ip_hl << 2; 1525 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1526 1527 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1528 mm = m_pullup(mm, hlen); 1529 if (mm == NULL) 1530 return ENOBUFS; 1531 1532 im = mtod(mm, struct igmpmsg *); 1533 im->im_msgtype = IGMPMSG_WRONGVIF; 1534 im->im_mbz = 0; 1535 im->im_vif = vifi; 1536 1537 MRTSTAT_INC(mrts_upcalls); 1538 1539 k_igmpsrc.sin_addr = im->im_src; 1540 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1541 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1542 MRTSTAT_INC(mrts_upq_sockfull); 1543 return ENOBUFS; 1544 } 1545 } 1546 } 1547 return 0; 1548 } 1549 1550 /* If I sourced this packet, it counts as output, else it was input. */ 1551 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1552 V_viftable[vifi].v_pkt_out++; 1553 V_viftable[vifi].v_bytes_out += plen; 1554 } else { 1555 V_viftable[vifi].v_pkt_in++; 1556 V_viftable[vifi].v_bytes_in += plen; 1557 } 1558 rt->mfc_pkt_cnt++; 1559 rt->mfc_byte_cnt += plen; 1560 1561 /* 1562 * For each vif, decide if a copy of the packet should be forwarded. 1563 * Forward if: 1564 * - the ttl exceeds the vif's threshold 1565 * - there are group members downstream on interface 1566 */ 1567 for (vifi = 0; vifi < V_numvifs; vifi++) 1568 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1569 V_viftable[vifi].v_pkt_out++; 1570 V_viftable[vifi].v_bytes_out += plen; 1571 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1572 pim_register_send(ip, V_viftable + vifi, m, rt); 1573 else 1574 phyint_send(ip, V_viftable + vifi, m); 1575 } 1576 1577 /* 1578 * Perform upcall-related bw measuring. 1579 */ 1580 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1581 struct bw_meter *x; 1582 struct timeval now; 1583 1584 microtime(&now); 1585 MFC_LOCK_ASSERT(); 1586 /* Process meters for Greater-or-EQual case */ 1587 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1588 bw_meter_geq_receive_packet(x, plen, &now); 1589 1590 /* Process meters for Lower-or-EQual case */ 1591 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1592 /* Record that a packet is received */ 1593 x->bm_measured.b_packets++; 1594 x->bm_measured.b_bytes += plen; 1595 } 1596 } 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1603 */ 1604 static int 1605 X_legal_vif_num(int vif) 1606 { 1607 int ret; 1608 1609 ret = 0; 1610 if (vif < 0) 1611 return (ret); 1612 1613 VIF_LOCK(); 1614 if (vif < V_numvifs) 1615 ret = 1; 1616 VIF_UNLOCK(); 1617 1618 return (ret); 1619 } 1620 1621 /* 1622 * Return the local address used by this vif 1623 */ 1624 static u_long 1625 X_ip_mcast_src(int vifi) 1626 { 1627 in_addr_t addr; 1628 1629 addr = INADDR_ANY; 1630 if (vifi < 0) 1631 return (addr); 1632 1633 VIF_LOCK(); 1634 if (vifi < V_numvifs) 1635 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1636 VIF_UNLOCK(); 1637 1638 return (addr); 1639 } 1640 1641 static void 1642 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1643 { 1644 struct mbuf *mb_copy; 1645 int hlen = ip->ip_hl << 2; 1646 1647 VIF_LOCK_ASSERT(); 1648 1649 /* 1650 * Make a new reference to the packet; make sure that 1651 * the IP header is actually copied, not just referenced, 1652 * so that ip_output() only scribbles on the copy. 1653 */ 1654 mb_copy = m_copypacket(m, M_NOWAIT); 1655 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1656 mb_copy = m_pullup(mb_copy, hlen); 1657 if (mb_copy == NULL) 1658 return; 1659 1660 send_packet(vifp, mb_copy); 1661 } 1662 1663 static void 1664 send_packet(struct vif *vifp, struct mbuf *m) 1665 { 1666 struct ip_moptions imo; 1667 int error __unused; 1668 1669 VIF_LOCK_ASSERT(); 1670 1671 imo.imo_multicast_ifp = vifp->v_ifp; 1672 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1673 imo.imo_multicast_loop = !!in_mcast_loop; 1674 imo.imo_multicast_vif = -1; 1675 STAILQ_INIT(&imo.imo_head); 1676 1677 /* 1678 * Re-entrancy should not be a problem here, because 1679 * the packets that we send out and are looped back at us 1680 * should get rejected because they appear to come from 1681 * the loopback interface, thus preventing looping. 1682 */ 1683 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1684 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1685 (ptrdiff_t)(vifp - V_viftable), error); 1686 } 1687 1688 /* 1689 * Stubs for old RSVP socket shim implementation. 1690 */ 1691 1692 static int 1693 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1694 { 1695 1696 return (EOPNOTSUPP); 1697 } 1698 1699 static void 1700 X_ip_rsvp_force_done(struct socket *so __unused) 1701 { 1702 1703 } 1704 1705 static int 1706 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1707 { 1708 struct mbuf *m; 1709 1710 m = *mp; 1711 *mp = NULL; 1712 if (!V_rsvp_on) 1713 m_freem(m); 1714 return (IPPROTO_DONE); 1715 } 1716 1717 /* 1718 * Code for bandwidth monitors 1719 */ 1720 1721 /* 1722 * Define common interface for timeval-related methods 1723 */ 1724 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1725 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1726 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1727 1728 static uint32_t 1729 compute_bw_meter_flags(struct bw_upcall *req) 1730 { 1731 uint32_t flags = 0; 1732 1733 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1734 flags |= BW_METER_UNIT_PACKETS; 1735 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1736 flags |= BW_METER_UNIT_BYTES; 1737 if (req->bu_flags & BW_UPCALL_GEQ) 1738 flags |= BW_METER_GEQ; 1739 if (req->bu_flags & BW_UPCALL_LEQ) 1740 flags |= BW_METER_LEQ; 1741 1742 return flags; 1743 } 1744 1745 static void 1746 expire_bw_meter_leq(void *arg) 1747 { 1748 struct bw_meter *x = arg; 1749 struct timeval now; 1750 /* 1751 * INFO: 1752 * callout is always executed with MFC_LOCK taken 1753 */ 1754 1755 CURVNET_SET((struct vnet *)x->arg); 1756 1757 microtime(&now); 1758 1759 /* 1760 * Test if we should deliver an upcall 1761 */ 1762 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1763 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1764 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1765 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1766 /* Prepare an upcall for delivery */ 1767 bw_meter_prepare_upcall(x, &now); 1768 } 1769 1770 /* Send all upcalls that are pending delivery */ 1771 bw_upcalls_send(); 1772 1773 /* Reset counters */ 1774 x->bm_start_time = now; 1775 x->bm_measured.b_bytes = 0; 1776 x->bm_measured.b_packets = 0; 1777 1778 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1779 1780 CURVNET_RESTORE(); 1781 } 1782 1783 /* 1784 * Add a bw_meter entry 1785 */ 1786 static int 1787 add_bw_upcall(struct bw_upcall *req) 1788 { 1789 struct mfc *mfc; 1790 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1791 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1792 struct timeval now; 1793 struct bw_meter *x, **bwm_ptr; 1794 uint32_t flags; 1795 1796 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1797 return EOPNOTSUPP; 1798 1799 /* Test if the flags are valid */ 1800 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1801 return EINVAL; 1802 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1803 return EINVAL; 1804 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1805 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1806 return EINVAL; 1807 1808 /* Test if the threshold time interval is valid */ 1809 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1810 return EINVAL; 1811 1812 flags = compute_bw_meter_flags(req); 1813 1814 /* 1815 * Find if we have already same bw_meter entry 1816 */ 1817 MFC_LOCK(); 1818 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1819 if (mfc == NULL) { 1820 MFC_UNLOCK(); 1821 return EADDRNOTAVAIL; 1822 } 1823 1824 /* Choose an appropriate bw_meter list */ 1825 if (req->bu_flags & BW_UPCALL_GEQ) 1826 bwm_ptr = &mfc->mfc_bw_meter_geq; 1827 else 1828 bwm_ptr = &mfc->mfc_bw_meter_leq; 1829 1830 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1831 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1832 &req->bu_threshold.b_time, ==)) 1833 && (x->bm_threshold.b_packets 1834 == req->bu_threshold.b_packets) 1835 && (x->bm_threshold.b_bytes 1836 == req->bu_threshold.b_bytes) 1837 && (x->bm_flags & BW_METER_USER_FLAGS) 1838 == flags) { 1839 MFC_UNLOCK(); 1840 return 0; /* XXX Already installed */ 1841 } 1842 } 1843 1844 /* Allocate the new bw_meter entry */ 1845 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1846 if (x == NULL) { 1847 MFC_UNLOCK(); 1848 return ENOBUFS; 1849 } 1850 1851 /* Set the new bw_meter entry */ 1852 x->bm_threshold.b_time = req->bu_threshold.b_time; 1853 microtime(&now); 1854 x->bm_start_time = now; 1855 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1856 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1857 x->bm_measured.b_packets = 0; 1858 x->bm_measured.b_bytes = 0; 1859 x->bm_flags = flags; 1860 x->bm_time_next = NULL; 1861 x->bm_mfc = mfc; 1862 x->arg = curvnet; 1863 1864 /* For LEQ case create periodic callout */ 1865 if (req->bu_flags & BW_UPCALL_LEQ) { 1866 callout_init_mtx(&x->bm_meter_callout, &mfc_mtx,0); 1867 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1868 expire_bw_meter_leq, x); 1869 } 1870 1871 /* Add the new bw_meter entry to the front of entries for this MFC */ 1872 x->bm_mfc_next = *bwm_ptr; 1873 *bwm_ptr = x; 1874 1875 MFC_UNLOCK(); 1876 1877 return 0; 1878 } 1879 1880 static void 1881 free_bw_list(struct bw_meter *list) 1882 { 1883 while (list != NULL) { 1884 struct bw_meter *x = list; 1885 1886 /* MFC_LOCK must be held here */ 1887 if (x->bm_flags & BW_METER_LEQ) 1888 callout_drain(&x->bm_meter_callout); 1889 1890 list = list->bm_mfc_next; 1891 free(x, M_BWMETER); 1892 } 1893 } 1894 1895 /* 1896 * Delete one or multiple bw_meter entries 1897 */ 1898 static int 1899 del_bw_upcall(struct bw_upcall *req) 1900 { 1901 struct mfc *mfc; 1902 struct bw_meter *x, **bwm_ptr; 1903 1904 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1905 return EOPNOTSUPP; 1906 1907 MFC_LOCK(); 1908 1909 /* Find the corresponding MFC entry */ 1910 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1911 if (mfc == NULL) { 1912 MFC_UNLOCK(); 1913 return EADDRNOTAVAIL; 1914 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1915 /* 1916 * Delete all bw_meter entries for this mfc 1917 */ 1918 struct bw_meter *list; 1919 1920 /* Free LEQ list */ 1921 list = mfc->mfc_bw_meter_leq; 1922 mfc->mfc_bw_meter_leq = NULL; 1923 free_bw_list(list); 1924 1925 /* Free GEQ list */ 1926 list = mfc->mfc_bw_meter_geq; 1927 mfc->mfc_bw_meter_geq = NULL; 1928 free_bw_list(list); 1929 MFC_UNLOCK(); 1930 return 0; 1931 } else { /* Delete a single bw_meter entry */ 1932 struct bw_meter *prev; 1933 uint32_t flags = 0; 1934 1935 flags = compute_bw_meter_flags(req); 1936 1937 /* Choose an appropriate bw_meter list */ 1938 if (req->bu_flags & BW_UPCALL_GEQ) 1939 bwm_ptr = &mfc->mfc_bw_meter_geq; 1940 else 1941 bwm_ptr = &mfc->mfc_bw_meter_leq; 1942 1943 /* Find the bw_meter entry to delete */ 1944 for (prev = NULL, x = *bwm_ptr; x != NULL; 1945 prev = x, x = x->bm_mfc_next) { 1946 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1947 &req->bu_threshold.b_time, ==)) && 1948 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1949 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1950 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1951 break; 1952 } 1953 if (x != NULL) { /* Delete entry from the list for this MFC */ 1954 if (prev != NULL) 1955 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1956 else 1957 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 1958 1959 if (req->bu_flags & BW_UPCALL_LEQ) 1960 callout_stop(&x->bm_meter_callout); 1961 1962 MFC_UNLOCK(); 1963 /* Free the bw_meter entry */ 1964 free(x, M_BWMETER); 1965 return 0; 1966 } else { 1967 MFC_UNLOCK(); 1968 return EINVAL; 1969 } 1970 } 1971 /* NOTREACHED */ 1972 } 1973 1974 /* 1975 * Perform bandwidth measurement processing that may result in an upcall 1976 */ 1977 static void 1978 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1979 { 1980 struct timeval delta; 1981 1982 MFC_LOCK_ASSERT(); 1983 1984 delta = *nowp; 1985 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1986 1987 /* 1988 * Processing for ">=" type of bw_meter entry 1989 */ 1990 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1991 /* Reset the bw_meter entry */ 1992 x->bm_start_time = *nowp; 1993 x->bm_measured.b_packets = 0; 1994 x->bm_measured.b_bytes = 0; 1995 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1996 } 1997 1998 /* Record that a packet is received */ 1999 x->bm_measured.b_packets++; 2000 x->bm_measured.b_bytes += plen; 2001 2002 /* 2003 * Test if we should deliver an upcall 2004 */ 2005 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2006 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2007 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2008 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2009 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2010 /* Prepare an upcall for delivery */ 2011 bw_meter_prepare_upcall(x, nowp); 2012 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2013 } 2014 } 2015 } 2016 2017 /* 2018 * Prepare a bandwidth-related upcall 2019 */ 2020 static void 2021 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2022 { 2023 struct timeval delta; 2024 struct bw_upcall *u; 2025 2026 MFC_LOCK_ASSERT(); 2027 2028 /* 2029 * Compute the measured time interval 2030 */ 2031 delta = *nowp; 2032 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2033 2034 /* 2035 * If there are too many pending upcalls, deliver them now 2036 */ 2037 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2038 bw_upcalls_send(); 2039 2040 /* 2041 * Set the bw_upcall entry 2042 */ 2043 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2044 u->bu_src = x->bm_mfc->mfc_origin; 2045 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2046 u->bu_threshold.b_time = x->bm_threshold.b_time; 2047 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2048 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2049 u->bu_measured.b_time = delta; 2050 u->bu_measured.b_packets = x->bm_measured.b_packets; 2051 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2052 u->bu_flags = 0; 2053 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2054 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2055 if (x->bm_flags & BW_METER_UNIT_BYTES) 2056 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2057 if (x->bm_flags & BW_METER_GEQ) 2058 u->bu_flags |= BW_UPCALL_GEQ; 2059 if (x->bm_flags & BW_METER_LEQ) 2060 u->bu_flags |= BW_UPCALL_LEQ; 2061 } 2062 2063 /* 2064 * Send the pending bandwidth-related upcalls 2065 */ 2066 static void 2067 bw_upcalls_send(void) 2068 { 2069 struct mbuf *m; 2070 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2071 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2072 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2073 0, /* unused2 */ 2074 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2075 0, /* im_mbz */ 2076 0, /* im_vif */ 2077 0, /* unused3 */ 2078 { 0 }, /* im_src */ 2079 { 0 } }; /* im_dst */ 2080 2081 MFC_LOCK_ASSERT(); 2082 2083 if (V_bw_upcalls_n == 0) 2084 return; /* No pending upcalls */ 2085 2086 V_bw_upcalls_n = 0; 2087 2088 /* 2089 * Allocate a new mbuf, initialize it with the header and 2090 * the payload for the pending calls. 2091 */ 2092 m = m_gethdr(M_NOWAIT, MT_DATA); 2093 if (m == NULL) { 2094 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2095 return; 2096 } 2097 2098 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2099 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2100 2101 /* 2102 * Send the upcalls 2103 * XXX do we need to set the address in k_igmpsrc ? 2104 */ 2105 MRTSTAT_INC(mrts_upcalls); 2106 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2107 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2108 MRTSTAT_INC(mrts_upq_sockfull); 2109 } 2110 } 2111 2112 /* 2113 * A periodic function for sending all upcalls that are pending delivery 2114 */ 2115 static void 2116 expire_bw_upcalls_send(void *arg) 2117 { 2118 CURVNET_SET((struct vnet *) arg); 2119 2120 MFC_LOCK(); 2121 bw_upcalls_send(); 2122 MFC_UNLOCK(); 2123 2124 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2125 curvnet); 2126 CURVNET_RESTORE(); 2127 } 2128 2129 /* 2130 * End of bandwidth monitoring code 2131 */ 2132 2133 /* 2134 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2135 * 2136 */ 2137 static int 2138 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2139 struct mfc *rt) 2140 { 2141 struct mbuf *mb_copy, *mm; 2142 2143 /* 2144 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2145 * rendezvous point was unspecified, and we were told not to. 2146 */ 2147 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2148 in_nullhost(rt->mfc_rp)) 2149 return 0; 2150 2151 mb_copy = pim_register_prepare(ip, m); 2152 if (mb_copy == NULL) 2153 return ENOBUFS; 2154 2155 /* 2156 * Send all the fragments. Note that the mbuf for each fragment 2157 * is freed by the sending machinery. 2158 */ 2159 for (mm = mb_copy; mm; mm = mb_copy) { 2160 mb_copy = mm->m_nextpkt; 2161 mm->m_nextpkt = 0; 2162 mm = m_pullup(mm, sizeof(struct ip)); 2163 if (mm != NULL) { 2164 ip = mtod(mm, struct ip *); 2165 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2166 pim_register_send_rp(ip, vifp, mm, rt); 2167 } else { 2168 pim_register_send_upcall(ip, vifp, mm, rt); 2169 } 2170 } 2171 } 2172 2173 return 0; 2174 } 2175 2176 /* 2177 * Return a copy of the data packet that is ready for PIM Register 2178 * encapsulation. 2179 * XXX: Note that in the returned copy the IP header is a valid one. 2180 */ 2181 static struct mbuf * 2182 pim_register_prepare(struct ip *ip, struct mbuf *m) 2183 { 2184 struct mbuf *mb_copy = NULL; 2185 int mtu; 2186 2187 /* Take care of delayed checksums */ 2188 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2189 in_delayed_cksum(m); 2190 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2191 } 2192 2193 /* 2194 * Copy the old packet & pullup its IP header into the 2195 * new mbuf so we can modify it. 2196 */ 2197 mb_copy = m_copypacket(m, M_NOWAIT); 2198 if (mb_copy == NULL) 2199 return NULL; 2200 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2201 if (mb_copy == NULL) 2202 return NULL; 2203 2204 /* take care of the TTL */ 2205 ip = mtod(mb_copy, struct ip *); 2206 --ip->ip_ttl; 2207 2208 /* Compute the MTU after the PIM Register encapsulation */ 2209 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2210 2211 if (ntohs(ip->ip_len) <= mtu) { 2212 /* Turn the IP header into a valid one */ 2213 ip->ip_sum = 0; 2214 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2215 } else { 2216 /* Fragment the packet */ 2217 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2218 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2219 m_freem(mb_copy); 2220 return NULL; 2221 } 2222 } 2223 return mb_copy; 2224 } 2225 2226 /* 2227 * Send an upcall with the data packet to the user-level process. 2228 */ 2229 static int 2230 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2231 struct mbuf *mb_copy, struct mfc *rt) 2232 { 2233 struct mbuf *mb_first; 2234 int len = ntohs(ip->ip_len); 2235 struct igmpmsg *im; 2236 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2237 2238 VIF_LOCK_ASSERT(); 2239 2240 /* 2241 * Add a new mbuf with an upcall header 2242 */ 2243 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2244 if (mb_first == NULL) { 2245 m_freem(mb_copy); 2246 return ENOBUFS; 2247 } 2248 mb_first->m_data += max_linkhdr; 2249 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2250 mb_first->m_len = sizeof(struct igmpmsg); 2251 mb_first->m_next = mb_copy; 2252 2253 /* Send message to routing daemon */ 2254 im = mtod(mb_first, struct igmpmsg *); 2255 im->im_msgtype = IGMPMSG_WHOLEPKT; 2256 im->im_mbz = 0; 2257 im->im_vif = vifp - V_viftable; 2258 im->im_src = ip->ip_src; 2259 im->im_dst = ip->ip_dst; 2260 2261 k_igmpsrc.sin_addr = ip->ip_src; 2262 2263 MRTSTAT_INC(mrts_upcalls); 2264 2265 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2266 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2267 MRTSTAT_INC(mrts_upq_sockfull); 2268 return ENOBUFS; 2269 } 2270 2271 /* Keep statistics */ 2272 PIMSTAT_INC(pims_snd_registers_msgs); 2273 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2274 2275 return 0; 2276 } 2277 2278 /* 2279 * Encapsulate the data packet in PIM Register message and send it to the RP. 2280 */ 2281 static int 2282 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2283 struct mfc *rt) 2284 { 2285 struct mbuf *mb_first; 2286 struct ip *ip_outer; 2287 struct pim_encap_pimhdr *pimhdr; 2288 int len = ntohs(ip->ip_len); 2289 vifi_t vifi = rt->mfc_parent; 2290 2291 VIF_LOCK_ASSERT(); 2292 2293 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2294 m_freem(mb_copy); 2295 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2296 } 2297 2298 /* 2299 * Add a new mbuf with the encapsulating header 2300 */ 2301 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2302 if (mb_first == NULL) { 2303 m_freem(mb_copy); 2304 return ENOBUFS; 2305 } 2306 mb_first->m_data += max_linkhdr; 2307 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2308 mb_first->m_next = mb_copy; 2309 2310 mb_first->m_pkthdr.len = len + mb_first->m_len; 2311 2312 /* 2313 * Fill in the encapsulating IP and PIM header 2314 */ 2315 ip_outer = mtod(mb_first, struct ip *); 2316 *ip_outer = pim_encap_iphdr; 2317 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2318 sizeof(pim_encap_pimhdr)); 2319 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2320 ip_outer->ip_dst = rt->mfc_rp; 2321 /* 2322 * Copy the inner header TOS to the outer header, and take care of the 2323 * IP_DF bit. 2324 */ 2325 ip_outer->ip_tos = ip->ip_tos; 2326 if (ip->ip_off & htons(IP_DF)) 2327 ip_outer->ip_off |= htons(IP_DF); 2328 ip_fillid(ip_outer); 2329 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2330 + sizeof(pim_encap_iphdr)); 2331 *pimhdr = pim_encap_pimhdr; 2332 /* If the iif crosses a border, set the Border-bit */ 2333 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2334 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2335 2336 mb_first->m_data += sizeof(pim_encap_iphdr); 2337 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2338 mb_first->m_data -= sizeof(pim_encap_iphdr); 2339 2340 send_packet(vifp, mb_first); 2341 2342 /* Keep statistics */ 2343 PIMSTAT_INC(pims_snd_registers_msgs); 2344 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2345 2346 return 0; 2347 } 2348 2349 /* 2350 * pim_encapcheck() is called by the encap4_input() path at runtime to 2351 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2352 * into the kernel. 2353 */ 2354 static int 2355 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2356 int proto __unused, void *arg __unused) 2357 { 2358 2359 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2360 return (8); /* claim the datagram. */ 2361 } 2362 2363 /* 2364 * PIM-SMv2 and PIM-DM messages processing. 2365 * Receives and verifies the PIM control messages, and passes them 2366 * up to the listening socket, using rip_input(). 2367 * The only message with special processing is the PIM_REGISTER message 2368 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2369 * is passed to if_simloop(). 2370 */ 2371 static int 2372 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2373 { 2374 struct ip *ip = mtod(m, struct ip *); 2375 struct pim *pim; 2376 int iphlen = off; 2377 int minlen; 2378 int datalen = ntohs(ip->ip_len) - iphlen; 2379 int ip_tos; 2380 2381 /* Keep statistics */ 2382 PIMSTAT_INC(pims_rcv_total_msgs); 2383 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2384 2385 /* 2386 * Validate lengths 2387 */ 2388 if (datalen < PIM_MINLEN) { 2389 PIMSTAT_INC(pims_rcv_tooshort); 2390 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2391 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2392 m_freem(m); 2393 return (IPPROTO_DONE); 2394 } 2395 2396 /* 2397 * If the packet is at least as big as a REGISTER, go agead 2398 * and grab the PIM REGISTER header size, to avoid another 2399 * possible m_pullup() later. 2400 * 2401 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2402 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2403 */ 2404 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2405 /* 2406 * Get the IP and PIM headers in contiguous memory, and 2407 * possibly the PIM REGISTER header. 2408 */ 2409 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2410 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2411 return (IPPROTO_DONE); 2412 } 2413 2414 /* m_pullup() may have given us a new mbuf so reset ip. */ 2415 ip = mtod(m, struct ip *); 2416 ip_tos = ip->ip_tos; 2417 2418 /* adjust mbuf to point to the PIM header */ 2419 m->m_data += iphlen; 2420 m->m_len -= iphlen; 2421 pim = mtod(m, struct pim *); 2422 2423 /* 2424 * Validate checksum. If PIM REGISTER, exclude the data packet. 2425 * 2426 * XXX: some older PIMv2 implementations don't make this distinction, 2427 * so for compatibility reason perform the checksum over part of the 2428 * message, and if error, then over the whole message. 2429 */ 2430 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2431 /* do nothing, checksum okay */ 2432 } else if (in_cksum(m, datalen)) { 2433 PIMSTAT_INC(pims_rcv_badsum); 2434 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2435 m_freem(m); 2436 return (IPPROTO_DONE); 2437 } 2438 2439 /* PIM version check */ 2440 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2441 PIMSTAT_INC(pims_rcv_badversion); 2442 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2443 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2444 m_freem(m); 2445 return (IPPROTO_DONE); 2446 } 2447 2448 /* restore mbuf back to the outer IP */ 2449 m->m_data -= iphlen; 2450 m->m_len += iphlen; 2451 2452 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2453 /* 2454 * Since this is a REGISTER, we'll make a copy of the register 2455 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2456 * routing daemon. 2457 */ 2458 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2459 struct mbuf *mcp; 2460 struct ip *encap_ip; 2461 u_int32_t *reghdr; 2462 struct ifnet *vifp; 2463 2464 VIF_LOCK(); 2465 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2466 VIF_UNLOCK(); 2467 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2468 (int)V_reg_vif_num); 2469 m_freem(m); 2470 return (IPPROTO_DONE); 2471 } 2472 /* XXX need refcnt? */ 2473 vifp = V_viftable[V_reg_vif_num].v_ifp; 2474 VIF_UNLOCK(); 2475 2476 /* 2477 * Validate length 2478 */ 2479 if (datalen < PIM_REG_MINLEN) { 2480 PIMSTAT_INC(pims_rcv_tooshort); 2481 PIMSTAT_INC(pims_rcv_badregisters); 2482 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2483 m_freem(m); 2484 return (IPPROTO_DONE); 2485 } 2486 2487 reghdr = (u_int32_t *)(pim + 1); 2488 encap_ip = (struct ip *)(reghdr + 1); 2489 2490 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2491 __func__, ntohl(encap_ip->ip_src.s_addr), 2492 ntohs(encap_ip->ip_len)); 2493 2494 /* verify the version number of the inner packet */ 2495 if (encap_ip->ip_v != IPVERSION) { 2496 PIMSTAT_INC(pims_rcv_badregisters); 2497 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2498 m_freem(m); 2499 return (IPPROTO_DONE); 2500 } 2501 2502 /* verify the inner packet is destined to a mcast group */ 2503 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2504 PIMSTAT_INC(pims_rcv_badregisters); 2505 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2506 ntohl(encap_ip->ip_dst.s_addr)); 2507 m_freem(m); 2508 return (IPPROTO_DONE); 2509 } 2510 2511 /* If a NULL_REGISTER, pass it to the daemon */ 2512 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2513 goto pim_input_to_daemon; 2514 2515 /* 2516 * Copy the TOS from the outer IP header to the inner IP header. 2517 */ 2518 if (encap_ip->ip_tos != ip_tos) { 2519 /* Outer TOS -> inner TOS */ 2520 encap_ip->ip_tos = ip_tos; 2521 /* Recompute the inner header checksum. Sigh... */ 2522 2523 /* adjust mbuf to point to the inner IP header */ 2524 m->m_data += (iphlen + PIM_MINLEN); 2525 m->m_len -= (iphlen + PIM_MINLEN); 2526 2527 encap_ip->ip_sum = 0; 2528 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2529 2530 /* restore mbuf to point back to the outer IP header */ 2531 m->m_data -= (iphlen + PIM_MINLEN); 2532 m->m_len += (iphlen + PIM_MINLEN); 2533 } 2534 2535 /* 2536 * Decapsulate the inner IP packet and loopback to forward it 2537 * as a normal multicast packet. Also, make a copy of the 2538 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2539 * to pass to the daemon later, so it can take the appropriate 2540 * actions (e.g., send back PIM_REGISTER_STOP). 2541 * XXX: here m->m_data points to the outer IP header. 2542 */ 2543 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2544 if (mcp == NULL) { 2545 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2546 m_freem(m); 2547 return (IPPROTO_DONE); 2548 } 2549 2550 /* Keep statistics */ 2551 /* XXX: registers_bytes include only the encap. mcast pkt */ 2552 PIMSTAT_INC(pims_rcv_registers_msgs); 2553 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2554 2555 /* 2556 * forward the inner ip packet; point m_data at the inner ip. 2557 */ 2558 m_adj(m, iphlen + PIM_MINLEN); 2559 2560 CTR4(KTR_IPMF, 2561 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2562 __func__, 2563 (u_long)ntohl(encap_ip->ip_src.s_addr), 2564 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2565 (int)V_reg_vif_num); 2566 2567 /* NB: vifp was collected above; can it change on us? */ 2568 if_simloop(vifp, m, dst.sin_family, 0); 2569 2570 /* prepare the register head to send to the mrouting daemon */ 2571 m = mcp; 2572 } 2573 2574 pim_input_to_daemon: 2575 /* 2576 * Pass the PIM message up to the daemon; if it is a Register message, 2577 * pass the 'head' only up to the daemon. This includes the 2578 * outer IP header, PIM header, PIM-Register header and the 2579 * inner IP header. 2580 * XXX: the outer IP header pkt size of a Register is not adjust to 2581 * reflect the fact that the inner multicast data is truncated. 2582 */ 2583 return (rip_input(&m, &off, proto)); 2584 } 2585 2586 static int 2587 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2588 { 2589 struct mfc *rt; 2590 int error, i; 2591 2592 if (req->newptr) 2593 return (EPERM); 2594 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2595 return (0); 2596 error = sysctl_wire_old_buffer(req, 0); 2597 if (error) 2598 return (error); 2599 2600 MFC_LOCK(); 2601 for (i = 0; i < mfchashsize; i++) { 2602 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2603 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2604 if (error) 2605 goto out_locked; 2606 } 2607 } 2608 out_locked: 2609 MFC_UNLOCK(); 2610 return (error); 2611 } 2612 2613 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2614 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2615 "IPv4 Multicast Forwarding Table " 2616 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2617 2618 static int 2619 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2620 { 2621 int error; 2622 2623 if (req->newptr) 2624 return (EPERM); 2625 if (V_viftable == NULL) /* XXX unlocked */ 2626 return (0); 2627 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2628 if (error) 2629 return (error); 2630 2631 VIF_LOCK(); 2632 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2633 VIF_UNLOCK(); 2634 return (error); 2635 } 2636 2637 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2638 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2639 sysctl_viflist, "S,vif[MAXVIFS]", 2640 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2641 2642 static void 2643 vnet_mroute_init(const void *unused __unused) 2644 { 2645 2646 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2647 2648 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2649 M_MRTABLE, M_WAITOK|M_ZERO); 2650 V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls), 2651 M_MRTABLE, M_WAITOK|M_ZERO); 2652 2653 callout_init(&V_expire_upcalls_ch, 1); 2654 callout_init(&V_bw_upcalls_ch, 1); 2655 } 2656 2657 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2658 NULL); 2659 2660 static void 2661 vnet_mroute_uninit(const void *unused __unused) 2662 { 2663 2664 free(V_bw_upcalls, M_MRTABLE); 2665 free(V_viftable, M_MRTABLE); 2666 free(V_nexpire, M_MRTABLE); 2667 V_nexpire = NULL; 2668 } 2669 2670 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2671 vnet_mroute_uninit, NULL); 2672 2673 static int 2674 ip_mroute_modevent(module_t mod, int type, void *unused) 2675 { 2676 2677 switch (type) { 2678 case MOD_LOAD: 2679 MROUTER_LOCK_INIT(); 2680 2681 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2682 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2683 if (if_detach_event_tag == NULL) { 2684 printf("ip_mroute: unable to register " 2685 "ifnet_departure_event handler\n"); 2686 MROUTER_LOCK_DESTROY(); 2687 return (EINVAL); 2688 } 2689 2690 MFC_LOCK_INIT(); 2691 VIF_LOCK_INIT(); 2692 2693 mfchashsize = MFCHASHSIZE; 2694 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2695 !powerof2(mfchashsize)) { 2696 printf("WARNING: %s not a power of 2; using default\n", 2697 "net.inet.ip.mfchashsize"); 2698 mfchashsize = MFCHASHSIZE; 2699 } 2700 2701 pim_squelch_wholepkt = 0; 2702 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2703 &pim_squelch_wholepkt); 2704 2705 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2706 if (pim_encap_cookie == NULL) { 2707 printf("ip_mroute: unable to attach pim encap\n"); 2708 VIF_LOCK_DESTROY(); 2709 MFC_LOCK_DESTROY(); 2710 MROUTER_LOCK_DESTROY(); 2711 return (EINVAL); 2712 } 2713 2714 ip_mcast_src = X_ip_mcast_src; 2715 ip_mforward = X_ip_mforward; 2716 ip_mrouter_done = X_ip_mrouter_done; 2717 ip_mrouter_get = X_ip_mrouter_get; 2718 ip_mrouter_set = X_ip_mrouter_set; 2719 2720 ip_rsvp_force_done = X_ip_rsvp_force_done; 2721 ip_rsvp_vif = X_ip_rsvp_vif; 2722 2723 legal_vif_num = X_legal_vif_num; 2724 mrt_ioctl = X_mrt_ioctl; 2725 rsvp_input_p = X_rsvp_input; 2726 break; 2727 2728 case MOD_UNLOAD: 2729 /* 2730 * Typically module unload happens after the user-level 2731 * process has shutdown the kernel services (the check 2732 * below insures someone can't just yank the module out 2733 * from under a running process). But if the module is 2734 * just loaded and then unloaded w/o starting up a user 2735 * process we still need to cleanup. 2736 */ 2737 MROUTER_LOCK(); 2738 if (ip_mrouter_cnt != 0) { 2739 MROUTER_UNLOCK(); 2740 return (EINVAL); 2741 } 2742 ip_mrouter_unloading = 1; 2743 MROUTER_UNLOCK(); 2744 2745 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2746 2747 if (pim_encap_cookie) { 2748 ip_encap_detach(pim_encap_cookie); 2749 pim_encap_cookie = NULL; 2750 } 2751 2752 ip_mcast_src = NULL; 2753 ip_mforward = NULL; 2754 ip_mrouter_done = NULL; 2755 ip_mrouter_get = NULL; 2756 ip_mrouter_set = NULL; 2757 2758 ip_rsvp_force_done = NULL; 2759 ip_rsvp_vif = NULL; 2760 2761 legal_vif_num = NULL; 2762 mrt_ioctl = NULL; 2763 rsvp_input_p = NULL; 2764 2765 VIF_LOCK_DESTROY(); 2766 MFC_LOCK_DESTROY(); 2767 MROUTER_LOCK_DESTROY(); 2768 break; 2769 2770 default: 2771 return EOPNOTSUPP; 2772 } 2773 return 0; 2774 } 2775 2776 static moduledata_t ip_mroutemod = { 2777 "ip_mroute", 2778 ip_mroute_modevent, 2779 0 2780 }; 2781 2782 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2783