xref: /freebsd/sys/netinet/ip_mroute.c (revision 4a0f765fbf09711e612e86fce8bb09ec43f482d9)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $Id$
13  */
14 
15 #include "opt_mrouting.h"
16 
17 #include <sys/param.h>
18 #include <sys/queue.h>
19 #include <sys/systm.h>
20 #include <sys/mbuf.h>
21 #include <sys/socket.h>
22 #include <sys/socketvar.h>
23 #include <sys/protosw.h>
24 #include <sys/errno.h>
25 #include <sys/time.h>
26 #include <sys/kernel.h>
27 #include <sys/ioctl.h>
28 #include <sys/syslog.h>
29 #include <net/if.h>
30 #include <net/route.h>
31 #include <netinet/in.h>
32 #include <netinet/in_systm.h>
33 #include <netinet/ip.h>
34 #include <netinet/ip_var.h>
35 #include <netinet/in_pcb.h>
36 #include <netinet/in_var.h>
37 #include <netinet/igmp.h>
38 #include <netinet/igmp_var.h>
39 #include <netinet/ip_mroute.h>
40 #include <netinet/udp.h>
41 
42 #ifndef NTOHL
43 #if BYTE_ORDER != BIG_ENDIAN
44 #define NTOHL(d) ((d) = ntohl((d)))
45 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
46 #define HTONL(d) ((d) = htonl((d)))
47 #define HTONS(d) ((d) = htons((u_short)(d)))
48 #else
49 #define NTOHL(d)
50 #define NTOHS(d)
51 #define HTONL(d)
52 #define HTONS(d)
53 #endif
54 #endif
55 
56 #ifndef MROUTING
57 extern u_long	_ip_mcast_src __P((int vifi));
58 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
59 				  struct mbuf *m, struct ip_moptions *imo));
60 extern int	_ip_mrouter_done __P((void));
61 extern int	_ip_mrouter_get __P((int cmd, struct socket *so,
62 				     struct mbuf **m));
63 extern int	_ip_mrouter_set __P((int cmd, struct socket *so,
64 				     struct mbuf *m));
65 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
66 
67 /*
68  * Dummy routines and globals used when multicast routing is not compiled in.
69  */
70 
71 struct socket  *ip_mrouter  = NULL;
72 static u_int		ip_mrtproto = 0;
73 static struct mrtstat	mrtstat;
74 u_int		rsvpdebug = 0;
75 
76 int
77 _ip_mrouter_set(cmd, so, m)
78 	int cmd;
79 	struct socket *so;
80 	struct mbuf *m;
81 {
82 	return(EOPNOTSUPP);
83 }
84 
85 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
86 
87 
88 int
89 _ip_mrouter_get(cmd, so, m)
90 	int cmd;
91 	struct socket *so;
92 	struct mbuf **m;
93 {
94 	return(EOPNOTSUPP);
95 }
96 
97 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
98 
99 int
100 _ip_mrouter_done()
101 {
102 	return(0);
103 }
104 
105 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
106 
107 int
108 _ip_mforward(ip, ifp, m, imo)
109 	struct ip *ip;
110 	struct ifnet *ifp;
111 	struct mbuf *m;
112 	struct ip_moptions *imo;
113 {
114 	return(0);
115 }
116 
117 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
118 		   struct ip_moptions *) = _ip_mforward;
119 
120 int
121 _mrt_ioctl(int req, caddr_t data, struct proc *p)
122 {
123 	return EOPNOTSUPP;
124 }
125 
126 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
127 
128 void
129 rsvp_input(m, iphlen)		/* XXX must fixup manually */
130 	struct mbuf *m;
131 	int iphlen;
132 {
133     /* Can still get packets with rsvp_on = 0 if there is a local member
134      * of the group to which the RSVP packet is addressed.  But in this
135      * case we want to throw the packet away.
136      */
137     if (!rsvp_on) {
138 	m_freem(m);
139 	return;
140     }
141 
142     if (ip_rsvpd != NULL) {
143 	if (rsvpdebug)
144 	    printf("rsvp_input: Sending packet up old-style socket\n");
145 	rip_input(m, iphlen);
146 	return;
147     }
148     /* Drop the packet */
149     m_freem(m);
150 }
151 
152 void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
153 	rip_input(m, iphlen);
154 }
155 
156 int (*legal_vif_num)(int) = 0;
157 
158 /*
159  * This should never be called, since IP_MULTICAST_VIF should fail, but
160  * just in case it does get called, the code a little lower in ip_output
161  * will assign the packet a local address.
162  */
163 u_long
164 _ip_mcast_src(int vifi) { return INADDR_ANY; }
165 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
166 
167 int
168 ip_rsvp_vif_init(so, m)
169     struct socket *so;
170     struct mbuf *m;
171 {
172     return(EINVAL);
173 }
174 
175 int
176 ip_rsvp_vif_done(so, m)
177     struct socket *so;
178     struct mbuf *m;
179 {
180     return(EINVAL);
181 }
182 
183 void
184 ip_rsvp_force_done(so)
185     struct socket *so;
186 {
187     return;
188 }
189 
190 #else /* MROUTING */
191 
192 #define M_HASCL(m)	((m)->m_flags & M_EXT)
193 
194 #define INSIZ		sizeof(struct in_addr)
195 #define	same(a1, a2) \
196 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
197 
198 #define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
199 
200 /*
201  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
202  * except for netstat or debugging purposes.
203  */
204 #ifndef MROUTE_LKM
205 struct socket  *ip_mrouter  = NULL;
206 struct mrtstat	mrtstat;
207 
208 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
209 #else /* MROUTE_LKM */
210 extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
211 extern struct mrtstat mrtstat;
212 static int ip_mrtproto;
213 #endif
214 
215 #define NO_RTE_FOUND 	0x1
216 #define RTE_FOUND	0x2
217 
218 static struct mbuf    *mfctable[MFCTBLSIZ];
219 static u_char		nexpire[MFCTBLSIZ];
220 static struct vif	viftable[MAXVIFS];
221 static u_int	mrtdebug = 0;	  /* debug level 	*/
222 #define		DEBUG_MFC	0x02
223 #define		DEBUG_FORWARD	0x04
224 #define		DEBUG_EXPIRE	0x08
225 #define		DEBUG_XMIT	0x10
226 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
227 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
228 
229 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
230 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
231 
232 /*
233  * Define the token bucket filter structures
234  * tbftable -> each vif has one of these for storing info
235  */
236 
237 static struct tbf tbftable[MAXVIFS];
238 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
239 
240 /*
241  * 'Interfaces' associated with decapsulator (so we can tell
242  * packets that went through it from ones that get reflected
243  * by a broken gateway).  These interfaces are never linked into
244  * the system ifnet list & no routes point to them.  I.e., packets
245  * can't be sent this way.  They only exist as a placeholder for
246  * multicast source verification.
247  */
248 static struct ifnet multicast_decap_if[MAXVIFS];
249 
250 #define ENCAP_TTL 64
251 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
252 
253 /* prototype IP hdr for encapsulated packets */
254 static struct ip multicast_encap_iphdr = {
255 #if BYTE_ORDER == LITTLE_ENDIAN
256 	sizeof(struct ip) >> 2, IPVERSION,
257 #else
258 	IPVERSION, sizeof(struct ip) >> 2,
259 #endif
260 	0,				/* tos */
261 	sizeof(struct ip),		/* total length */
262 	0,				/* id */
263 	0,				/* frag offset */
264 	ENCAP_TTL, ENCAP_PROTO,
265 	0,				/* checksum */
266 };
267 
268 /*
269  * Private variables.
270  */
271 static vifi_t	   numvifs = 0;
272 static int have_encap_tunnel = 0;
273 
274 /*
275  * one-back cache used by ipip_input to locate a tunnel's vif
276  * given a datagram's src ip address.
277  */
278 static u_long last_encap_src;
279 static struct vif *last_encap_vif;
280 
281 static u_long	X_ip_mcast_src __P((int vifi));
282 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
283 static int	X_ip_mrouter_done __P((void));
284 static int	X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
285 static int	X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
286 static int	X_legal_vif_num __P((int vif));
287 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
288 
289 static int get_sg_cnt(struct sioc_sg_req *);
290 static int get_vif_cnt(struct sioc_vif_req *);
291 static int ip_mrouter_init(struct socket *, struct mbuf *);
292 static int add_vif(struct vifctl *);
293 static int del_vif(vifi_t *);
294 static int add_mfc(struct mfcctl *);
295 static int del_mfc(struct mfcctl *);
296 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
297 static int get_version(struct mbuf *);
298 static int get_assert(struct mbuf *);
299 static int set_assert(int *);
300 static void expire_upcalls(void *);
301 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
302 		  vifi_t);
303 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
304 static void encap_send(struct ip *, struct vif *, struct mbuf *);
305 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
306 static void tbf_queue(struct vif *, struct mbuf *);
307 static void tbf_process_q(struct vif *);
308 static void tbf_reprocess_q(void *);
309 static int tbf_dq_sel(struct vif *, struct ip *);
310 static void tbf_send_packet(struct vif *, struct mbuf *);
311 static void tbf_update_tokens(struct vif *);
312 static int priority(struct vif *, struct ip *);
313 void multiencap_decap(struct mbuf *);
314 
315 /*
316  * whether or not special PIM assert processing is enabled.
317  */
318 static int pim_assert;
319 /*
320  * Rate limit for assert notification messages, in usec
321  */
322 #define ASSERT_MSG_TIME		3000000
323 
324 /*
325  * Hash function for a source, group entry
326  */
327 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
328 			((g) >> 20) ^ ((g) >> 10) ^ (g))
329 
330 /*
331  * Find a route for a given origin IP address and Multicast group address
332  * Type of service parameter to be added in the future!!!
333  */
334 
335 #define MFCFIND(o, g, rt) { \
336 	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
337 	register struct mfc *_rt = NULL; \
338 	rt = NULL; \
339 	++mrtstat.mrts_mfc_lookups; \
340 	while (_mb_rt) { \
341 		_rt = mtod(_mb_rt, struct mfc *); \
342 		if ((_rt->mfc_origin.s_addr == o) && \
343 		    (_rt->mfc_mcastgrp.s_addr == g) && \
344 		    (_mb_rt->m_act == NULL)) { \
345 			rt = _rt; \
346 			break; \
347 		} \
348 		_mb_rt = _mb_rt->m_next; \
349 	} \
350 	if (rt == NULL) { \
351 		++mrtstat.mrts_mfc_misses; \
352 	} \
353 }
354 
355 
356 /*
357  * Macros to compute elapsed time efficiently
358  * Borrowed from Van Jacobson's scheduling code
359  */
360 #define TV_DELTA(a, b, delta) { \
361 	    register int xxs; \
362 		\
363 	    delta = (a).tv_usec - (b).tv_usec; \
364 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
365 	       switch (xxs) { \
366 		      case 2: \
367 			  delta += 1000000; \
368 			      /* fall through */ \
369 		      case 1: \
370 			  delta += 1000000; \
371 			  break; \
372 		      default: \
373 			  delta += (1000000 * xxs); \
374 	       } \
375 	    } \
376 }
377 
378 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
379 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
380 
381 #ifdef UPCALL_TIMING
382 u_long upcall_data[51];
383 static void collate(struct timeval *);
384 #endif /* UPCALL_TIMING */
385 
386 
387 /*
388  * Handle MRT setsockopt commands to modify the multicast routing tables.
389  */
390 static int
391 X_ip_mrouter_set(cmd, so, m)
392     int cmd;
393     struct socket *so;
394     struct mbuf *m;
395 {
396    if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
397 
398     switch (cmd) {
399 	case MRT_INIT:     return ip_mrouter_init(so, m);
400 	case MRT_DONE:     return ip_mrouter_done();
401 	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
402 	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
403 	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
404 	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
405 	case MRT_ASSERT:   return set_assert(mtod(m, int *));
406 	default:             return EOPNOTSUPP;
407     }
408 }
409 
410 #ifndef MROUTE_LKM
411 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
412 #endif
413 
414 /*
415  * Handle MRT getsockopt commands
416  */
417 static int
418 X_ip_mrouter_get(cmd, so, m)
419     int cmd;
420     struct socket *so;
421     struct mbuf **m;
422 {
423     struct mbuf *mb;
424 
425     if (so != ip_mrouter) return EACCES;
426 
427     *m = mb = m_get(M_WAIT, MT_SOOPTS);
428 
429     switch (cmd) {
430 	case MRT_VERSION:   return get_version(mb);
431 	case MRT_ASSERT:    return get_assert(mb);
432 	default:            return EOPNOTSUPP;
433     }
434 }
435 
436 #ifndef MROUTE_LKM
437 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
438 #endif
439 
440 /*
441  * Handle ioctl commands to obtain information from the cache
442  */
443 static int
444 X_mrt_ioctl(cmd, data)
445     int cmd;
446     caddr_t data;
447 {
448     int error = 0;
449 
450     switch (cmd) {
451 	case (SIOCGETVIFCNT):
452 	    return (get_vif_cnt((struct sioc_vif_req *)data));
453 	    break;
454 	case (SIOCGETSGCNT):
455 	    return (get_sg_cnt((struct sioc_sg_req *)data));
456 	    break;
457 	default:
458 	    return (EINVAL);
459 	    break;
460     }
461     return error;
462 }
463 
464 #ifndef MROUTE_LKM
465 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
466 #endif
467 
468 /*
469  * returns the packet, byte, rpf-failure count for the source group provided
470  */
471 static int
472 get_sg_cnt(req)
473     register struct sioc_sg_req *req;
474 {
475     register struct mfc *rt;
476     int s;
477 
478     s = splnet();
479     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
480     splx(s);
481     if (rt != NULL) {
482 	req->pktcnt = rt->mfc_pkt_cnt;
483 	req->bytecnt = rt->mfc_byte_cnt;
484 	req->wrong_if = rt->mfc_wrong_if;
485     } else
486 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
487 
488     return 0;
489 }
490 
491 /*
492  * returns the input and output packet and byte counts on the vif provided
493  */
494 static int
495 get_vif_cnt(req)
496     register struct sioc_vif_req *req;
497 {
498     register vifi_t vifi = req->vifi;
499 
500     if (vifi >= numvifs) return EINVAL;
501 
502     req->icount = viftable[vifi].v_pkt_in;
503     req->ocount = viftable[vifi].v_pkt_out;
504     req->ibytes = viftable[vifi].v_bytes_in;
505     req->obytes = viftable[vifi].v_bytes_out;
506 
507     return 0;
508 }
509 
510 /*
511  * Enable multicast routing
512  */
513 static int
514 ip_mrouter_init(so, m)
515 	struct socket *so;
516 	struct mbuf *m;
517 {
518     int *v;
519 
520     if (mrtdebug)
521 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
522 		so->so_type, so->so_proto->pr_protocol);
523 
524     if (so->so_type != SOCK_RAW ||
525 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
526 
527     if (!m || (m->m_len != sizeof(int *)))
528 	return ENOPROTOOPT;
529 
530     v = mtod(m, int *);
531     if (*v != 1)
532 	return ENOPROTOOPT;
533 
534     if (ip_mrouter != NULL) return EADDRINUSE;
535 
536     ip_mrouter = so;
537 
538     bzero((caddr_t)mfctable, sizeof(mfctable));
539     bzero((caddr_t)nexpire, sizeof(nexpire));
540 
541     pim_assert = 0;
542 
543     timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
544 
545     if (mrtdebug)
546 	log(LOG_DEBUG, "ip_mrouter_init\n");
547 
548     return 0;
549 }
550 
551 /*
552  * Disable multicast routing
553  */
554 static int
555 X_ip_mrouter_done()
556 {
557     vifi_t vifi;
558     int i;
559     struct ifnet *ifp;
560     struct ifreq ifr;
561     struct mbuf *mb_rt;
562     struct mbuf *m;
563     struct rtdetq *rte;
564     int s;
565 
566     s = splnet();
567 
568     /*
569      * For each phyint in use, disable promiscuous reception of all IP
570      * multicasts.
571      */
572     for (vifi = 0; vifi < numvifs; vifi++) {
573 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
574 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
575 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
576 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
577 								= INADDR_ANY;
578 	    ifp = viftable[vifi].v_ifp;
579 	    if_allmulti(ifp, 0);
580 	}
581     }
582     bzero((caddr_t)tbftable, sizeof(tbftable));
583     bzero((caddr_t)viftable, sizeof(viftable));
584     numvifs = 0;
585     pim_assert = 0;
586 
587     untimeout(expire_upcalls, (caddr_t)NULL);
588 
589     /*
590      * Free all multicast forwarding cache entries.
591      */
592     for (i = 0; i < MFCTBLSIZ; i++) {
593 	mb_rt = mfctable[i];
594 	while (mb_rt) {
595 	    if (mb_rt->m_act != NULL) {
596 		while (mb_rt->m_act) {
597 		    m = mb_rt->m_act;
598 		    mb_rt->m_act = m->m_act;
599 		    rte = mtod(m, struct rtdetq *);
600 		    m_freem(rte->m);
601 		    m_free(m);
602 		}
603 	    }
604 	    mb_rt = m_free(mb_rt);
605 	}
606     }
607 
608     bzero((caddr_t)mfctable, sizeof(mfctable));
609 
610     /*
611      * Reset de-encapsulation cache
612      */
613     last_encap_src = 0;
614     last_encap_vif = NULL;
615     have_encap_tunnel = 0;
616 
617     ip_mrouter = NULL;
618 
619     splx(s);
620 
621     if (mrtdebug)
622 	log(LOG_DEBUG, "ip_mrouter_done\n");
623 
624     return 0;
625 }
626 
627 #ifndef MROUTE_LKM
628 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
629 #endif
630 
631 static int
632 get_version(mb)
633     struct mbuf *mb;
634 {
635     int *v;
636 
637     v = mtod(mb, int *);
638 
639     *v = 0x0305;	/* XXX !!!! */
640     mb->m_len = sizeof(int);
641 
642     return 0;
643 }
644 
645 /*
646  * Set PIM assert processing global
647  */
648 static int
649 set_assert(i)
650     int *i;
651 {
652     if ((*i != 1) && (*i != 0))
653 	return EINVAL;
654 
655     pim_assert = *i;
656 
657     return 0;
658 }
659 
660 /*
661  * Get PIM assert processing global
662  */
663 static int
664 get_assert(m)
665     struct mbuf *m;
666 {
667     int *i;
668 
669     i = mtod(m, int *);
670 
671     *i = pim_assert;
672 
673     return 0;
674 }
675 
676 /*
677  * Add a vif to the vif table
678  */
679 static int
680 add_vif(vifcp)
681     register struct vifctl *vifcp;
682 {
683     register struct vif *vifp = viftable + vifcp->vifc_vifi;
684     static struct sockaddr_in sin = {sizeof sin, AF_INET};
685     struct ifaddr *ifa;
686     struct ifnet *ifp;
687     struct ifreq ifr;
688     int error, s;
689     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
690 
691     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
692     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
693 
694     /* Find the interface with an address in AF_INET family */
695     sin.sin_addr = vifcp->vifc_lcl_addr;
696     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
697     if (ifa == 0) return EADDRNOTAVAIL;
698     ifp = ifa->ifa_ifp;
699 
700     if (vifcp->vifc_flags & VIFF_TUNNEL) {
701 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
702 		/*
703 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
704 		 * start paying attention to encapsulated packets.
705 		 */
706 		if (have_encap_tunnel == 0) {
707 			have_encap_tunnel = 1;
708 			for (s = 0; s < MAXVIFS; ++s) {
709 				multicast_decap_if[s].if_name = "mdecap";
710 				multicast_decap_if[s].if_unit = s;
711 			}
712 		}
713 		/*
714 		 * Set interface to fake encapsulator interface
715 		 */
716 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
717 		/*
718 		 * Prepare cached route entry
719 		 */
720 		bzero(&vifp->v_route, sizeof(vifp->v_route));
721 	} else {
722 	    log(LOG_ERR, "source routed tunnels not supported\n");
723 	    return EOPNOTSUPP;
724 	}
725     } else {
726 	/* Make sure the interface supports multicast */
727 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
728 	    return EOPNOTSUPP;
729 
730 	/* Enable promiscuous reception of all IP multicasts from the if */
731 	s = splnet();
732 	error = if_allmulti(ifp, 1);
733 	splx(s);
734 	if (error)
735 	    return error;
736     }
737 
738     s = splnet();
739     /* define parameters for the tbf structure */
740     vifp->v_tbf = v_tbf;
741     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
742     vifp->v_tbf->tbf_n_tok = 0;
743     vifp->v_tbf->tbf_q_len = 0;
744     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
745     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
746 
747     vifp->v_flags     = vifcp->vifc_flags;
748     vifp->v_threshold = vifcp->vifc_threshold;
749     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
750     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
751     vifp->v_ifp       = ifp;
752     /* scaling up here allows division by 1024 in critical code */
753     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
754     vifp->v_rsvp_on   = 0;
755     vifp->v_rsvpd     = NULL;
756     /* initialize per vif pkt counters */
757     vifp->v_pkt_in    = 0;
758     vifp->v_pkt_out   = 0;
759     vifp->v_bytes_in  = 0;
760     vifp->v_bytes_out = 0;
761     splx(s);
762 
763     /* Adjust numvifs up if the vifi is higher than numvifs */
764     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
765 
766     if (mrtdebug)
767 	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
768 	    vifcp->vifc_vifi,
769 	    ntohl(vifcp->vifc_lcl_addr.s_addr),
770 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
771 	    ntohl(vifcp->vifc_rmt_addr.s_addr),
772 	    vifcp->vifc_threshold,
773 	    vifcp->vifc_rate_limit);
774 
775     return 0;
776 }
777 
778 /*
779  * Delete a vif from the vif table
780  */
781 static int
782 del_vif(vifip)
783     vifi_t *vifip;
784 {
785     register struct vif *vifp = viftable + *vifip;
786     register vifi_t vifi;
787     register struct mbuf *m;
788     struct ifnet *ifp;
789     struct ifreq ifr;
790     int s;
791 
792     if (*vifip >= numvifs) return EINVAL;
793     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
794 
795     s = splnet();
796 
797     if (!(vifp->v_flags & VIFF_TUNNEL)) {
798 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
799 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
800 	ifp = vifp->v_ifp;
801 	if_allmulti(ifp, 0);
802     }
803 
804     if (vifp == last_encap_vif) {
805 	last_encap_vif = 0;
806 	last_encap_src = 0;
807     }
808 
809     /*
810      * Free packets queued at the interface
811      */
812     while (vifp->v_tbf->tbf_q) {
813 	m = vifp->v_tbf->tbf_q;
814 	vifp->v_tbf->tbf_q = m->m_act;
815 	m_freem(m);
816     }
817 
818     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
819     bzero((caddr_t)vifp, sizeof (*vifp));
820 
821     /* Adjust numvifs down */
822     for (vifi = numvifs; vifi > 0; vifi--)
823 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
824     numvifs = vifi;
825 
826     splx(s);
827 
828     if (mrtdebug)
829       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
830 
831     return 0;
832 }
833 
834 /*
835  * Add an mfc entry
836  */
837 static int
838 add_mfc(mfccp)
839     struct mfcctl *mfccp;
840 {
841     struct mfc *rt;
842     register struct mbuf *mb_rt;
843     u_long hash;
844     struct mbuf *mb_ntry;
845     struct rtdetq *rte;
846     register u_short nstl;
847     int s;
848     int i;
849 
850     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
851 
852     /* If an entry already exists, just update the fields */
853     if (rt) {
854 	if (mrtdebug & DEBUG_MFC)
855 	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
856 		ntohl(mfccp->mfcc_origin.s_addr),
857 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
858 		mfccp->mfcc_parent);
859 
860 	s = splnet();
861 	rt->mfc_parent = mfccp->mfcc_parent;
862 	for (i = 0; i < numvifs; i++)
863 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
864 	splx(s);
865 	return 0;
866     }
867 
868     /*
869      * Find the entry for which the upcall was made and update
870      */
871     s = splnet();
872     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
873     for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
874 
875 	rt = mtod(mb_rt, struct mfc *);
876 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
877 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
878 	    (mb_rt->m_act != NULL)) {
879 
880 	    if (nstl++)
881 		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
882 		    "multiple kernel entries",
883 		    ntohl(mfccp->mfcc_origin.s_addr),
884 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
885 		    mfccp->mfcc_parent, mb_rt->m_act);
886 
887 	    if (mrtdebug & DEBUG_MFC)
888 		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
889 		    ntohl(mfccp->mfcc_origin.s_addr),
890 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
891 		    mfccp->mfcc_parent, mb_rt->m_act);
892 
893 	    rt->mfc_origin     = mfccp->mfcc_origin;
894 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
895 	    rt->mfc_parent     = mfccp->mfcc_parent;
896 	    for (i = 0; i < numvifs; i++)
897 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
898 	    /* initialize pkt counters per src-grp */
899 	    rt->mfc_pkt_cnt    = 0;
900 	    rt->mfc_byte_cnt   = 0;
901 	    rt->mfc_wrong_if   = 0;
902 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
903 
904 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
905 	    nexpire[hash]--;
906 
907 	    /* free packets Qed at the end of this entry */
908 	    while (mb_rt->m_act) {
909 		mb_ntry = mb_rt->m_act;
910 		rte = mtod(mb_ntry, struct rtdetq *);
911 /* #ifdef RSVP_ISI */
912 		ip_mdq(rte->m, rte->ifp, rt, -1);
913 /* #endif */
914 		mb_rt->m_act = mb_ntry->m_act;
915 		m_freem(rte->m);
916 #ifdef UPCALL_TIMING
917 		collate(&(rte->t));
918 #endif /* UPCALL_TIMING */
919 		m_free(mb_ntry);
920 	    }
921 	}
922     }
923 
924     /*
925      * It is possible that an entry is being inserted without an upcall
926      */
927     if (nstl == 0) {
928 	if (mrtdebug & DEBUG_MFC)
929 	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
930 		hash, ntohl(mfccp->mfcc_origin.s_addr),
931 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
932 		mfccp->mfcc_parent);
933 
934 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
935 
936 	    rt = mtod(mb_rt, struct mfc *);
937 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
938 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
939 
940 		rt->mfc_origin     = mfccp->mfcc_origin;
941 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
942 		rt->mfc_parent     = mfccp->mfcc_parent;
943 		for (i = 0; i < numvifs; i++)
944 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
945 		/* initialize pkt counters per src-grp */
946 		rt->mfc_pkt_cnt    = 0;
947 		rt->mfc_byte_cnt   = 0;
948 		rt->mfc_wrong_if   = 0;
949 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
950 		if (rt->mfc_expire)
951 		    nexpire[hash]--;
952 		rt->mfc_expire	   = 0;
953 	    }
954 	}
955 	if (mb_rt == NULL) {
956 	    /* no upcall, so make a new entry */
957 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
958 	    if (mb_rt == NULL) {
959 		splx(s);
960 		return ENOBUFS;
961 	    }
962 
963 	    rt = mtod(mb_rt, struct mfc *);
964 
965 	    /* insert new entry at head of hash chain */
966 	    rt->mfc_origin     = mfccp->mfcc_origin;
967 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
968 	    rt->mfc_parent     = mfccp->mfcc_parent;
969 	    for (i = 0; i < numvifs; i++)
970 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
971 	    /* initialize pkt counters per src-grp */
972 	    rt->mfc_pkt_cnt    = 0;
973 	    rt->mfc_byte_cnt   = 0;
974 	    rt->mfc_wrong_if   = 0;
975 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
976 	    rt->mfc_expire     = 0;
977 
978 	    /* link into table */
979 	    mb_rt->m_next  = mfctable[hash];
980 	    mfctable[hash] = mb_rt;
981 	    mb_rt->m_act = NULL;
982 	}
983     }
984     splx(s);
985     return 0;
986 }
987 
988 #ifdef UPCALL_TIMING
989 /*
990  * collect delay statistics on the upcalls
991  */
992 static void collate(t)
993 register struct timeval *t;
994 {
995     register u_long d;
996     register struct timeval tp;
997     register u_long delta;
998 
999     GET_TIME(tp);
1000 
1001     if (TV_LT(*t, tp))
1002     {
1003 	TV_DELTA(tp, *t, delta);
1004 
1005 	d = delta >> 10;
1006 	if (d > 50)
1007 	    d = 50;
1008 
1009 	++upcall_data[d];
1010     }
1011 }
1012 #endif /* UPCALL_TIMING */
1013 
1014 /*
1015  * Delete an mfc entry
1016  */
1017 static int
1018 del_mfc(mfccp)
1019     struct mfcctl *mfccp;
1020 {
1021     struct in_addr 	origin;
1022     struct in_addr 	mcastgrp;
1023     struct mfc 		*rt;
1024     struct mbuf 	*mb_rt;
1025     struct mbuf 	**nptr;
1026     u_long 		hash;
1027     int s;
1028 
1029     origin = mfccp->mfcc_origin;
1030     mcastgrp = mfccp->mfcc_mcastgrp;
1031     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1032 
1033     if (mrtdebug & DEBUG_MFC)
1034 	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1035 	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1036 
1037     s = splnet();
1038 
1039     nptr = &mfctable[hash];
1040     while ((mb_rt = *nptr) != NULL) {
1041         rt = mtod(mb_rt, struct mfc *);
1042 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1043 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1044 	    mb_rt->m_act == NULL)
1045 	    break;
1046 
1047 	nptr = &mb_rt->m_next;
1048     }
1049     if (mb_rt == NULL) {
1050 	splx(s);
1051 	return EADDRNOTAVAIL;
1052     }
1053 
1054     MFREE(mb_rt, *nptr);
1055 
1056     splx(s);
1057 
1058     return 0;
1059 }
1060 
1061 /*
1062  * Send a message to mrouted on the multicast routing socket
1063  */
1064 static int
1065 socket_send(s, mm, src)
1066 	struct socket *s;
1067 	struct mbuf *mm;
1068 	struct sockaddr_in *src;
1069 {
1070 	if (s) {
1071 		if (sbappendaddr(&s->so_rcv,
1072 				 (struct sockaddr *)src,
1073 				 mm, (struct mbuf *)0) != 0) {
1074 			sorwakeup(s);
1075 			return 0;
1076 		}
1077 	}
1078 	m_freem(mm);
1079 	return -1;
1080 }
1081 
1082 /*
1083  * IP multicast forwarding function. This function assumes that the packet
1084  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1085  * pointed to by "ifp", and the packet is to be relayed to other networks
1086  * that have members of the packet's destination IP multicast group.
1087  *
1088  * The packet is returned unscathed to the caller, unless it is
1089  * erroneous, in which case a non-zero return value tells the caller to
1090  * discard it.
1091  */
1092 
1093 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1094 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1095 
1096 static int
1097 X_ip_mforward(ip, ifp, m, imo)
1098     register struct ip *ip;
1099     struct ifnet *ifp;
1100     struct mbuf *m;
1101     struct ip_moptions *imo;
1102 {
1103     register struct mfc *rt;
1104     register u_char *ipoptions;
1105     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1106     static int srctun = 0;
1107     register struct mbuf *mm;
1108     int s;
1109     vifi_t vifi;
1110     struct vif *vifp;
1111 
1112     if (mrtdebug & DEBUG_FORWARD)
1113 	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1114 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1115 
1116     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1117 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1118 	/*
1119 	 * Packet arrived via a physical interface or
1120 	 * an encapsulated tunnel.
1121 	 */
1122     } else {
1123 	/*
1124 	 * Packet arrived through a source-route tunnel.
1125 	 * Source-route tunnels are no longer supported.
1126 	 */
1127 	if ((srctun++ % 1000) == 0)
1128 	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1129 		ntohl(ip->ip_src.s_addr));
1130 
1131 	return 1;
1132     }
1133 
1134     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1135 	if (ip->ip_ttl < 255)
1136 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1137 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1138 	    vifp = viftable + vifi;
1139 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1140 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1141 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1142 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1143 	}
1144 	return (ip_mdq(m, ifp, NULL, vifi));
1145     }
1146     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1147 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1148 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1149 	if(!imo)
1150 		printf("In fact, no options were specified at all\n");
1151     }
1152 
1153     /*
1154      * Don't forward a packet with time-to-live of zero or one,
1155      * or a packet destined to a local-only group.
1156      */
1157     if (ip->ip_ttl <= 1 ||
1158 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1159 	return 0;
1160 
1161     /*
1162      * Determine forwarding vifs from the forwarding cache table
1163      */
1164     s = splnet();
1165     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1166 
1167     /* Entry exists, so forward if necessary */
1168     if (rt != NULL) {
1169 	splx(s);
1170 	return (ip_mdq(m, ifp, rt, -1));
1171     } else {
1172 	/*
1173 	 * If we don't have a route for packet's origin,
1174 	 * Make a copy of the packet &
1175 	 * send message to routing daemon
1176 	 */
1177 
1178 	register struct mbuf *mb_rt;
1179 	register struct mbuf *mb_ntry;
1180 	register struct mbuf *mb0;
1181 	register struct rtdetq *rte;
1182 	register struct mbuf *rte_m;
1183 	register u_long hash;
1184 	register int npkts;
1185 	int hlen = ip->ip_hl << 2;
1186 #ifdef UPCALL_TIMING
1187 	struct timeval tp;
1188 
1189 	GET_TIME(tp);
1190 #endif
1191 
1192 	mrtstat.mrts_no_route++;
1193 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1194 	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1195 		ntohl(ip->ip_src.s_addr),
1196 		ntohl(ip->ip_dst.s_addr));
1197 
1198 	/*
1199 	 * Allocate mbufs early so that we don't do extra work if we are
1200 	 * just going to fail anyway.  Make sure to pullup the header so
1201 	 * that other people can't step on it.
1202 	 */
1203 	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1204 	if (mb_ntry == NULL) {
1205 	    splx(s);
1206 	    return ENOBUFS;
1207 	}
1208 	mb0 = m_copy(m, 0, M_COPYALL);
1209 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1210 	    mb0 = m_pullup(mb0, hlen);
1211 	if (mb0 == NULL) {
1212 	    m_free(mb_ntry);
1213 	    splx(s);
1214 	    return ENOBUFS;
1215 	}
1216 
1217 	/* is there an upcall waiting for this packet? */
1218 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1219 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1220 	    rt = mtod(mb_rt, struct mfc *);
1221 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1222 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1223 		(mb_rt->m_act != NULL))
1224 		break;
1225 	}
1226 
1227 	if (mb_rt == NULL) {
1228 	    int i;
1229 	    struct igmpmsg *im;
1230 
1231 	    /* no upcall, so make a new entry */
1232 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1233 	    if (mb_rt == NULL) {
1234 		m_free(mb_ntry);
1235 		m_freem(mb0);
1236 		splx(s);
1237 		return ENOBUFS;
1238 	    }
1239 	    /* Make a copy of the header to send to the user level process */
1240 	    mm = m_copy(mb0, 0, hlen);
1241 	    if (mm == NULL) {
1242 		m_free(mb_ntry);
1243 		m_freem(mb0);
1244 		m_free(mb_rt);
1245 		splx(s);
1246 		return ENOBUFS;
1247 	    }
1248 
1249 	    /*
1250 	     * Send message to routing daemon to install
1251 	     * a route into the kernel table
1252 	     */
1253 	    k_igmpsrc.sin_addr = ip->ip_src;
1254 
1255 	    im = mtod(mm, struct igmpmsg *);
1256 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1257 	    im->im_mbz		= 0;
1258 
1259 	    mrtstat.mrts_upcalls++;
1260 
1261 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1262 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1263 		++mrtstat.mrts_upq_sockfull;
1264 		m_free(mb_ntry);
1265 		m_freem(mb0);
1266 		m_free(mb_rt);
1267 		splx(s);
1268 		return ENOBUFS;
1269 	    }
1270 
1271 	    rt = mtod(mb_rt, struct mfc *);
1272 
1273 	    /* insert new entry at head of hash chain */
1274 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1275 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1276 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1277 	    nexpire[hash]++;
1278 	    for (i = 0; i < numvifs; i++)
1279 		rt->mfc_ttls[i] = 0;
1280 	    rt->mfc_parent = -1;
1281 
1282 	    /* link into table */
1283 	    mb_rt->m_next  = mfctable[hash];
1284 	    mfctable[hash] = mb_rt;
1285 	    mb_rt->m_act = NULL;
1286 
1287 	    rte_m = mb_rt;
1288 	} else {
1289 	    /* determine if q has overflowed */
1290 	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1291 		npkts++;
1292 
1293 	    if (npkts > MAX_UPQ) {
1294 		mrtstat.mrts_upq_ovflw++;
1295 		m_free(mb_ntry);
1296 		m_freem(mb0);
1297 		splx(s);
1298 		return 0;
1299 	    }
1300 	}
1301 
1302 	mb_ntry->m_act = NULL;
1303 	rte = mtod(mb_ntry, struct rtdetq *);
1304 
1305 	rte->m 			= mb0;
1306 	rte->ifp 		= ifp;
1307 #ifdef UPCALL_TIMING
1308 	rte->t			= tp;
1309 #endif
1310 
1311 	/* Add this entry to the end of the queue */
1312 	rte_m->m_act		= mb_ntry;
1313 
1314 	splx(s);
1315 
1316 	return 0;
1317     }
1318 }
1319 
1320 #ifndef MROUTE_LKM
1321 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1322 		   struct ip_moptions *) = X_ip_mforward;
1323 #endif
1324 
1325 /*
1326  * Clean up the cache entry if upcall is not serviced
1327  */
1328 static void
1329 expire_upcalls(void *unused)
1330 {
1331     struct mbuf *mb_rt, *m, **nptr;
1332     struct rtdetq *rte;
1333     struct mfc *mfc;
1334     int i;
1335     int s;
1336 
1337     s = splnet();
1338     for (i = 0; i < MFCTBLSIZ; i++) {
1339 	if (nexpire[i] == 0)
1340 	    continue;
1341 	nptr = &mfctable[i];
1342 	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1343 	    mfc = mtod(mb_rt, struct mfc *);
1344 
1345 	    /*
1346 	     * Skip real cache entries
1347 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1348 	     * If it expires now
1349 	     */
1350 	    if (mb_rt->m_act != NULL &&
1351 	        mfc->mfc_expire != 0 &&
1352 		--mfc->mfc_expire == 0) {
1353 		if (mrtdebug & DEBUG_EXPIRE)
1354 		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1355 			ntohl(mfc->mfc_origin.s_addr),
1356 			ntohl(mfc->mfc_mcastgrp.s_addr));
1357 		/*
1358 		 * drop all the packets
1359 		 * free the mbuf with the pkt, if, timing info
1360 		 */
1361 		while (mb_rt->m_act) {
1362 		    m = mb_rt->m_act;
1363 		    mb_rt->m_act = m->m_act;
1364 
1365 		    rte = mtod(m, struct rtdetq *);
1366 		    m_freem(rte->m);
1367 		    m_free(m);
1368 		}
1369 		++mrtstat.mrts_cache_cleanups;
1370 		nexpire[i]--;
1371 
1372 		MFREE(mb_rt, *nptr);
1373 	    } else {
1374 		nptr = &mb_rt->m_next;
1375 	    }
1376 	}
1377     }
1378     splx(s);
1379     timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1380 }
1381 
1382 /*
1383  * Packet forwarding routine once entry in the cache is made
1384  */
1385 static int
1386 ip_mdq(m, ifp, rt, xmt_vif)
1387     register struct mbuf *m;
1388     register struct ifnet *ifp;
1389     register struct mfc *rt;
1390     register vifi_t xmt_vif;
1391 {
1392     register struct ip  *ip = mtod(m, struct ip *);
1393     register vifi_t vifi;
1394     register struct vif *vifp;
1395     register int plen = ntohs(ip->ip_len);
1396 
1397 /*
1398  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1399  * input, they shouldn't get counted on output, so statistics keeping is
1400  * seperate.
1401  */
1402 #define MC_SEND(ip,vifp,m) {                             \
1403                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1404                     encap_send((ip), (vifp), (m));       \
1405                 else                                     \
1406                     phyint_send((ip), (vifp), (m));      \
1407 }
1408 
1409     /*
1410      * If xmt_vif is not -1, send on only the requested vif.
1411      *
1412      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1413      */
1414     if (xmt_vif < numvifs) {
1415 	MC_SEND(ip, viftable + xmt_vif, m);
1416 	return 1;
1417     }
1418 
1419     /*
1420      * Don't forward if it didn't arrive from the parent vif for its origin.
1421      */
1422     vifi = rt->mfc_parent;
1423     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1424 	/* came in the wrong interface */
1425 	if (mrtdebug & DEBUG_FORWARD)
1426 	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1427 		ifp, vifi, viftable[vifi].v_ifp);
1428 	++mrtstat.mrts_wrong_if;
1429 	++rt->mfc_wrong_if;
1430 	/*
1431 	 * If we are doing PIM assert processing, and we are forwarding
1432 	 * packets on this interface, and it is a broadcast medium
1433 	 * interface (and not a tunnel), send a message to the routing daemon.
1434 	 */
1435 	if (pim_assert && rt->mfc_ttls[vifi] &&
1436 		(ifp->if_flags & IFF_BROADCAST) &&
1437 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1438 	    struct sockaddr_in k_igmpsrc;
1439 	    struct mbuf *mm;
1440 	    struct igmpmsg *im;
1441 	    int hlen = ip->ip_hl << 2;
1442 	    struct timeval now;
1443 	    register u_long delta;
1444 
1445 	    GET_TIME(now);
1446 
1447 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1448 
1449 	    if (delta > ASSERT_MSG_TIME) {
1450 		mm = m_copy(m, 0, hlen);
1451 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1452 		    mm = m_pullup(mm, hlen);
1453 		if (mm == NULL) {
1454 		    return ENOBUFS;
1455 		}
1456 
1457 		rt->mfc_last_assert = now;
1458 
1459 		im = mtod(mm, struct igmpmsg *);
1460 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1461 		im->im_mbz		= 0;
1462 		im->im_vif		= vifi;
1463 
1464 		k_igmpsrc.sin_addr = im->im_src;
1465 
1466 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1467 	    }
1468 	}
1469 	return 0;
1470     }
1471 
1472     /* If I sourced this packet, it counts as output, else it was input. */
1473     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1474 	viftable[vifi].v_pkt_out++;
1475 	viftable[vifi].v_bytes_out += plen;
1476     } else {
1477 	viftable[vifi].v_pkt_in++;
1478 	viftable[vifi].v_bytes_in += plen;
1479     }
1480     rt->mfc_pkt_cnt++;
1481     rt->mfc_byte_cnt += plen;
1482 
1483     /*
1484      * For each vif, decide if a copy of the packet should be forwarded.
1485      * Forward if:
1486      *		- the ttl exceeds the vif's threshold
1487      *		- there are group members downstream on interface
1488      */
1489     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1490 	if ((rt->mfc_ttls[vifi] > 0) &&
1491 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1492 	    vifp->v_pkt_out++;
1493 	    vifp->v_bytes_out += plen;
1494 	    MC_SEND(ip, vifp, m);
1495 	}
1496 
1497     return 0;
1498 }
1499 
1500 /*
1501  * check if a vif number is legal/ok. This is used by ip_output, to export
1502  * numvifs there,
1503  */
1504 static int
1505 X_legal_vif_num(vif)
1506     int vif;
1507 {
1508     if (vif >= 0 && vif < numvifs)
1509        return(1);
1510     else
1511        return(0);
1512 }
1513 
1514 #ifndef MROUTE_LKM
1515 int (*legal_vif_num)(int) = X_legal_vif_num;
1516 #endif
1517 
1518 /*
1519  * Return the local address used by this vif
1520  */
1521 static u_long
1522 X_ip_mcast_src(vifi)
1523     int vifi;
1524 {
1525     if (vifi >= 0 && vifi < numvifs)
1526 	return viftable[vifi].v_lcl_addr.s_addr;
1527     else
1528 	return INADDR_ANY;
1529 }
1530 
1531 #ifndef MROUTE_LKM
1532 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1533 #endif
1534 
1535 static void
1536 phyint_send(ip, vifp, m)
1537     struct ip *ip;
1538     struct vif *vifp;
1539     struct mbuf *m;
1540 {
1541     register struct mbuf *mb_copy;
1542     register int hlen = ip->ip_hl << 2;
1543 
1544     /*
1545      * Make a new reference to the packet; make sure that
1546      * the IP header is actually copied, not just referenced,
1547      * so that ip_output() only scribbles on the copy.
1548      */
1549     mb_copy = m_copy(m, 0, M_COPYALL);
1550     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1551 	mb_copy = m_pullup(mb_copy, hlen);
1552     if (mb_copy == NULL)
1553 	return;
1554 
1555     if (vifp->v_rate_limit <= 0)
1556 	tbf_send_packet(vifp, mb_copy);
1557     else
1558 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1559 }
1560 
1561 static void
1562 encap_send(ip, vifp, m)
1563     register struct ip *ip;
1564     register struct vif *vifp;
1565     register struct mbuf *m;
1566 {
1567     register struct mbuf *mb_copy;
1568     register struct ip *ip_copy;
1569     register int i, len = ip->ip_len;
1570 
1571     /*
1572      * copy the old packet & pullup it's IP header into the
1573      * new mbuf so we can modify it.  Try to fill the new
1574      * mbuf since if we don't the ethernet driver will.
1575      */
1576     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1577     if (mb_copy == NULL)
1578 	return;
1579     mb_copy->m_data += max_linkhdr;
1580     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1581 
1582     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1583 	m_freem(mb_copy);
1584 	return;
1585     }
1586     i = MHLEN - M_LEADINGSPACE(mb_copy);
1587     if (i > len)
1588 	i = len;
1589     mb_copy = m_pullup(mb_copy, i);
1590     if (mb_copy == NULL)
1591 	return;
1592     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1593 
1594     /*
1595      * fill in the encapsulating IP header.
1596      */
1597     ip_copy = mtod(mb_copy, struct ip *);
1598     *ip_copy = multicast_encap_iphdr;
1599     ip_copy->ip_id = htons(ip_id++);
1600     ip_copy->ip_len += len;
1601     ip_copy->ip_src = vifp->v_lcl_addr;
1602     ip_copy->ip_dst = vifp->v_rmt_addr;
1603 
1604     /*
1605      * turn the encapsulated IP header back into a valid one.
1606      */
1607     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1608     --ip->ip_ttl;
1609     HTONS(ip->ip_len);
1610     HTONS(ip->ip_off);
1611     ip->ip_sum = 0;
1612 #if defined(LBL) && !defined(ultrix)
1613     ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1614 #else
1615     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1616     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1617     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1618 #endif
1619 
1620     if (vifp->v_rate_limit <= 0)
1621 	tbf_send_packet(vifp, mb_copy);
1622     else
1623 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1624 }
1625 
1626 /*
1627  * De-encapsulate a packet and feed it back through ip input (this
1628  * routine is called whenever IP gets a packet with proto type
1629  * ENCAP_PROTO and a local destination address).
1630  */
1631 void
1632 #ifdef MROUTE_LKM
1633 X_ipip_input(m, iphlen)
1634 #else
1635 ipip_input(m, iphlen)
1636 #endif
1637 	register struct mbuf *m;
1638 	int iphlen;
1639 {
1640     struct ifnet *ifp = m->m_pkthdr.rcvif;
1641     register struct ip *ip = mtod(m, struct ip *);
1642     register int hlen = ip->ip_hl << 2;
1643     register int s;
1644     register struct ifqueue *ifq;
1645     register struct vif *vifp;
1646 
1647     if (!have_encap_tunnel) {
1648 	    rip_input(m, iphlen);
1649 	    return;
1650     }
1651     /*
1652      * dump the packet if it's not to a multicast destination or if
1653      * we don't have an encapsulating tunnel with the source.
1654      * Note:  This code assumes that the remote site IP address
1655      * uniquely identifies the tunnel (i.e., that this site has
1656      * at most one tunnel with the remote site).
1657      */
1658     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1659 	++mrtstat.mrts_bad_tunnel;
1660 	m_freem(m);
1661 	return;
1662     }
1663     if (ip->ip_src.s_addr != last_encap_src) {
1664 	register struct vif *vife;
1665 
1666 	vifp = viftable;
1667 	vife = vifp + numvifs;
1668 	last_encap_src = ip->ip_src.s_addr;
1669 	last_encap_vif = 0;
1670 	for ( ; vifp < vife; ++vifp)
1671 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1672 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1673 		    == VIFF_TUNNEL)
1674 		    last_encap_vif = vifp;
1675 		break;
1676 	    }
1677     }
1678     if ((vifp = last_encap_vif) == 0) {
1679 	last_encap_src = 0;
1680 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1681 	m_freem(m);
1682 	if (mrtdebug)
1683           log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1684 		ntohl(ip->ip_src.s_addr));
1685 	return;
1686     }
1687     ifp = vifp->v_ifp;
1688 
1689     if (hlen > IP_HDR_LEN)
1690       ip_stripoptions(m, (struct mbuf *) 0);
1691     m->m_data += IP_HDR_LEN;
1692     m->m_len -= IP_HDR_LEN;
1693     m->m_pkthdr.len -= IP_HDR_LEN;
1694     m->m_pkthdr.rcvif = ifp;
1695 
1696     ifq = &ipintrq;
1697     s = splimp();
1698     if (IF_QFULL(ifq)) {
1699 	IF_DROP(ifq);
1700 	m_freem(m);
1701     } else {
1702 	IF_ENQUEUE(ifq, m);
1703 	/*
1704 	 * normally we would need a "schednetisr(NETISR_IP)"
1705 	 * here but we were called by ip_input and it is going
1706 	 * to loop back & try to dequeue the packet we just
1707 	 * queued as soon as we return so we avoid the
1708 	 * unnecessary software interrrupt.
1709 	 */
1710     }
1711     splx(s);
1712 }
1713 
1714 /*
1715  * Token bucket filter module
1716  */
1717 
1718 static void
1719 tbf_control(vifp, m, ip, p_len)
1720 	register struct vif *vifp;
1721 	register struct mbuf *m;
1722 	register struct ip *ip;
1723 	register u_long p_len;
1724 {
1725     register struct tbf *t = vifp->v_tbf;
1726 
1727     if (p_len > MAX_BKT_SIZE) {
1728 	/* drop if packet is too large */
1729 	mrtstat.mrts_pkt2large++;
1730 	m_freem(m);
1731 	return;
1732     }
1733 
1734     tbf_update_tokens(vifp);
1735 
1736     /* if there are enough tokens,
1737      * and the queue is empty,
1738      * send this packet out
1739      */
1740 
1741     if (t->tbf_q_len == 0) {
1742 	/* queue empty, send packet if enough tokens */
1743 	if (p_len <= t->tbf_n_tok) {
1744 	    t->tbf_n_tok -= p_len;
1745 	    tbf_send_packet(vifp, m);
1746 	} else {
1747 	    /* queue packet and timeout till later */
1748 	    tbf_queue(vifp, m);
1749 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1750 	}
1751     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1752 	/* finite queue length, so queue pkts and process queue */
1753 	tbf_queue(vifp, m);
1754 	tbf_process_q(vifp);
1755     } else {
1756 	/* queue length too much, try to dq and queue and process */
1757 	if (!tbf_dq_sel(vifp, ip)) {
1758 	    mrtstat.mrts_q_overflow++;
1759 	    m_freem(m);
1760 	    return;
1761 	} else {
1762 	    tbf_queue(vifp, m);
1763 	    tbf_process_q(vifp);
1764 	}
1765     }
1766     return;
1767 }
1768 
1769 /*
1770  * adds a packet to the queue at the interface
1771  */
1772 static void
1773 tbf_queue(vifp, m)
1774 	register struct vif *vifp;
1775 	register struct mbuf *m;
1776 {
1777     register int s = splnet();
1778     register struct tbf *t = vifp->v_tbf;
1779 
1780     if (t->tbf_t == NULL) {
1781 	/* Queue was empty */
1782 	t->tbf_q = m;
1783     } else {
1784 	/* Insert at tail */
1785 	t->tbf_t->m_act = m;
1786     }
1787 
1788     /* Set new tail pointer */
1789     t->tbf_t = m;
1790 
1791 #ifdef DIAGNOSTIC
1792     /* Make sure we didn't get fed a bogus mbuf */
1793     if (m->m_act)
1794 	panic("tbf_queue: m_act");
1795 #endif
1796     m->m_act = NULL;
1797 
1798     t->tbf_q_len++;
1799 
1800     splx(s);
1801 }
1802 
1803 
1804 /*
1805  * processes the queue at the interface
1806  */
1807 static void
1808 tbf_process_q(vifp)
1809     register struct vif *vifp;
1810 {
1811     register struct mbuf *m;
1812     register int len;
1813     register int s = splnet();
1814     register struct tbf *t = vifp->v_tbf;
1815 
1816     /* loop through the queue at the interface and send as many packets
1817      * as possible
1818      */
1819     while (t->tbf_q_len > 0) {
1820 	m = t->tbf_q;
1821 
1822 	len = mtod(m, struct ip *)->ip_len;
1823 
1824 	/* determine if the packet can be sent */
1825 	if (len <= t->tbf_n_tok) {
1826 	    /* if so,
1827 	     * reduce no of tokens, dequeue the packet,
1828 	     * send the packet.
1829 	     */
1830 	    t->tbf_n_tok -= len;
1831 
1832 	    t->tbf_q = m->m_act;
1833 	    if (--t->tbf_q_len == 0)
1834 		t->tbf_t = NULL;
1835 
1836 	    m->m_act = NULL;
1837 	    tbf_send_packet(vifp, m);
1838 
1839 	} else break;
1840     }
1841     splx(s);
1842 }
1843 
1844 static void
1845 tbf_reprocess_q(xvifp)
1846 	void *xvifp;
1847 {
1848     register struct vif *vifp = xvifp;
1849     if (ip_mrouter == NULL)
1850 	return;
1851 
1852     tbf_update_tokens(vifp);
1853 
1854     tbf_process_q(vifp);
1855 
1856     if (vifp->v_tbf->tbf_q_len)
1857 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1858 }
1859 
1860 /* function that will selectively discard a member of the queue
1861  * based on the precedence value and the priority
1862  */
1863 static int
1864 tbf_dq_sel(vifp, ip)
1865     register struct vif *vifp;
1866     register struct ip *ip;
1867 {
1868     register int s = splnet();
1869     register u_int p;
1870     register struct mbuf *m, *last;
1871     register struct mbuf **np;
1872     register struct tbf *t = vifp->v_tbf;
1873 
1874     p = priority(vifp, ip);
1875 
1876     np = &t->tbf_q;
1877     last = NULL;
1878     while ((m = *np) != NULL) {
1879 	if (p > priority(vifp, mtod(m, struct ip *))) {
1880 	    *np = m->m_act;
1881 	    /* If we're removing the last packet, fix the tail pointer */
1882 	    if (m == t->tbf_t)
1883 		t->tbf_t = last;
1884 	    m_freem(m);
1885 	    /* it's impossible for the queue to be empty, but
1886 	     * we check anyway. */
1887 	    if (--t->tbf_q_len == 0)
1888 		t->tbf_t = NULL;
1889 	    splx(s);
1890 	    mrtstat.mrts_drop_sel++;
1891 	    return(1);
1892 	}
1893 	np = &m->m_act;
1894 	last = m;
1895     }
1896     splx(s);
1897     return(0);
1898 }
1899 
1900 static void
1901 tbf_send_packet(vifp, m)
1902     register struct vif *vifp;
1903     register struct mbuf *m;
1904 {
1905     struct ip_moptions imo;
1906     int error;
1907     static struct route ro;
1908     int s = splnet();
1909 
1910     if (vifp->v_flags & VIFF_TUNNEL) {
1911 	/* If tunnel options */
1912 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1913 		  IP_FORWARDING, (struct ip_moptions *)0);
1914     } else {
1915 	imo.imo_multicast_ifp  = vifp->v_ifp;
1916 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1917 	imo.imo_multicast_loop = 1;
1918 	imo.imo_multicast_vif  = -1;
1919 
1920 	/*
1921 	 * Re-entrancy should not be a problem here, because
1922 	 * the packets that we send out and are looped back at us
1923 	 * should get rejected because they appear to come from
1924 	 * the loopback interface, thus preventing looping.
1925 	 */
1926 	error = ip_output(m, (struct mbuf *)0, &ro,
1927 			  IP_FORWARDING, &imo);
1928 
1929 	if (mrtdebug & DEBUG_XMIT)
1930 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1931 		vifp - viftable, error);
1932     }
1933     splx(s);
1934 }
1935 
1936 /* determine the current time and then
1937  * the elapsed time (between the last time and time now)
1938  * in milliseconds & update the no. of tokens in the bucket
1939  */
1940 static void
1941 tbf_update_tokens(vifp)
1942     register struct vif *vifp;
1943 {
1944     struct timeval tp;
1945     register u_long tm;
1946     register int s = splnet();
1947     register struct tbf *t = vifp->v_tbf;
1948 
1949     GET_TIME(tp);
1950 
1951     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1952 
1953     /*
1954      * This formula is actually
1955      * "time in seconds" * "bytes/second".
1956      *
1957      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1958      *
1959      * The (1000/1024) was introduced in add_vif to optimize
1960      * this divide into a shift.
1961      */
1962     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1963     t->tbf_last_pkt_t = tp;
1964 
1965     if (t->tbf_n_tok > MAX_BKT_SIZE)
1966 	t->tbf_n_tok = MAX_BKT_SIZE;
1967 
1968     splx(s);
1969 }
1970 
1971 static int
1972 priority(vifp, ip)
1973     register struct vif *vifp;
1974     register struct ip *ip;
1975 {
1976     register int prio;
1977 
1978     /* temporary hack; may add general packet classifier some day */
1979 
1980     /*
1981      * The UDP port space is divided up into four priority ranges:
1982      * [0, 16384)     : unclassified - lowest priority
1983      * [16384, 32768) : audio - highest priority
1984      * [32768, 49152) : whiteboard - medium priority
1985      * [49152, 65536) : video - low priority
1986      */
1987     if (ip->ip_p == IPPROTO_UDP) {
1988 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1989 	switch (ntohs(udp->uh_dport) & 0xc000) {
1990 	    case 0x4000:
1991 		prio = 70;
1992 		break;
1993 	    case 0x8000:
1994 		prio = 60;
1995 		break;
1996 	    case 0xc000:
1997 		prio = 55;
1998 		break;
1999 	    default:
2000 		prio = 50;
2001 		break;
2002 	}
2003 	if (tbfdebug > 1)
2004 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2005     } else {
2006 	    prio = 50;
2007     }
2008     return prio;
2009 }
2010 
2011 /*
2012  * End of token bucket filter modifications
2013  */
2014 
2015 int
2016 ip_rsvp_vif_init(so, m)
2017     struct socket *so;
2018     struct mbuf *m;
2019 {
2020     int i;
2021     register int s;
2022 
2023     if (rsvpdebug)
2024 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2025 	       so->so_type, so->so_proto->pr_protocol);
2026 
2027     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2028 	return EOPNOTSUPP;
2029 
2030     /* Check mbuf. */
2031     if (m == NULL || m->m_len != sizeof(int)) {
2032 	return EINVAL;
2033     }
2034     i = *(mtod(m, int *));
2035 
2036     if (rsvpdebug)
2037 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2038 
2039     s = splnet();
2040 
2041     /* Check vif. */
2042     if (!legal_vif_num(i)) {
2043 	splx(s);
2044 	return EADDRNOTAVAIL;
2045     }
2046 
2047     /* Check if socket is available. */
2048     if (viftable[i].v_rsvpd != NULL) {
2049 	splx(s);
2050 	return EADDRINUSE;
2051     }
2052 
2053     viftable[i].v_rsvpd = so;
2054     /* This may seem silly, but we need to be sure we don't over-increment
2055      * the RSVP counter, in case something slips up.
2056      */
2057     if (!viftable[i].v_rsvp_on) {
2058 	viftable[i].v_rsvp_on = 1;
2059 	rsvp_on++;
2060     }
2061 
2062     splx(s);
2063     return 0;
2064 }
2065 
2066 int
2067 ip_rsvp_vif_done(so, m)
2068     struct socket *so;
2069     struct mbuf *m;
2070 {
2071 	int i;
2072 	register int s;
2073 
2074     if (rsvpdebug)
2075 	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2076 	       so->so_type, so->so_proto->pr_protocol);
2077 
2078     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2079 	return EOPNOTSUPP;
2080 
2081     /* Check mbuf. */
2082     if (m == NULL || m->m_len != sizeof(int)) {
2083 	    return EINVAL;
2084     }
2085     i = *(mtod(m, int *));
2086 
2087     s = splnet();
2088 
2089     /* Check vif. */
2090     if (!legal_vif_num(i)) {
2091 	splx(s);
2092         return EADDRNOTAVAIL;
2093     }
2094 
2095     if (rsvpdebug)
2096 	printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2097 	       viftable[i].v_rsvpd, so);
2098 
2099     viftable[i].v_rsvpd = NULL;
2100     /* This may seem silly, but we need to be sure we don't over-decrement
2101      * the RSVP counter, in case something slips up.
2102      */
2103     if (viftable[i].v_rsvp_on) {
2104 	viftable[i].v_rsvp_on = 0;
2105 	rsvp_on--;
2106     }
2107 
2108     splx(s);
2109     return 0;
2110 }
2111 
2112 void
2113 ip_rsvp_force_done(so)
2114     struct socket *so;
2115 {
2116     int vifi;
2117     register int s;
2118 
2119     /* Don't bother if it is not the right type of socket. */
2120     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2121 	return;
2122 
2123     s = splnet();
2124 
2125     /* The socket may be attached to more than one vif...this
2126      * is perfectly legal.
2127      */
2128     for (vifi = 0; vifi < numvifs; vifi++) {
2129 	if (viftable[vifi].v_rsvpd == so) {
2130 	    viftable[vifi].v_rsvpd = NULL;
2131 	    /* This may seem silly, but we need to be sure we don't
2132 	     * over-decrement the RSVP counter, in case something slips up.
2133 	     */
2134 	    if (viftable[vifi].v_rsvp_on) {
2135 		viftable[vifi].v_rsvp_on = 0;
2136 		rsvp_on--;
2137 	    }
2138 	}
2139     }
2140 
2141     splx(s);
2142     return;
2143 }
2144 
2145 void
2146 rsvp_input(m, iphlen)
2147 	struct mbuf *m;
2148 	int iphlen;
2149 {
2150     int vifi;
2151     register struct ip *ip = mtod(m, struct ip *);
2152     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2153     register int s;
2154     struct ifnet *ifp;
2155 
2156     if (rsvpdebug)
2157 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2158 
2159     /* Can still get packets with rsvp_on = 0 if there is a local member
2160      * of the group to which the RSVP packet is addressed.  But in this
2161      * case we want to throw the packet away.
2162      */
2163     if (!rsvp_on) {
2164 	m_freem(m);
2165 	return;
2166     }
2167 
2168     /* If the old-style non-vif-associated socket is set, then use
2169      * it and ignore the new ones.
2170      */
2171     if (ip_rsvpd != NULL) {
2172 	if (rsvpdebug)
2173 	    printf("rsvp_input: Sending packet up old-style socket\n");
2174 	rip_input(m, iphlen);
2175 	return;
2176     }
2177 
2178     s = splnet();
2179 
2180     if (rsvpdebug)
2181 	printf("rsvp_input: check vifs\n");
2182 
2183 #ifdef DIAGNOSTIC
2184     if (!(m->m_flags & M_PKTHDR))
2185 	    panic("rsvp_input no hdr");
2186 #endif
2187 
2188     ifp = m->m_pkthdr.rcvif;
2189     /* Find which vif the packet arrived on. */
2190     for (vifi = 0; vifi < numvifs; vifi++) {
2191 	if (viftable[vifi].v_ifp == ifp)
2192  		break;
2193  	}
2194 
2195     if (vifi == numvifs) {
2196 	/* Can't find vif packet arrived on. Drop packet. */
2197 	if (rsvpdebug)
2198 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2199 	m_freem(m);
2200 	splx(s);
2201 	return;
2202     }
2203 
2204     if (rsvpdebug)
2205 	printf("rsvp_input: check socket\n");
2206 
2207     if (viftable[vifi].v_rsvpd == NULL) {
2208 	/* drop packet, since there is no specific socket for this
2209 	 * interface */
2210 	    if (rsvpdebug)
2211 		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2212 	    m_freem(m);
2213 	    splx(s);
2214 	    return;
2215     }
2216     rsvp_src.sin_addr = ip->ip_src;
2217 
2218     if (rsvpdebug && m)
2219 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2220 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2221 
2222     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2223 	if (rsvpdebug)
2224 	    printf("rsvp_input: Failed to append to socket\n");
2225     else
2226 	if (rsvpdebug)
2227 	    printf("rsvp_input: send packet up\n");
2228 
2229     splx(s);
2230 }
2231 
2232 #ifdef MROUTE_LKM
2233 #include <sys/conf.h>
2234 #include <sys/exec.h>
2235 #include <sys/sysent.h>
2236 #include <sys/lkm.h>
2237 
2238 MOD_MISC("ip_mroute_mod")
2239 
2240 static int
2241 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2242 {
2243 	int i;
2244 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2245 	int err = 0;
2246 
2247 	switch(cmd) {
2248 		static int (*old_ip_mrouter_cmd)();
2249 		static int (*old_ip_mrouter_done)();
2250 		static int (*old_ip_mforward)();
2251 		static int (*old_mrt_ioctl)();
2252 		static void (*old_proto4_input)();
2253 		static int (*old_legal_vif_num)();
2254 		extern struct protosw inetsw[];
2255 
2256 	case LKM_E_LOAD:
2257 		if(lkmexists(lkmtp) || ip_mrtproto)
2258 		  return(EEXIST);
2259 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2260 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2261 		old_ip_mrouter_done = ip_mrouter_done;
2262 		ip_mrouter_done = X_ip_mrouter_done;
2263 		old_ip_mforward = ip_mforward;
2264 		ip_mforward = X_ip_mforward;
2265 		old_mrt_ioctl = mrt_ioctl;
2266 		mrt_ioctl = X_mrt_ioctl;
2267               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2268               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2269 		old_legal_vif_num = legal_vif_num;
2270 		legal_vif_num = X_legal_vif_num;
2271 		ip_mrtproto = IGMP_DVMRP;
2272 
2273 		printf("\nIP multicast routing loaded\n");
2274 		break;
2275 
2276 	case LKM_E_UNLOAD:
2277 		if (ip_mrouter)
2278 		  return EINVAL;
2279 
2280 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2281 		ip_mrouter_done = old_ip_mrouter_done;
2282 		ip_mforward = old_ip_mforward;
2283 		mrt_ioctl = old_mrt_ioctl;
2284               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2285 		legal_vif_num = old_legal_vif_num;
2286 		ip_mrtproto = 0;
2287 		break;
2288 
2289 	default:
2290 		err = EINVAL;
2291 		break;
2292 	}
2293 
2294 	return(err);
2295 }
2296 
2297 int
2298 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2299 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2300 		 nosys);
2301 }
2302 
2303 #endif /* MROUTE_LKM */
2304 #endif /* MROUTING */
2305