1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 static VNET_DEFINE(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 static VNET_DEFINE(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 183 #define V_viftable VNET(viftable) 184 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 185 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 186 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 187 188 static struct mtx vif_mtx; 189 #define VIF_LOCK() mtx_lock(&vif_mtx) 190 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 191 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 192 #define VIF_LOCK_INIT() \ 193 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 194 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 195 196 static eventhandler_tag if_detach_event_tag = NULL; 197 198 static VNET_DEFINE(struct callout, expire_upcalls_ch); 199 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 200 201 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 202 #define UPCALL_EXPIRE 6 /* number of timeouts */ 203 204 /* 205 * Bandwidth meter variables and constants 206 */ 207 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 208 /* 209 * Pending timeouts are stored in a hash table, the key being the 210 * expiration time. Periodically, the entries are analysed and processed. 211 */ 212 #define BW_METER_BUCKETS 1024 213 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 214 #define V_bw_meter_timers VNET(bw_meter_timers) 215 static VNET_DEFINE(struct callout, bw_meter_ch); 216 #define V_bw_meter_ch VNET(bw_meter_ch) 217 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 218 219 /* 220 * Pending upcalls are stored in a vector which is flushed when 221 * full, or periodically 222 */ 223 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 224 #define V_bw_upcalls VNET(bw_upcalls) 225 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 226 #define V_bw_upcalls_n VNET(bw_upcalls_n) 227 static VNET_DEFINE(struct callout, bw_upcalls_ch); 228 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 229 230 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 231 232 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 233 VNET_PCPUSTAT_SYSINIT(pimstat); 234 VNET_PCPUSTAT_SYSUNINIT(pimstat); 235 236 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 237 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 238 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 239 240 static u_long pim_squelch_wholepkt = 0; 241 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 242 &pim_squelch_wholepkt, 0, 243 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 244 245 extern struct domain inetdomain; 246 static const struct protosw in_pim_protosw = { 247 .pr_type = SOCK_RAW, 248 .pr_domain = &inetdomain, 249 .pr_protocol = IPPROTO_PIM, 250 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 251 .pr_input = pim_input, 252 .pr_output = rip_output, 253 .pr_ctloutput = rip_ctloutput, 254 .pr_usrreqs = &rip_usrreqs 255 }; 256 static const struct encaptab *pim_encap_cookie; 257 258 static int pim_encapcheck(const struct mbuf *, int, int, void *); 259 260 /* 261 * Note: the PIM Register encapsulation adds the following in front of a 262 * data packet: 263 * 264 * struct pim_encap_hdr { 265 * struct ip ip; 266 * struct pim_encap_pimhdr pim; 267 * } 268 * 269 */ 270 271 struct pim_encap_pimhdr { 272 struct pim pim; 273 uint32_t flags; 274 }; 275 #define PIM_ENCAP_TTL 64 276 277 static struct ip pim_encap_iphdr = { 278 #if BYTE_ORDER == LITTLE_ENDIAN 279 sizeof(struct ip) >> 2, 280 IPVERSION, 281 #else 282 IPVERSION, 283 sizeof(struct ip) >> 2, 284 #endif 285 0, /* tos */ 286 sizeof(struct ip), /* total length */ 287 0, /* id */ 288 0, /* frag offset */ 289 PIM_ENCAP_TTL, 290 IPPROTO_PIM, 291 0, /* checksum */ 292 }; 293 294 static struct pim_encap_pimhdr pim_encap_pimhdr = { 295 { 296 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 297 0, /* reserved */ 298 0, /* checksum */ 299 }, 300 0 /* flags */ 301 }; 302 303 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 304 #define V_reg_vif_num VNET(reg_vif_num) 305 static VNET_DEFINE(struct ifnet, multicast_register_if); 306 #define V_multicast_register_if VNET(multicast_register_if) 307 308 /* 309 * Private variables. 310 */ 311 312 static u_long X_ip_mcast_src(int); 313 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 314 struct ip_moptions *); 315 static int X_ip_mrouter_done(void); 316 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 317 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 318 static int X_legal_vif_num(int); 319 static int X_mrt_ioctl(u_long, caddr_t, int); 320 321 static int add_bw_upcall(struct bw_upcall *); 322 static int add_mfc(struct mfcctl2 *); 323 static int add_vif(struct vifctl *); 324 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 325 static void bw_meter_process(void); 326 static void bw_meter_receive_packet(struct bw_meter *, int, 327 struct timeval *); 328 static void bw_upcalls_send(void); 329 static int del_bw_upcall(struct bw_upcall *); 330 static int del_mfc(struct mfcctl2 *); 331 static int del_vif(vifi_t); 332 static int del_vif_locked(vifi_t); 333 static void expire_bw_meter_process(void *); 334 static void expire_bw_upcalls_send(void *); 335 static void expire_mfc(struct mfc *); 336 static void expire_upcalls(void *); 337 static void free_bw_list(struct bw_meter *); 338 static int get_sg_cnt(struct sioc_sg_req *); 339 static int get_vif_cnt(struct sioc_vif_req *); 340 static void if_detached_event(void *, struct ifnet *); 341 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 342 static int ip_mrouter_init(struct socket *, int); 343 static __inline struct mfc * 344 mfc_find(struct in_addr *, struct in_addr *); 345 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 346 static struct mbuf * 347 pim_register_prepare(struct ip *, struct mbuf *); 348 static int pim_register_send(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static int pim_register_send_rp(struct ip *, struct vif *, 351 struct mbuf *, struct mfc *); 352 static int pim_register_send_upcall(struct ip *, struct vif *, 353 struct mbuf *, struct mfc *); 354 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 355 static void send_packet(struct vif *, struct mbuf *); 356 static int set_api_config(uint32_t *); 357 static int set_assert(int); 358 static int socket_send(struct socket *, struct mbuf *, 359 struct sockaddr_in *); 360 static void unschedule_bw_meter(struct bw_meter *); 361 362 /* 363 * Kernel multicast forwarding API capabilities and setup. 364 * If more API capabilities are added to the kernel, they should be 365 * recorded in `mrt_api_support'. 366 */ 367 #define MRT_API_VERSION 0x0305 368 369 static const int mrt_api_version = MRT_API_VERSION; 370 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 371 MRT_MFC_FLAGS_BORDER_VIF | 372 MRT_MFC_RP | 373 MRT_MFC_BW_UPCALL); 374 static VNET_DEFINE(uint32_t, mrt_api_config); 375 #define V_mrt_api_config VNET(mrt_api_config) 376 static VNET_DEFINE(int, pim_assert_enabled); 377 #define V_pim_assert_enabled VNET(pim_assert_enabled) 378 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 379 380 /* 381 * Find a route for a given origin IP address and multicast group address. 382 * Statistics must be updated by the caller. 383 */ 384 static __inline struct mfc * 385 mfc_find(struct in_addr *o, struct in_addr *g) 386 { 387 struct mfc *rt; 388 389 MFC_LOCK_ASSERT(); 390 391 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 392 if (in_hosteq(rt->mfc_origin, *o) && 393 in_hosteq(rt->mfc_mcastgrp, *g) && 394 TAILQ_EMPTY(&rt->mfc_stall)) 395 break; 396 } 397 398 return (rt); 399 } 400 401 /* 402 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 403 */ 404 static int 405 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 406 { 407 int error, optval; 408 vifi_t vifi; 409 struct vifctl vifc; 410 struct mfcctl2 mfc; 411 struct bw_upcall bw_upcall; 412 uint32_t i; 413 414 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 415 return EPERM; 416 417 error = 0; 418 switch (sopt->sopt_name) { 419 case MRT_INIT: 420 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 421 if (error) 422 break; 423 error = ip_mrouter_init(so, optval); 424 break; 425 426 case MRT_DONE: 427 error = ip_mrouter_done(); 428 break; 429 430 case MRT_ADD_VIF: 431 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 432 if (error) 433 break; 434 error = add_vif(&vifc); 435 break; 436 437 case MRT_DEL_VIF: 438 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 439 if (error) 440 break; 441 error = del_vif(vifi); 442 break; 443 444 case MRT_ADD_MFC: 445 case MRT_DEL_MFC: 446 /* 447 * select data size depending on API version. 448 */ 449 if (sopt->sopt_name == MRT_ADD_MFC && 450 V_mrt_api_config & MRT_API_FLAGS_ALL) { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 452 sizeof(struct mfcctl2)); 453 } else { 454 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 455 sizeof(struct mfcctl)); 456 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 457 sizeof(mfc) - sizeof(struct mfcctl)); 458 } 459 if (error) 460 break; 461 if (sopt->sopt_name == MRT_ADD_MFC) 462 error = add_mfc(&mfc); 463 else 464 error = del_mfc(&mfc); 465 break; 466 467 case MRT_ASSERT: 468 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 469 if (error) 470 break; 471 set_assert(optval); 472 break; 473 474 case MRT_API_CONFIG: 475 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 476 if (!error) 477 error = set_api_config(&i); 478 if (!error) 479 error = sooptcopyout(sopt, &i, sizeof i); 480 break; 481 482 case MRT_ADD_BW_UPCALL: 483 case MRT_DEL_BW_UPCALL: 484 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 485 sizeof bw_upcall); 486 if (error) 487 break; 488 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 489 error = add_bw_upcall(&bw_upcall); 490 else 491 error = del_bw_upcall(&bw_upcall); 492 break; 493 494 default: 495 error = EOPNOTSUPP; 496 break; 497 } 498 return error; 499 } 500 501 /* 502 * Handle MRT getsockopt commands 503 */ 504 static int 505 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 506 { 507 int error; 508 509 switch (sopt->sopt_name) { 510 case MRT_VERSION: 511 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 512 break; 513 514 case MRT_ASSERT: 515 error = sooptcopyout(sopt, &V_pim_assert_enabled, 516 sizeof V_pim_assert_enabled); 517 break; 518 519 case MRT_API_SUPPORT: 520 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 521 break; 522 523 case MRT_API_CONFIG: 524 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 525 break; 526 527 default: 528 error = EOPNOTSUPP; 529 break; 530 } 531 return error; 532 } 533 534 /* 535 * Handle ioctl commands to obtain information from the cache 536 */ 537 static int 538 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 539 { 540 int error = 0; 541 542 /* 543 * Currently the only function calling this ioctl routine is rtioctl_fib(). 544 * Typically, only root can create the raw socket in order to execute 545 * this ioctl method, however the request might be coming from a prison 546 */ 547 error = priv_check(curthread, PRIV_NETINET_MROUTE); 548 if (error) 549 return (error); 550 switch (cmd) { 551 case (SIOCGETVIFCNT): 552 error = get_vif_cnt((struct sioc_vif_req *)data); 553 break; 554 555 case (SIOCGETSGCNT): 556 error = get_sg_cnt((struct sioc_sg_req *)data); 557 break; 558 559 default: 560 error = EINVAL; 561 break; 562 } 563 return error; 564 } 565 566 /* 567 * returns the packet, byte, rpf-failure count for the source group provided 568 */ 569 static int 570 get_sg_cnt(struct sioc_sg_req *req) 571 { 572 struct mfc *rt; 573 574 MFC_LOCK(); 575 rt = mfc_find(&req->src, &req->grp); 576 if (rt == NULL) { 577 MFC_UNLOCK(); 578 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 579 return EADDRNOTAVAIL; 580 } 581 req->pktcnt = rt->mfc_pkt_cnt; 582 req->bytecnt = rt->mfc_byte_cnt; 583 req->wrong_if = rt->mfc_wrong_if; 584 MFC_UNLOCK(); 585 return 0; 586 } 587 588 /* 589 * returns the input and output packet and byte counts on the vif provided 590 */ 591 static int 592 get_vif_cnt(struct sioc_vif_req *req) 593 { 594 vifi_t vifi = req->vifi; 595 596 VIF_LOCK(); 597 if (vifi >= V_numvifs) { 598 VIF_UNLOCK(); 599 return EINVAL; 600 } 601 602 req->icount = V_viftable[vifi].v_pkt_in; 603 req->ocount = V_viftable[vifi].v_pkt_out; 604 req->ibytes = V_viftable[vifi].v_bytes_in; 605 req->obytes = V_viftable[vifi].v_bytes_out; 606 VIF_UNLOCK(); 607 608 return 0; 609 } 610 611 static void 612 if_detached_event(void *arg __unused, struct ifnet *ifp) 613 { 614 vifi_t vifi; 615 u_long i; 616 617 MROUTER_LOCK(); 618 619 if (V_ip_mrouter == NULL) { 620 MROUTER_UNLOCK(); 621 return; 622 } 623 624 VIF_LOCK(); 625 MFC_LOCK(); 626 627 /* 628 * Tear down multicast forwarder state associated with this ifnet. 629 * 1. Walk the vif list, matching vifs against this ifnet. 630 * 2. Walk the multicast forwarding cache (mfc) looking for 631 * inner matches with this vif's index. 632 * 3. Expire any matching multicast forwarding cache entries. 633 * 4. Free vif state. This should disable ALLMULTI on the interface. 634 */ 635 for (vifi = 0; vifi < V_numvifs; vifi++) { 636 if (V_viftable[vifi].v_ifp != ifp) 637 continue; 638 for (i = 0; i < mfchashsize; i++) { 639 struct mfc *rt, *nrt; 640 641 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 642 if (rt->mfc_parent == vifi) { 643 expire_mfc(rt); 644 } 645 } 646 } 647 del_vif_locked(vifi); 648 } 649 650 MFC_UNLOCK(); 651 VIF_UNLOCK(); 652 653 MROUTER_UNLOCK(); 654 } 655 656 /* 657 * Enable multicast forwarding. 658 */ 659 static int 660 ip_mrouter_init(struct socket *so, int version) 661 { 662 663 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 664 so->so_type, so->so_proto->pr_protocol); 665 666 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 667 return EOPNOTSUPP; 668 669 if (version != 1) 670 return ENOPROTOOPT; 671 672 MROUTER_LOCK(); 673 674 if (ip_mrouter_unloading) { 675 MROUTER_UNLOCK(); 676 return ENOPROTOOPT; 677 } 678 679 if (V_ip_mrouter != NULL) { 680 MROUTER_UNLOCK(); 681 return EADDRINUSE; 682 } 683 684 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 685 HASH_NOWAIT); 686 687 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 688 curvnet); 689 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 690 curvnet); 691 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 692 curvnet); 693 694 V_ip_mrouter = so; 695 ip_mrouter_cnt++; 696 697 MROUTER_UNLOCK(); 698 699 CTR1(KTR_IPMF, "%s: done", __func__); 700 701 return 0; 702 } 703 704 /* 705 * Disable multicast forwarding. 706 */ 707 static int 708 X_ip_mrouter_done(void) 709 { 710 struct ifnet *ifp; 711 u_long i; 712 vifi_t vifi; 713 714 MROUTER_LOCK(); 715 716 if (V_ip_mrouter == NULL) { 717 MROUTER_UNLOCK(); 718 return EINVAL; 719 } 720 721 /* 722 * Detach/disable hooks to the reset of the system. 723 */ 724 V_ip_mrouter = NULL; 725 ip_mrouter_cnt--; 726 V_mrt_api_config = 0; 727 728 VIF_LOCK(); 729 730 /* 731 * For each phyint in use, disable promiscuous reception of all IP 732 * multicasts. 733 */ 734 for (vifi = 0; vifi < V_numvifs; vifi++) { 735 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 736 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 737 ifp = V_viftable[vifi].v_ifp; 738 if_allmulti(ifp, 0); 739 } 740 } 741 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 742 V_numvifs = 0; 743 V_pim_assert_enabled = 0; 744 745 VIF_UNLOCK(); 746 747 callout_stop(&V_expire_upcalls_ch); 748 callout_stop(&V_bw_upcalls_ch); 749 callout_stop(&V_bw_meter_ch); 750 751 MFC_LOCK(); 752 753 /* 754 * Free all multicast forwarding cache entries. 755 * Do not use hashdestroy(), as we must perform other cleanup. 756 */ 757 for (i = 0; i < mfchashsize; i++) { 758 struct mfc *rt, *nrt; 759 760 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 761 expire_mfc(rt); 762 } 763 } 764 free(V_mfchashtbl, M_MRTABLE); 765 V_mfchashtbl = NULL; 766 767 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 768 769 V_bw_upcalls_n = 0; 770 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 771 772 MFC_UNLOCK(); 773 774 V_reg_vif_num = VIFI_INVALID; 775 776 MROUTER_UNLOCK(); 777 778 CTR1(KTR_IPMF, "%s: done", __func__); 779 780 return 0; 781 } 782 783 /* 784 * Set PIM assert processing global 785 */ 786 static int 787 set_assert(int i) 788 { 789 if ((i != 1) && (i != 0)) 790 return EINVAL; 791 792 V_pim_assert_enabled = i; 793 794 return 0; 795 } 796 797 /* 798 * Configure API capabilities 799 */ 800 int 801 set_api_config(uint32_t *apival) 802 { 803 u_long i; 804 805 /* 806 * We can set the API capabilities only if it is the first operation 807 * after MRT_INIT. I.e.: 808 * - there are no vifs installed 809 * - pim_assert is not enabled 810 * - the MFC table is empty 811 */ 812 if (V_numvifs > 0) { 813 *apival = 0; 814 return EPERM; 815 } 816 if (V_pim_assert_enabled) { 817 *apival = 0; 818 return EPERM; 819 } 820 821 MFC_LOCK(); 822 823 for (i = 0; i < mfchashsize; i++) { 824 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 825 MFC_UNLOCK(); 826 *apival = 0; 827 return EPERM; 828 } 829 } 830 831 MFC_UNLOCK(); 832 833 V_mrt_api_config = *apival & mrt_api_support; 834 *apival = V_mrt_api_config; 835 836 return 0; 837 } 838 839 /* 840 * Add a vif to the vif table 841 */ 842 static int 843 add_vif(struct vifctl *vifcp) 844 { 845 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 846 struct sockaddr_in sin = {sizeof sin, AF_INET}; 847 struct ifaddr *ifa; 848 struct ifnet *ifp; 849 int error; 850 851 VIF_LOCK(); 852 if (vifcp->vifc_vifi >= MAXVIFS) { 853 VIF_UNLOCK(); 854 return EINVAL; 855 } 856 /* rate limiting is no longer supported by this code */ 857 if (vifcp->vifc_rate_limit != 0) { 858 log(LOG_ERR, "rate limiting is no longer supported\n"); 859 VIF_UNLOCK(); 860 return EINVAL; 861 } 862 if (!in_nullhost(vifp->v_lcl_addr)) { 863 VIF_UNLOCK(); 864 return EADDRINUSE; 865 } 866 if (in_nullhost(vifcp->vifc_lcl_addr)) { 867 VIF_UNLOCK(); 868 return EADDRNOTAVAIL; 869 } 870 871 /* Find the interface with an address in AF_INET family */ 872 if (vifcp->vifc_flags & VIFF_REGISTER) { 873 /* 874 * XXX: Because VIFF_REGISTER does not really need a valid 875 * local interface (e.g. it could be 127.0.0.2), we don't 876 * check its address. 877 */ 878 ifp = NULL; 879 } else { 880 sin.sin_addr = vifcp->vifc_lcl_addr; 881 NET_EPOCH_ENTER(); 882 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 883 if (ifa == NULL) { 884 NET_EPOCH_EXIT(); 885 VIF_UNLOCK(); 886 return EADDRNOTAVAIL; 887 } 888 ifp = ifa->ifa_ifp; 889 NET_EPOCH_EXIT(); 890 } 891 892 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 893 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 894 VIF_UNLOCK(); 895 return EOPNOTSUPP; 896 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 897 ifp = &V_multicast_register_if; 898 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 899 if (V_reg_vif_num == VIFI_INVALID) { 900 if_initname(&V_multicast_register_if, "register_vif", 0); 901 V_multicast_register_if.if_flags = IFF_LOOPBACK; 902 V_reg_vif_num = vifcp->vifc_vifi; 903 } 904 } else { /* Make sure the interface supports multicast */ 905 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 906 VIF_UNLOCK(); 907 return EOPNOTSUPP; 908 } 909 910 /* Enable promiscuous reception of all IP multicasts from the if */ 911 error = if_allmulti(ifp, 1); 912 if (error) { 913 VIF_UNLOCK(); 914 return error; 915 } 916 } 917 918 vifp->v_flags = vifcp->vifc_flags; 919 vifp->v_threshold = vifcp->vifc_threshold; 920 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 921 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 922 vifp->v_ifp = ifp; 923 /* initialize per vif pkt counters */ 924 vifp->v_pkt_in = 0; 925 vifp->v_pkt_out = 0; 926 vifp->v_bytes_in = 0; 927 vifp->v_bytes_out = 0; 928 929 /* Adjust numvifs up if the vifi is higher than numvifs */ 930 if (V_numvifs <= vifcp->vifc_vifi) 931 V_numvifs = vifcp->vifc_vifi + 1; 932 933 VIF_UNLOCK(); 934 935 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 936 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 937 (int)vifcp->vifc_threshold); 938 939 return 0; 940 } 941 942 /* 943 * Delete a vif from the vif table 944 */ 945 static int 946 del_vif_locked(vifi_t vifi) 947 { 948 struct vif *vifp; 949 950 VIF_LOCK_ASSERT(); 951 952 if (vifi >= V_numvifs) { 953 return EINVAL; 954 } 955 vifp = &V_viftable[vifi]; 956 if (in_nullhost(vifp->v_lcl_addr)) { 957 return EADDRNOTAVAIL; 958 } 959 960 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 961 if_allmulti(vifp->v_ifp, 0); 962 963 if (vifp->v_flags & VIFF_REGISTER) 964 V_reg_vif_num = VIFI_INVALID; 965 966 bzero((caddr_t)vifp, sizeof (*vifp)); 967 968 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 969 970 /* Adjust numvifs down */ 971 for (vifi = V_numvifs; vifi > 0; vifi--) 972 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 973 break; 974 V_numvifs = vifi; 975 976 return 0; 977 } 978 979 static int 980 del_vif(vifi_t vifi) 981 { 982 int cc; 983 984 VIF_LOCK(); 985 cc = del_vif_locked(vifi); 986 VIF_UNLOCK(); 987 988 return cc; 989 } 990 991 /* 992 * update an mfc entry without resetting counters and S,G addresses. 993 */ 994 static void 995 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 996 { 997 int i; 998 999 rt->mfc_parent = mfccp->mfcc_parent; 1000 for (i = 0; i < V_numvifs; i++) { 1001 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1002 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1003 MRT_MFC_FLAGS_ALL; 1004 } 1005 /* set the RP address */ 1006 if (V_mrt_api_config & MRT_MFC_RP) 1007 rt->mfc_rp = mfccp->mfcc_rp; 1008 else 1009 rt->mfc_rp.s_addr = INADDR_ANY; 1010 } 1011 1012 /* 1013 * fully initialize an mfc entry from the parameter. 1014 */ 1015 static void 1016 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1017 { 1018 rt->mfc_origin = mfccp->mfcc_origin; 1019 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1020 1021 update_mfc_params(rt, mfccp); 1022 1023 /* initialize pkt counters per src-grp */ 1024 rt->mfc_pkt_cnt = 0; 1025 rt->mfc_byte_cnt = 0; 1026 rt->mfc_wrong_if = 0; 1027 timevalclear(&rt->mfc_last_assert); 1028 } 1029 1030 static void 1031 expire_mfc(struct mfc *rt) 1032 { 1033 struct rtdetq *rte, *nrte; 1034 1035 MFC_LOCK_ASSERT(); 1036 1037 free_bw_list(rt->mfc_bw_meter); 1038 1039 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1040 m_freem(rte->m); 1041 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1042 free(rte, M_MRTABLE); 1043 } 1044 1045 LIST_REMOVE(rt, mfc_hash); 1046 free(rt, M_MRTABLE); 1047 } 1048 1049 /* 1050 * Add an mfc entry 1051 */ 1052 static int 1053 add_mfc(struct mfcctl2 *mfccp) 1054 { 1055 struct mfc *rt; 1056 struct rtdetq *rte, *nrte; 1057 u_long hash = 0; 1058 u_short nstl; 1059 1060 VIF_LOCK(); 1061 MFC_LOCK(); 1062 1063 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1064 1065 /* If an entry already exists, just update the fields */ 1066 if (rt) { 1067 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1068 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1069 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1070 mfccp->mfcc_parent); 1071 update_mfc_params(rt, mfccp); 1072 MFC_UNLOCK(); 1073 VIF_UNLOCK(); 1074 return (0); 1075 } 1076 1077 /* 1078 * Find the entry for which the upcall was made and update 1079 */ 1080 nstl = 0; 1081 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1082 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1083 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1084 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1085 !TAILQ_EMPTY(&rt->mfc_stall)) { 1086 CTR5(KTR_IPMF, 1087 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1088 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1089 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1090 mfccp->mfcc_parent, 1091 TAILQ_FIRST(&rt->mfc_stall)); 1092 if (nstl++) 1093 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1094 1095 init_mfc_params(rt, mfccp); 1096 rt->mfc_expire = 0; /* Don't clean this guy up */ 1097 V_nexpire[hash]--; 1098 1099 /* Free queued packets, but attempt to forward them first. */ 1100 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1101 if (rte->ifp != NULL) 1102 ip_mdq(rte->m, rte->ifp, rt, -1); 1103 m_freem(rte->m); 1104 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1105 rt->mfc_nstall--; 1106 free(rte, M_MRTABLE); 1107 } 1108 } 1109 } 1110 1111 /* 1112 * It is possible that an entry is being inserted without an upcall 1113 */ 1114 if (nstl == 0) { 1115 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1116 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1117 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1118 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1119 init_mfc_params(rt, mfccp); 1120 if (rt->mfc_expire) 1121 V_nexpire[hash]--; 1122 rt->mfc_expire = 0; 1123 break; /* XXX */ 1124 } 1125 } 1126 1127 if (rt == NULL) { /* no upcall, so make a new entry */ 1128 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1129 if (rt == NULL) { 1130 MFC_UNLOCK(); 1131 VIF_UNLOCK(); 1132 return (ENOBUFS); 1133 } 1134 1135 init_mfc_params(rt, mfccp); 1136 TAILQ_INIT(&rt->mfc_stall); 1137 rt->mfc_nstall = 0; 1138 1139 rt->mfc_expire = 0; 1140 rt->mfc_bw_meter = NULL; 1141 1142 /* insert new entry at head of hash chain */ 1143 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1144 } 1145 } 1146 1147 MFC_UNLOCK(); 1148 VIF_UNLOCK(); 1149 1150 return (0); 1151 } 1152 1153 /* 1154 * Delete an mfc entry 1155 */ 1156 static int 1157 del_mfc(struct mfcctl2 *mfccp) 1158 { 1159 struct in_addr origin; 1160 struct in_addr mcastgrp; 1161 struct mfc *rt; 1162 1163 origin = mfccp->mfcc_origin; 1164 mcastgrp = mfccp->mfcc_mcastgrp; 1165 1166 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1167 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1168 1169 MFC_LOCK(); 1170 1171 rt = mfc_find(&origin, &mcastgrp); 1172 if (rt == NULL) { 1173 MFC_UNLOCK(); 1174 return EADDRNOTAVAIL; 1175 } 1176 1177 /* 1178 * free the bw_meter entries 1179 */ 1180 free_bw_list(rt->mfc_bw_meter); 1181 rt->mfc_bw_meter = NULL; 1182 1183 LIST_REMOVE(rt, mfc_hash); 1184 free(rt, M_MRTABLE); 1185 1186 MFC_UNLOCK(); 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Send a message to the routing daemon on the multicast routing socket. 1193 */ 1194 static int 1195 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1196 { 1197 if (s) { 1198 SOCKBUF_LOCK(&s->so_rcv); 1199 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1200 NULL) != 0) { 1201 sorwakeup_locked(s); 1202 return 0; 1203 } 1204 SOCKBUF_UNLOCK(&s->so_rcv); 1205 } 1206 m_freem(mm); 1207 return -1; 1208 } 1209 1210 /* 1211 * IP multicast forwarding function. This function assumes that the packet 1212 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1213 * pointed to by "ifp", and the packet is to be relayed to other networks 1214 * that have members of the packet's destination IP multicast group. 1215 * 1216 * The packet is returned unscathed to the caller, unless it is 1217 * erroneous, in which case a non-zero return value tells the caller to 1218 * discard it. 1219 */ 1220 1221 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1222 1223 static int 1224 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1225 struct ip_moptions *imo) 1226 { 1227 struct mfc *rt; 1228 int error; 1229 vifi_t vifi; 1230 1231 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1232 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1233 1234 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1235 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1236 /* 1237 * Packet arrived via a physical interface or 1238 * an encapsulated tunnel or a register_vif. 1239 */ 1240 } else { 1241 /* 1242 * Packet arrived through a source-route tunnel. 1243 * Source-route tunnels are no longer supported. 1244 */ 1245 return (1); 1246 } 1247 1248 VIF_LOCK(); 1249 MFC_LOCK(); 1250 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1251 if (ip->ip_ttl < MAXTTL) 1252 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1253 error = ip_mdq(m, ifp, NULL, vifi); 1254 MFC_UNLOCK(); 1255 VIF_UNLOCK(); 1256 return error; 1257 } 1258 1259 /* 1260 * Don't forward a packet with time-to-live of zero or one, 1261 * or a packet destined to a local-only group. 1262 */ 1263 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1264 MFC_UNLOCK(); 1265 VIF_UNLOCK(); 1266 return 0; 1267 } 1268 1269 /* 1270 * Determine forwarding vifs from the forwarding cache table 1271 */ 1272 MRTSTAT_INC(mrts_mfc_lookups); 1273 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1274 1275 /* Entry exists, so forward if necessary */ 1276 if (rt != NULL) { 1277 error = ip_mdq(m, ifp, rt, -1); 1278 MFC_UNLOCK(); 1279 VIF_UNLOCK(); 1280 return error; 1281 } else { 1282 /* 1283 * If we don't have a route for packet's origin, 1284 * Make a copy of the packet & send message to routing daemon 1285 */ 1286 1287 struct mbuf *mb0; 1288 struct rtdetq *rte; 1289 u_long hash; 1290 int hlen = ip->ip_hl << 2; 1291 1292 MRTSTAT_INC(mrts_mfc_misses); 1293 MRTSTAT_INC(mrts_no_route); 1294 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1295 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1296 1297 /* 1298 * Allocate mbufs early so that we don't do extra work if we are 1299 * just going to fail anyway. Make sure to pullup the header so 1300 * that other people can't step on it. 1301 */ 1302 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1303 M_NOWAIT|M_ZERO); 1304 if (rte == NULL) { 1305 MFC_UNLOCK(); 1306 VIF_UNLOCK(); 1307 return ENOBUFS; 1308 } 1309 1310 mb0 = m_copypacket(m, M_NOWAIT); 1311 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1312 mb0 = m_pullup(mb0, hlen); 1313 if (mb0 == NULL) { 1314 free(rte, M_MRTABLE); 1315 MFC_UNLOCK(); 1316 VIF_UNLOCK(); 1317 return ENOBUFS; 1318 } 1319 1320 /* is there an upcall waiting for this flow ? */ 1321 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1322 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1323 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1324 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1325 !TAILQ_EMPTY(&rt->mfc_stall)) 1326 break; 1327 } 1328 1329 if (rt == NULL) { 1330 int i; 1331 struct igmpmsg *im; 1332 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1333 struct mbuf *mm; 1334 1335 /* 1336 * Locate the vifi for the incoming interface for this packet. 1337 * If none found, drop packet. 1338 */ 1339 for (vifi = 0; vifi < V_numvifs && 1340 V_viftable[vifi].v_ifp != ifp; vifi++) 1341 ; 1342 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1343 goto non_fatal; 1344 1345 /* no upcall, so make a new entry */ 1346 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1347 if (rt == NULL) 1348 goto fail; 1349 1350 /* Make a copy of the header to send to the user level process */ 1351 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1352 if (mm == NULL) 1353 goto fail1; 1354 1355 /* 1356 * Send message to routing daemon to install 1357 * a route into the kernel table 1358 */ 1359 1360 im = mtod(mm, struct igmpmsg *); 1361 im->im_msgtype = IGMPMSG_NOCACHE; 1362 im->im_mbz = 0; 1363 im->im_vif = vifi; 1364 1365 MRTSTAT_INC(mrts_upcalls); 1366 1367 k_igmpsrc.sin_addr = ip->ip_src; 1368 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1369 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1370 MRTSTAT_INC(mrts_upq_sockfull); 1371 fail1: 1372 free(rt, M_MRTABLE); 1373 fail: 1374 free(rte, M_MRTABLE); 1375 m_freem(mb0); 1376 MFC_UNLOCK(); 1377 VIF_UNLOCK(); 1378 return ENOBUFS; 1379 } 1380 1381 /* insert new entry at head of hash chain */ 1382 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1383 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1384 rt->mfc_expire = UPCALL_EXPIRE; 1385 V_nexpire[hash]++; 1386 for (i = 0; i < V_numvifs; i++) { 1387 rt->mfc_ttls[i] = 0; 1388 rt->mfc_flags[i] = 0; 1389 } 1390 rt->mfc_parent = -1; 1391 1392 /* clear the RP address */ 1393 rt->mfc_rp.s_addr = INADDR_ANY; 1394 rt->mfc_bw_meter = NULL; 1395 1396 /* initialize pkt counters per src-grp */ 1397 rt->mfc_pkt_cnt = 0; 1398 rt->mfc_byte_cnt = 0; 1399 rt->mfc_wrong_if = 0; 1400 timevalclear(&rt->mfc_last_assert); 1401 1402 TAILQ_INIT(&rt->mfc_stall); 1403 rt->mfc_nstall = 0; 1404 1405 /* link into table */ 1406 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1407 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1408 rt->mfc_nstall++; 1409 1410 } else { 1411 /* determine if queue has overflowed */ 1412 if (rt->mfc_nstall > MAX_UPQ) { 1413 MRTSTAT_INC(mrts_upq_ovflw); 1414 non_fatal: 1415 free(rte, M_MRTABLE); 1416 m_freem(mb0); 1417 MFC_UNLOCK(); 1418 VIF_UNLOCK(); 1419 return (0); 1420 } 1421 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1422 rt->mfc_nstall++; 1423 } 1424 1425 rte->m = mb0; 1426 rte->ifp = ifp; 1427 1428 MFC_UNLOCK(); 1429 VIF_UNLOCK(); 1430 1431 return 0; 1432 } 1433 } 1434 1435 /* 1436 * Clean up the cache entry if upcall is not serviced 1437 */ 1438 static void 1439 expire_upcalls(void *arg) 1440 { 1441 u_long i; 1442 1443 CURVNET_SET((struct vnet *) arg); 1444 1445 MFC_LOCK(); 1446 1447 for (i = 0; i < mfchashsize; i++) { 1448 struct mfc *rt, *nrt; 1449 1450 if (V_nexpire[i] == 0) 1451 continue; 1452 1453 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1454 if (TAILQ_EMPTY(&rt->mfc_stall)) 1455 continue; 1456 1457 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1458 continue; 1459 1460 /* 1461 * free the bw_meter entries 1462 */ 1463 while (rt->mfc_bw_meter != NULL) { 1464 struct bw_meter *x = rt->mfc_bw_meter; 1465 1466 rt->mfc_bw_meter = x->bm_mfc_next; 1467 free(x, M_BWMETER); 1468 } 1469 1470 MRTSTAT_INC(mrts_cache_cleanups); 1471 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1472 (u_long)ntohl(rt->mfc_origin.s_addr), 1473 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1474 1475 expire_mfc(rt); 1476 } 1477 } 1478 1479 MFC_UNLOCK(); 1480 1481 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1482 curvnet); 1483 1484 CURVNET_RESTORE(); 1485 } 1486 1487 /* 1488 * Packet forwarding routine once entry in the cache is made 1489 */ 1490 static int 1491 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1492 { 1493 struct ip *ip = mtod(m, struct ip *); 1494 vifi_t vifi; 1495 int plen = ntohs(ip->ip_len); 1496 1497 VIF_LOCK_ASSERT(); 1498 1499 /* 1500 * If xmt_vif is not -1, send on only the requested vif. 1501 * 1502 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1503 */ 1504 if (xmt_vif < V_numvifs) { 1505 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1506 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1507 else 1508 phyint_send(ip, V_viftable + xmt_vif, m); 1509 return 1; 1510 } 1511 1512 /* 1513 * Don't forward if it didn't arrive from the parent vif for its origin. 1514 */ 1515 vifi = rt->mfc_parent; 1516 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1517 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1518 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1519 MRTSTAT_INC(mrts_wrong_if); 1520 ++rt->mfc_wrong_if; 1521 /* 1522 * If we are doing PIM assert processing, send a message 1523 * to the routing daemon. 1524 * 1525 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1526 * can complete the SPT switch, regardless of the type 1527 * of the iif (broadcast media, GRE tunnel, etc). 1528 */ 1529 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1530 V_viftable[vifi].v_ifp) { 1531 1532 if (ifp == &V_multicast_register_if) 1533 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1534 1535 /* Get vifi for the incoming packet */ 1536 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1537 vifi++) 1538 ; 1539 if (vifi >= V_numvifs) 1540 return 0; /* The iif is not found: ignore the packet. */ 1541 1542 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1543 return 0; /* WRONGVIF disabled: ignore the packet */ 1544 1545 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1546 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1547 struct igmpmsg *im; 1548 int hlen = ip->ip_hl << 2; 1549 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1550 1551 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1552 mm = m_pullup(mm, hlen); 1553 if (mm == NULL) 1554 return ENOBUFS; 1555 1556 im = mtod(mm, struct igmpmsg *); 1557 im->im_msgtype = IGMPMSG_WRONGVIF; 1558 im->im_mbz = 0; 1559 im->im_vif = vifi; 1560 1561 MRTSTAT_INC(mrts_upcalls); 1562 1563 k_igmpsrc.sin_addr = im->im_src; 1564 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1565 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1566 MRTSTAT_INC(mrts_upq_sockfull); 1567 return ENOBUFS; 1568 } 1569 } 1570 } 1571 return 0; 1572 } 1573 1574 1575 /* If I sourced this packet, it counts as output, else it was input. */ 1576 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1577 V_viftable[vifi].v_pkt_out++; 1578 V_viftable[vifi].v_bytes_out += plen; 1579 } else { 1580 V_viftable[vifi].v_pkt_in++; 1581 V_viftable[vifi].v_bytes_in += plen; 1582 } 1583 rt->mfc_pkt_cnt++; 1584 rt->mfc_byte_cnt += plen; 1585 1586 /* 1587 * For each vif, decide if a copy of the packet should be forwarded. 1588 * Forward if: 1589 * - the ttl exceeds the vif's threshold 1590 * - there are group members downstream on interface 1591 */ 1592 for (vifi = 0; vifi < V_numvifs; vifi++) 1593 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1594 V_viftable[vifi].v_pkt_out++; 1595 V_viftable[vifi].v_bytes_out += plen; 1596 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1597 pim_register_send(ip, V_viftable + vifi, m, rt); 1598 else 1599 phyint_send(ip, V_viftable + vifi, m); 1600 } 1601 1602 /* 1603 * Perform upcall-related bw measuring. 1604 */ 1605 if (rt->mfc_bw_meter != NULL) { 1606 struct bw_meter *x; 1607 struct timeval now; 1608 1609 microtime(&now); 1610 MFC_LOCK_ASSERT(); 1611 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1612 bw_meter_receive_packet(x, plen, &now); 1613 } 1614 1615 return 0; 1616 } 1617 1618 /* 1619 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1620 */ 1621 static int 1622 X_legal_vif_num(int vif) 1623 { 1624 int ret; 1625 1626 ret = 0; 1627 if (vif < 0) 1628 return (ret); 1629 1630 VIF_LOCK(); 1631 if (vif < V_numvifs) 1632 ret = 1; 1633 VIF_UNLOCK(); 1634 1635 return (ret); 1636 } 1637 1638 /* 1639 * Return the local address used by this vif 1640 */ 1641 static u_long 1642 X_ip_mcast_src(int vifi) 1643 { 1644 in_addr_t addr; 1645 1646 addr = INADDR_ANY; 1647 if (vifi < 0) 1648 return (addr); 1649 1650 VIF_LOCK(); 1651 if (vifi < V_numvifs) 1652 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1653 VIF_UNLOCK(); 1654 1655 return (addr); 1656 } 1657 1658 static void 1659 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1660 { 1661 struct mbuf *mb_copy; 1662 int hlen = ip->ip_hl << 2; 1663 1664 VIF_LOCK_ASSERT(); 1665 1666 /* 1667 * Make a new reference to the packet; make sure that 1668 * the IP header is actually copied, not just referenced, 1669 * so that ip_output() only scribbles on the copy. 1670 */ 1671 mb_copy = m_copypacket(m, M_NOWAIT); 1672 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1673 mb_copy = m_pullup(mb_copy, hlen); 1674 if (mb_copy == NULL) 1675 return; 1676 1677 send_packet(vifp, mb_copy); 1678 } 1679 1680 static void 1681 send_packet(struct vif *vifp, struct mbuf *m) 1682 { 1683 struct ip_moptions imo; 1684 struct in_multi *imm[2]; 1685 int error __unused; 1686 1687 VIF_LOCK_ASSERT(); 1688 1689 imo.imo_multicast_ifp = vifp->v_ifp; 1690 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1691 imo.imo_multicast_loop = 1; 1692 imo.imo_multicast_vif = -1; 1693 imo.imo_num_memberships = 0; 1694 imo.imo_max_memberships = 2; 1695 imo.imo_membership = &imm[0]; 1696 1697 /* 1698 * Re-entrancy should not be a problem here, because 1699 * the packets that we send out and are looped back at us 1700 * should get rejected because they appear to come from 1701 * the loopback interface, thus preventing looping. 1702 */ 1703 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1704 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1705 (ptrdiff_t)(vifp - V_viftable), error); 1706 } 1707 1708 /* 1709 * Stubs for old RSVP socket shim implementation. 1710 */ 1711 1712 static int 1713 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1714 { 1715 1716 return (EOPNOTSUPP); 1717 } 1718 1719 static void 1720 X_ip_rsvp_force_done(struct socket *so __unused) 1721 { 1722 1723 } 1724 1725 static int 1726 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1727 { 1728 struct mbuf *m; 1729 1730 m = *mp; 1731 *mp = NULL; 1732 if (!V_rsvp_on) 1733 m_freem(m); 1734 return (IPPROTO_DONE); 1735 } 1736 1737 /* 1738 * Code for bandwidth monitors 1739 */ 1740 1741 /* 1742 * Define common interface for timeval-related methods 1743 */ 1744 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1745 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1746 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1747 1748 static uint32_t 1749 compute_bw_meter_flags(struct bw_upcall *req) 1750 { 1751 uint32_t flags = 0; 1752 1753 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1754 flags |= BW_METER_UNIT_PACKETS; 1755 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1756 flags |= BW_METER_UNIT_BYTES; 1757 if (req->bu_flags & BW_UPCALL_GEQ) 1758 flags |= BW_METER_GEQ; 1759 if (req->bu_flags & BW_UPCALL_LEQ) 1760 flags |= BW_METER_LEQ; 1761 1762 return flags; 1763 } 1764 1765 /* 1766 * Add a bw_meter entry 1767 */ 1768 static int 1769 add_bw_upcall(struct bw_upcall *req) 1770 { 1771 struct mfc *mfc; 1772 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1773 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1774 struct timeval now; 1775 struct bw_meter *x; 1776 uint32_t flags; 1777 1778 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1779 return EOPNOTSUPP; 1780 1781 /* Test if the flags are valid */ 1782 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1783 return EINVAL; 1784 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1785 return EINVAL; 1786 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1787 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1788 return EINVAL; 1789 1790 /* Test if the threshold time interval is valid */ 1791 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1792 return EINVAL; 1793 1794 flags = compute_bw_meter_flags(req); 1795 1796 /* 1797 * Find if we have already same bw_meter entry 1798 */ 1799 MFC_LOCK(); 1800 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1801 if (mfc == NULL) { 1802 MFC_UNLOCK(); 1803 return EADDRNOTAVAIL; 1804 } 1805 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1806 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1807 &req->bu_threshold.b_time, ==)) && 1808 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1809 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1810 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1811 MFC_UNLOCK(); 1812 return 0; /* XXX Already installed */ 1813 } 1814 } 1815 1816 /* Allocate the new bw_meter entry */ 1817 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1818 if (x == NULL) { 1819 MFC_UNLOCK(); 1820 return ENOBUFS; 1821 } 1822 1823 /* Set the new bw_meter entry */ 1824 x->bm_threshold.b_time = req->bu_threshold.b_time; 1825 microtime(&now); 1826 x->bm_start_time = now; 1827 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1828 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1829 x->bm_measured.b_packets = 0; 1830 x->bm_measured.b_bytes = 0; 1831 x->bm_flags = flags; 1832 x->bm_time_next = NULL; 1833 x->bm_time_hash = BW_METER_BUCKETS; 1834 1835 /* Add the new bw_meter entry to the front of entries for this MFC */ 1836 x->bm_mfc = mfc; 1837 x->bm_mfc_next = mfc->mfc_bw_meter; 1838 mfc->mfc_bw_meter = x; 1839 schedule_bw_meter(x, &now); 1840 MFC_UNLOCK(); 1841 1842 return 0; 1843 } 1844 1845 static void 1846 free_bw_list(struct bw_meter *list) 1847 { 1848 while (list != NULL) { 1849 struct bw_meter *x = list; 1850 1851 list = list->bm_mfc_next; 1852 unschedule_bw_meter(x); 1853 free(x, M_BWMETER); 1854 } 1855 } 1856 1857 /* 1858 * Delete one or multiple bw_meter entries 1859 */ 1860 static int 1861 del_bw_upcall(struct bw_upcall *req) 1862 { 1863 struct mfc *mfc; 1864 struct bw_meter *x; 1865 1866 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1867 return EOPNOTSUPP; 1868 1869 MFC_LOCK(); 1870 1871 /* Find the corresponding MFC entry */ 1872 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1873 if (mfc == NULL) { 1874 MFC_UNLOCK(); 1875 return EADDRNOTAVAIL; 1876 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1877 /* 1878 * Delete all bw_meter entries for this mfc 1879 */ 1880 struct bw_meter *list; 1881 1882 list = mfc->mfc_bw_meter; 1883 mfc->mfc_bw_meter = NULL; 1884 free_bw_list(list); 1885 MFC_UNLOCK(); 1886 return 0; 1887 } else { /* Delete a single bw_meter entry */ 1888 struct bw_meter *prev; 1889 uint32_t flags = 0; 1890 1891 flags = compute_bw_meter_flags(req); 1892 1893 /* Find the bw_meter entry to delete */ 1894 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1895 prev = x, x = x->bm_mfc_next) { 1896 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1897 &req->bu_threshold.b_time, ==)) && 1898 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1899 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1900 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1901 break; 1902 } 1903 if (x != NULL) { /* Delete entry from the list for this MFC */ 1904 if (prev != NULL) 1905 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1906 else 1907 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1908 1909 unschedule_bw_meter(x); 1910 MFC_UNLOCK(); 1911 /* Free the bw_meter entry */ 1912 free(x, M_BWMETER); 1913 return 0; 1914 } else { 1915 MFC_UNLOCK(); 1916 return EINVAL; 1917 } 1918 } 1919 /* NOTREACHED */ 1920 } 1921 1922 /* 1923 * Perform bandwidth measurement processing that may result in an upcall 1924 */ 1925 static void 1926 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1927 { 1928 struct timeval delta; 1929 1930 MFC_LOCK_ASSERT(); 1931 1932 delta = *nowp; 1933 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1934 1935 if (x->bm_flags & BW_METER_GEQ) { 1936 /* 1937 * Processing for ">=" type of bw_meter entry 1938 */ 1939 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1940 /* Reset the bw_meter entry */ 1941 x->bm_start_time = *nowp; 1942 x->bm_measured.b_packets = 0; 1943 x->bm_measured.b_bytes = 0; 1944 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1945 } 1946 1947 /* Record that a packet is received */ 1948 x->bm_measured.b_packets++; 1949 x->bm_measured.b_bytes += plen; 1950 1951 /* 1952 * Test if we should deliver an upcall 1953 */ 1954 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1955 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1956 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1957 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1958 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1959 /* Prepare an upcall for delivery */ 1960 bw_meter_prepare_upcall(x, nowp); 1961 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1962 } 1963 } 1964 } else if (x->bm_flags & BW_METER_LEQ) { 1965 /* 1966 * Processing for "<=" type of bw_meter entry 1967 */ 1968 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1969 /* 1970 * We are behind time with the multicast forwarding table 1971 * scanning for "<=" type of bw_meter entries, so test now 1972 * if we should deliver an upcall. 1973 */ 1974 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1975 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1976 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1977 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1978 /* Prepare an upcall for delivery */ 1979 bw_meter_prepare_upcall(x, nowp); 1980 } 1981 /* Reschedule the bw_meter entry */ 1982 unschedule_bw_meter(x); 1983 schedule_bw_meter(x, nowp); 1984 } 1985 1986 /* Record that a packet is received */ 1987 x->bm_measured.b_packets++; 1988 x->bm_measured.b_bytes += plen; 1989 1990 /* 1991 * Test if we should restart the measuring interval 1992 */ 1993 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1994 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1995 (x->bm_flags & BW_METER_UNIT_BYTES && 1996 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1997 /* Don't restart the measuring interval */ 1998 } else { 1999 /* Do restart the measuring interval */ 2000 /* 2001 * XXX: note that we don't unschedule and schedule, because this 2002 * might be too much overhead per packet. Instead, when we process 2003 * all entries for a given timer hash bin, we check whether it is 2004 * really a timeout. If not, we reschedule at that time. 2005 */ 2006 x->bm_start_time = *nowp; 2007 x->bm_measured.b_packets = 0; 2008 x->bm_measured.b_bytes = 0; 2009 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2010 } 2011 } 2012 } 2013 2014 /* 2015 * Prepare a bandwidth-related upcall 2016 */ 2017 static void 2018 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2019 { 2020 struct timeval delta; 2021 struct bw_upcall *u; 2022 2023 MFC_LOCK_ASSERT(); 2024 2025 /* 2026 * Compute the measured time interval 2027 */ 2028 delta = *nowp; 2029 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2030 2031 /* 2032 * If there are too many pending upcalls, deliver them now 2033 */ 2034 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2035 bw_upcalls_send(); 2036 2037 /* 2038 * Set the bw_upcall entry 2039 */ 2040 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2041 u->bu_src = x->bm_mfc->mfc_origin; 2042 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2043 u->bu_threshold.b_time = x->bm_threshold.b_time; 2044 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2045 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2046 u->bu_measured.b_time = delta; 2047 u->bu_measured.b_packets = x->bm_measured.b_packets; 2048 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2049 u->bu_flags = 0; 2050 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2051 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2052 if (x->bm_flags & BW_METER_UNIT_BYTES) 2053 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2054 if (x->bm_flags & BW_METER_GEQ) 2055 u->bu_flags |= BW_UPCALL_GEQ; 2056 if (x->bm_flags & BW_METER_LEQ) 2057 u->bu_flags |= BW_UPCALL_LEQ; 2058 } 2059 2060 /* 2061 * Send the pending bandwidth-related upcalls 2062 */ 2063 static void 2064 bw_upcalls_send(void) 2065 { 2066 struct mbuf *m; 2067 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2068 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2069 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2070 0, /* unused2 */ 2071 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2072 0, /* im_mbz */ 2073 0, /* im_vif */ 2074 0, /* unused3 */ 2075 { 0 }, /* im_src */ 2076 { 0 } }; /* im_dst */ 2077 2078 MFC_LOCK_ASSERT(); 2079 2080 if (V_bw_upcalls_n == 0) 2081 return; /* No pending upcalls */ 2082 2083 V_bw_upcalls_n = 0; 2084 2085 /* 2086 * Allocate a new mbuf, initialize it with the header and 2087 * the payload for the pending calls. 2088 */ 2089 m = m_gethdr(M_NOWAIT, MT_DATA); 2090 if (m == NULL) { 2091 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2092 return; 2093 } 2094 2095 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2096 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2097 2098 /* 2099 * Send the upcalls 2100 * XXX do we need to set the address in k_igmpsrc ? 2101 */ 2102 MRTSTAT_INC(mrts_upcalls); 2103 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2104 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2105 MRTSTAT_INC(mrts_upq_sockfull); 2106 } 2107 } 2108 2109 /* 2110 * Compute the timeout hash value for the bw_meter entries 2111 */ 2112 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2113 do { \ 2114 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2115 \ 2116 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2117 (hash) = next_timeval.tv_sec; \ 2118 if (next_timeval.tv_usec) \ 2119 (hash)++; /* XXX: make sure we don't timeout early */ \ 2120 (hash) %= BW_METER_BUCKETS; \ 2121 } while (0) 2122 2123 /* 2124 * Schedule a timer to process periodically bw_meter entry of type "<=" 2125 * by linking the entry in the proper hash bucket. 2126 */ 2127 static void 2128 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2129 { 2130 int time_hash; 2131 2132 MFC_LOCK_ASSERT(); 2133 2134 if (!(x->bm_flags & BW_METER_LEQ)) 2135 return; /* XXX: we schedule timers only for "<=" entries */ 2136 2137 /* 2138 * Reset the bw_meter entry 2139 */ 2140 x->bm_start_time = *nowp; 2141 x->bm_measured.b_packets = 0; 2142 x->bm_measured.b_bytes = 0; 2143 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2144 2145 /* 2146 * Compute the timeout hash value and insert the entry 2147 */ 2148 BW_METER_TIMEHASH(x, time_hash); 2149 x->bm_time_next = V_bw_meter_timers[time_hash]; 2150 V_bw_meter_timers[time_hash] = x; 2151 x->bm_time_hash = time_hash; 2152 } 2153 2154 /* 2155 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2156 * by removing the entry from the proper hash bucket. 2157 */ 2158 static void 2159 unschedule_bw_meter(struct bw_meter *x) 2160 { 2161 int time_hash; 2162 struct bw_meter *prev, *tmp; 2163 2164 MFC_LOCK_ASSERT(); 2165 2166 if (!(x->bm_flags & BW_METER_LEQ)) 2167 return; /* XXX: we schedule timers only for "<=" entries */ 2168 2169 /* 2170 * Compute the timeout hash value and delete the entry 2171 */ 2172 time_hash = x->bm_time_hash; 2173 if (time_hash >= BW_METER_BUCKETS) 2174 return; /* Entry was not scheduled */ 2175 2176 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2177 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2178 if (tmp == x) 2179 break; 2180 2181 if (tmp == NULL) 2182 panic("unschedule_bw_meter: bw_meter entry not found"); 2183 2184 if (prev != NULL) 2185 prev->bm_time_next = x->bm_time_next; 2186 else 2187 V_bw_meter_timers[time_hash] = x->bm_time_next; 2188 2189 x->bm_time_next = NULL; 2190 x->bm_time_hash = BW_METER_BUCKETS; 2191 } 2192 2193 2194 /* 2195 * Process all "<=" type of bw_meter that should be processed now, 2196 * and for each entry prepare an upcall if necessary. Each processed 2197 * entry is rescheduled again for the (periodic) processing. 2198 * 2199 * This is run periodically (once per second normally). On each round, 2200 * all the potentially matching entries are in the hash slot that we are 2201 * looking at. 2202 */ 2203 static void 2204 bw_meter_process() 2205 { 2206 uint32_t loops; 2207 int i; 2208 struct timeval now, process_endtime; 2209 2210 microtime(&now); 2211 if (V_last_tv_sec == now.tv_sec) 2212 return; /* nothing to do */ 2213 2214 loops = now.tv_sec - V_last_tv_sec; 2215 V_last_tv_sec = now.tv_sec; 2216 if (loops > BW_METER_BUCKETS) 2217 loops = BW_METER_BUCKETS; 2218 2219 MFC_LOCK(); 2220 /* 2221 * Process all bins of bw_meter entries from the one after the last 2222 * processed to the current one. On entry, i points to the last bucket 2223 * visited, so we need to increment i at the beginning of the loop. 2224 */ 2225 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2226 struct bw_meter *x, *tmp_list; 2227 2228 if (++i >= BW_METER_BUCKETS) 2229 i = 0; 2230 2231 /* Disconnect the list of bw_meter entries from the bin */ 2232 tmp_list = V_bw_meter_timers[i]; 2233 V_bw_meter_timers[i] = NULL; 2234 2235 /* Process the list of bw_meter entries */ 2236 while (tmp_list != NULL) { 2237 x = tmp_list; 2238 tmp_list = tmp_list->bm_time_next; 2239 2240 /* Test if the time interval is over */ 2241 process_endtime = x->bm_start_time; 2242 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2243 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2244 /* Not yet: reschedule, but don't reset */ 2245 int time_hash; 2246 2247 BW_METER_TIMEHASH(x, time_hash); 2248 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2249 /* 2250 * XXX: somehow the bin processing is a bit ahead of time. 2251 * Put the entry in the next bin. 2252 */ 2253 if (++time_hash >= BW_METER_BUCKETS) 2254 time_hash = 0; 2255 } 2256 x->bm_time_next = V_bw_meter_timers[time_hash]; 2257 V_bw_meter_timers[time_hash] = x; 2258 x->bm_time_hash = time_hash; 2259 2260 continue; 2261 } 2262 2263 /* 2264 * Test if we should deliver an upcall 2265 */ 2266 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2267 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2268 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2269 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2270 /* Prepare an upcall for delivery */ 2271 bw_meter_prepare_upcall(x, &now); 2272 } 2273 2274 /* 2275 * Reschedule for next processing 2276 */ 2277 schedule_bw_meter(x, &now); 2278 } 2279 } 2280 2281 /* Send all upcalls that are pending delivery */ 2282 bw_upcalls_send(); 2283 2284 MFC_UNLOCK(); 2285 } 2286 2287 /* 2288 * A periodic function for sending all upcalls that are pending delivery 2289 */ 2290 static void 2291 expire_bw_upcalls_send(void *arg) 2292 { 2293 CURVNET_SET((struct vnet *) arg); 2294 2295 MFC_LOCK(); 2296 bw_upcalls_send(); 2297 MFC_UNLOCK(); 2298 2299 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2300 curvnet); 2301 CURVNET_RESTORE(); 2302 } 2303 2304 /* 2305 * A periodic function for periodic scanning of the multicast forwarding 2306 * table for processing all "<=" bw_meter entries. 2307 */ 2308 static void 2309 expire_bw_meter_process(void *arg) 2310 { 2311 CURVNET_SET((struct vnet *) arg); 2312 2313 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2314 bw_meter_process(); 2315 2316 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2317 curvnet); 2318 CURVNET_RESTORE(); 2319 } 2320 2321 /* 2322 * End of bandwidth monitoring code 2323 */ 2324 2325 /* 2326 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2327 * 2328 */ 2329 static int 2330 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2331 struct mfc *rt) 2332 { 2333 struct mbuf *mb_copy, *mm; 2334 2335 /* 2336 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2337 * rendezvous point was unspecified, and we were told not to. 2338 */ 2339 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2340 in_nullhost(rt->mfc_rp)) 2341 return 0; 2342 2343 mb_copy = pim_register_prepare(ip, m); 2344 if (mb_copy == NULL) 2345 return ENOBUFS; 2346 2347 /* 2348 * Send all the fragments. Note that the mbuf for each fragment 2349 * is freed by the sending machinery. 2350 */ 2351 for (mm = mb_copy; mm; mm = mb_copy) { 2352 mb_copy = mm->m_nextpkt; 2353 mm->m_nextpkt = 0; 2354 mm = m_pullup(mm, sizeof(struct ip)); 2355 if (mm != NULL) { 2356 ip = mtod(mm, struct ip *); 2357 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2358 pim_register_send_rp(ip, vifp, mm, rt); 2359 } else { 2360 pim_register_send_upcall(ip, vifp, mm, rt); 2361 } 2362 } 2363 } 2364 2365 return 0; 2366 } 2367 2368 /* 2369 * Return a copy of the data packet that is ready for PIM Register 2370 * encapsulation. 2371 * XXX: Note that in the returned copy the IP header is a valid one. 2372 */ 2373 static struct mbuf * 2374 pim_register_prepare(struct ip *ip, struct mbuf *m) 2375 { 2376 struct mbuf *mb_copy = NULL; 2377 int mtu; 2378 2379 /* Take care of delayed checksums */ 2380 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2381 in_delayed_cksum(m); 2382 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2383 } 2384 2385 /* 2386 * Copy the old packet & pullup its IP header into the 2387 * new mbuf so we can modify it. 2388 */ 2389 mb_copy = m_copypacket(m, M_NOWAIT); 2390 if (mb_copy == NULL) 2391 return NULL; 2392 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2393 if (mb_copy == NULL) 2394 return NULL; 2395 2396 /* take care of the TTL */ 2397 ip = mtod(mb_copy, struct ip *); 2398 --ip->ip_ttl; 2399 2400 /* Compute the MTU after the PIM Register encapsulation */ 2401 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2402 2403 if (ntohs(ip->ip_len) <= mtu) { 2404 /* Turn the IP header into a valid one */ 2405 ip->ip_sum = 0; 2406 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2407 } else { 2408 /* Fragment the packet */ 2409 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2410 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2411 m_freem(mb_copy); 2412 return NULL; 2413 } 2414 } 2415 return mb_copy; 2416 } 2417 2418 /* 2419 * Send an upcall with the data packet to the user-level process. 2420 */ 2421 static int 2422 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2423 struct mbuf *mb_copy, struct mfc *rt) 2424 { 2425 struct mbuf *mb_first; 2426 int len = ntohs(ip->ip_len); 2427 struct igmpmsg *im; 2428 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2429 2430 VIF_LOCK_ASSERT(); 2431 2432 /* 2433 * Add a new mbuf with an upcall header 2434 */ 2435 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2436 if (mb_first == NULL) { 2437 m_freem(mb_copy); 2438 return ENOBUFS; 2439 } 2440 mb_first->m_data += max_linkhdr; 2441 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2442 mb_first->m_len = sizeof(struct igmpmsg); 2443 mb_first->m_next = mb_copy; 2444 2445 /* Send message to routing daemon */ 2446 im = mtod(mb_first, struct igmpmsg *); 2447 im->im_msgtype = IGMPMSG_WHOLEPKT; 2448 im->im_mbz = 0; 2449 im->im_vif = vifp - V_viftable; 2450 im->im_src = ip->ip_src; 2451 im->im_dst = ip->ip_dst; 2452 2453 k_igmpsrc.sin_addr = ip->ip_src; 2454 2455 MRTSTAT_INC(mrts_upcalls); 2456 2457 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2458 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2459 MRTSTAT_INC(mrts_upq_sockfull); 2460 return ENOBUFS; 2461 } 2462 2463 /* Keep statistics */ 2464 PIMSTAT_INC(pims_snd_registers_msgs); 2465 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2466 2467 return 0; 2468 } 2469 2470 /* 2471 * Encapsulate the data packet in PIM Register message and send it to the RP. 2472 */ 2473 static int 2474 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2475 struct mfc *rt) 2476 { 2477 struct mbuf *mb_first; 2478 struct ip *ip_outer; 2479 struct pim_encap_pimhdr *pimhdr; 2480 int len = ntohs(ip->ip_len); 2481 vifi_t vifi = rt->mfc_parent; 2482 2483 VIF_LOCK_ASSERT(); 2484 2485 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2486 m_freem(mb_copy); 2487 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2488 } 2489 2490 /* 2491 * Add a new mbuf with the encapsulating header 2492 */ 2493 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2494 if (mb_first == NULL) { 2495 m_freem(mb_copy); 2496 return ENOBUFS; 2497 } 2498 mb_first->m_data += max_linkhdr; 2499 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2500 mb_first->m_next = mb_copy; 2501 2502 mb_first->m_pkthdr.len = len + mb_first->m_len; 2503 2504 /* 2505 * Fill in the encapsulating IP and PIM header 2506 */ 2507 ip_outer = mtod(mb_first, struct ip *); 2508 *ip_outer = pim_encap_iphdr; 2509 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2510 sizeof(pim_encap_pimhdr)); 2511 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2512 ip_outer->ip_dst = rt->mfc_rp; 2513 /* 2514 * Copy the inner header TOS to the outer header, and take care of the 2515 * IP_DF bit. 2516 */ 2517 ip_outer->ip_tos = ip->ip_tos; 2518 if (ip->ip_off & htons(IP_DF)) 2519 ip_outer->ip_off |= htons(IP_DF); 2520 ip_fillid(ip_outer); 2521 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2522 + sizeof(pim_encap_iphdr)); 2523 *pimhdr = pim_encap_pimhdr; 2524 /* If the iif crosses a border, set the Border-bit */ 2525 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2526 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2527 2528 mb_first->m_data += sizeof(pim_encap_iphdr); 2529 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2530 mb_first->m_data -= sizeof(pim_encap_iphdr); 2531 2532 send_packet(vifp, mb_first); 2533 2534 /* Keep statistics */ 2535 PIMSTAT_INC(pims_snd_registers_msgs); 2536 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2537 2538 return 0; 2539 } 2540 2541 /* 2542 * pim_encapcheck() is called by the encap4_input() path at runtime to 2543 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2544 * into the kernel. 2545 */ 2546 static int 2547 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2548 { 2549 2550 #ifdef DIAGNOSTIC 2551 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2552 #endif 2553 if (proto != IPPROTO_PIM) 2554 return 0; /* not for us; reject the datagram. */ 2555 2556 return 64; /* claim the datagram. */ 2557 } 2558 2559 /* 2560 * PIM-SMv2 and PIM-DM messages processing. 2561 * Receives and verifies the PIM control messages, and passes them 2562 * up to the listening socket, using rip_input(). 2563 * The only message with special processing is the PIM_REGISTER message 2564 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2565 * is passed to if_simloop(). 2566 */ 2567 int 2568 pim_input(struct mbuf **mp, int *offp, int proto) 2569 { 2570 struct mbuf *m = *mp; 2571 struct ip *ip = mtod(m, struct ip *); 2572 struct pim *pim; 2573 int iphlen = *offp; 2574 int minlen; 2575 int datalen = ntohs(ip->ip_len) - iphlen; 2576 int ip_tos; 2577 2578 *mp = NULL; 2579 2580 /* Keep statistics */ 2581 PIMSTAT_INC(pims_rcv_total_msgs); 2582 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2583 2584 /* 2585 * Validate lengths 2586 */ 2587 if (datalen < PIM_MINLEN) { 2588 PIMSTAT_INC(pims_rcv_tooshort); 2589 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2590 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2591 m_freem(m); 2592 return (IPPROTO_DONE); 2593 } 2594 2595 /* 2596 * If the packet is at least as big as a REGISTER, go agead 2597 * and grab the PIM REGISTER header size, to avoid another 2598 * possible m_pullup() later. 2599 * 2600 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2601 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2602 */ 2603 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2604 /* 2605 * Get the IP and PIM headers in contiguous memory, and 2606 * possibly the PIM REGISTER header. 2607 */ 2608 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2609 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2610 return (IPPROTO_DONE); 2611 } 2612 2613 /* m_pullup() may have given us a new mbuf so reset ip. */ 2614 ip = mtod(m, struct ip *); 2615 ip_tos = ip->ip_tos; 2616 2617 /* adjust mbuf to point to the PIM header */ 2618 m->m_data += iphlen; 2619 m->m_len -= iphlen; 2620 pim = mtod(m, struct pim *); 2621 2622 /* 2623 * Validate checksum. If PIM REGISTER, exclude the data packet. 2624 * 2625 * XXX: some older PIMv2 implementations don't make this distinction, 2626 * so for compatibility reason perform the checksum over part of the 2627 * message, and if error, then over the whole message. 2628 */ 2629 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2630 /* do nothing, checksum okay */ 2631 } else if (in_cksum(m, datalen)) { 2632 PIMSTAT_INC(pims_rcv_badsum); 2633 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2634 m_freem(m); 2635 return (IPPROTO_DONE); 2636 } 2637 2638 /* PIM version check */ 2639 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2640 PIMSTAT_INC(pims_rcv_badversion); 2641 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2642 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2643 m_freem(m); 2644 return (IPPROTO_DONE); 2645 } 2646 2647 /* restore mbuf back to the outer IP */ 2648 m->m_data -= iphlen; 2649 m->m_len += iphlen; 2650 2651 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2652 /* 2653 * Since this is a REGISTER, we'll make a copy of the register 2654 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2655 * routing daemon. 2656 */ 2657 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2658 struct mbuf *mcp; 2659 struct ip *encap_ip; 2660 u_int32_t *reghdr; 2661 struct ifnet *vifp; 2662 2663 VIF_LOCK(); 2664 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2665 VIF_UNLOCK(); 2666 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2667 (int)V_reg_vif_num); 2668 m_freem(m); 2669 return (IPPROTO_DONE); 2670 } 2671 /* XXX need refcnt? */ 2672 vifp = V_viftable[V_reg_vif_num].v_ifp; 2673 VIF_UNLOCK(); 2674 2675 /* 2676 * Validate length 2677 */ 2678 if (datalen < PIM_REG_MINLEN) { 2679 PIMSTAT_INC(pims_rcv_tooshort); 2680 PIMSTAT_INC(pims_rcv_badregisters); 2681 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2682 m_freem(m); 2683 return (IPPROTO_DONE); 2684 } 2685 2686 reghdr = (u_int32_t *)(pim + 1); 2687 encap_ip = (struct ip *)(reghdr + 1); 2688 2689 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2690 __func__, ntohl(encap_ip->ip_src.s_addr), 2691 ntohs(encap_ip->ip_len)); 2692 2693 /* verify the version number of the inner packet */ 2694 if (encap_ip->ip_v != IPVERSION) { 2695 PIMSTAT_INC(pims_rcv_badregisters); 2696 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2697 m_freem(m); 2698 return (IPPROTO_DONE); 2699 } 2700 2701 /* verify the inner packet is destined to a mcast group */ 2702 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2703 PIMSTAT_INC(pims_rcv_badregisters); 2704 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2705 ntohl(encap_ip->ip_dst.s_addr)); 2706 m_freem(m); 2707 return (IPPROTO_DONE); 2708 } 2709 2710 /* If a NULL_REGISTER, pass it to the daemon */ 2711 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2712 goto pim_input_to_daemon; 2713 2714 /* 2715 * Copy the TOS from the outer IP header to the inner IP header. 2716 */ 2717 if (encap_ip->ip_tos != ip_tos) { 2718 /* Outer TOS -> inner TOS */ 2719 encap_ip->ip_tos = ip_tos; 2720 /* Recompute the inner header checksum. Sigh... */ 2721 2722 /* adjust mbuf to point to the inner IP header */ 2723 m->m_data += (iphlen + PIM_MINLEN); 2724 m->m_len -= (iphlen + PIM_MINLEN); 2725 2726 encap_ip->ip_sum = 0; 2727 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2728 2729 /* restore mbuf to point back to the outer IP header */ 2730 m->m_data -= (iphlen + PIM_MINLEN); 2731 m->m_len += (iphlen + PIM_MINLEN); 2732 } 2733 2734 /* 2735 * Decapsulate the inner IP packet and loopback to forward it 2736 * as a normal multicast packet. Also, make a copy of the 2737 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2738 * to pass to the daemon later, so it can take the appropriate 2739 * actions (e.g., send back PIM_REGISTER_STOP). 2740 * XXX: here m->m_data points to the outer IP header. 2741 */ 2742 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2743 if (mcp == NULL) { 2744 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2745 m_freem(m); 2746 return (IPPROTO_DONE); 2747 } 2748 2749 /* Keep statistics */ 2750 /* XXX: registers_bytes include only the encap. mcast pkt */ 2751 PIMSTAT_INC(pims_rcv_registers_msgs); 2752 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2753 2754 /* 2755 * forward the inner ip packet; point m_data at the inner ip. 2756 */ 2757 m_adj(m, iphlen + PIM_MINLEN); 2758 2759 CTR4(KTR_IPMF, 2760 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2761 __func__, 2762 (u_long)ntohl(encap_ip->ip_src.s_addr), 2763 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2764 (int)V_reg_vif_num); 2765 2766 /* NB: vifp was collected above; can it change on us? */ 2767 if_simloop(vifp, m, dst.sin_family, 0); 2768 2769 /* prepare the register head to send to the mrouting daemon */ 2770 m = mcp; 2771 } 2772 2773 pim_input_to_daemon: 2774 /* 2775 * Pass the PIM message up to the daemon; if it is a Register message, 2776 * pass the 'head' only up to the daemon. This includes the 2777 * outer IP header, PIM header, PIM-Register header and the 2778 * inner IP header. 2779 * XXX: the outer IP header pkt size of a Register is not adjust to 2780 * reflect the fact that the inner multicast data is truncated. 2781 */ 2782 *mp = m; 2783 rip_input(mp, offp, proto); 2784 2785 return (IPPROTO_DONE); 2786 } 2787 2788 static int 2789 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2790 { 2791 struct mfc *rt; 2792 int error, i; 2793 2794 if (req->newptr) 2795 return (EPERM); 2796 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2797 return (0); 2798 error = sysctl_wire_old_buffer(req, 0); 2799 if (error) 2800 return (error); 2801 2802 MFC_LOCK(); 2803 for (i = 0; i < mfchashsize; i++) { 2804 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2805 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2806 if (error) 2807 goto out_locked; 2808 } 2809 } 2810 out_locked: 2811 MFC_UNLOCK(); 2812 return (error); 2813 } 2814 2815 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2816 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2817 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2818 2819 static void 2820 vnet_mroute_init(const void *unused __unused) 2821 { 2822 2823 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2824 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2825 callout_init(&V_expire_upcalls_ch, 1); 2826 callout_init(&V_bw_upcalls_ch, 1); 2827 callout_init(&V_bw_meter_ch, 1); 2828 } 2829 2830 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2831 NULL); 2832 2833 static void 2834 vnet_mroute_uninit(const void *unused __unused) 2835 { 2836 2837 free(V_nexpire, M_MRTABLE); 2838 V_nexpire = NULL; 2839 } 2840 2841 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2842 vnet_mroute_uninit, NULL); 2843 2844 static int 2845 ip_mroute_modevent(module_t mod, int type, void *unused) 2846 { 2847 2848 switch (type) { 2849 case MOD_LOAD: 2850 MROUTER_LOCK_INIT(); 2851 2852 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2853 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2854 if (if_detach_event_tag == NULL) { 2855 printf("ip_mroute: unable to register " 2856 "ifnet_departure_event handler\n"); 2857 MROUTER_LOCK_DESTROY(); 2858 return (EINVAL); 2859 } 2860 2861 MFC_LOCK_INIT(); 2862 VIF_LOCK_INIT(); 2863 2864 mfchashsize = MFCHASHSIZE; 2865 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2866 !powerof2(mfchashsize)) { 2867 printf("WARNING: %s not a power of 2; using default\n", 2868 "net.inet.ip.mfchashsize"); 2869 mfchashsize = MFCHASHSIZE; 2870 } 2871 2872 pim_squelch_wholepkt = 0; 2873 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2874 &pim_squelch_wholepkt); 2875 2876 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2877 pim_encapcheck, &in_pim_protosw, NULL); 2878 if (pim_encap_cookie == NULL) { 2879 printf("ip_mroute: unable to attach pim encap\n"); 2880 VIF_LOCK_DESTROY(); 2881 MFC_LOCK_DESTROY(); 2882 MROUTER_LOCK_DESTROY(); 2883 return (EINVAL); 2884 } 2885 2886 ip_mcast_src = X_ip_mcast_src; 2887 ip_mforward = X_ip_mforward; 2888 ip_mrouter_done = X_ip_mrouter_done; 2889 ip_mrouter_get = X_ip_mrouter_get; 2890 ip_mrouter_set = X_ip_mrouter_set; 2891 2892 ip_rsvp_force_done = X_ip_rsvp_force_done; 2893 ip_rsvp_vif = X_ip_rsvp_vif; 2894 2895 legal_vif_num = X_legal_vif_num; 2896 mrt_ioctl = X_mrt_ioctl; 2897 rsvp_input_p = X_rsvp_input; 2898 break; 2899 2900 case MOD_UNLOAD: 2901 /* 2902 * Typically module unload happens after the user-level 2903 * process has shutdown the kernel services (the check 2904 * below insures someone can't just yank the module out 2905 * from under a running process). But if the module is 2906 * just loaded and then unloaded w/o starting up a user 2907 * process we still need to cleanup. 2908 */ 2909 MROUTER_LOCK(); 2910 if (ip_mrouter_cnt != 0) { 2911 MROUTER_UNLOCK(); 2912 return (EINVAL); 2913 } 2914 ip_mrouter_unloading = 1; 2915 MROUTER_UNLOCK(); 2916 2917 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2918 2919 if (pim_encap_cookie) { 2920 encap_detach(pim_encap_cookie); 2921 pim_encap_cookie = NULL; 2922 } 2923 2924 ip_mcast_src = NULL; 2925 ip_mforward = NULL; 2926 ip_mrouter_done = NULL; 2927 ip_mrouter_get = NULL; 2928 ip_mrouter_set = NULL; 2929 2930 ip_rsvp_force_done = NULL; 2931 ip_rsvp_vif = NULL; 2932 2933 legal_vif_num = NULL; 2934 mrt_ioctl = NULL; 2935 rsvp_input_p = NULL; 2936 2937 VIF_LOCK_DESTROY(); 2938 MFC_LOCK_DESTROY(); 2939 MROUTER_LOCK_DESTROY(); 2940 break; 2941 2942 default: 2943 return EOPNOTSUPP; 2944 } 2945 return 0; 2946 } 2947 2948 static moduledata_t ip_mroutemod = { 2949 "ip_mroute", 2950 ip_mroute_modevent, 2951 0 2952 }; 2953 2954 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2955