xref: /freebsd/sys/netinet/ip_mroute.c (revision 409a390c3341fb4f162cd7de1fd595a323ebbfd8)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  */
55 
56 /*
57  * TODO: Prefix functions with ipmf_.
58  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59  * domain attachment (if_afdata) so we can track consumers of that service.
60  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61  * move it to socket options.
62  * TODO: Cleanup LSRR removal further.
63  * TODO: Push RSVP stubs into raw_ip.c.
64  * TODO: Use bitstring.h for vif set.
65  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66  * TODO: Sync ip6_mroute.c with this file.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_inet.h"
73 #include "opt_mrouting.h"
74 
75 #define _PIM_VT 1
76 
77 #include <sys/param.h>
78 #include <sys/kernel.h>
79 #include <sys/stddef.h>
80 #include <sys/lock.h>
81 #include <sys/ktr.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/module.h>
85 #include <sys/priv.h>
86 #include <sys/protosw.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/sockio.h>
91 #include <sys/sx.h>
92 #include <sys/sysctl.h>
93 #include <sys/syslog.h>
94 #include <sys/systm.h>
95 #include <sys/time.h>
96 
97 #include <net/if.h>
98 #include <net/netisr.h>
99 #include <net/route.h>
100 #include <net/vnet.h>
101 
102 #include <netinet/in.h>
103 #include <netinet/igmp.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/ip_encap.h>
108 #include <netinet/ip_mroute.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_options.h>
111 #include <netinet/pim.h>
112 #include <netinet/pim_var.h>
113 #include <netinet/udp.h>
114 
115 #include <machine/in_cksum.h>
116 
117 #include <security/mac/mac_framework.h>
118 
119 #ifndef KTR_IPMF
120 #define KTR_IPMF KTR_INET
121 #endif
122 
123 #define		VIFI_INVALID	((vifi_t) -1)
124 #define		M_HASCL(m)	((m)->m_flags & M_EXT)
125 
126 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
127 
128 /*
129  * Locking.  We use two locks: one for the virtual interface table and
130  * one for the forwarding table.  These locks may be nested in which case
131  * the VIF lock must always be taken first.  Note that each lock is used
132  * to cover not only the specific data structure but also related data
133  * structures.
134  */
135 
136 static struct mtx mrouter_mtx;
137 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
138 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
139 #define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
140 #define	MROUTER_LOCK_INIT()						\
141 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
142 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
143 
144 static struct mrtstat	mrtstat;
145 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
146     &mrtstat, mrtstat,
147     "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
148     "netinet/ip_mroute.h)");
149 
150 static u_long			 mfchash;
151 #define MFCHASH(a, g)							\
152 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
153 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
154 #define MFCHASHSIZE	256
155 
156 static u_char			*nexpire;	/* 0..mfchashsize-1 */
157 static u_long			 mfchashsize;	/* Hash size */
158 LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
159 
160 static struct mtx mfc_mtx;
161 #define	MFC_LOCK()		mtx_lock(&mfc_mtx)
162 #define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
163 #define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
164 #define	MFC_LOCK_INIT()							\
165 	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
166 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
167 
168 static vifi_t		numvifs;
169 static struct vif	viftable[MAXVIFS];
170 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
171     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
172     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
173 
174 static struct mtx vif_mtx;
175 #define	VIF_LOCK()		mtx_lock(&vif_mtx)
176 #define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
177 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
178 #define	VIF_LOCK_INIT()							\
179 	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
180 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181 
182 static eventhandler_tag if_detach_event_tag = NULL;
183 
184 static struct callout expire_upcalls_ch;
185 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
186 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
187 
188 /*
189  * Bandwidth meter variables and constants
190  */
191 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
192 /*
193  * Pending timeouts are stored in a hash table, the key being the
194  * expiration time. Periodically, the entries are analysed and processed.
195  */
196 #define BW_METER_BUCKETS	1024
197 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
198 static struct callout bw_meter_ch;
199 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
200 
201 /*
202  * Pending upcalls are stored in a vector which is flushed when
203  * full, or periodically
204  */
205 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
206 static u_int	bw_upcalls_n; /* # of pending upcalls */
207 static struct callout bw_upcalls_ch;
208 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
209 
210 static struct pimstat pimstat;
211 
212 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
213 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
214     &pimstat, pimstat,
215     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
216 
217 static u_long	pim_squelch_wholepkt = 0;
218 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
219     &pim_squelch_wholepkt, 0,
220     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
221 
222 extern  struct domain inetdomain;
223 static const struct protosw in_pim_protosw = {
224 	.pr_type =		SOCK_RAW,
225 	.pr_domain =		&inetdomain,
226 	.pr_protocol =		IPPROTO_PIM,
227 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
228 	.pr_input =		pim_input,
229 	.pr_output =		(pr_output_t*)rip_output,
230 	.pr_ctloutput =		rip_ctloutput,
231 	.pr_usrreqs =		&rip_usrreqs
232 };
233 static const struct encaptab *pim_encap_cookie;
234 
235 static int pim_encapcheck(const struct mbuf *, int, int, void *);
236 
237 /*
238  * Note: the PIM Register encapsulation adds the following in front of a
239  * data packet:
240  *
241  * struct pim_encap_hdr {
242  *    struct ip ip;
243  *    struct pim_encap_pimhdr  pim;
244  * }
245  *
246  */
247 
248 struct pim_encap_pimhdr {
249 	struct pim pim;
250 	uint32_t   flags;
251 };
252 #define		PIM_ENCAP_TTL	64
253 
254 static struct ip pim_encap_iphdr = {
255 #if BYTE_ORDER == LITTLE_ENDIAN
256 	sizeof(struct ip) >> 2,
257 	IPVERSION,
258 #else
259 	IPVERSION,
260 	sizeof(struct ip) >> 2,
261 #endif
262 	0,			/* tos */
263 	sizeof(struct ip),	/* total length */
264 	0,			/* id */
265 	0,			/* frag offset */
266 	PIM_ENCAP_TTL,
267 	IPPROTO_PIM,
268 	0,			/* checksum */
269 };
270 
271 static struct pim_encap_pimhdr pim_encap_pimhdr = {
272     {
273 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274 	0,			/* reserved */
275 	0,			/* checksum */
276     },
277     0				/* flags */
278 };
279 
280 static struct ifnet multicast_register_if;
281 static vifi_t reg_vif_num = VIFI_INVALID;
282 
283 /*
284  * Private variables.
285  */
286 
287 static u_long	X_ip_mcast_src(int);
288 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
289 		    struct ip_moptions *);
290 static int	X_ip_mrouter_done(void);
291 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
292 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
293 static int	X_legal_vif_num(int);
294 static int	X_mrt_ioctl(u_long, caddr_t, int);
295 
296 static int	add_bw_upcall(struct bw_upcall *);
297 static int	add_mfc(struct mfcctl2 *);
298 static int	add_vif(struct vifctl *);
299 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
300 static void	bw_meter_process(void);
301 static void	bw_meter_receive_packet(struct bw_meter *, int,
302 		    struct timeval *);
303 static void	bw_upcalls_send(void);
304 static int	del_bw_upcall(struct bw_upcall *);
305 static int	del_mfc(struct mfcctl2 *);
306 static int	del_vif(vifi_t);
307 static int	del_vif_locked(vifi_t);
308 static void	expire_bw_meter_process(void *);
309 static void	expire_bw_upcalls_send(void *);
310 static void	expire_mfc(struct mfc *);
311 static void	expire_upcalls(void *);
312 static void	free_bw_list(struct bw_meter *);
313 static int	get_sg_cnt(struct sioc_sg_req *);
314 static int	get_vif_cnt(struct sioc_vif_req *);
315 static void	if_detached_event(void *, struct ifnet *);
316 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
317 static int	ip_mrouter_init(struct socket *, int);
318 static __inline struct mfc *
319 		mfc_find(struct in_addr *, struct in_addr *);
320 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
321 static struct mbuf *
322 		pim_register_prepare(struct ip *, struct mbuf *);
323 static int	pim_register_send(struct ip *, struct vif *,
324 		    struct mbuf *, struct mfc *);
325 static int	pim_register_send_rp(struct ip *, struct vif *,
326 		    struct mbuf *, struct mfc *);
327 static int	pim_register_send_upcall(struct ip *, struct vif *,
328 		    struct mbuf *, struct mfc *);
329 static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
330 static void	send_packet(struct vif *, struct mbuf *);
331 static int	set_api_config(uint32_t *);
332 static int	set_assert(int);
333 static int	socket_send(struct socket *, struct mbuf *,
334 		    struct sockaddr_in *);
335 static void	unschedule_bw_meter(struct bw_meter *);
336 
337 /*
338  * Kernel multicast forwarding API capabilities and setup.
339  * If more API capabilities are added to the kernel, they should be
340  * recorded in `mrt_api_support'.
341  */
342 #define MRT_API_VERSION		0x0305
343 
344 static const int mrt_api_version = MRT_API_VERSION;
345 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
346 					 MRT_MFC_FLAGS_BORDER_VIF |
347 					 MRT_MFC_RP |
348 					 MRT_MFC_BW_UPCALL);
349 static uint32_t mrt_api_config = 0;
350 
351 static int pim_assert_enabled;
352 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
353 
354 /*
355  * Find a route for a given origin IP address and multicast group address.
356  * Statistics must be updated by the caller.
357  */
358 static __inline struct mfc *
359 mfc_find(struct in_addr *o, struct in_addr *g)
360 {
361 	struct mfc *rt;
362 
363 	MFC_LOCK_ASSERT();
364 
365 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
366 		if (in_hosteq(rt->mfc_origin, *o) &&
367 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
368 		    TAILQ_EMPTY(&rt->mfc_stall))
369 			break;
370 	}
371 
372 	return (rt);
373 }
374 
375 /*
376  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
377  */
378 static int
379 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
380 {
381     int	error, optval;
382     vifi_t	vifi;
383     struct	vifctl vifc;
384     struct	mfcctl2 mfc;
385     struct	bw_upcall bw_upcall;
386     uint32_t	i;
387 
388     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
389 	return EPERM;
390 
391     error = 0;
392     switch (sopt->sopt_name) {
393     case MRT_INIT:
394 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
395 	if (error)
396 	    break;
397 	error = ip_mrouter_init(so, optval);
398 	break;
399 
400     case MRT_DONE:
401 	error = ip_mrouter_done();
402 	break;
403 
404     case MRT_ADD_VIF:
405 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
406 	if (error)
407 	    break;
408 	error = add_vif(&vifc);
409 	break;
410 
411     case MRT_DEL_VIF:
412 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
413 	if (error)
414 	    break;
415 	error = del_vif(vifi);
416 	break;
417 
418     case MRT_ADD_MFC:
419     case MRT_DEL_MFC:
420 	/*
421 	 * select data size depending on API version.
422 	 */
423 	if (sopt->sopt_name == MRT_ADD_MFC &&
424 		mrt_api_config & MRT_API_FLAGS_ALL) {
425 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
426 				sizeof(struct mfcctl2));
427 	} else {
428 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
429 				sizeof(struct mfcctl));
430 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
431 			sizeof(mfc) - sizeof(struct mfcctl));
432 	}
433 	if (error)
434 	    break;
435 	if (sopt->sopt_name == MRT_ADD_MFC)
436 	    error = add_mfc(&mfc);
437 	else
438 	    error = del_mfc(&mfc);
439 	break;
440 
441     case MRT_ASSERT:
442 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443 	if (error)
444 	    break;
445 	set_assert(optval);
446 	break;
447 
448     case MRT_API_CONFIG:
449 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
450 	if (!error)
451 	    error = set_api_config(&i);
452 	if (!error)
453 	    error = sooptcopyout(sopt, &i, sizeof i);
454 	break;
455 
456     case MRT_ADD_BW_UPCALL:
457     case MRT_DEL_BW_UPCALL:
458 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
459 				sizeof bw_upcall);
460 	if (error)
461 	    break;
462 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
463 	    error = add_bw_upcall(&bw_upcall);
464 	else
465 	    error = del_bw_upcall(&bw_upcall);
466 	break;
467 
468     default:
469 	error = EOPNOTSUPP;
470 	break;
471     }
472     return error;
473 }
474 
475 /*
476  * Handle MRT getsockopt commands
477  */
478 static int
479 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
480 {
481     int error;
482 
483     switch (sopt->sopt_name) {
484     case MRT_VERSION:
485 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
486 	break;
487 
488     case MRT_ASSERT:
489 	error = sooptcopyout(sopt, &pim_assert_enabled,
490 	    sizeof pim_assert_enabled);
491 	break;
492 
493     case MRT_API_SUPPORT:
494 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
495 	break;
496 
497     case MRT_API_CONFIG:
498 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
499 	break;
500 
501     default:
502 	error = EOPNOTSUPP;
503 	break;
504     }
505     return error;
506 }
507 
508 /*
509  * Handle ioctl commands to obtain information from the cache
510  */
511 static int
512 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
513 {
514     int error = 0;
515 
516     /*
517      * Currently the only function calling this ioctl routine is rtioctl().
518      * Typically, only root can create the raw socket in order to execute
519      * this ioctl method, however the request might be coming from a prison
520      */
521     error = priv_check(curthread, PRIV_NETINET_MROUTE);
522     if (error)
523 	return (error);
524     switch (cmd) {
525     case (SIOCGETVIFCNT):
526 	error = get_vif_cnt((struct sioc_vif_req *)data);
527 	break;
528 
529     case (SIOCGETSGCNT):
530 	error = get_sg_cnt((struct sioc_sg_req *)data);
531 	break;
532 
533     default:
534 	error = EINVAL;
535 	break;
536     }
537     return error;
538 }
539 
540 /*
541  * returns the packet, byte, rpf-failure count for the source group provided
542  */
543 static int
544 get_sg_cnt(struct sioc_sg_req *req)
545 {
546     struct mfc *rt;
547 
548     MFC_LOCK();
549     rt = mfc_find(&req->src, &req->grp);
550     if (rt == NULL) {
551 	MFC_UNLOCK();
552 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
553 	return EADDRNOTAVAIL;
554     }
555     req->pktcnt = rt->mfc_pkt_cnt;
556     req->bytecnt = rt->mfc_byte_cnt;
557     req->wrong_if = rt->mfc_wrong_if;
558     MFC_UNLOCK();
559     return 0;
560 }
561 
562 /*
563  * returns the input and output packet and byte counts on the vif provided
564  */
565 static int
566 get_vif_cnt(struct sioc_vif_req *req)
567 {
568     vifi_t vifi = req->vifi;
569 
570     VIF_LOCK();
571     if (vifi >= numvifs) {
572 	VIF_UNLOCK();
573 	return EINVAL;
574     }
575 
576     req->icount = viftable[vifi].v_pkt_in;
577     req->ocount = viftable[vifi].v_pkt_out;
578     req->ibytes = viftable[vifi].v_bytes_in;
579     req->obytes = viftable[vifi].v_bytes_out;
580     VIF_UNLOCK();
581 
582     return 0;
583 }
584 
585 static void
586 ip_mrouter_reset(void)
587 {
588 
589     pim_assert_enabled = 0;
590     mrt_api_config = 0;
591 
592     callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
593 
594     bw_upcalls_n = 0;
595     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
596     callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
597     callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
598 }
599 
600 static void
601 if_detached_event(void *arg __unused, struct ifnet *ifp)
602 {
603     vifi_t vifi;
604     int i;
605 
606     MROUTER_LOCK();
607 
608     if (V_ip_mrouter == NULL) {
609 	MROUTER_UNLOCK();
610 	return;
611     }
612 
613     VIF_LOCK();
614     MFC_LOCK();
615 
616     /*
617      * Tear down multicast forwarder state associated with this ifnet.
618      * 1. Walk the vif list, matching vifs against this ifnet.
619      * 2. Walk the multicast forwarding cache (mfc) looking for
620      *    inner matches with this vif's index.
621      * 3. Expire any matching multicast forwarding cache entries.
622      * 4. Free vif state. This should disable ALLMULTI on the interface.
623      */
624     for (vifi = 0; vifi < numvifs; vifi++) {
625 	if (viftable[vifi].v_ifp != ifp)
626 		continue;
627 	for (i = 0; i < mfchashsize; i++) {
628 		struct mfc *rt, *nrt;
629 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
630 			nrt = LIST_NEXT(rt, mfc_hash);
631 			if (rt->mfc_parent == vifi) {
632 				expire_mfc(rt);
633 			}
634 		}
635 	}
636 	del_vif_locked(vifi);
637     }
638 
639     MFC_UNLOCK();
640     VIF_UNLOCK();
641 
642     MROUTER_UNLOCK();
643 }
644 
645 /*
646  * Enable multicast forwarding.
647  */
648 static int
649 ip_mrouter_init(struct socket *so, int version)
650 {
651 
652     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
653         so->so_type, so->so_proto->pr_protocol);
654 
655     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
656 	return EOPNOTSUPP;
657 
658     if (version != 1)
659 	return ENOPROTOOPT;
660 
661     MROUTER_LOCK();
662 
663     if (V_ip_mrouter != NULL) {
664 	MROUTER_UNLOCK();
665 	return EADDRINUSE;
666     }
667 
668     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
669         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
670     if (if_detach_event_tag == NULL) {
671 	MROUTER_UNLOCK();
672 	return (ENOMEM);
673     }
674 
675     mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
676 
677     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
678 
679     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
680 	expire_bw_upcalls_send, NULL);
681     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
682 
683     V_ip_mrouter = so;
684 
685     MROUTER_UNLOCK();
686 
687     CTR1(KTR_IPMF, "%s: done", __func__);
688 
689     return 0;
690 }
691 
692 /*
693  * Disable multicast forwarding.
694  */
695 static int
696 X_ip_mrouter_done(void)
697 {
698     vifi_t vifi;
699     int i;
700     struct ifnet *ifp;
701     struct ifreq ifr;
702 
703     MROUTER_LOCK();
704 
705     if (V_ip_mrouter == NULL) {
706 	MROUTER_UNLOCK();
707 	return EINVAL;
708     }
709 
710     /*
711      * Detach/disable hooks to the reset of the system.
712      */
713     V_ip_mrouter = NULL;
714     mrt_api_config = 0;
715 
716     VIF_LOCK();
717 
718     /*
719      * For each phyint in use, disable promiscuous reception of all IP
720      * multicasts.
721      */
722     for (vifi = 0; vifi < numvifs; vifi++) {
723 	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
724 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
725 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
726 
727 	    so->sin_len = sizeof(struct sockaddr_in);
728 	    so->sin_family = AF_INET;
729 	    so->sin_addr.s_addr = INADDR_ANY;
730 	    ifp = viftable[vifi].v_ifp;
731 	    if_allmulti(ifp, 0);
732 	}
733     }
734     bzero((caddr_t)viftable, sizeof(viftable));
735     numvifs = 0;
736     pim_assert_enabled = 0;
737 
738     VIF_UNLOCK();
739 
740     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
741 
742     callout_stop(&expire_upcalls_ch);
743     callout_stop(&bw_upcalls_ch);
744     callout_stop(&bw_meter_ch);
745 
746     MFC_LOCK();
747 
748     /*
749      * Free all multicast forwarding cache entries.
750      * Do not use hashdestroy(), as we must perform other cleanup.
751      */
752     for (i = 0; i < mfchashsize; i++) {
753 	struct mfc *rt, *nrt;
754 	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
755 		nrt = LIST_NEXT(rt, mfc_hash);
756 		expire_mfc(rt);
757 	}
758     }
759     free(mfchashtbl, M_MRTABLE);
760     mfchashtbl = NULL;
761 
762     bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
763 
764     bw_upcalls_n = 0;
765     bzero(bw_meter_timers, sizeof(bw_meter_timers));
766 
767     MFC_UNLOCK();
768 
769     reg_vif_num = VIFI_INVALID;
770 
771     MROUTER_UNLOCK();
772 
773     CTR1(KTR_IPMF, "%s: done", __func__);
774 
775     return 0;
776 }
777 
778 /*
779  * Set PIM assert processing global
780  */
781 static int
782 set_assert(int i)
783 {
784     if ((i != 1) && (i != 0))
785 	return EINVAL;
786 
787     pim_assert_enabled = i;
788 
789     return 0;
790 }
791 
792 /*
793  * Configure API capabilities
794  */
795 int
796 set_api_config(uint32_t *apival)
797 {
798     int i;
799 
800     /*
801      * We can set the API capabilities only if it is the first operation
802      * after MRT_INIT. I.e.:
803      *  - there are no vifs installed
804      *  - pim_assert is not enabled
805      *  - the MFC table is empty
806      */
807     if (numvifs > 0) {
808 	*apival = 0;
809 	return EPERM;
810     }
811     if (pim_assert_enabled) {
812 	*apival = 0;
813 	return EPERM;
814     }
815 
816     MFC_LOCK();
817 
818     for (i = 0; i < mfchashsize; i++) {
819 	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
820 	    *apival = 0;
821 	    return EPERM;
822 	}
823     }
824 
825     MFC_UNLOCK();
826 
827     mrt_api_config = *apival & mrt_api_support;
828     *apival = mrt_api_config;
829 
830     return 0;
831 }
832 
833 /*
834  * Add a vif to the vif table
835  */
836 static int
837 add_vif(struct vifctl *vifcp)
838 {
839     struct vif *vifp = viftable + vifcp->vifc_vifi;
840     struct sockaddr_in sin = {sizeof sin, AF_INET};
841     struct ifaddr *ifa;
842     struct ifnet *ifp;
843     int error;
844 
845     VIF_LOCK();
846     if (vifcp->vifc_vifi >= MAXVIFS) {
847 	VIF_UNLOCK();
848 	return EINVAL;
849     }
850     /* rate limiting is no longer supported by this code */
851     if (vifcp->vifc_rate_limit != 0) {
852 	log(LOG_ERR, "rate limiting is no longer supported\n");
853 	VIF_UNLOCK();
854 	return EINVAL;
855     }
856     if (!in_nullhost(vifp->v_lcl_addr)) {
857 	VIF_UNLOCK();
858 	return EADDRINUSE;
859     }
860     if (in_nullhost(vifcp->vifc_lcl_addr)) {
861 	VIF_UNLOCK();
862 	return EADDRNOTAVAIL;
863     }
864 
865     /* Find the interface with an address in AF_INET family */
866     if (vifcp->vifc_flags & VIFF_REGISTER) {
867 	/*
868 	 * XXX: Because VIFF_REGISTER does not really need a valid
869 	 * local interface (e.g. it could be 127.0.0.2), we don't
870 	 * check its address.
871 	 */
872 	ifp = NULL;
873     } else {
874 	sin.sin_addr = vifcp->vifc_lcl_addr;
875 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
876 	if (ifa == NULL) {
877 	    VIF_UNLOCK();
878 	    return EADDRNOTAVAIL;
879 	}
880 	ifp = ifa->ifa_ifp;
881 	ifa_free(ifa);
882     }
883 
884     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
885 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
886 	VIF_UNLOCK();
887 	return EOPNOTSUPP;
888     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
889 	ifp = &multicast_register_if;
890 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
891 	if (reg_vif_num == VIFI_INVALID) {
892 	    if_initname(&multicast_register_if, "register_vif", 0);
893 	    multicast_register_if.if_flags = IFF_LOOPBACK;
894 	    reg_vif_num = vifcp->vifc_vifi;
895 	}
896     } else {		/* Make sure the interface supports multicast */
897 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
898 	    VIF_UNLOCK();
899 	    return EOPNOTSUPP;
900 	}
901 
902 	/* Enable promiscuous reception of all IP multicasts from the if */
903 	error = if_allmulti(ifp, 1);
904 	if (error) {
905 	    VIF_UNLOCK();
906 	    return error;
907 	}
908     }
909 
910     vifp->v_flags     = vifcp->vifc_flags;
911     vifp->v_threshold = vifcp->vifc_threshold;
912     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
913     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
914     vifp->v_ifp       = ifp;
915     /* initialize per vif pkt counters */
916     vifp->v_pkt_in    = 0;
917     vifp->v_pkt_out   = 0;
918     vifp->v_bytes_in  = 0;
919     vifp->v_bytes_out = 0;
920     bzero(&vifp->v_route, sizeof(vifp->v_route));
921 
922     /* Adjust numvifs up if the vifi is higher than numvifs */
923     if (numvifs <= vifcp->vifc_vifi)
924 	numvifs = vifcp->vifc_vifi + 1;
925 
926     VIF_UNLOCK();
927 
928     CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
929 	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
930 	(int)vifcp->vifc_threshold);
931 
932     return 0;
933 }
934 
935 /*
936  * Delete a vif from the vif table
937  */
938 static int
939 del_vif_locked(vifi_t vifi)
940 {
941     struct vif *vifp;
942 
943     VIF_LOCK_ASSERT();
944 
945     if (vifi >= numvifs) {
946 	return EINVAL;
947     }
948     vifp = &viftable[vifi];
949     if (in_nullhost(vifp->v_lcl_addr)) {
950 	return EADDRNOTAVAIL;
951     }
952 
953     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
954 	if_allmulti(vifp->v_ifp, 0);
955 
956     if (vifp->v_flags & VIFF_REGISTER)
957 	reg_vif_num = VIFI_INVALID;
958 
959     bzero((caddr_t)vifp, sizeof (*vifp));
960 
961     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
962 
963     /* Adjust numvifs down */
964     for (vifi = numvifs; vifi > 0; vifi--)
965 	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
966 	    break;
967     numvifs = vifi;
968 
969     return 0;
970 }
971 
972 static int
973 del_vif(vifi_t vifi)
974 {
975     int cc;
976 
977     VIF_LOCK();
978     cc = del_vif_locked(vifi);
979     VIF_UNLOCK();
980 
981     return cc;
982 }
983 
984 /*
985  * update an mfc entry without resetting counters and S,G addresses.
986  */
987 static void
988 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
989 {
990     int i;
991 
992     rt->mfc_parent = mfccp->mfcc_parent;
993     for (i = 0; i < numvifs; i++) {
994 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
995 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
996 	    MRT_MFC_FLAGS_ALL;
997     }
998     /* set the RP address */
999     if (mrt_api_config & MRT_MFC_RP)
1000 	rt->mfc_rp = mfccp->mfcc_rp;
1001     else
1002 	rt->mfc_rp.s_addr = INADDR_ANY;
1003 }
1004 
1005 /*
1006  * fully initialize an mfc entry from the parameter.
1007  */
1008 static void
1009 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1010 {
1011     rt->mfc_origin     = mfccp->mfcc_origin;
1012     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1013 
1014     update_mfc_params(rt, mfccp);
1015 
1016     /* initialize pkt counters per src-grp */
1017     rt->mfc_pkt_cnt    = 0;
1018     rt->mfc_byte_cnt   = 0;
1019     rt->mfc_wrong_if   = 0;
1020     timevalclear(&rt->mfc_last_assert);
1021 }
1022 
1023 static void
1024 expire_mfc(struct mfc *rt)
1025 {
1026 	struct rtdetq *rte, *nrte;
1027 
1028 	MFC_LOCK_ASSERT();
1029 
1030 	free_bw_list(rt->mfc_bw_meter);
1031 
1032 	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1033 		m_freem(rte->m);
1034 		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1035 		free(rte, M_MRTABLE);
1036 	}
1037 
1038 	LIST_REMOVE(rt, mfc_hash);
1039 	free(rt, M_MRTABLE);
1040 }
1041 
1042 /*
1043  * Add an mfc entry
1044  */
1045 static int
1046 add_mfc(struct mfcctl2 *mfccp)
1047 {
1048     struct mfc *rt;
1049     struct rtdetq *rte, *nrte;
1050     u_long hash = 0;
1051     u_short nstl;
1052 
1053     VIF_LOCK();
1054     MFC_LOCK();
1055 
1056     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1057 
1058     /* If an entry already exists, just update the fields */
1059     if (rt) {
1060 	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1061 	    __func__, inet_ntoa(mfccp->mfcc_origin),
1062 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1063 	    mfccp->mfcc_parent);
1064 	update_mfc_params(rt, mfccp);
1065 	MFC_UNLOCK();
1066 	VIF_UNLOCK();
1067 	return (0);
1068     }
1069 
1070     /*
1071      * Find the entry for which the upcall was made and update
1072      */
1073     nstl = 0;
1074     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1075     LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1076 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1077 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1078 	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1079 		CTR5(KTR_IPMF,
1080 		    "%s: add mfc orig %s group %lx parent %x qh %p",
1081 		    __func__, inet_ntoa(mfccp->mfcc_origin),
1082 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1083 		    mfccp->mfcc_parent,
1084 		    TAILQ_FIRST(&rt->mfc_stall));
1085 		if (nstl++)
1086 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1087 
1088 		init_mfc_params(rt, mfccp);
1089 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1090 		nexpire[hash]--;
1091 
1092 		/* Free queued packets, but attempt to forward them first. */
1093 		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1094 			if (rte->ifp != NULL)
1095 				ip_mdq(rte->m, rte->ifp, rt, -1);
1096 			m_freem(rte->m);
1097 			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1098 			rt->mfc_nstall--;
1099 			free(rte, M_MRTABLE);
1100 		}
1101 	}
1102     }
1103 
1104     /*
1105      * It is possible that an entry is being inserted without an upcall
1106      */
1107     if (nstl == 0) {
1108 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1109 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1110 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1111 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1112 			init_mfc_params(rt, mfccp);
1113 			if (rt->mfc_expire)
1114 			    nexpire[hash]--;
1115 			rt->mfc_expire = 0;
1116 			break; /* XXX */
1117 		}
1118 	}
1119 
1120 	if (rt == NULL) {		/* no upcall, so make a new entry */
1121 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1122 	    if (rt == NULL) {
1123 		MFC_UNLOCK();
1124 		VIF_UNLOCK();
1125 		return (ENOBUFS);
1126 	    }
1127 
1128 	    init_mfc_params(rt, mfccp);
1129 	    TAILQ_INIT(&rt->mfc_stall);
1130 	    rt->mfc_nstall = 0;
1131 
1132 	    rt->mfc_expire     = 0;
1133 	    rt->mfc_bw_meter = NULL;
1134 
1135 	    /* insert new entry at head of hash chain */
1136 	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1137 	}
1138     }
1139 
1140     MFC_UNLOCK();
1141     VIF_UNLOCK();
1142 
1143     return (0);
1144 }
1145 
1146 /*
1147  * Delete an mfc entry
1148  */
1149 static int
1150 del_mfc(struct mfcctl2 *mfccp)
1151 {
1152     struct in_addr	origin;
1153     struct in_addr	mcastgrp;
1154     struct mfc		*rt;
1155 
1156     origin = mfccp->mfcc_origin;
1157     mcastgrp = mfccp->mfcc_mcastgrp;
1158 
1159     CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1160 	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1161 
1162     MFC_LOCK();
1163 
1164     rt = mfc_find(&origin, &mcastgrp);
1165     if (rt == NULL) {
1166 	MFC_UNLOCK();
1167 	return EADDRNOTAVAIL;
1168     }
1169 
1170     /*
1171      * free the bw_meter entries
1172      */
1173     free_bw_list(rt->mfc_bw_meter);
1174     rt->mfc_bw_meter = NULL;
1175 
1176     LIST_REMOVE(rt, mfc_hash);
1177     free(rt, M_MRTABLE);
1178 
1179     MFC_UNLOCK();
1180 
1181     return (0);
1182 }
1183 
1184 /*
1185  * Send a message to the routing daemon on the multicast routing socket.
1186  */
1187 static int
1188 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1189 {
1190     if (s) {
1191 	SOCKBUF_LOCK(&s->so_rcv);
1192 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1193 	    NULL) != 0) {
1194 	    sorwakeup_locked(s);
1195 	    return 0;
1196 	}
1197 	SOCKBUF_UNLOCK(&s->so_rcv);
1198     }
1199     m_freem(mm);
1200     return -1;
1201 }
1202 
1203 /*
1204  * IP multicast forwarding function. This function assumes that the packet
1205  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1206  * pointed to by "ifp", and the packet is to be relayed to other networks
1207  * that have members of the packet's destination IP multicast group.
1208  *
1209  * The packet is returned unscathed to the caller, unless it is
1210  * erroneous, in which case a non-zero return value tells the caller to
1211  * discard it.
1212  */
1213 
1214 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1215 
1216 static int
1217 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1218     struct ip_moptions *imo)
1219 {
1220     struct mfc *rt;
1221     int error;
1222     vifi_t vifi;
1223 
1224     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1225 	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1226 
1227     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1228 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1229 	/*
1230 	 * Packet arrived via a physical interface or
1231 	 * an encapsulated tunnel or a register_vif.
1232 	 */
1233     } else {
1234 	/*
1235 	 * Packet arrived through a source-route tunnel.
1236 	 * Source-route tunnels are no longer supported.
1237 	 */
1238 	return (1);
1239     }
1240 
1241     VIF_LOCK();
1242     MFC_LOCK();
1243     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1244 	if (ip->ip_ttl < MAXTTL)
1245 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1246 	error = ip_mdq(m, ifp, NULL, vifi);
1247 	MFC_UNLOCK();
1248 	VIF_UNLOCK();
1249 	return error;
1250     }
1251 
1252     /*
1253      * Don't forward a packet with time-to-live of zero or one,
1254      * or a packet destined to a local-only group.
1255      */
1256     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1257 	MFC_UNLOCK();
1258 	VIF_UNLOCK();
1259 	return 0;
1260     }
1261 
1262     /*
1263      * Determine forwarding vifs from the forwarding cache table
1264      */
1265     MRTSTAT_INC(mrts_mfc_lookups);
1266     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1267 
1268     /* Entry exists, so forward if necessary */
1269     if (rt != NULL) {
1270 	error = ip_mdq(m, ifp, rt, -1);
1271 	MFC_UNLOCK();
1272 	VIF_UNLOCK();
1273 	return error;
1274     } else {
1275 	/*
1276 	 * If we don't have a route for packet's origin,
1277 	 * Make a copy of the packet & send message to routing daemon
1278 	 */
1279 
1280 	struct mbuf *mb0;
1281 	struct rtdetq *rte;
1282 	u_long hash;
1283 	int hlen = ip->ip_hl << 2;
1284 
1285 	MRTSTAT_INC(mrts_mfc_misses);
1286 	MRTSTAT_INC(mrts_no_route);
1287 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1288 	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1289 
1290 	/*
1291 	 * Allocate mbufs early so that we don't do extra work if we are
1292 	 * just going to fail anyway.  Make sure to pullup the header so
1293 	 * that other people can't step on it.
1294 	 */
1295 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1296 	    M_NOWAIT|M_ZERO);
1297 	if (rte == NULL) {
1298 	    MFC_UNLOCK();
1299 	    VIF_UNLOCK();
1300 	    return ENOBUFS;
1301 	}
1302 
1303 	mb0 = m_copypacket(m, M_DONTWAIT);
1304 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1305 	    mb0 = m_pullup(mb0, hlen);
1306 	if (mb0 == NULL) {
1307 	    free(rte, M_MRTABLE);
1308 	    MFC_UNLOCK();
1309 	    VIF_UNLOCK();
1310 	    return ENOBUFS;
1311 	}
1312 
1313 	/* is there an upcall waiting for this flow ? */
1314 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1315 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1316 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1317 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1318 		    !TAILQ_EMPTY(&rt->mfc_stall))
1319 			break;
1320 	}
1321 
1322 	if (rt == NULL) {
1323 	    int i;
1324 	    struct igmpmsg *im;
1325 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1326 	    struct mbuf *mm;
1327 
1328 	    /*
1329 	     * Locate the vifi for the incoming interface for this packet.
1330 	     * If none found, drop packet.
1331 	     */
1332 	    for (vifi = 0; vifi < numvifs &&
1333 		    viftable[vifi].v_ifp != ifp; vifi++)
1334 		;
1335 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1336 		goto non_fatal;
1337 
1338 	    /* no upcall, so make a new entry */
1339 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1340 	    if (rt == NULL)
1341 		goto fail;
1342 
1343 	    /* Make a copy of the header to send to the user level process */
1344 	    mm = m_copy(mb0, 0, hlen);
1345 	    if (mm == NULL)
1346 		goto fail1;
1347 
1348 	    /*
1349 	     * Send message to routing daemon to install
1350 	     * a route into the kernel table
1351 	     */
1352 
1353 	    im = mtod(mm, struct igmpmsg *);
1354 	    im->im_msgtype = IGMPMSG_NOCACHE;
1355 	    im->im_mbz = 0;
1356 	    im->im_vif = vifi;
1357 
1358 	    MRTSTAT_INC(mrts_upcalls);
1359 
1360 	    k_igmpsrc.sin_addr = ip->ip_src;
1361 	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1362 		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1363 		MRTSTAT_INC(mrts_upq_sockfull);
1364 fail1:
1365 		free(rt, M_MRTABLE);
1366 fail:
1367 		free(rte, M_MRTABLE);
1368 		m_freem(mb0);
1369 		MFC_UNLOCK();
1370 		VIF_UNLOCK();
1371 		return ENOBUFS;
1372 	    }
1373 
1374 	    /* insert new entry at head of hash chain */
1375 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1376 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1377 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1378 	    nexpire[hash]++;
1379 	    for (i = 0; i < numvifs; i++) {
1380 		rt->mfc_ttls[i] = 0;
1381 		rt->mfc_flags[i] = 0;
1382 	    }
1383 	    rt->mfc_parent = -1;
1384 
1385 	    /* clear the RP address */
1386 	    rt->mfc_rp.s_addr = INADDR_ANY;
1387 	    rt->mfc_bw_meter = NULL;
1388 
1389 	    /* initialize pkt counters per src-grp */
1390 	    rt->mfc_pkt_cnt = 0;
1391 	    rt->mfc_byte_cnt = 0;
1392 	    rt->mfc_wrong_if = 0;
1393 	    timevalclear(&rt->mfc_last_assert);
1394 
1395 	    TAILQ_INIT(&rt->mfc_stall);
1396 	    rt->mfc_nstall = 0;
1397 
1398 	    /* link into table */
1399 	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1400 	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1401 	    rt->mfc_nstall++;
1402 
1403 	} else {
1404 	    /* determine if queue has overflowed */
1405 	    if (rt->mfc_nstall > MAX_UPQ) {
1406 		MRTSTAT_INC(mrts_upq_ovflw);
1407 non_fatal:
1408 		free(rte, M_MRTABLE);
1409 		m_freem(mb0);
1410 		MFC_UNLOCK();
1411 		VIF_UNLOCK();
1412 		return (0);
1413 	    }
1414 	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1415 	    rt->mfc_nstall++;
1416 	}
1417 
1418 	rte->m			= mb0;
1419 	rte->ifp		= ifp;
1420 
1421 	MFC_UNLOCK();
1422 	VIF_UNLOCK();
1423 
1424 	return 0;
1425     }
1426 }
1427 
1428 /*
1429  * Clean up the cache entry if upcall is not serviced
1430  */
1431 static void
1432 expire_upcalls(void *unused)
1433 {
1434     int i;
1435 
1436     MFC_LOCK();
1437 
1438     for (i = 0; i < mfchashsize; i++) {
1439 	struct mfc *rt, *nrt;
1440 
1441 	if (nexpire[i] == 0)
1442 	    continue;
1443 
1444 	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1445 		nrt = LIST_NEXT(rt, mfc_hash);
1446 
1447 		if (TAILQ_EMPTY(&rt->mfc_stall))
1448 			continue;
1449 
1450 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1451 			continue;
1452 
1453 		/*
1454 		 * free the bw_meter entries
1455 		 */
1456 		while (rt->mfc_bw_meter != NULL) {
1457 		    struct bw_meter *x = rt->mfc_bw_meter;
1458 
1459 		    rt->mfc_bw_meter = x->bm_mfc_next;
1460 		    free(x, M_BWMETER);
1461 		}
1462 
1463 		MRTSTAT_INC(mrts_cache_cleanups);
1464 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1465 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1466 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1467 
1468 		expire_mfc(rt);
1469 	    }
1470     }
1471 
1472     MFC_UNLOCK();
1473 
1474     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1475 }
1476 
1477 /*
1478  * Packet forwarding routine once entry in the cache is made
1479  */
1480 static int
1481 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1482 {
1483     struct ip  *ip = mtod(m, struct ip *);
1484     vifi_t vifi;
1485     int plen = ip->ip_len;
1486 
1487     VIF_LOCK_ASSERT();
1488 
1489     /*
1490      * If xmt_vif is not -1, send on only the requested vif.
1491      *
1492      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1493      */
1494     if (xmt_vif < numvifs) {
1495 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1496 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1497 	else
1498 		phyint_send(ip, viftable + xmt_vif, m);
1499 	return 1;
1500     }
1501 
1502     /*
1503      * Don't forward if it didn't arrive from the parent vif for its origin.
1504      */
1505     vifi = rt->mfc_parent;
1506     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1507 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1508 	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1509 	MRTSTAT_INC(mrts_wrong_if);
1510 	++rt->mfc_wrong_if;
1511 	/*
1512 	 * If we are doing PIM assert processing, send a message
1513 	 * to the routing daemon.
1514 	 *
1515 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1516 	 * can complete the SPT switch, regardless of the type
1517 	 * of the iif (broadcast media, GRE tunnel, etc).
1518 	 */
1519 	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1520 
1521 	    if (ifp == &multicast_register_if)
1522 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1523 
1524 	    /* Get vifi for the incoming packet */
1525 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1526 		;
1527 	    if (vifi >= numvifs)
1528 		return 0;	/* The iif is not found: ignore the packet. */
1529 
1530 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1531 		return 0;	/* WRONGVIF disabled: ignore the packet */
1532 
1533 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1534 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1535 		struct igmpmsg *im;
1536 		int hlen = ip->ip_hl << 2;
1537 		struct mbuf *mm = m_copy(m, 0, hlen);
1538 
1539 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1540 		    mm = m_pullup(mm, hlen);
1541 		if (mm == NULL)
1542 		    return ENOBUFS;
1543 
1544 		im = mtod(mm, struct igmpmsg *);
1545 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1546 		im->im_mbz		= 0;
1547 		im->im_vif		= vifi;
1548 
1549 		MRTSTAT_INC(mrts_upcalls);
1550 
1551 		k_igmpsrc.sin_addr = im->im_src;
1552 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1553 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1554 		    MRTSTAT_INC(mrts_upq_sockfull);
1555 		    return ENOBUFS;
1556 		}
1557 	    }
1558 	}
1559 	return 0;
1560     }
1561 
1562 
1563     /* If I sourced this packet, it counts as output, else it was input. */
1564     if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1565 	viftable[vifi].v_pkt_out++;
1566 	viftable[vifi].v_bytes_out += plen;
1567     } else {
1568 	viftable[vifi].v_pkt_in++;
1569 	viftable[vifi].v_bytes_in += plen;
1570     }
1571     rt->mfc_pkt_cnt++;
1572     rt->mfc_byte_cnt += plen;
1573 
1574     /*
1575      * For each vif, decide if a copy of the packet should be forwarded.
1576      * Forward if:
1577      *		- the ttl exceeds the vif's threshold
1578      *		- there are group members downstream on interface
1579      */
1580     for (vifi = 0; vifi < numvifs; vifi++)
1581 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1582 	    viftable[vifi].v_pkt_out++;
1583 	    viftable[vifi].v_bytes_out += plen;
1584 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1585 		pim_register_send(ip, viftable + vifi, m, rt);
1586 	    else
1587 		phyint_send(ip, viftable + vifi, m);
1588 	}
1589 
1590     /*
1591      * Perform upcall-related bw measuring.
1592      */
1593     if (rt->mfc_bw_meter != NULL) {
1594 	struct bw_meter *x;
1595 	struct timeval now;
1596 
1597 	microtime(&now);
1598 	MFC_LOCK_ASSERT();
1599 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1600 	    bw_meter_receive_packet(x, plen, &now);
1601     }
1602 
1603     return 0;
1604 }
1605 
1606 /*
1607  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1608  */
1609 static int
1610 X_legal_vif_num(int vif)
1611 {
1612 	int ret;
1613 
1614 	ret = 0;
1615 	if (vif < 0)
1616 		return (ret);
1617 
1618 	VIF_LOCK();
1619 	if (vif < numvifs)
1620 		ret = 1;
1621 	VIF_UNLOCK();
1622 
1623 	return (ret);
1624 }
1625 
1626 /*
1627  * Return the local address used by this vif
1628  */
1629 static u_long
1630 X_ip_mcast_src(int vifi)
1631 {
1632 	in_addr_t addr;
1633 
1634 	addr = INADDR_ANY;
1635 	if (vifi < 0)
1636 		return (addr);
1637 
1638 	VIF_LOCK();
1639 	if (vifi < numvifs)
1640 		addr = viftable[vifi].v_lcl_addr.s_addr;
1641 	VIF_UNLOCK();
1642 
1643 	return (addr);
1644 }
1645 
1646 static void
1647 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1648 {
1649     struct mbuf *mb_copy;
1650     int hlen = ip->ip_hl << 2;
1651 
1652     VIF_LOCK_ASSERT();
1653 
1654     /*
1655      * Make a new reference to the packet; make sure that
1656      * the IP header is actually copied, not just referenced,
1657      * so that ip_output() only scribbles on the copy.
1658      */
1659     mb_copy = m_copypacket(m, M_DONTWAIT);
1660     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1661 	mb_copy = m_pullup(mb_copy, hlen);
1662     if (mb_copy == NULL)
1663 	return;
1664 
1665     send_packet(vifp, mb_copy);
1666 }
1667 
1668 static void
1669 send_packet(struct vif *vifp, struct mbuf *m)
1670 {
1671 	struct ip_moptions imo;
1672 	struct in_multi *imm[2];
1673 	int error;
1674 
1675 	VIF_LOCK_ASSERT();
1676 
1677 	imo.imo_multicast_ifp  = vifp->v_ifp;
1678 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1679 	imo.imo_multicast_loop = 1;
1680 	imo.imo_multicast_vif  = -1;
1681 	imo.imo_num_memberships = 0;
1682 	imo.imo_max_memberships = 2;
1683 	imo.imo_membership  = &imm[0];
1684 
1685 	/*
1686 	 * Re-entrancy should not be a problem here, because
1687 	 * the packets that we send out and are looped back at us
1688 	 * should get rejected because they appear to come from
1689 	 * the loopback interface, thus preventing looping.
1690 	 */
1691 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1692 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1693 	    (ptrdiff_t)(vifp - viftable), error);
1694 }
1695 
1696 /*
1697  * Stubs for old RSVP socket shim implementation.
1698  */
1699 
1700 static int
1701 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1702 {
1703 
1704 	return (EOPNOTSUPP);
1705 }
1706 
1707 static void
1708 X_ip_rsvp_force_done(struct socket *so __unused)
1709 {
1710 
1711 }
1712 
1713 static void
1714 X_rsvp_input(struct mbuf *m, int off __unused)
1715 {
1716 
1717 	if (!V_rsvp_on)
1718 		m_freem(m);
1719 }
1720 
1721 /*
1722  * Code for bandwidth monitors
1723  */
1724 
1725 /*
1726  * Define common interface for timeval-related methods
1727  */
1728 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1729 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1730 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1731 
1732 static uint32_t
1733 compute_bw_meter_flags(struct bw_upcall *req)
1734 {
1735     uint32_t flags = 0;
1736 
1737     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1738 	flags |= BW_METER_UNIT_PACKETS;
1739     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1740 	flags |= BW_METER_UNIT_BYTES;
1741     if (req->bu_flags & BW_UPCALL_GEQ)
1742 	flags |= BW_METER_GEQ;
1743     if (req->bu_flags & BW_UPCALL_LEQ)
1744 	flags |= BW_METER_LEQ;
1745 
1746     return flags;
1747 }
1748 
1749 /*
1750  * Add a bw_meter entry
1751  */
1752 static int
1753 add_bw_upcall(struct bw_upcall *req)
1754 {
1755     struct mfc *mfc;
1756     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1757 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1758     struct timeval now;
1759     struct bw_meter *x;
1760     uint32_t flags;
1761 
1762     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1763 	return EOPNOTSUPP;
1764 
1765     /* Test if the flags are valid */
1766     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1767 	return EINVAL;
1768     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1769 	return EINVAL;
1770     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1771 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1772 	return EINVAL;
1773 
1774     /* Test if the threshold time interval is valid */
1775     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1776 	return EINVAL;
1777 
1778     flags = compute_bw_meter_flags(req);
1779 
1780     /*
1781      * Find if we have already same bw_meter entry
1782      */
1783     MFC_LOCK();
1784     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1785     if (mfc == NULL) {
1786 	MFC_UNLOCK();
1787 	return EADDRNOTAVAIL;
1788     }
1789     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1790 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1791 			   &req->bu_threshold.b_time, ==)) &&
1792 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1793 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1794 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1795 	    MFC_UNLOCK();
1796 	    return 0;		/* XXX Already installed */
1797 	}
1798     }
1799 
1800     /* Allocate the new bw_meter entry */
1801     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1802     if (x == NULL) {
1803 	MFC_UNLOCK();
1804 	return ENOBUFS;
1805     }
1806 
1807     /* Set the new bw_meter entry */
1808     x->bm_threshold.b_time = req->bu_threshold.b_time;
1809     microtime(&now);
1810     x->bm_start_time = now;
1811     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1812     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1813     x->bm_measured.b_packets = 0;
1814     x->bm_measured.b_bytes = 0;
1815     x->bm_flags = flags;
1816     x->bm_time_next = NULL;
1817     x->bm_time_hash = BW_METER_BUCKETS;
1818 
1819     /* Add the new bw_meter entry to the front of entries for this MFC */
1820     x->bm_mfc = mfc;
1821     x->bm_mfc_next = mfc->mfc_bw_meter;
1822     mfc->mfc_bw_meter = x;
1823     schedule_bw_meter(x, &now);
1824     MFC_UNLOCK();
1825 
1826     return 0;
1827 }
1828 
1829 static void
1830 free_bw_list(struct bw_meter *list)
1831 {
1832     while (list != NULL) {
1833 	struct bw_meter *x = list;
1834 
1835 	list = list->bm_mfc_next;
1836 	unschedule_bw_meter(x);
1837 	free(x, M_BWMETER);
1838     }
1839 }
1840 
1841 /*
1842  * Delete one or multiple bw_meter entries
1843  */
1844 static int
1845 del_bw_upcall(struct bw_upcall *req)
1846 {
1847     struct mfc *mfc;
1848     struct bw_meter *x;
1849 
1850     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1851 	return EOPNOTSUPP;
1852 
1853     MFC_LOCK();
1854 
1855     /* Find the corresponding MFC entry */
1856     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1857     if (mfc == NULL) {
1858 	MFC_UNLOCK();
1859 	return EADDRNOTAVAIL;
1860     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1861 	/*
1862 	 * Delete all bw_meter entries for this mfc
1863 	 */
1864 	struct bw_meter *list;
1865 
1866 	list = mfc->mfc_bw_meter;
1867 	mfc->mfc_bw_meter = NULL;
1868 	free_bw_list(list);
1869 	MFC_UNLOCK();
1870 	return 0;
1871     } else {			/* Delete a single bw_meter entry */
1872 	struct bw_meter *prev;
1873 	uint32_t flags = 0;
1874 
1875 	flags = compute_bw_meter_flags(req);
1876 
1877 	/* Find the bw_meter entry to delete */
1878 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1879 	     prev = x, x = x->bm_mfc_next) {
1880 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1881 			       &req->bu_threshold.b_time, ==)) &&
1882 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1883 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1884 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1885 		break;
1886 	}
1887 	if (x != NULL) { /* Delete entry from the list for this MFC */
1888 	    if (prev != NULL)
1889 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1890 	    else
1891 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1892 
1893 	    unschedule_bw_meter(x);
1894 	    MFC_UNLOCK();
1895 	    /* Free the bw_meter entry */
1896 	    free(x, M_BWMETER);
1897 	    return 0;
1898 	} else {
1899 	    MFC_UNLOCK();
1900 	    return EINVAL;
1901 	}
1902     }
1903     /* NOTREACHED */
1904 }
1905 
1906 /*
1907  * Perform bandwidth measurement processing that may result in an upcall
1908  */
1909 static void
1910 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1911 {
1912     struct timeval delta;
1913 
1914     MFC_LOCK_ASSERT();
1915 
1916     delta = *nowp;
1917     BW_TIMEVALDECR(&delta, &x->bm_start_time);
1918 
1919     if (x->bm_flags & BW_METER_GEQ) {
1920 	/*
1921 	 * Processing for ">=" type of bw_meter entry
1922 	 */
1923 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1924 	    /* Reset the bw_meter entry */
1925 	    x->bm_start_time = *nowp;
1926 	    x->bm_measured.b_packets = 0;
1927 	    x->bm_measured.b_bytes = 0;
1928 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1929 	}
1930 
1931 	/* Record that a packet is received */
1932 	x->bm_measured.b_packets++;
1933 	x->bm_measured.b_bytes += plen;
1934 
1935 	/*
1936 	 * Test if we should deliver an upcall
1937 	 */
1938 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1939 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1940 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1941 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1942 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1943 		/* Prepare an upcall for delivery */
1944 		bw_meter_prepare_upcall(x, nowp);
1945 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1946 	    }
1947 	}
1948     } else if (x->bm_flags & BW_METER_LEQ) {
1949 	/*
1950 	 * Processing for "<=" type of bw_meter entry
1951 	 */
1952 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1953 	    /*
1954 	     * We are behind time with the multicast forwarding table
1955 	     * scanning for "<=" type of bw_meter entries, so test now
1956 	     * if we should deliver an upcall.
1957 	     */
1958 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1959 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1960 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1961 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1962 		/* Prepare an upcall for delivery */
1963 		bw_meter_prepare_upcall(x, nowp);
1964 	    }
1965 	    /* Reschedule the bw_meter entry */
1966 	    unschedule_bw_meter(x);
1967 	    schedule_bw_meter(x, nowp);
1968 	}
1969 
1970 	/* Record that a packet is received */
1971 	x->bm_measured.b_packets++;
1972 	x->bm_measured.b_bytes += plen;
1973 
1974 	/*
1975 	 * Test if we should restart the measuring interval
1976 	 */
1977 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1978 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1979 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1980 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1981 	    /* Don't restart the measuring interval */
1982 	} else {
1983 	    /* Do restart the measuring interval */
1984 	    /*
1985 	     * XXX: note that we don't unschedule and schedule, because this
1986 	     * might be too much overhead per packet. Instead, when we process
1987 	     * all entries for a given timer hash bin, we check whether it is
1988 	     * really a timeout. If not, we reschedule at that time.
1989 	     */
1990 	    x->bm_start_time = *nowp;
1991 	    x->bm_measured.b_packets = 0;
1992 	    x->bm_measured.b_bytes = 0;
1993 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1994 	}
1995     }
1996 }
1997 
1998 /*
1999  * Prepare a bandwidth-related upcall
2000  */
2001 static void
2002 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2003 {
2004     struct timeval delta;
2005     struct bw_upcall *u;
2006 
2007     MFC_LOCK_ASSERT();
2008 
2009     /*
2010      * Compute the measured time interval
2011      */
2012     delta = *nowp;
2013     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2014 
2015     /*
2016      * If there are too many pending upcalls, deliver them now
2017      */
2018     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2019 	bw_upcalls_send();
2020 
2021     /*
2022      * Set the bw_upcall entry
2023      */
2024     u = &bw_upcalls[bw_upcalls_n++];
2025     u->bu_src = x->bm_mfc->mfc_origin;
2026     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2027     u->bu_threshold.b_time = x->bm_threshold.b_time;
2028     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2029     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2030     u->bu_measured.b_time = delta;
2031     u->bu_measured.b_packets = x->bm_measured.b_packets;
2032     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2033     u->bu_flags = 0;
2034     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2035 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2036     if (x->bm_flags & BW_METER_UNIT_BYTES)
2037 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2038     if (x->bm_flags & BW_METER_GEQ)
2039 	u->bu_flags |= BW_UPCALL_GEQ;
2040     if (x->bm_flags & BW_METER_LEQ)
2041 	u->bu_flags |= BW_UPCALL_LEQ;
2042 }
2043 
2044 /*
2045  * Send the pending bandwidth-related upcalls
2046  */
2047 static void
2048 bw_upcalls_send(void)
2049 {
2050     struct mbuf *m;
2051     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2052     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2053     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2054 				      0,		/* unused2 */
2055 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2056 				      0,		/* im_mbz  */
2057 				      0,		/* im_vif  */
2058 				      0,		/* unused3 */
2059 				      { 0 },		/* im_src  */
2060 				      { 0 } };		/* im_dst  */
2061 
2062     MFC_LOCK_ASSERT();
2063 
2064     if (bw_upcalls_n == 0)
2065 	return;			/* No pending upcalls */
2066 
2067     bw_upcalls_n = 0;
2068 
2069     /*
2070      * Allocate a new mbuf, initialize it with the header and
2071      * the payload for the pending calls.
2072      */
2073     MGETHDR(m, M_DONTWAIT, MT_DATA);
2074     if (m == NULL) {
2075 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2076 	return;
2077     }
2078 
2079     m->m_len = m->m_pkthdr.len = 0;
2080     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2081     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2082 
2083     /*
2084      * Send the upcalls
2085      * XXX do we need to set the address in k_igmpsrc ?
2086      */
2087     MRTSTAT_INC(mrts_upcalls);
2088     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2089 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2090 	MRTSTAT_INC(mrts_upq_sockfull);
2091     }
2092 }
2093 
2094 /*
2095  * Compute the timeout hash value for the bw_meter entries
2096  */
2097 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2098     do {								\
2099 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2100 									\
2101 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2102 	(hash) = next_timeval.tv_sec;					\
2103 	if (next_timeval.tv_usec)					\
2104 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2105 	(hash) %= BW_METER_BUCKETS;					\
2106     } while (0)
2107 
2108 /*
2109  * Schedule a timer to process periodically bw_meter entry of type "<="
2110  * by linking the entry in the proper hash bucket.
2111  */
2112 static void
2113 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2114 {
2115     int time_hash;
2116 
2117     MFC_LOCK_ASSERT();
2118 
2119     if (!(x->bm_flags & BW_METER_LEQ))
2120 	return;		/* XXX: we schedule timers only for "<=" entries */
2121 
2122     /*
2123      * Reset the bw_meter entry
2124      */
2125     x->bm_start_time = *nowp;
2126     x->bm_measured.b_packets = 0;
2127     x->bm_measured.b_bytes = 0;
2128     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2129 
2130     /*
2131      * Compute the timeout hash value and insert the entry
2132      */
2133     BW_METER_TIMEHASH(x, time_hash);
2134     x->bm_time_next = bw_meter_timers[time_hash];
2135     bw_meter_timers[time_hash] = x;
2136     x->bm_time_hash = time_hash;
2137 }
2138 
2139 /*
2140  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2141  * by removing the entry from the proper hash bucket.
2142  */
2143 static void
2144 unschedule_bw_meter(struct bw_meter *x)
2145 {
2146     int time_hash;
2147     struct bw_meter *prev, *tmp;
2148 
2149     MFC_LOCK_ASSERT();
2150 
2151     if (!(x->bm_flags & BW_METER_LEQ))
2152 	return;		/* XXX: we schedule timers only for "<=" entries */
2153 
2154     /*
2155      * Compute the timeout hash value and delete the entry
2156      */
2157     time_hash = x->bm_time_hash;
2158     if (time_hash >= BW_METER_BUCKETS)
2159 	return;		/* Entry was not scheduled */
2160 
2161     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2162 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2163 	if (tmp == x)
2164 	    break;
2165 
2166     if (tmp == NULL)
2167 	panic("unschedule_bw_meter: bw_meter entry not found");
2168 
2169     if (prev != NULL)
2170 	prev->bm_time_next = x->bm_time_next;
2171     else
2172 	bw_meter_timers[time_hash] = x->bm_time_next;
2173 
2174     x->bm_time_next = NULL;
2175     x->bm_time_hash = BW_METER_BUCKETS;
2176 }
2177 
2178 
2179 /*
2180  * Process all "<=" type of bw_meter that should be processed now,
2181  * and for each entry prepare an upcall if necessary. Each processed
2182  * entry is rescheduled again for the (periodic) processing.
2183  *
2184  * This is run periodically (once per second normally). On each round,
2185  * all the potentially matching entries are in the hash slot that we are
2186  * looking at.
2187  */
2188 static void
2189 bw_meter_process()
2190 {
2191     static uint32_t last_tv_sec;	/* last time we processed this */
2192 
2193     uint32_t loops;
2194     int i;
2195     struct timeval now, process_endtime;
2196 
2197     microtime(&now);
2198     if (last_tv_sec == now.tv_sec)
2199 	return;		/* nothing to do */
2200 
2201     loops = now.tv_sec - last_tv_sec;
2202     last_tv_sec = now.tv_sec;
2203     if (loops > BW_METER_BUCKETS)
2204 	loops = BW_METER_BUCKETS;
2205 
2206     MFC_LOCK();
2207     /*
2208      * Process all bins of bw_meter entries from the one after the last
2209      * processed to the current one. On entry, i points to the last bucket
2210      * visited, so we need to increment i at the beginning of the loop.
2211      */
2212     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2213 	struct bw_meter *x, *tmp_list;
2214 
2215 	if (++i >= BW_METER_BUCKETS)
2216 	    i = 0;
2217 
2218 	/* Disconnect the list of bw_meter entries from the bin */
2219 	tmp_list = bw_meter_timers[i];
2220 	bw_meter_timers[i] = NULL;
2221 
2222 	/* Process the list of bw_meter entries */
2223 	while (tmp_list != NULL) {
2224 	    x = tmp_list;
2225 	    tmp_list = tmp_list->bm_time_next;
2226 
2227 	    /* Test if the time interval is over */
2228 	    process_endtime = x->bm_start_time;
2229 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2230 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2231 		/* Not yet: reschedule, but don't reset */
2232 		int time_hash;
2233 
2234 		BW_METER_TIMEHASH(x, time_hash);
2235 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2236 		    /*
2237 		     * XXX: somehow the bin processing is a bit ahead of time.
2238 		     * Put the entry in the next bin.
2239 		     */
2240 		    if (++time_hash >= BW_METER_BUCKETS)
2241 			time_hash = 0;
2242 		}
2243 		x->bm_time_next = bw_meter_timers[time_hash];
2244 		bw_meter_timers[time_hash] = x;
2245 		x->bm_time_hash = time_hash;
2246 
2247 		continue;
2248 	    }
2249 
2250 	    /*
2251 	     * Test if we should deliver an upcall
2252 	     */
2253 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2254 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2255 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2256 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2257 		/* Prepare an upcall for delivery */
2258 		bw_meter_prepare_upcall(x, &now);
2259 	    }
2260 
2261 	    /*
2262 	     * Reschedule for next processing
2263 	     */
2264 	    schedule_bw_meter(x, &now);
2265 	}
2266     }
2267 
2268     /* Send all upcalls that are pending delivery */
2269     bw_upcalls_send();
2270 
2271     MFC_UNLOCK();
2272 }
2273 
2274 /*
2275  * A periodic function for sending all upcalls that are pending delivery
2276  */
2277 static void
2278 expire_bw_upcalls_send(void *unused)
2279 {
2280     MFC_LOCK();
2281     bw_upcalls_send();
2282     MFC_UNLOCK();
2283 
2284     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2285 	expire_bw_upcalls_send, NULL);
2286 }
2287 
2288 /*
2289  * A periodic function for periodic scanning of the multicast forwarding
2290  * table for processing all "<=" bw_meter entries.
2291  */
2292 static void
2293 expire_bw_meter_process(void *unused)
2294 {
2295     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2296 	bw_meter_process();
2297 
2298     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2299 }
2300 
2301 /*
2302  * End of bandwidth monitoring code
2303  */
2304 
2305 /*
2306  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2307  *
2308  */
2309 static int
2310 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2311     struct mfc *rt)
2312 {
2313     struct mbuf *mb_copy, *mm;
2314 
2315     /*
2316      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2317      * rendezvous point was unspecified, and we were told not to.
2318      */
2319     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2320 	in_nullhost(rt->mfc_rp))
2321 	return 0;
2322 
2323     mb_copy = pim_register_prepare(ip, m);
2324     if (mb_copy == NULL)
2325 	return ENOBUFS;
2326 
2327     /*
2328      * Send all the fragments. Note that the mbuf for each fragment
2329      * is freed by the sending machinery.
2330      */
2331     for (mm = mb_copy; mm; mm = mb_copy) {
2332 	mb_copy = mm->m_nextpkt;
2333 	mm->m_nextpkt = 0;
2334 	mm = m_pullup(mm, sizeof(struct ip));
2335 	if (mm != NULL) {
2336 	    ip = mtod(mm, struct ip *);
2337 	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2338 		pim_register_send_rp(ip, vifp, mm, rt);
2339 	    } else {
2340 		pim_register_send_upcall(ip, vifp, mm, rt);
2341 	    }
2342 	}
2343     }
2344 
2345     return 0;
2346 }
2347 
2348 /*
2349  * Return a copy of the data packet that is ready for PIM Register
2350  * encapsulation.
2351  * XXX: Note that in the returned copy the IP header is a valid one.
2352  */
2353 static struct mbuf *
2354 pim_register_prepare(struct ip *ip, struct mbuf *m)
2355 {
2356     struct mbuf *mb_copy = NULL;
2357     int mtu;
2358 
2359     /* Take care of delayed checksums */
2360     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2361 	in_delayed_cksum(m);
2362 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2363     }
2364 
2365     /*
2366      * Copy the old packet & pullup its IP header into the
2367      * new mbuf so we can modify it.
2368      */
2369     mb_copy = m_copypacket(m, M_DONTWAIT);
2370     if (mb_copy == NULL)
2371 	return NULL;
2372     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2373     if (mb_copy == NULL)
2374 	return NULL;
2375 
2376     /* take care of the TTL */
2377     ip = mtod(mb_copy, struct ip *);
2378     --ip->ip_ttl;
2379 
2380     /* Compute the MTU after the PIM Register encapsulation */
2381     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2382 
2383     if (ip->ip_len <= mtu) {
2384 	/* Turn the IP header into a valid one */
2385 	ip->ip_len = htons(ip->ip_len);
2386 	ip->ip_off = htons(ip->ip_off);
2387 	ip->ip_sum = 0;
2388 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2389     } else {
2390 	/* Fragment the packet */
2391 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2392 	    m_freem(mb_copy);
2393 	    return NULL;
2394 	}
2395     }
2396     return mb_copy;
2397 }
2398 
2399 /*
2400  * Send an upcall with the data packet to the user-level process.
2401  */
2402 static int
2403 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2404     struct mbuf *mb_copy, struct mfc *rt)
2405 {
2406     struct mbuf *mb_first;
2407     int len = ntohs(ip->ip_len);
2408     struct igmpmsg *im;
2409     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2410 
2411     VIF_LOCK_ASSERT();
2412 
2413     /*
2414      * Add a new mbuf with an upcall header
2415      */
2416     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2417     if (mb_first == NULL) {
2418 	m_freem(mb_copy);
2419 	return ENOBUFS;
2420     }
2421     mb_first->m_data += max_linkhdr;
2422     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2423     mb_first->m_len = sizeof(struct igmpmsg);
2424     mb_first->m_next = mb_copy;
2425 
2426     /* Send message to routing daemon */
2427     im = mtod(mb_first, struct igmpmsg *);
2428     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2429     im->im_mbz		= 0;
2430     im->im_vif		= vifp - viftable;
2431     im->im_src		= ip->ip_src;
2432     im->im_dst		= ip->ip_dst;
2433 
2434     k_igmpsrc.sin_addr	= ip->ip_src;
2435 
2436     MRTSTAT_INC(mrts_upcalls);
2437 
2438     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2439 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2440 	MRTSTAT_INC(mrts_upq_sockfull);
2441 	return ENOBUFS;
2442     }
2443 
2444     /* Keep statistics */
2445     PIMSTAT_INC(pims_snd_registers_msgs);
2446     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2447 
2448     return 0;
2449 }
2450 
2451 /*
2452  * Encapsulate the data packet in PIM Register message and send it to the RP.
2453  */
2454 static int
2455 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2456     struct mfc *rt)
2457 {
2458     struct mbuf *mb_first;
2459     struct ip *ip_outer;
2460     struct pim_encap_pimhdr *pimhdr;
2461     int len = ntohs(ip->ip_len);
2462     vifi_t vifi = rt->mfc_parent;
2463 
2464     VIF_LOCK_ASSERT();
2465 
2466     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2467 	m_freem(mb_copy);
2468 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2469     }
2470 
2471     /*
2472      * Add a new mbuf with the encapsulating header
2473      */
2474     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2475     if (mb_first == NULL) {
2476 	m_freem(mb_copy);
2477 	return ENOBUFS;
2478     }
2479     mb_first->m_data += max_linkhdr;
2480     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2481     mb_first->m_next = mb_copy;
2482 
2483     mb_first->m_pkthdr.len = len + mb_first->m_len;
2484 
2485     /*
2486      * Fill in the encapsulating IP and PIM header
2487      */
2488     ip_outer = mtod(mb_first, struct ip *);
2489     *ip_outer = pim_encap_iphdr;
2490     ip_outer->ip_id = ip_newid();
2491     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2492     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2493     ip_outer->ip_dst = rt->mfc_rp;
2494     /*
2495      * Copy the inner header TOS to the outer header, and take care of the
2496      * IP_DF bit.
2497      */
2498     ip_outer->ip_tos = ip->ip_tos;
2499     if (ntohs(ip->ip_off) & IP_DF)
2500 	ip_outer->ip_off |= IP_DF;
2501     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2502 					 + sizeof(pim_encap_iphdr));
2503     *pimhdr = pim_encap_pimhdr;
2504     /* If the iif crosses a border, set the Border-bit */
2505     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2506 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2507 
2508     mb_first->m_data += sizeof(pim_encap_iphdr);
2509     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2510     mb_first->m_data -= sizeof(pim_encap_iphdr);
2511 
2512     send_packet(vifp, mb_first);
2513 
2514     /* Keep statistics */
2515     PIMSTAT_INC(pims_snd_registers_msgs);
2516     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2517 
2518     return 0;
2519 }
2520 
2521 /*
2522  * pim_encapcheck() is called by the encap4_input() path at runtime to
2523  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2524  * into the kernel.
2525  */
2526 static int
2527 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2528 {
2529 
2530 #ifdef DIAGNOSTIC
2531     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2532 #endif
2533     if (proto != IPPROTO_PIM)
2534 	return 0;	/* not for us; reject the datagram. */
2535 
2536     return 64;		/* claim the datagram. */
2537 }
2538 
2539 /*
2540  * PIM-SMv2 and PIM-DM messages processing.
2541  * Receives and verifies the PIM control messages, and passes them
2542  * up to the listening socket, using rip_input().
2543  * The only message with special processing is the PIM_REGISTER message
2544  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2545  * is passed to if_simloop().
2546  */
2547 void
2548 pim_input(struct mbuf *m, int off)
2549 {
2550     struct ip *ip = mtod(m, struct ip *);
2551     struct pim *pim;
2552     int minlen;
2553     int datalen = ip->ip_len;
2554     int ip_tos;
2555     int iphlen = off;
2556 
2557     /* Keep statistics */
2558     PIMSTAT_INC(pims_rcv_total_msgs);
2559     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2560 
2561     /*
2562      * Validate lengths
2563      */
2564     if (datalen < PIM_MINLEN) {
2565 	PIMSTAT_INC(pims_rcv_tooshort);
2566 	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2567 	    __func__, datalen, inet_ntoa(ip->ip_src));
2568 	m_freem(m);
2569 	return;
2570     }
2571 
2572     /*
2573      * If the packet is at least as big as a REGISTER, go agead
2574      * and grab the PIM REGISTER header size, to avoid another
2575      * possible m_pullup() later.
2576      *
2577      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2578      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2579      */
2580     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2581     /*
2582      * Get the IP and PIM headers in contiguous memory, and
2583      * possibly the PIM REGISTER header.
2584      */
2585     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2586 	(m = m_pullup(m, minlen)) == 0) {
2587 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2588 	return;
2589     }
2590 
2591     /* m_pullup() may have given us a new mbuf so reset ip. */
2592     ip = mtod(m, struct ip *);
2593     ip_tos = ip->ip_tos;
2594 
2595     /* adjust mbuf to point to the PIM header */
2596     m->m_data += iphlen;
2597     m->m_len  -= iphlen;
2598     pim = mtod(m, struct pim *);
2599 
2600     /*
2601      * Validate checksum. If PIM REGISTER, exclude the data packet.
2602      *
2603      * XXX: some older PIMv2 implementations don't make this distinction,
2604      * so for compatibility reason perform the checksum over part of the
2605      * message, and if error, then over the whole message.
2606      */
2607     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2608 	/* do nothing, checksum okay */
2609     } else if (in_cksum(m, datalen)) {
2610 	PIMSTAT_INC(pims_rcv_badsum);
2611 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2612 	m_freem(m);
2613 	return;
2614     }
2615 
2616     /* PIM version check */
2617     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2618 	PIMSTAT_INC(pims_rcv_badversion);
2619 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2620 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2621 	m_freem(m);
2622 	return;
2623     }
2624 
2625     /* restore mbuf back to the outer IP */
2626     m->m_data -= iphlen;
2627     m->m_len  += iphlen;
2628 
2629     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2630 	/*
2631 	 * Since this is a REGISTER, we'll make a copy of the register
2632 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2633 	 * routing daemon.
2634 	 */
2635 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2636 	struct mbuf *mcp;
2637 	struct ip *encap_ip;
2638 	u_int32_t *reghdr;
2639 	struct ifnet *vifp;
2640 
2641 	VIF_LOCK();
2642 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2643 	    VIF_UNLOCK();
2644 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2645 		(int)reg_vif_num);
2646 	    m_freem(m);
2647 	    return;
2648 	}
2649 	/* XXX need refcnt? */
2650 	vifp = viftable[reg_vif_num].v_ifp;
2651 	VIF_UNLOCK();
2652 
2653 	/*
2654 	 * Validate length
2655 	 */
2656 	if (datalen < PIM_REG_MINLEN) {
2657 	    PIMSTAT_INC(pims_rcv_tooshort);
2658 	    PIMSTAT_INC(pims_rcv_badregisters);
2659 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2660 	    m_freem(m);
2661 	    return;
2662 	}
2663 
2664 	reghdr = (u_int32_t *)(pim + 1);
2665 	encap_ip = (struct ip *)(reghdr + 1);
2666 
2667 	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2668 	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2669 
2670 	/* verify the version number of the inner packet */
2671 	if (encap_ip->ip_v != IPVERSION) {
2672 	    PIMSTAT_INC(pims_rcv_badregisters);
2673 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2674 	    m_freem(m);
2675 	    return;
2676 	}
2677 
2678 	/* verify the inner packet is destined to a mcast group */
2679 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2680 	    PIMSTAT_INC(pims_rcv_badregisters);
2681 	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2682 		inet_ntoa(encap_ip->ip_dst));
2683 	    m_freem(m);
2684 	    return;
2685 	}
2686 
2687 	/* If a NULL_REGISTER, pass it to the daemon */
2688 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2689 	    goto pim_input_to_daemon;
2690 
2691 	/*
2692 	 * Copy the TOS from the outer IP header to the inner IP header.
2693 	 */
2694 	if (encap_ip->ip_tos != ip_tos) {
2695 	    /* Outer TOS -> inner TOS */
2696 	    encap_ip->ip_tos = ip_tos;
2697 	    /* Recompute the inner header checksum. Sigh... */
2698 
2699 	    /* adjust mbuf to point to the inner IP header */
2700 	    m->m_data += (iphlen + PIM_MINLEN);
2701 	    m->m_len  -= (iphlen + PIM_MINLEN);
2702 
2703 	    encap_ip->ip_sum = 0;
2704 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2705 
2706 	    /* restore mbuf to point back to the outer IP header */
2707 	    m->m_data -= (iphlen + PIM_MINLEN);
2708 	    m->m_len  += (iphlen + PIM_MINLEN);
2709 	}
2710 
2711 	/*
2712 	 * Decapsulate the inner IP packet and loopback to forward it
2713 	 * as a normal multicast packet. Also, make a copy of the
2714 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2715 	 * to pass to the daemon later, so it can take the appropriate
2716 	 * actions (e.g., send back PIM_REGISTER_STOP).
2717 	 * XXX: here m->m_data points to the outer IP header.
2718 	 */
2719 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2720 	if (mcp == NULL) {
2721 	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2722 	    m_freem(m);
2723 	    return;
2724 	}
2725 
2726 	/* Keep statistics */
2727 	/* XXX: registers_bytes include only the encap. mcast pkt */
2728 	PIMSTAT_INC(pims_rcv_registers_msgs);
2729 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2730 
2731 	/*
2732 	 * forward the inner ip packet; point m_data at the inner ip.
2733 	 */
2734 	m_adj(m, iphlen + PIM_MINLEN);
2735 
2736 	CTR4(KTR_IPMF,
2737 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2738 	    __func__,
2739 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2740 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2741 	    (int)reg_vif_num);
2742 
2743 	/* NB: vifp was collected above; can it change on us? */
2744 	if_simloop(vifp, m, dst.sin_family, 0);
2745 
2746 	/* prepare the register head to send to the mrouting daemon */
2747 	m = mcp;
2748     }
2749 
2750 pim_input_to_daemon:
2751     /*
2752      * Pass the PIM message up to the daemon; if it is a Register message,
2753      * pass the 'head' only up to the daemon. This includes the
2754      * outer IP header, PIM header, PIM-Register header and the
2755      * inner IP header.
2756      * XXX: the outer IP header pkt size of a Register is not adjust to
2757      * reflect the fact that the inner multicast data is truncated.
2758      */
2759     rip_input(m, iphlen);
2760 
2761     return;
2762 }
2763 
2764 static int
2765 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2766 {
2767 	struct mfc	*rt;
2768 	int		 error, i;
2769 
2770 	if (req->newptr)
2771 		return (EPERM);
2772 	if (mfchashtbl == NULL)	/* XXX unlocked */
2773 		return (0);
2774 	error = sysctl_wire_old_buffer(req, 0);
2775 	if (error)
2776 		return (error);
2777 
2778 	MFC_LOCK();
2779 	for (i = 0; i < mfchashsize; i++) {
2780 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2781 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2782 			if (error)
2783 				goto out_locked;
2784 		}
2785 	}
2786 out_locked:
2787 	MFC_UNLOCK();
2788 	return (error);
2789 }
2790 
2791 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2792     "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2793     "netinet/ip_mroute.h)");
2794 
2795 static int
2796 ip_mroute_modevent(module_t mod, int type, void *unused)
2797 {
2798 
2799     switch (type) {
2800     case MOD_LOAD:
2801 	MROUTER_LOCK_INIT();
2802 	MFC_LOCK_INIT();
2803 	VIF_LOCK_INIT();
2804 
2805 	mfchashsize = MFCHASHSIZE;
2806 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2807 	    !powerof2(mfchashsize)) {
2808 		printf("WARNING: %s not a power of 2; using default\n",
2809 		    "net.inet.ip.mfchashsize");
2810 		mfchashsize = MFCHASHSIZE;
2811 	}
2812 	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2813 
2814 	pim_squelch_wholepkt = 0;
2815 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2816 	    &pim_squelch_wholepkt);
2817 	ip_mrouter_reset();
2818 
2819 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2820 	    pim_encapcheck, &in_pim_protosw, NULL);
2821 	if (pim_encap_cookie == NULL) {
2822 		printf("ip_mroute: unable to attach pim encap\n");
2823 		VIF_LOCK_DESTROY();
2824 		MFC_LOCK_DESTROY();
2825 		MROUTER_LOCK_DESTROY();
2826 		return (EINVAL);
2827 	}
2828 
2829 	ip_mcast_src = X_ip_mcast_src;
2830 	ip_mforward = X_ip_mforward;
2831 	ip_mrouter_done = X_ip_mrouter_done;
2832 	ip_mrouter_get = X_ip_mrouter_get;
2833 	ip_mrouter_set = X_ip_mrouter_set;
2834 
2835 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2836 	ip_rsvp_vif = X_ip_rsvp_vif;
2837 
2838 	legal_vif_num = X_legal_vif_num;
2839 	mrt_ioctl = X_mrt_ioctl;
2840 	rsvp_input_p = X_rsvp_input;
2841 	break;
2842 
2843     case MOD_UNLOAD:
2844 	/*
2845 	 * Typically module unload happens after the user-level
2846 	 * process has shutdown the kernel services (the check
2847 	 * below insures someone can't just yank the module out
2848 	 * from under a running process).  But if the module is
2849 	 * just loaded and then unloaded w/o starting up a user
2850 	 * process we still need to cleanup.
2851 	 */
2852 	if (V_ip_mrouter != NULL)
2853 	    return (EINVAL);
2854 
2855 	if (pim_encap_cookie) {
2856 	    encap_detach(pim_encap_cookie);
2857 	    pim_encap_cookie = NULL;
2858 	}
2859 	X_ip_mrouter_done();
2860 
2861 	FREE(nexpire, M_MRTABLE);
2862 	nexpire = NULL;
2863 
2864 	ip_mcast_src = NULL;
2865 	ip_mforward = NULL;
2866 	ip_mrouter_done = NULL;
2867 	ip_mrouter_get = NULL;
2868 	ip_mrouter_set = NULL;
2869 
2870 	ip_rsvp_force_done = NULL;
2871 	ip_rsvp_vif = NULL;
2872 
2873 	legal_vif_num = NULL;
2874 	mrt_ioctl = NULL;
2875 	rsvp_input_p = NULL;
2876 
2877 	VIF_LOCK_DESTROY();
2878 	MFC_LOCK_DESTROY();
2879 	MROUTER_LOCK_DESTROY();
2880 	break;
2881 
2882     default:
2883 	return EOPNOTSUPP;
2884     }
2885     return 0;
2886 }
2887 
2888 static moduledata_t ip_mroutemod = {
2889     "ip_mroute",
2890     ip_mroute_modevent,
2891     0
2892 };
2893 
2894 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2895