1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 #include <sys/counter.h> 97 98 #include <net/if.h> 99 #include <net/if_var.h> 100 #include <net/netisr.h> 101 #include <net/route.h> 102 #include <net/vnet.h> 103 104 #include <netinet/in.h> 105 #include <netinet/igmp.h> 106 #include <netinet/in_systm.h> 107 #include <netinet/in_var.h> 108 #include <netinet/ip.h> 109 #include <netinet/ip_encap.h> 110 #include <netinet/ip_mroute.h> 111 #include <netinet/ip_var.h> 112 #include <netinet/ip_options.h> 113 #include <netinet/pim.h> 114 #include <netinet/pim_var.h> 115 #include <netinet/udp.h> 116 117 #include <machine/in_cksum.h> 118 119 #ifndef KTR_IPMF 120 #define KTR_IPMF KTR_INET 121 #endif 122 123 #define VIFI_INVALID ((vifi_t) -1) 124 #define M_HASCL(m) ((m)->m_flags & M_EXT) 125 126 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 127 #define V_last_tv_sec VNET(last_tv_sec) 128 129 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 130 131 /* 132 * Locking. We use two locks: one for the virtual interface table and 133 * one for the forwarding table. These locks may be nested in which case 134 * the VIF lock must always be taken first. Note that each lock is used 135 * to cover not only the specific data structure but also related data 136 * structures. 137 */ 138 139 static struct mtx mrouter_mtx; 140 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 141 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 142 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 143 #define MROUTER_LOCK_INIT() \ 144 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 145 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 146 147 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 148 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 149 150 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 151 VNET_PCPUSTAT_SYSINIT(mrtstat); 152 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 153 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 154 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 155 "netinet/ip_mroute.h)"); 156 157 static VNET_DEFINE(u_long, mfchash); 158 #define V_mfchash VNET(mfchash) 159 #define MFCHASH(a, g) \ 160 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 161 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 162 #define MFCHASHSIZE 256 163 164 static u_long mfchashsize; /* Hash size */ 165 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 166 #define V_nexpire VNET(nexpire) 167 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 168 #define V_mfchashtbl VNET(mfchashtbl) 169 170 static struct mtx mfc_mtx; 171 #define MFC_LOCK() mtx_lock(&mfc_mtx) 172 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 173 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 174 #define MFC_LOCK_INIT() \ 175 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 176 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 177 178 static VNET_DEFINE(vifi_t, numvifs); 179 #define V_numvifs VNET(numvifs) 180 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 181 #define V_viftable VNET(viftable) 182 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 183 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 184 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 185 186 static struct mtx vif_mtx; 187 #define VIF_LOCK() mtx_lock(&vif_mtx) 188 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 189 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 190 #define VIF_LOCK_INIT() \ 191 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 192 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 193 194 static eventhandler_tag if_detach_event_tag = NULL; 195 196 static VNET_DEFINE(struct callout, expire_upcalls_ch); 197 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 /* 207 * Pending timeouts are stored in a hash table, the key being the 208 * expiration time. Periodically, the entries are analysed and processed. 209 */ 210 #define BW_METER_BUCKETS 1024 211 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 212 #define V_bw_meter_timers VNET(bw_meter_timers) 213 static VNET_DEFINE(struct callout, bw_meter_ch); 214 #define V_bw_meter_ch VNET(bw_meter_ch) 215 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 216 217 /* 218 * Pending upcalls are stored in a vector which is flushed when 219 * full, or periodically 220 */ 221 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 222 #define V_bw_upcalls VNET(bw_upcalls) 223 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 224 #define V_bw_upcalls_n VNET(bw_upcalls_n) 225 static VNET_DEFINE(struct callout, bw_upcalls_ch); 226 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 227 228 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 229 230 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 231 VNET_PCPUSTAT_SYSINIT(pimstat); 232 VNET_PCPUSTAT_SYSUNINIT(pimstat); 233 234 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 235 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 236 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 237 238 static u_long pim_squelch_wholepkt = 0; 239 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 240 &pim_squelch_wholepkt, 0, 241 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 242 243 extern struct domain inetdomain; 244 static const struct protosw in_pim_protosw = { 245 .pr_type = SOCK_RAW, 246 .pr_domain = &inetdomain, 247 .pr_protocol = IPPROTO_PIM, 248 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 249 .pr_input = pim_input, 250 .pr_output = (pr_output_t*)rip_output, 251 .pr_ctloutput = rip_ctloutput, 252 .pr_usrreqs = &rip_usrreqs 253 }; 254 static const struct encaptab *pim_encap_cookie; 255 256 static int pim_encapcheck(const struct mbuf *, int, int, void *); 257 258 /* 259 * Note: the PIM Register encapsulation adds the following in front of a 260 * data packet: 261 * 262 * struct pim_encap_hdr { 263 * struct ip ip; 264 * struct pim_encap_pimhdr pim; 265 * } 266 * 267 */ 268 269 struct pim_encap_pimhdr { 270 struct pim pim; 271 uint32_t flags; 272 }; 273 #define PIM_ENCAP_TTL 64 274 275 static struct ip pim_encap_iphdr = { 276 #if BYTE_ORDER == LITTLE_ENDIAN 277 sizeof(struct ip) >> 2, 278 IPVERSION, 279 #else 280 IPVERSION, 281 sizeof(struct ip) >> 2, 282 #endif 283 0, /* tos */ 284 sizeof(struct ip), /* total length */ 285 0, /* id */ 286 0, /* frag offset */ 287 PIM_ENCAP_TTL, 288 IPPROTO_PIM, 289 0, /* checksum */ 290 }; 291 292 static struct pim_encap_pimhdr pim_encap_pimhdr = { 293 { 294 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 295 0, /* reserved */ 296 0, /* checksum */ 297 }, 298 0 /* flags */ 299 }; 300 301 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 302 #define V_reg_vif_num VNET(reg_vif_num) 303 static VNET_DEFINE(struct ifnet, multicast_register_if); 304 #define V_multicast_register_if VNET(multicast_register_if) 305 306 /* 307 * Private variables. 308 */ 309 310 static u_long X_ip_mcast_src(int); 311 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 312 struct ip_moptions *); 313 static int X_ip_mrouter_done(void); 314 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 315 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 316 static int X_legal_vif_num(int); 317 static int X_mrt_ioctl(u_long, caddr_t, int); 318 319 static int add_bw_upcall(struct bw_upcall *); 320 static int add_mfc(struct mfcctl2 *); 321 static int add_vif(struct vifctl *); 322 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 323 static void bw_meter_process(void); 324 static void bw_meter_receive_packet(struct bw_meter *, int, 325 struct timeval *); 326 static void bw_upcalls_send(void); 327 static int del_bw_upcall(struct bw_upcall *); 328 static int del_mfc(struct mfcctl2 *); 329 static int del_vif(vifi_t); 330 static int del_vif_locked(vifi_t); 331 static void expire_bw_meter_process(void *); 332 static void expire_bw_upcalls_send(void *); 333 static void expire_mfc(struct mfc *); 334 static void expire_upcalls(void *); 335 static void free_bw_list(struct bw_meter *); 336 static int get_sg_cnt(struct sioc_sg_req *); 337 static int get_vif_cnt(struct sioc_vif_req *); 338 static void if_detached_event(void *, struct ifnet *); 339 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 340 static int ip_mrouter_init(struct socket *, int); 341 static __inline struct mfc * 342 mfc_find(struct in_addr *, struct in_addr *); 343 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 344 static struct mbuf * 345 pim_register_prepare(struct ip *, struct mbuf *); 346 static int pim_register_send(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static int pim_register_send_rp(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static int pim_register_send_upcall(struct ip *, struct vif *, 351 struct mbuf *, struct mfc *); 352 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 353 static void send_packet(struct vif *, struct mbuf *); 354 static int set_api_config(uint32_t *); 355 static int set_assert(int); 356 static int socket_send(struct socket *, struct mbuf *, 357 struct sockaddr_in *); 358 static void unschedule_bw_meter(struct bw_meter *); 359 360 /* 361 * Kernel multicast forwarding API capabilities and setup. 362 * If more API capabilities are added to the kernel, they should be 363 * recorded in `mrt_api_support'. 364 */ 365 #define MRT_API_VERSION 0x0305 366 367 static const int mrt_api_version = MRT_API_VERSION; 368 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 369 MRT_MFC_FLAGS_BORDER_VIF | 370 MRT_MFC_RP | 371 MRT_MFC_BW_UPCALL); 372 static VNET_DEFINE(uint32_t, mrt_api_config); 373 #define V_mrt_api_config VNET(mrt_api_config) 374 static VNET_DEFINE(int, pim_assert_enabled); 375 #define V_pim_assert_enabled VNET(pim_assert_enabled) 376 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 377 378 /* 379 * Find a route for a given origin IP address and multicast group address. 380 * Statistics must be updated by the caller. 381 */ 382 static __inline struct mfc * 383 mfc_find(struct in_addr *o, struct in_addr *g) 384 { 385 struct mfc *rt; 386 387 MFC_LOCK_ASSERT(); 388 389 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 390 if (in_hosteq(rt->mfc_origin, *o) && 391 in_hosteq(rt->mfc_mcastgrp, *g) && 392 TAILQ_EMPTY(&rt->mfc_stall)) 393 break; 394 } 395 396 return (rt); 397 } 398 399 /* 400 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 401 */ 402 static int 403 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 404 { 405 int error, optval; 406 vifi_t vifi; 407 struct vifctl vifc; 408 struct mfcctl2 mfc; 409 struct bw_upcall bw_upcall; 410 uint32_t i; 411 412 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 413 return EPERM; 414 415 error = 0; 416 switch (sopt->sopt_name) { 417 case MRT_INIT: 418 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 419 if (error) 420 break; 421 error = ip_mrouter_init(so, optval); 422 break; 423 424 case MRT_DONE: 425 error = ip_mrouter_done(); 426 break; 427 428 case MRT_ADD_VIF: 429 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 430 if (error) 431 break; 432 error = add_vif(&vifc); 433 break; 434 435 case MRT_DEL_VIF: 436 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 437 if (error) 438 break; 439 error = del_vif(vifi); 440 break; 441 442 case MRT_ADD_MFC: 443 case MRT_DEL_MFC: 444 /* 445 * select data size depending on API version. 446 */ 447 if (sopt->sopt_name == MRT_ADD_MFC && 448 V_mrt_api_config & MRT_API_FLAGS_ALL) { 449 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 450 sizeof(struct mfcctl2)); 451 } else { 452 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 453 sizeof(struct mfcctl)); 454 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 455 sizeof(mfc) - sizeof(struct mfcctl)); 456 } 457 if (error) 458 break; 459 if (sopt->sopt_name == MRT_ADD_MFC) 460 error = add_mfc(&mfc); 461 else 462 error = del_mfc(&mfc); 463 break; 464 465 case MRT_ASSERT: 466 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 467 if (error) 468 break; 469 set_assert(optval); 470 break; 471 472 case MRT_API_CONFIG: 473 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 474 if (!error) 475 error = set_api_config(&i); 476 if (!error) 477 error = sooptcopyout(sopt, &i, sizeof i); 478 break; 479 480 case MRT_ADD_BW_UPCALL: 481 case MRT_DEL_BW_UPCALL: 482 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 483 sizeof bw_upcall); 484 if (error) 485 break; 486 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 487 error = add_bw_upcall(&bw_upcall); 488 else 489 error = del_bw_upcall(&bw_upcall); 490 break; 491 492 default: 493 error = EOPNOTSUPP; 494 break; 495 } 496 return error; 497 } 498 499 /* 500 * Handle MRT getsockopt commands 501 */ 502 static int 503 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 504 { 505 int error; 506 507 switch (sopt->sopt_name) { 508 case MRT_VERSION: 509 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 510 break; 511 512 case MRT_ASSERT: 513 error = sooptcopyout(sopt, &V_pim_assert_enabled, 514 sizeof V_pim_assert_enabled); 515 break; 516 517 case MRT_API_SUPPORT: 518 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 519 break; 520 521 case MRT_API_CONFIG: 522 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 523 break; 524 525 default: 526 error = EOPNOTSUPP; 527 break; 528 } 529 return error; 530 } 531 532 /* 533 * Handle ioctl commands to obtain information from the cache 534 */ 535 static int 536 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 537 { 538 int error = 0; 539 540 /* 541 * Currently the only function calling this ioctl routine is rtioctl(). 542 * Typically, only root can create the raw socket in order to execute 543 * this ioctl method, however the request might be coming from a prison 544 */ 545 error = priv_check(curthread, PRIV_NETINET_MROUTE); 546 if (error) 547 return (error); 548 switch (cmd) { 549 case (SIOCGETVIFCNT): 550 error = get_vif_cnt((struct sioc_vif_req *)data); 551 break; 552 553 case (SIOCGETSGCNT): 554 error = get_sg_cnt((struct sioc_sg_req *)data); 555 break; 556 557 default: 558 error = EINVAL; 559 break; 560 } 561 return error; 562 } 563 564 /* 565 * returns the packet, byte, rpf-failure count for the source group provided 566 */ 567 static int 568 get_sg_cnt(struct sioc_sg_req *req) 569 { 570 struct mfc *rt; 571 572 MFC_LOCK(); 573 rt = mfc_find(&req->src, &req->grp); 574 if (rt == NULL) { 575 MFC_UNLOCK(); 576 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 577 return EADDRNOTAVAIL; 578 } 579 req->pktcnt = rt->mfc_pkt_cnt; 580 req->bytecnt = rt->mfc_byte_cnt; 581 req->wrong_if = rt->mfc_wrong_if; 582 MFC_UNLOCK(); 583 return 0; 584 } 585 586 /* 587 * returns the input and output packet and byte counts on the vif provided 588 */ 589 static int 590 get_vif_cnt(struct sioc_vif_req *req) 591 { 592 vifi_t vifi = req->vifi; 593 594 VIF_LOCK(); 595 if (vifi >= V_numvifs) { 596 VIF_UNLOCK(); 597 return EINVAL; 598 } 599 600 req->icount = V_viftable[vifi].v_pkt_in; 601 req->ocount = V_viftable[vifi].v_pkt_out; 602 req->ibytes = V_viftable[vifi].v_bytes_in; 603 req->obytes = V_viftable[vifi].v_bytes_out; 604 VIF_UNLOCK(); 605 606 return 0; 607 } 608 609 static void 610 if_detached_event(void *arg __unused, struct ifnet *ifp) 611 { 612 vifi_t vifi; 613 u_long i; 614 615 MROUTER_LOCK(); 616 617 if (V_ip_mrouter == NULL) { 618 MROUTER_UNLOCK(); 619 return; 620 } 621 622 VIF_LOCK(); 623 MFC_LOCK(); 624 625 /* 626 * Tear down multicast forwarder state associated with this ifnet. 627 * 1. Walk the vif list, matching vifs against this ifnet. 628 * 2. Walk the multicast forwarding cache (mfc) looking for 629 * inner matches with this vif's index. 630 * 3. Expire any matching multicast forwarding cache entries. 631 * 4. Free vif state. This should disable ALLMULTI on the interface. 632 */ 633 for (vifi = 0; vifi < V_numvifs; vifi++) { 634 if (V_viftable[vifi].v_ifp != ifp) 635 continue; 636 for (i = 0; i < mfchashsize; i++) { 637 struct mfc *rt, *nrt; 638 639 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 640 if (rt->mfc_parent == vifi) { 641 expire_mfc(rt); 642 } 643 } 644 } 645 del_vif_locked(vifi); 646 } 647 648 MFC_UNLOCK(); 649 VIF_UNLOCK(); 650 651 MROUTER_UNLOCK(); 652 } 653 654 /* 655 * Enable multicast forwarding. 656 */ 657 static int 658 ip_mrouter_init(struct socket *so, int version) 659 { 660 661 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 662 so->so_type, so->so_proto->pr_protocol); 663 664 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 665 return EOPNOTSUPP; 666 667 if (version != 1) 668 return ENOPROTOOPT; 669 670 MROUTER_LOCK(); 671 672 if (ip_mrouter_unloading) { 673 MROUTER_UNLOCK(); 674 return ENOPROTOOPT; 675 } 676 677 if (V_ip_mrouter != NULL) { 678 MROUTER_UNLOCK(); 679 return EADDRINUSE; 680 } 681 682 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 683 HASH_NOWAIT); 684 685 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 686 curvnet); 687 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 688 curvnet); 689 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 690 curvnet); 691 692 V_ip_mrouter = so; 693 ip_mrouter_cnt++; 694 695 MROUTER_UNLOCK(); 696 697 CTR1(KTR_IPMF, "%s: done", __func__); 698 699 return 0; 700 } 701 702 /* 703 * Disable multicast forwarding. 704 */ 705 static int 706 X_ip_mrouter_done(void) 707 { 708 struct ifnet *ifp; 709 u_long i; 710 vifi_t vifi; 711 712 MROUTER_LOCK(); 713 714 if (V_ip_mrouter == NULL) { 715 MROUTER_UNLOCK(); 716 return EINVAL; 717 } 718 719 /* 720 * Detach/disable hooks to the reset of the system. 721 */ 722 V_ip_mrouter = NULL; 723 ip_mrouter_cnt--; 724 V_mrt_api_config = 0; 725 726 VIF_LOCK(); 727 728 /* 729 * For each phyint in use, disable promiscuous reception of all IP 730 * multicasts. 731 */ 732 for (vifi = 0; vifi < V_numvifs; vifi++) { 733 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 734 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 735 ifp = V_viftable[vifi].v_ifp; 736 if_allmulti(ifp, 0); 737 } 738 } 739 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 740 V_numvifs = 0; 741 V_pim_assert_enabled = 0; 742 743 VIF_UNLOCK(); 744 745 callout_stop(&V_expire_upcalls_ch); 746 callout_stop(&V_bw_upcalls_ch); 747 callout_stop(&V_bw_meter_ch); 748 749 MFC_LOCK(); 750 751 /* 752 * Free all multicast forwarding cache entries. 753 * Do not use hashdestroy(), as we must perform other cleanup. 754 */ 755 for (i = 0; i < mfchashsize; i++) { 756 struct mfc *rt, *nrt; 757 758 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 759 expire_mfc(rt); 760 } 761 } 762 free(V_mfchashtbl, M_MRTABLE); 763 V_mfchashtbl = NULL; 764 765 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 766 767 V_bw_upcalls_n = 0; 768 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 769 770 MFC_UNLOCK(); 771 772 V_reg_vif_num = VIFI_INVALID; 773 774 MROUTER_UNLOCK(); 775 776 CTR1(KTR_IPMF, "%s: done", __func__); 777 778 return 0; 779 } 780 781 /* 782 * Set PIM assert processing global 783 */ 784 static int 785 set_assert(int i) 786 { 787 if ((i != 1) && (i != 0)) 788 return EINVAL; 789 790 V_pim_assert_enabled = i; 791 792 return 0; 793 } 794 795 /* 796 * Configure API capabilities 797 */ 798 int 799 set_api_config(uint32_t *apival) 800 { 801 u_long i; 802 803 /* 804 * We can set the API capabilities only if it is the first operation 805 * after MRT_INIT. I.e.: 806 * - there are no vifs installed 807 * - pim_assert is not enabled 808 * - the MFC table is empty 809 */ 810 if (V_numvifs > 0) { 811 *apival = 0; 812 return EPERM; 813 } 814 if (V_pim_assert_enabled) { 815 *apival = 0; 816 return EPERM; 817 } 818 819 MFC_LOCK(); 820 821 for (i = 0; i < mfchashsize; i++) { 822 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 823 MFC_UNLOCK(); 824 *apival = 0; 825 return EPERM; 826 } 827 } 828 829 MFC_UNLOCK(); 830 831 V_mrt_api_config = *apival & mrt_api_support; 832 *apival = V_mrt_api_config; 833 834 return 0; 835 } 836 837 /* 838 * Add a vif to the vif table 839 */ 840 static int 841 add_vif(struct vifctl *vifcp) 842 { 843 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 844 struct sockaddr_in sin = {sizeof sin, AF_INET}; 845 struct ifaddr *ifa; 846 struct ifnet *ifp; 847 int error; 848 849 VIF_LOCK(); 850 if (vifcp->vifc_vifi >= MAXVIFS) { 851 VIF_UNLOCK(); 852 return EINVAL; 853 } 854 /* rate limiting is no longer supported by this code */ 855 if (vifcp->vifc_rate_limit != 0) { 856 log(LOG_ERR, "rate limiting is no longer supported\n"); 857 VIF_UNLOCK(); 858 return EINVAL; 859 } 860 if (!in_nullhost(vifp->v_lcl_addr)) { 861 VIF_UNLOCK(); 862 return EADDRINUSE; 863 } 864 if (in_nullhost(vifcp->vifc_lcl_addr)) { 865 VIF_UNLOCK(); 866 return EADDRNOTAVAIL; 867 } 868 869 /* Find the interface with an address in AF_INET family */ 870 if (vifcp->vifc_flags & VIFF_REGISTER) { 871 /* 872 * XXX: Because VIFF_REGISTER does not really need a valid 873 * local interface (e.g. it could be 127.0.0.2), we don't 874 * check its address. 875 */ 876 ifp = NULL; 877 } else { 878 sin.sin_addr = vifcp->vifc_lcl_addr; 879 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 880 if (ifa == NULL) { 881 VIF_UNLOCK(); 882 return EADDRNOTAVAIL; 883 } 884 ifp = ifa->ifa_ifp; 885 ifa_free(ifa); 886 } 887 888 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 889 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 890 VIF_UNLOCK(); 891 return EOPNOTSUPP; 892 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 893 ifp = &V_multicast_register_if; 894 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 895 if (V_reg_vif_num == VIFI_INVALID) { 896 if_initname(&V_multicast_register_if, "register_vif", 0); 897 V_multicast_register_if.if_flags = IFF_LOOPBACK; 898 V_reg_vif_num = vifcp->vifc_vifi; 899 } 900 } else { /* Make sure the interface supports multicast */ 901 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 902 VIF_UNLOCK(); 903 return EOPNOTSUPP; 904 } 905 906 /* Enable promiscuous reception of all IP multicasts from the if */ 907 error = if_allmulti(ifp, 1); 908 if (error) { 909 VIF_UNLOCK(); 910 return error; 911 } 912 } 913 914 vifp->v_flags = vifcp->vifc_flags; 915 vifp->v_threshold = vifcp->vifc_threshold; 916 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 917 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 918 vifp->v_ifp = ifp; 919 /* initialize per vif pkt counters */ 920 vifp->v_pkt_in = 0; 921 vifp->v_pkt_out = 0; 922 vifp->v_bytes_in = 0; 923 vifp->v_bytes_out = 0; 924 925 /* Adjust numvifs up if the vifi is higher than numvifs */ 926 if (V_numvifs <= vifcp->vifc_vifi) 927 V_numvifs = vifcp->vifc_vifi + 1; 928 929 VIF_UNLOCK(); 930 931 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 932 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 933 (int)vifcp->vifc_threshold); 934 935 return 0; 936 } 937 938 /* 939 * Delete a vif from the vif table 940 */ 941 static int 942 del_vif_locked(vifi_t vifi) 943 { 944 struct vif *vifp; 945 946 VIF_LOCK_ASSERT(); 947 948 if (vifi >= V_numvifs) { 949 return EINVAL; 950 } 951 vifp = &V_viftable[vifi]; 952 if (in_nullhost(vifp->v_lcl_addr)) { 953 return EADDRNOTAVAIL; 954 } 955 956 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 957 if_allmulti(vifp->v_ifp, 0); 958 959 if (vifp->v_flags & VIFF_REGISTER) 960 V_reg_vif_num = VIFI_INVALID; 961 962 bzero((caddr_t)vifp, sizeof (*vifp)); 963 964 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 965 966 /* Adjust numvifs down */ 967 for (vifi = V_numvifs; vifi > 0; vifi--) 968 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 969 break; 970 V_numvifs = vifi; 971 972 return 0; 973 } 974 975 static int 976 del_vif(vifi_t vifi) 977 { 978 int cc; 979 980 VIF_LOCK(); 981 cc = del_vif_locked(vifi); 982 VIF_UNLOCK(); 983 984 return cc; 985 } 986 987 /* 988 * update an mfc entry without resetting counters and S,G addresses. 989 */ 990 static void 991 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 992 { 993 int i; 994 995 rt->mfc_parent = mfccp->mfcc_parent; 996 for (i = 0; i < V_numvifs; i++) { 997 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 998 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 999 MRT_MFC_FLAGS_ALL; 1000 } 1001 /* set the RP address */ 1002 if (V_mrt_api_config & MRT_MFC_RP) 1003 rt->mfc_rp = mfccp->mfcc_rp; 1004 else 1005 rt->mfc_rp.s_addr = INADDR_ANY; 1006 } 1007 1008 /* 1009 * fully initialize an mfc entry from the parameter. 1010 */ 1011 static void 1012 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1013 { 1014 rt->mfc_origin = mfccp->mfcc_origin; 1015 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1016 1017 update_mfc_params(rt, mfccp); 1018 1019 /* initialize pkt counters per src-grp */ 1020 rt->mfc_pkt_cnt = 0; 1021 rt->mfc_byte_cnt = 0; 1022 rt->mfc_wrong_if = 0; 1023 timevalclear(&rt->mfc_last_assert); 1024 } 1025 1026 static void 1027 expire_mfc(struct mfc *rt) 1028 { 1029 struct rtdetq *rte, *nrte; 1030 1031 MFC_LOCK_ASSERT(); 1032 1033 free_bw_list(rt->mfc_bw_meter); 1034 1035 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1036 m_freem(rte->m); 1037 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1038 free(rte, M_MRTABLE); 1039 } 1040 1041 LIST_REMOVE(rt, mfc_hash); 1042 free(rt, M_MRTABLE); 1043 } 1044 1045 /* 1046 * Add an mfc entry 1047 */ 1048 static int 1049 add_mfc(struct mfcctl2 *mfccp) 1050 { 1051 struct mfc *rt; 1052 struct rtdetq *rte, *nrte; 1053 u_long hash = 0; 1054 u_short nstl; 1055 1056 VIF_LOCK(); 1057 MFC_LOCK(); 1058 1059 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1060 1061 /* If an entry already exists, just update the fields */ 1062 if (rt) { 1063 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1064 __func__, inet_ntoa(mfccp->mfcc_origin), 1065 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1066 mfccp->mfcc_parent); 1067 update_mfc_params(rt, mfccp); 1068 MFC_UNLOCK(); 1069 VIF_UNLOCK(); 1070 return (0); 1071 } 1072 1073 /* 1074 * Find the entry for which the upcall was made and update 1075 */ 1076 nstl = 0; 1077 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1078 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1079 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1080 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1081 !TAILQ_EMPTY(&rt->mfc_stall)) { 1082 CTR5(KTR_IPMF, 1083 "%s: add mfc orig %s group %lx parent %x qh %p", 1084 __func__, inet_ntoa(mfccp->mfcc_origin), 1085 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1086 mfccp->mfcc_parent, 1087 TAILQ_FIRST(&rt->mfc_stall)); 1088 if (nstl++) 1089 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1090 1091 init_mfc_params(rt, mfccp); 1092 rt->mfc_expire = 0; /* Don't clean this guy up */ 1093 V_nexpire[hash]--; 1094 1095 /* Free queued packets, but attempt to forward them first. */ 1096 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1097 if (rte->ifp != NULL) 1098 ip_mdq(rte->m, rte->ifp, rt, -1); 1099 m_freem(rte->m); 1100 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1101 rt->mfc_nstall--; 1102 free(rte, M_MRTABLE); 1103 } 1104 } 1105 } 1106 1107 /* 1108 * It is possible that an entry is being inserted without an upcall 1109 */ 1110 if (nstl == 0) { 1111 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1112 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1113 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1114 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1115 init_mfc_params(rt, mfccp); 1116 if (rt->mfc_expire) 1117 V_nexpire[hash]--; 1118 rt->mfc_expire = 0; 1119 break; /* XXX */ 1120 } 1121 } 1122 1123 if (rt == NULL) { /* no upcall, so make a new entry */ 1124 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1125 if (rt == NULL) { 1126 MFC_UNLOCK(); 1127 VIF_UNLOCK(); 1128 return (ENOBUFS); 1129 } 1130 1131 init_mfc_params(rt, mfccp); 1132 TAILQ_INIT(&rt->mfc_stall); 1133 rt->mfc_nstall = 0; 1134 1135 rt->mfc_expire = 0; 1136 rt->mfc_bw_meter = NULL; 1137 1138 /* insert new entry at head of hash chain */ 1139 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1140 } 1141 } 1142 1143 MFC_UNLOCK(); 1144 VIF_UNLOCK(); 1145 1146 return (0); 1147 } 1148 1149 /* 1150 * Delete an mfc entry 1151 */ 1152 static int 1153 del_mfc(struct mfcctl2 *mfccp) 1154 { 1155 struct in_addr origin; 1156 struct in_addr mcastgrp; 1157 struct mfc *rt; 1158 1159 origin = mfccp->mfcc_origin; 1160 mcastgrp = mfccp->mfcc_mcastgrp; 1161 1162 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1163 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1164 1165 MFC_LOCK(); 1166 1167 rt = mfc_find(&origin, &mcastgrp); 1168 if (rt == NULL) { 1169 MFC_UNLOCK(); 1170 return EADDRNOTAVAIL; 1171 } 1172 1173 /* 1174 * free the bw_meter entries 1175 */ 1176 free_bw_list(rt->mfc_bw_meter); 1177 rt->mfc_bw_meter = NULL; 1178 1179 LIST_REMOVE(rt, mfc_hash); 1180 free(rt, M_MRTABLE); 1181 1182 MFC_UNLOCK(); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Send a message to the routing daemon on the multicast routing socket. 1189 */ 1190 static int 1191 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1192 { 1193 if (s) { 1194 SOCKBUF_LOCK(&s->so_rcv); 1195 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1196 NULL) != 0) { 1197 sorwakeup_locked(s); 1198 return 0; 1199 } 1200 SOCKBUF_UNLOCK(&s->so_rcv); 1201 } 1202 m_freem(mm); 1203 return -1; 1204 } 1205 1206 /* 1207 * IP multicast forwarding function. This function assumes that the packet 1208 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1209 * pointed to by "ifp", and the packet is to be relayed to other networks 1210 * that have members of the packet's destination IP multicast group. 1211 * 1212 * The packet is returned unscathed to the caller, unless it is 1213 * erroneous, in which case a non-zero return value tells the caller to 1214 * discard it. 1215 */ 1216 1217 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1218 1219 static int 1220 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1221 struct ip_moptions *imo) 1222 { 1223 struct mfc *rt; 1224 int error; 1225 vifi_t vifi; 1226 1227 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1228 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1229 1230 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1231 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1232 /* 1233 * Packet arrived via a physical interface or 1234 * an encapsulated tunnel or a register_vif. 1235 */ 1236 } else { 1237 /* 1238 * Packet arrived through a source-route tunnel. 1239 * Source-route tunnels are no longer supported. 1240 */ 1241 return (1); 1242 } 1243 1244 VIF_LOCK(); 1245 MFC_LOCK(); 1246 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1247 if (ip->ip_ttl < MAXTTL) 1248 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1249 error = ip_mdq(m, ifp, NULL, vifi); 1250 MFC_UNLOCK(); 1251 VIF_UNLOCK(); 1252 return error; 1253 } 1254 1255 /* 1256 * Don't forward a packet with time-to-live of zero or one, 1257 * or a packet destined to a local-only group. 1258 */ 1259 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1260 MFC_UNLOCK(); 1261 VIF_UNLOCK(); 1262 return 0; 1263 } 1264 1265 /* 1266 * Determine forwarding vifs from the forwarding cache table 1267 */ 1268 MRTSTAT_INC(mrts_mfc_lookups); 1269 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1270 1271 /* Entry exists, so forward if necessary */ 1272 if (rt != NULL) { 1273 error = ip_mdq(m, ifp, rt, -1); 1274 MFC_UNLOCK(); 1275 VIF_UNLOCK(); 1276 return error; 1277 } else { 1278 /* 1279 * If we don't have a route for packet's origin, 1280 * Make a copy of the packet & send message to routing daemon 1281 */ 1282 1283 struct mbuf *mb0; 1284 struct rtdetq *rte; 1285 u_long hash; 1286 int hlen = ip->ip_hl << 2; 1287 1288 MRTSTAT_INC(mrts_mfc_misses); 1289 MRTSTAT_INC(mrts_no_route); 1290 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1291 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1292 1293 /* 1294 * Allocate mbufs early so that we don't do extra work if we are 1295 * just going to fail anyway. Make sure to pullup the header so 1296 * that other people can't step on it. 1297 */ 1298 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1299 M_NOWAIT|M_ZERO); 1300 if (rte == NULL) { 1301 MFC_UNLOCK(); 1302 VIF_UNLOCK(); 1303 return ENOBUFS; 1304 } 1305 1306 mb0 = m_copypacket(m, M_NOWAIT); 1307 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1308 mb0 = m_pullup(mb0, hlen); 1309 if (mb0 == NULL) { 1310 free(rte, M_MRTABLE); 1311 MFC_UNLOCK(); 1312 VIF_UNLOCK(); 1313 return ENOBUFS; 1314 } 1315 1316 /* is there an upcall waiting for this flow ? */ 1317 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1318 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1319 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1320 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1321 !TAILQ_EMPTY(&rt->mfc_stall)) 1322 break; 1323 } 1324 1325 if (rt == NULL) { 1326 int i; 1327 struct igmpmsg *im; 1328 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1329 struct mbuf *mm; 1330 1331 /* 1332 * Locate the vifi for the incoming interface for this packet. 1333 * If none found, drop packet. 1334 */ 1335 for (vifi = 0; vifi < V_numvifs && 1336 V_viftable[vifi].v_ifp != ifp; vifi++) 1337 ; 1338 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1339 goto non_fatal; 1340 1341 /* no upcall, so make a new entry */ 1342 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1343 if (rt == NULL) 1344 goto fail; 1345 1346 /* Make a copy of the header to send to the user level process */ 1347 mm = m_copy(mb0, 0, hlen); 1348 if (mm == NULL) 1349 goto fail1; 1350 1351 /* 1352 * Send message to routing daemon to install 1353 * a route into the kernel table 1354 */ 1355 1356 im = mtod(mm, struct igmpmsg *); 1357 im->im_msgtype = IGMPMSG_NOCACHE; 1358 im->im_mbz = 0; 1359 im->im_vif = vifi; 1360 1361 MRTSTAT_INC(mrts_upcalls); 1362 1363 k_igmpsrc.sin_addr = ip->ip_src; 1364 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1365 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1366 MRTSTAT_INC(mrts_upq_sockfull); 1367 fail1: 1368 free(rt, M_MRTABLE); 1369 fail: 1370 free(rte, M_MRTABLE); 1371 m_freem(mb0); 1372 MFC_UNLOCK(); 1373 VIF_UNLOCK(); 1374 return ENOBUFS; 1375 } 1376 1377 /* insert new entry at head of hash chain */ 1378 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1379 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1380 rt->mfc_expire = UPCALL_EXPIRE; 1381 V_nexpire[hash]++; 1382 for (i = 0; i < V_numvifs; i++) { 1383 rt->mfc_ttls[i] = 0; 1384 rt->mfc_flags[i] = 0; 1385 } 1386 rt->mfc_parent = -1; 1387 1388 /* clear the RP address */ 1389 rt->mfc_rp.s_addr = INADDR_ANY; 1390 rt->mfc_bw_meter = NULL; 1391 1392 /* initialize pkt counters per src-grp */ 1393 rt->mfc_pkt_cnt = 0; 1394 rt->mfc_byte_cnt = 0; 1395 rt->mfc_wrong_if = 0; 1396 timevalclear(&rt->mfc_last_assert); 1397 1398 TAILQ_INIT(&rt->mfc_stall); 1399 rt->mfc_nstall = 0; 1400 1401 /* link into table */ 1402 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1403 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1404 rt->mfc_nstall++; 1405 1406 } else { 1407 /* determine if queue has overflowed */ 1408 if (rt->mfc_nstall > MAX_UPQ) { 1409 MRTSTAT_INC(mrts_upq_ovflw); 1410 non_fatal: 1411 free(rte, M_MRTABLE); 1412 m_freem(mb0); 1413 MFC_UNLOCK(); 1414 VIF_UNLOCK(); 1415 return (0); 1416 } 1417 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1418 rt->mfc_nstall++; 1419 } 1420 1421 rte->m = mb0; 1422 rte->ifp = ifp; 1423 1424 MFC_UNLOCK(); 1425 VIF_UNLOCK(); 1426 1427 return 0; 1428 } 1429 } 1430 1431 /* 1432 * Clean up the cache entry if upcall is not serviced 1433 */ 1434 static void 1435 expire_upcalls(void *arg) 1436 { 1437 u_long i; 1438 1439 CURVNET_SET((struct vnet *) arg); 1440 1441 MFC_LOCK(); 1442 1443 for (i = 0; i < mfchashsize; i++) { 1444 struct mfc *rt, *nrt; 1445 1446 if (V_nexpire[i] == 0) 1447 continue; 1448 1449 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1450 if (TAILQ_EMPTY(&rt->mfc_stall)) 1451 continue; 1452 1453 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1454 continue; 1455 1456 /* 1457 * free the bw_meter entries 1458 */ 1459 while (rt->mfc_bw_meter != NULL) { 1460 struct bw_meter *x = rt->mfc_bw_meter; 1461 1462 rt->mfc_bw_meter = x->bm_mfc_next; 1463 free(x, M_BWMETER); 1464 } 1465 1466 MRTSTAT_INC(mrts_cache_cleanups); 1467 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1468 (u_long)ntohl(rt->mfc_origin.s_addr), 1469 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1470 1471 expire_mfc(rt); 1472 } 1473 } 1474 1475 MFC_UNLOCK(); 1476 1477 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1478 curvnet); 1479 1480 CURVNET_RESTORE(); 1481 } 1482 1483 /* 1484 * Packet forwarding routine once entry in the cache is made 1485 */ 1486 static int 1487 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1488 { 1489 struct ip *ip = mtod(m, struct ip *); 1490 vifi_t vifi; 1491 int plen = ntohs(ip->ip_len); 1492 1493 VIF_LOCK_ASSERT(); 1494 1495 /* 1496 * If xmt_vif is not -1, send on only the requested vif. 1497 * 1498 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1499 */ 1500 if (xmt_vif < V_numvifs) { 1501 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1502 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1503 else 1504 phyint_send(ip, V_viftable + xmt_vif, m); 1505 return 1; 1506 } 1507 1508 /* 1509 * Don't forward if it didn't arrive from the parent vif for its origin. 1510 */ 1511 vifi = rt->mfc_parent; 1512 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1513 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1514 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1515 MRTSTAT_INC(mrts_wrong_if); 1516 ++rt->mfc_wrong_if; 1517 /* 1518 * If we are doing PIM assert processing, send a message 1519 * to the routing daemon. 1520 * 1521 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1522 * can complete the SPT switch, regardless of the type 1523 * of the iif (broadcast media, GRE tunnel, etc). 1524 */ 1525 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1526 V_viftable[vifi].v_ifp) { 1527 1528 if (ifp == &V_multicast_register_if) 1529 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1530 1531 /* Get vifi for the incoming packet */ 1532 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1533 vifi++) 1534 ; 1535 if (vifi >= V_numvifs) 1536 return 0; /* The iif is not found: ignore the packet. */ 1537 1538 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1539 return 0; /* WRONGVIF disabled: ignore the packet */ 1540 1541 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1542 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1543 struct igmpmsg *im; 1544 int hlen = ip->ip_hl << 2; 1545 struct mbuf *mm = m_copy(m, 0, hlen); 1546 1547 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1548 mm = m_pullup(mm, hlen); 1549 if (mm == NULL) 1550 return ENOBUFS; 1551 1552 im = mtod(mm, struct igmpmsg *); 1553 im->im_msgtype = IGMPMSG_WRONGVIF; 1554 im->im_mbz = 0; 1555 im->im_vif = vifi; 1556 1557 MRTSTAT_INC(mrts_upcalls); 1558 1559 k_igmpsrc.sin_addr = im->im_src; 1560 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1561 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1562 MRTSTAT_INC(mrts_upq_sockfull); 1563 return ENOBUFS; 1564 } 1565 } 1566 } 1567 return 0; 1568 } 1569 1570 1571 /* If I sourced this packet, it counts as output, else it was input. */ 1572 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1573 V_viftable[vifi].v_pkt_out++; 1574 V_viftable[vifi].v_bytes_out += plen; 1575 } else { 1576 V_viftable[vifi].v_pkt_in++; 1577 V_viftable[vifi].v_bytes_in += plen; 1578 } 1579 rt->mfc_pkt_cnt++; 1580 rt->mfc_byte_cnt += plen; 1581 1582 /* 1583 * For each vif, decide if a copy of the packet should be forwarded. 1584 * Forward if: 1585 * - the ttl exceeds the vif's threshold 1586 * - there are group members downstream on interface 1587 */ 1588 for (vifi = 0; vifi < V_numvifs; vifi++) 1589 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1590 V_viftable[vifi].v_pkt_out++; 1591 V_viftable[vifi].v_bytes_out += plen; 1592 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1593 pim_register_send(ip, V_viftable + vifi, m, rt); 1594 else 1595 phyint_send(ip, V_viftable + vifi, m); 1596 } 1597 1598 /* 1599 * Perform upcall-related bw measuring. 1600 */ 1601 if (rt->mfc_bw_meter != NULL) { 1602 struct bw_meter *x; 1603 struct timeval now; 1604 1605 microtime(&now); 1606 MFC_LOCK_ASSERT(); 1607 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1608 bw_meter_receive_packet(x, plen, &now); 1609 } 1610 1611 return 0; 1612 } 1613 1614 /* 1615 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1616 */ 1617 static int 1618 X_legal_vif_num(int vif) 1619 { 1620 int ret; 1621 1622 ret = 0; 1623 if (vif < 0) 1624 return (ret); 1625 1626 VIF_LOCK(); 1627 if (vif < V_numvifs) 1628 ret = 1; 1629 VIF_UNLOCK(); 1630 1631 return (ret); 1632 } 1633 1634 /* 1635 * Return the local address used by this vif 1636 */ 1637 static u_long 1638 X_ip_mcast_src(int vifi) 1639 { 1640 in_addr_t addr; 1641 1642 addr = INADDR_ANY; 1643 if (vifi < 0) 1644 return (addr); 1645 1646 VIF_LOCK(); 1647 if (vifi < V_numvifs) 1648 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1649 VIF_UNLOCK(); 1650 1651 return (addr); 1652 } 1653 1654 static void 1655 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1656 { 1657 struct mbuf *mb_copy; 1658 int hlen = ip->ip_hl << 2; 1659 1660 VIF_LOCK_ASSERT(); 1661 1662 /* 1663 * Make a new reference to the packet; make sure that 1664 * the IP header is actually copied, not just referenced, 1665 * so that ip_output() only scribbles on the copy. 1666 */ 1667 mb_copy = m_copypacket(m, M_NOWAIT); 1668 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1669 mb_copy = m_pullup(mb_copy, hlen); 1670 if (mb_copy == NULL) 1671 return; 1672 1673 send_packet(vifp, mb_copy); 1674 } 1675 1676 static void 1677 send_packet(struct vif *vifp, struct mbuf *m) 1678 { 1679 struct ip_moptions imo; 1680 struct in_multi *imm[2]; 1681 int error; 1682 1683 VIF_LOCK_ASSERT(); 1684 1685 imo.imo_multicast_ifp = vifp->v_ifp; 1686 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1687 imo.imo_multicast_loop = 1; 1688 imo.imo_multicast_vif = -1; 1689 imo.imo_num_memberships = 0; 1690 imo.imo_max_memberships = 2; 1691 imo.imo_membership = &imm[0]; 1692 1693 /* 1694 * Re-entrancy should not be a problem here, because 1695 * the packets that we send out and are looped back at us 1696 * should get rejected because they appear to come from 1697 * the loopback interface, thus preventing looping. 1698 */ 1699 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1700 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1701 (ptrdiff_t)(vifp - V_viftable), error); 1702 } 1703 1704 /* 1705 * Stubs for old RSVP socket shim implementation. 1706 */ 1707 1708 static int 1709 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1710 { 1711 1712 return (EOPNOTSUPP); 1713 } 1714 1715 static void 1716 X_ip_rsvp_force_done(struct socket *so __unused) 1717 { 1718 1719 } 1720 1721 static void 1722 X_rsvp_input(struct mbuf *m, int off __unused) 1723 { 1724 1725 if (!V_rsvp_on) 1726 m_freem(m); 1727 } 1728 1729 /* 1730 * Code for bandwidth monitors 1731 */ 1732 1733 /* 1734 * Define common interface for timeval-related methods 1735 */ 1736 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1737 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1738 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1739 1740 static uint32_t 1741 compute_bw_meter_flags(struct bw_upcall *req) 1742 { 1743 uint32_t flags = 0; 1744 1745 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1746 flags |= BW_METER_UNIT_PACKETS; 1747 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1748 flags |= BW_METER_UNIT_BYTES; 1749 if (req->bu_flags & BW_UPCALL_GEQ) 1750 flags |= BW_METER_GEQ; 1751 if (req->bu_flags & BW_UPCALL_LEQ) 1752 flags |= BW_METER_LEQ; 1753 1754 return flags; 1755 } 1756 1757 /* 1758 * Add a bw_meter entry 1759 */ 1760 static int 1761 add_bw_upcall(struct bw_upcall *req) 1762 { 1763 struct mfc *mfc; 1764 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1765 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1766 struct timeval now; 1767 struct bw_meter *x; 1768 uint32_t flags; 1769 1770 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1771 return EOPNOTSUPP; 1772 1773 /* Test if the flags are valid */ 1774 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1775 return EINVAL; 1776 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1777 return EINVAL; 1778 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1779 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1780 return EINVAL; 1781 1782 /* Test if the threshold time interval is valid */ 1783 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1784 return EINVAL; 1785 1786 flags = compute_bw_meter_flags(req); 1787 1788 /* 1789 * Find if we have already same bw_meter entry 1790 */ 1791 MFC_LOCK(); 1792 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1793 if (mfc == NULL) { 1794 MFC_UNLOCK(); 1795 return EADDRNOTAVAIL; 1796 } 1797 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1798 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1799 &req->bu_threshold.b_time, ==)) && 1800 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1801 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1802 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1803 MFC_UNLOCK(); 1804 return 0; /* XXX Already installed */ 1805 } 1806 } 1807 1808 /* Allocate the new bw_meter entry */ 1809 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1810 if (x == NULL) { 1811 MFC_UNLOCK(); 1812 return ENOBUFS; 1813 } 1814 1815 /* Set the new bw_meter entry */ 1816 x->bm_threshold.b_time = req->bu_threshold.b_time; 1817 microtime(&now); 1818 x->bm_start_time = now; 1819 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1820 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1821 x->bm_measured.b_packets = 0; 1822 x->bm_measured.b_bytes = 0; 1823 x->bm_flags = flags; 1824 x->bm_time_next = NULL; 1825 x->bm_time_hash = BW_METER_BUCKETS; 1826 1827 /* Add the new bw_meter entry to the front of entries for this MFC */ 1828 x->bm_mfc = mfc; 1829 x->bm_mfc_next = mfc->mfc_bw_meter; 1830 mfc->mfc_bw_meter = x; 1831 schedule_bw_meter(x, &now); 1832 MFC_UNLOCK(); 1833 1834 return 0; 1835 } 1836 1837 static void 1838 free_bw_list(struct bw_meter *list) 1839 { 1840 while (list != NULL) { 1841 struct bw_meter *x = list; 1842 1843 list = list->bm_mfc_next; 1844 unschedule_bw_meter(x); 1845 free(x, M_BWMETER); 1846 } 1847 } 1848 1849 /* 1850 * Delete one or multiple bw_meter entries 1851 */ 1852 static int 1853 del_bw_upcall(struct bw_upcall *req) 1854 { 1855 struct mfc *mfc; 1856 struct bw_meter *x; 1857 1858 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1859 return EOPNOTSUPP; 1860 1861 MFC_LOCK(); 1862 1863 /* Find the corresponding MFC entry */ 1864 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1865 if (mfc == NULL) { 1866 MFC_UNLOCK(); 1867 return EADDRNOTAVAIL; 1868 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1869 /* 1870 * Delete all bw_meter entries for this mfc 1871 */ 1872 struct bw_meter *list; 1873 1874 list = mfc->mfc_bw_meter; 1875 mfc->mfc_bw_meter = NULL; 1876 free_bw_list(list); 1877 MFC_UNLOCK(); 1878 return 0; 1879 } else { /* Delete a single bw_meter entry */ 1880 struct bw_meter *prev; 1881 uint32_t flags = 0; 1882 1883 flags = compute_bw_meter_flags(req); 1884 1885 /* Find the bw_meter entry to delete */ 1886 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1887 prev = x, x = x->bm_mfc_next) { 1888 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1889 &req->bu_threshold.b_time, ==)) && 1890 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1891 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1892 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1893 break; 1894 } 1895 if (x != NULL) { /* Delete entry from the list for this MFC */ 1896 if (prev != NULL) 1897 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1898 else 1899 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1900 1901 unschedule_bw_meter(x); 1902 MFC_UNLOCK(); 1903 /* Free the bw_meter entry */ 1904 free(x, M_BWMETER); 1905 return 0; 1906 } else { 1907 MFC_UNLOCK(); 1908 return EINVAL; 1909 } 1910 } 1911 /* NOTREACHED */ 1912 } 1913 1914 /* 1915 * Perform bandwidth measurement processing that may result in an upcall 1916 */ 1917 static void 1918 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1919 { 1920 struct timeval delta; 1921 1922 MFC_LOCK_ASSERT(); 1923 1924 delta = *nowp; 1925 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1926 1927 if (x->bm_flags & BW_METER_GEQ) { 1928 /* 1929 * Processing for ">=" type of bw_meter entry 1930 */ 1931 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1932 /* Reset the bw_meter entry */ 1933 x->bm_start_time = *nowp; 1934 x->bm_measured.b_packets = 0; 1935 x->bm_measured.b_bytes = 0; 1936 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1937 } 1938 1939 /* Record that a packet is received */ 1940 x->bm_measured.b_packets++; 1941 x->bm_measured.b_bytes += plen; 1942 1943 /* 1944 * Test if we should deliver an upcall 1945 */ 1946 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1947 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1948 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1949 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1950 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1951 /* Prepare an upcall for delivery */ 1952 bw_meter_prepare_upcall(x, nowp); 1953 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1954 } 1955 } 1956 } else if (x->bm_flags & BW_METER_LEQ) { 1957 /* 1958 * Processing for "<=" type of bw_meter entry 1959 */ 1960 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1961 /* 1962 * We are behind time with the multicast forwarding table 1963 * scanning for "<=" type of bw_meter entries, so test now 1964 * if we should deliver an upcall. 1965 */ 1966 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1967 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1968 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1969 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1970 /* Prepare an upcall for delivery */ 1971 bw_meter_prepare_upcall(x, nowp); 1972 } 1973 /* Reschedule the bw_meter entry */ 1974 unschedule_bw_meter(x); 1975 schedule_bw_meter(x, nowp); 1976 } 1977 1978 /* Record that a packet is received */ 1979 x->bm_measured.b_packets++; 1980 x->bm_measured.b_bytes += plen; 1981 1982 /* 1983 * Test if we should restart the measuring interval 1984 */ 1985 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1986 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1987 (x->bm_flags & BW_METER_UNIT_BYTES && 1988 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1989 /* Don't restart the measuring interval */ 1990 } else { 1991 /* Do restart the measuring interval */ 1992 /* 1993 * XXX: note that we don't unschedule and schedule, because this 1994 * might be too much overhead per packet. Instead, when we process 1995 * all entries for a given timer hash bin, we check whether it is 1996 * really a timeout. If not, we reschedule at that time. 1997 */ 1998 x->bm_start_time = *nowp; 1999 x->bm_measured.b_packets = 0; 2000 x->bm_measured.b_bytes = 0; 2001 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2002 } 2003 } 2004 } 2005 2006 /* 2007 * Prepare a bandwidth-related upcall 2008 */ 2009 static void 2010 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2011 { 2012 struct timeval delta; 2013 struct bw_upcall *u; 2014 2015 MFC_LOCK_ASSERT(); 2016 2017 /* 2018 * Compute the measured time interval 2019 */ 2020 delta = *nowp; 2021 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2022 2023 /* 2024 * If there are too many pending upcalls, deliver them now 2025 */ 2026 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2027 bw_upcalls_send(); 2028 2029 /* 2030 * Set the bw_upcall entry 2031 */ 2032 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2033 u->bu_src = x->bm_mfc->mfc_origin; 2034 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2035 u->bu_threshold.b_time = x->bm_threshold.b_time; 2036 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2037 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2038 u->bu_measured.b_time = delta; 2039 u->bu_measured.b_packets = x->bm_measured.b_packets; 2040 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2041 u->bu_flags = 0; 2042 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2043 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2044 if (x->bm_flags & BW_METER_UNIT_BYTES) 2045 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2046 if (x->bm_flags & BW_METER_GEQ) 2047 u->bu_flags |= BW_UPCALL_GEQ; 2048 if (x->bm_flags & BW_METER_LEQ) 2049 u->bu_flags |= BW_UPCALL_LEQ; 2050 } 2051 2052 /* 2053 * Send the pending bandwidth-related upcalls 2054 */ 2055 static void 2056 bw_upcalls_send(void) 2057 { 2058 struct mbuf *m; 2059 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2060 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2061 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2062 0, /* unused2 */ 2063 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2064 0, /* im_mbz */ 2065 0, /* im_vif */ 2066 0, /* unused3 */ 2067 { 0 }, /* im_src */ 2068 { 0 } }; /* im_dst */ 2069 2070 MFC_LOCK_ASSERT(); 2071 2072 if (V_bw_upcalls_n == 0) 2073 return; /* No pending upcalls */ 2074 2075 V_bw_upcalls_n = 0; 2076 2077 /* 2078 * Allocate a new mbuf, initialize it with the header and 2079 * the payload for the pending calls. 2080 */ 2081 m = m_gethdr(M_NOWAIT, MT_DATA); 2082 if (m == NULL) { 2083 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2084 return; 2085 } 2086 2087 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2088 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2089 2090 /* 2091 * Send the upcalls 2092 * XXX do we need to set the address in k_igmpsrc ? 2093 */ 2094 MRTSTAT_INC(mrts_upcalls); 2095 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2096 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2097 MRTSTAT_INC(mrts_upq_sockfull); 2098 } 2099 } 2100 2101 /* 2102 * Compute the timeout hash value for the bw_meter entries 2103 */ 2104 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2105 do { \ 2106 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2107 \ 2108 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2109 (hash) = next_timeval.tv_sec; \ 2110 if (next_timeval.tv_usec) \ 2111 (hash)++; /* XXX: make sure we don't timeout early */ \ 2112 (hash) %= BW_METER_BUCKETS; \ 2113 } while (0) 2114 2115 /* 2116 * Schedule a timer to process periodically bw_meter entry of type "<=" 2117 * by linking the entry in the proper hash bucket. 2118 */ 2119 static void 2120 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2121 { 2122 int time_hash; 2123 2124 MFC_LOCK_ASSERT(); 2125 2126 if (!(x->bm_flags & BW_METER_LEQ)) 2127 return; /* XXX: we schedule timers only for "<=" entries */ 2128 2129 /* 2130 * Reset the bw_meter entry 2131 */ 2132 x->bm_start_time = *nowp; 2133 x->bm_measured.b_packets = 0; 2134 x->bm_measured.b_bytes = 0; 2135 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2136 2137 /* 2138 * Compute the timeout hash value and insert the entry 2139 */ 2140 BW_METER_TIMEHASH(x, time_hash); 2141 x->bm_time_next = V_bw_meter_timers[time_hash]; 2142 V_bw_meter_timers[time_hash] = x; 2143 x->bm_time_hash = time_hash; 2144 } 2145 2146 /* 2147 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2148 * by removing the entry from the proper hash bucket. 2149 */ 2150 static void 2151 unschedule_bw_meter(struct bw_meter *x) 2152 { 2153 int time_hash; 2154 struct bw_meter *prev, *tmp; 2155 2156 MFC_LOCK_ASSERT(); 2157 2158 if (!(x->bm_flags & BW_METER_LEQ)) 2159 return; /* XXX: we schedule timers only for "<=" entries */ 2160 2161 /* 2162 * Compute the timeout hash value and delete the entry 2163 */ 2164 time_hash = x->bm_time_hash; 2165 if (time_hash >= BW_METER_BUCKETS) 2166 return; /* Entry was not scheduled */ 2167 2168 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2169 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2170 if (tmp == x) 2171 break; 2172 2173 if (tmp == NULL) 2174 panic("unschedule_bw_meter: bw_meter entry not found"); 2175 2176 if (prev != NULL) 2177 prev->bm_time_next = x->bm_time_next; 2178 else 2179 V_bw_meter_timers[time_hash] = x->bm_time_next; 2180 2181 x->bm_time_next = NULL; 2182 x->bm_time_hash = BW_METER_BUCKETS; 2183 } 2184 2185 2186 /* 2187 * Process all "<=" type of bw_meter that should be processed now, 2188 * and for each entry prepare an upcall if necessary. Each processed 2189 * entry is rescheduled again for the (periodic) processing. 2190 * 2191 * This is run periodically (once per second normally). On each round, 2192 * all the potentially matching entries are in the hash slot that we are 2193 * looking at. 2194 */ 2195 static void 2196 bw_meter_process() 2197 { 2198 uint32_t loops; 2199 int i; 2200 struct timeval now, process_endtime; 2201 2202 microtime(&now); 2203 if (V_last_tv_sec == now.tv_sec) 2204 return; /* nothing to do */ 2205 2206 loops = now.tv_sec - V_last_tv_sec; 2207 V_last_tv_sec = now.tv_sec; 2208 if (loops > BW_METER_BUCKETS) 2209 loops = BW_METER_BUCKETS; 2210 2211 MFC_LOCK(); 2212 /* 2213 * Process all bins of bw_meter entries from the one after the last 2214 * processed to the current one. On entry, i points to the last bucket 2215 * visited, so we need to increment i at the beginning of the loop. 2216 */ 2217 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2218 struct bw_meter *x, *tmp_list; 2219 2220 if (++i >= BW_METER_BUCKETS) 2221 i = 0; 2222 2223 /* Disconnect the list of bw_meter entries from the bin */ 2224 tmp_list = V_bw_meter_timers[i]; 2225 V_bw_meter_timers[i] = NULL; 2226 2227 /* Process the list of bw_meter entries */ 2228 while (tmp_list != NULL) { 2229 x = tmp_list; 2230 tmp_list = tmp_list->bm_time_next; 2231 2232 /* Test if the time interval is over */ 2233 process_endtime = x->bm_start_time; 2234 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2235 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2236 /* Not yet: reschedule, but don't reset */ 2237 int time_hash; 2238 2239 BW_METER_TIMEHASH(x, time_hash); 2240 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2241 /* 2242 * XXX: somehow the bin processing is a bit ahead of time. 2243 * Put the entry in the next bin. 2244 */ 2245 if (++time_hash >= BW_METER_BUCKETS) 2246 time_hash = 0; 2247 } 2248 x->bm_time_next = V_bw_meter_timers[time_hash]; 2249 V_bw_meter_timers[time_hash] = x; 2250 x->bm_time_hash = time_hash; 2251 2252 continue; 2253 } 2254 2255 /* 2256 * Test if we should deliver an upcall 2257 */ 2258 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2259 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2260 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2261 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2262 /* Prepare an upcall for delivery */ 2263 bw_meter_prepare_upcall(x, &now); 2264 } 2265 2266 /* 2267 * Reschedule for next processing 2268 */ 2269 schedule_bw_meter(x, &now); 2270 } 2271 } 2272 2273 /* Send all upcalls that are pending delivery */ 2274 bw_upcalls_send(); 2275 2276 MFC_UNLOCK(); 2277 } 2278 2279 /* 2280 * A periodic function for sending all upcalls that are pending delivery 2281 */ 2282 static void 2283 expire_bw_upcalls_send(void *arg) 2284 { 2285 CURVNET_SET((struct vnet *) arg); 2286 2287 MFC_LOCK(); 2288 bw_upcalls_send(); 2289 MFC_UNLOCK(); 2290 2291 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2292 curvnet); 2293 CURVNET_RESTORE(); 2294 } 2295 2296 /* 2297 * A periodic function for periodic scanning of the multicast forwarding 2298 * table for processing all "<=" bw_meter entries. 2299 */ 2300 static void 2301 expire_bw_meter_process(void *arg) 2302 { 2303 CURVNET_SET((struct vnet *) arg); 2304 2305 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2306 bw_meter_process(); 2307 2308 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2309 curvnet); 2310 CURVNET_RESTORE(); 2311 } 2312 2313 /* 2314 * End of bandwidth monitoring code 2315 */ 2316 2317 /* 2318 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2319 * 2320 */ 2321 static int 2322 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2323 struct mfc *rt) 2324 { 2325 struct mbuf *mb_copy, *mm; 2326 2327 /* 2328 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2329 * rendezvous point was unspecified, and we were told not to. 2330 */ 2331 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2332 in_nullhost(rt->mfc_rp)) 2333 return 0; 2334 2335 mb_copy = pim_register_prepare(ip, m); 2336 if (mb_copy == NULL) 2337 return ENOBUFS; 2338 2339 /* 2340 * Send all the fragments. Note that the mbuf for each fragment 2341 * is freed by the sending machinery. 2342 */ 2343 for (mm = mb_copy; mm; mm = mb_copy) { 2344 mb_copy = mm->m_nextpkt; 2345 mm->m_nextpkt = 0; 2346 mm = m_pullup(mm, sizeof(struct ip)); 2347 if (mm != NULL) { 2348 ip = mtod(mm, struct ip *); 2349 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2350 pim_register_send_rp(ip, vifp, mm, rt); 2351 } else { 2352 pim_register_send_upcall(ip, vifp, mm, rt); 2353 } 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 2360 /* 2361 * Return a copy of the data packet that is ready for PIM Register 2362 * encapsulation. 2363 * XXX: Note that in the returned copy the IP header is a valid one. 2364 */ 2365 static struct mbuf * 2366 pim_register_prepare(struct ip *ip, struct mbuf *m) 2367 { 2368 struct mbuf *mb_copy = NULL; 2369 int mtu; 2370 2371 /* Take care of delayed checksums */ 2372 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2373 in_delayed_cksum(m); 2374 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2375 } 2376 2377 /* 2378 * Copy the old packet & pullup its IP header into the 2379 * new mbuf so we can modify it. 2380 */ 2381 mb_copy = m_copypacket(m, M_NOWAIT); 2382 if (mb_copy == NULL) 2383 return NULL; 2384 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2385 if (mb_copy == NULL) 2386 return NULL; 2387 2388 /* take care of the TTL */ 2389 ip = mtod(mb_copy, struct ip *); 2390 --ip->ip_ttl; 2391 2392 /* Compute the MTU after the PIM Register encapsulation */ 2393 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2394 2395 if (ntohs(ip->ip_len) <= mtu) { 2396 /* Turn the IP header into a valid one */ 2397 ip->ip_sum = 0; 2398 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2399 } else { 2400 /* Fragment the packet */ 2401 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2402 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2403 m_freem(mb_copy); 2404 return NULL; 2405 } 2406 } 2407 return mb_copy; 2408 } 2409 2410 /* 2411 * Send an upcall with the data packet to the user-level process. 2412 */ 2413 static int 2414 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2415 struct mbuf *mb_copy, struct mfc *rt) 2416 { 2417 struct mbuf *mb_first; 2418 int len = ntohs(ip->ip_len); 2419 struct igmpmsg *im; 2420 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2421 2422 VIF_LOCK_ASSERT(); 2423 2424 /* 2425 * Add a new mbuf with an upcall header 2426 */ 2427 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2428 if (mb_first == NULL) { 2429 m_freem(mb_copy); 2430 return ENOBUFS; 2431 } 2432 mb_first->m_data += max_linkhdr; 2433 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2434 mb_first->m_len = sizeof(struct igmpmsg); 2435 mb_first->m_next = mb_copy; 2436 2437 /* Send message to routing daemon */ 2438 im = mtod(mb_first, struct igmpmsg *); 2439 im->im_msgtype = IGMPMSG_WHOLEPKT; 2440 im->im_mbz = 0; 2441 im->im_vif = vifp - V_viftable; 2442 im->im_src = ip->ip_src; 2443 im->im_dst = ip->ip_dst; 2444 2445 k_igmpsrc.sin_addr = ip->ip_src; 2446 2447 MRTSTAT_INC(mrts_upcalls); 2448 2449 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2450 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2451 MRTSTAT_INC(mrts_upq_sockfull); 2452 return ENOBUFS; 2453 } 2454 2455 /* Keep statistics */ 2456 PIMSTAT_INC(pims_snd_registers_msgs); 2457 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * Encapsulate the data packet in PIM Register message and send it to the RP. 2464 */ 2465 static int 2466 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2467 struct mfc *rt) 2468 { 2469 struct mbuf *mb_first; 2470 struct ip *ip_outer; 2471 struct pim_encap_pimhdr *pimhdr; 2472 int len = ntohs(ip->ip_len); 2473 vifi_t vifi = rt->mfc_parent; 2474 2475 VIF_LOCK_ASSERT(); 2476 2477 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2478 m_freem(mb_copy); 2479 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2480 } 2481 2482 /* 2483 * Add a new mbuf with the encapsulating header 2484 */ 2485 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2486 if (mb_first == NULL) { 2487 m_freem(mb_copy); 2488 return ENOBUFS; 2489 } 2490 mb_first->m_data += max_linkhdr; 2491 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2492 mb_first->m_next = mb_copy; 2493 2494 mb_first->m_pkthdr.len = len + mb_first->m_len; 2495 2496 /* 2497 * Fill in the encapsulating IP and PIM header 2498 */ 2499 ip_outer = mtod(mb_first, struct ip *); 2500 *ip_outer = pim_encap_iphdr; 2501 ip_outer->ip_id = ip_newid(); 2502 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2503 sizeof(pim_encap_pimhdr)); 2504 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2505 ip_outer->ip_dst = rt->mfc_rp; 2506 /* 2507 * Copy the inner header TOS to the outer header, and take care of the 2508 * IP_DF bit. 2509 */ 2510 ip_outer->ip_tos = ip->ip_tos; 2511 if (ip->ip_off & htons(IP_DF)) 2512 ip_outer->ip_off |= htons(IP_DF); 2513 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2514 + sizeof(pim_encap_iphdr)); 2515 *pimhdr = pim_encap_pimhdr; 2516 /* If the iif crosses a border, set the Border-bit */ 2517 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2518 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2519 2520 mb_first->m_data += sizeof(pim_encap_iphdr); 2521 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2522 mb_first->m_data -= sizeof(pim_encap_iphdr); 2523 2524 send_packet(vifp, mb_first); 2525 2526 /* Keep statistics */ 2527 PIMSTAT_INC(pims_snd_registers_msgs); 2528 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2529 2530 return 0; 2531 } 2532 2533 /* 2534 * pim_encapcheck() is called by the encap4_input() path at runtime to 2535 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2536 * into the kernel. 2537 */ 2538 static int 2539 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2540 { 2541 2542 #ifdef DIAGNOSTIC 2543 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2544 #endif 2545 if (proto != IPPROTO_PIM) 2546 return 0; /* not for us; reject the datagram. */ 2547 2548 return 64; /* claim the datagram. */ 2549 } 2550 2551 /* 2552 * PIM-SMv2 and PIM-DM messages processing. 2553 * Receives and verifies the PIM control messages, and passes them 2554 * up to the listening socket, using rip_input(). 2555 * The only message with special processing is the PIM_REGISTER message 2556 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2557 * is passed to if_simloop(). 2558 */ 2559 void 2560 pim_input(struct mbuf *m, int iphlen) 2561 { 2562 struct ip *ip = mtod(m, struct ip *); 2563 struct pim *pim; 2564 int minlen; 2565 int datalen = ntohs(ip->ip_len) - iphlen; 2566 int ip_tos; 2567 2568 /* Keep statistics */ 2569 PIMSTAT_INC(pims_rcv_total_msgs); 2570 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2571 2572 /* 2573 * Validate lengths 2574 */ 2575 if (datalen < PIM_MINLEN) { 2576 PIMSTAT_INC(pims_rcv_tooshort); 2577 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2578 __func__, datalen, inet_ntoa(ip->ip_src)); 2579 m_freem(m); 2580 return; 2581 } 2582 2583 /* 2584 * If the packet is at least as big as a REGISTER, go agead 2585 * and grab the PIM REGISTER header size, to avoid another 2586 * possible m_pullup() later. 2587 * 2588 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2589 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2590 */ 2591 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2592 /* 2593 * Get the IP and PIM headers in contiguous memory, and 2594 * possibly the PIM REGISTER header. 2595 */ 2596 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) { 2597 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2598 return; 2599 } 2600 2601 /* m_pullup() may have given us a new mbuf so reset ip. */ 2602 ip = mtod(m, struct ip *); 2603 ip_tos = ip->ip_tos; 2604 2605 /* adjust mbuf to point to the PIM header */ 2606 m->m_data += iphlen; 2607 m->m_len -= iphlen; 2608 pim = mtod(m, struct pim *); 2609 2610 /* 2611 * Validate checksum. If PIM REGISTER, exclude the data packet. 2612 * 2613 * XXX: some older PIMv2 implementations don't make this distinction, 2614 * so for compatibility reason perform the checksum over part of the 2615 * message, and if error, then over the whole message. 2616 */ 2617 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2618 /* do nothing, checksum okay */ 2619 } else if (in_cksum(m, datalen)) { 2620 PIMSTAT_INC(pims_rcv_badsum); 2621 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2622 m_freem(m); 2623 return; 2624 } 2625 2626 /* PIM version check */ 2627 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2628 PIMSTAT_INC(pims_rcv_badversion); 2629 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2630 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2631 m_freem(m); 2632 return; 2633 } 2634 2635 /* restore mbuf back to the outer IP */ 2636 m->m_data -= iphlen; 2637 m->m_len += iphlen; 2638 2639 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2640 /* 2641 * Since this is a REGISTER, we'll make a copy of the register 2642 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2643 * routing daemon. 2644 */ 2645 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2646 struct mbuf *mcp; 2647 struct ip *encap_ip; 2648 u_int32_t *reghdr; 2649 struct ifnet *vifp; 2650 2651 VIF_LOCK(); 2652 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2653 VIF_UNLOCK(); 2654 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2655 (int)V_reg_vif_num); 2656 m_freem(m); 2657 return; 2658 } 2659 /* XXX need refcnt? */ 2660 vifp = V_viftable[V_reg_vif_num].v_ifp; 2661 VIF_UNLOCK(); 2662 2663 /* 2664 * Validate length 2665 */ 2666 if (datalen < PIM_REG_MINLEN) { 2667 PIMSTAT_INC(pims_rcv_tooshort); 2668 PIMSTAT_INC(pims_rcv_badregisters); 2669 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2670 m_freem(m); 2671 return; 2672 } 2673 2674 reghdr = (u_int32_t *)(pim + 1); 2675 encap_ip = (struct ip *)(reghdr + 1); 2676 2677 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2678 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2679 2680 /* verify the version number of the inner packet */ 2681 if (encap_ip->ip_v != IPVERSION) { 2682 PIMSTAT_INC(pims_rcv_badregisters); 2683 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2684 m_freem(m); 2685 return; 2686 } 2687 2688 /* verify the inner packet is destined to a mcast group */ 2689 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2690 PIMSTAT_INC(pims_rcv_badregisters); 2691 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2692 inet_ntoa(encap_ip->ip_dst)); 2693 m_freem(m); 2694 return; 2695 } 2696 2697 /* If a NULL_REGISTER, pass it to the daemon */ 2698 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2699 goto pim_input_to_daemon; 2700 2701 /* 2702 * Copy the TOS from the outer IP header to the inner IP header. 2703 */ 2704 if (encap_ip->ip_tos != ip_tos) { 2705 /* Outer TOS -> inner TOS */ 2706 encap_ip->ip_tos = ip_tos; 2707 /* Recompute the inner header checksum. Sigh... */ 2708 2709 /* adjust mbuf to point to the inner IP header */ 2710 m->m_data += (iphlen + PIM_MINLEN); 2711 m->m_len -= (iphlen + PIM_MINLEN); 2712 2713 encap_ip->ip_sum = 0; 2714 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2715 2716 /* restore mbuf to point back to the outer IP header */ 2717 m->m_data -= (iphlen + PIM_MINLEN); 2718 m->m_len += (iphlen + PIM_MINLEN); 2719 } 2720 2721 /* 2722 * Decapsulate the inner IP packet and loopback to forward it 2723 * as a normal multicast packet. Also, make a copy of the 2724 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2725 * to pass to the daemon later, so it can take the appropriate 2726 * actions (e.g., send back PIM_REGISTER_STOP). 2727 * XXX: here m->m_data points to the outer IP header. 2728 */ 2729 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2730 if (mcp == NULL) { 2731 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2732 m_freem(m); 2733 return; 2734 } 2735 2736 /* Keep statistics */ 2737 /* XXX: registers_bytes include only the encap. mcast pkt */ 2738 PIMSTAT_INC(pims_rcv_registers_msgs); 2739 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2740 2741 /* 2742 * forward the inner ip packet; point m_data at the inner ip. 2743 */ 2744 m_adj(m, iphlen + PIM_MINLEN); 2745 2746 CTR4(KTR_IPMF, 2747 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2748 __func__, 2749 (u_long)ntohl(encap_ip->ip_src.s_addr), 2750 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2751 (int)V_reg_vif_num); 2752 2753 /* NB: vifp was collected above; can it change on us? */ 2754 if_simloop(vifp, m, dst.sin_family, 0); 2755 2756 /* prepare the register head to send to the mrouting daemon */ 2757 m = mcp; 2758 } 2759 2760 pim_input_to_daemon: 2761 /* 2762 * Pass the PIM message up to the daemon; if it is a Register message, 2763 * pass the 'head' only up to the daemon. This includes the 2764 * outer IP header, PIM header, PIM-Register header and the 2765 * inner IP header. 2766 * XXX: the outer IP header pkt size of a Register is not adjust to 2767 * reflect the fact that the inner multicast data is truncated. 2768 */ 2769 rip_input(m, iphlen); 2770 2771 return; 2772 } 2773 2774 static int 2775 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2776 { 2777 struct mfc *rt; 2778 int error, i; 2779 2780 if (req->newptr) 2781 return (EPERM); 2782 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2783 return (0); 2784 error = sysctl_wire_old_buffer(req, 0); 2785 if (error) 2786 return (error); 2787 2788 MFC_LOCK(); 2789 for (i = 0; i < mfchashsize; i++) { 2790 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2791 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2792 if (error) 2793 goto out_locked; 2794 } 2795 } 2796 out_locked: 2797 MFC_UNLOCK(); 2798 return (error); 2799 } 2800 2801 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2802 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2803 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2804 2805 static void 2806 vnet_mroute_init(const void *unused __unused) 2807 { 2808 2809 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2810 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2811 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE); 2812 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE); 2813 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE); 2814 } 2815 2816 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init, 2817 NULL); 2818 2819 static void 2820 vnet_mroute_uninit(const void *unused __unused) 2821 { 2822 2823 FREE(V_nexpire, M_MRTABLE); 2824 V_nexpire = NULL; 2825 } 2826 2827 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 2828 vnet_mroute_uninit, NULL); 2829 2830 static int 2831 ip_mroute_modevent(module_t mod, int type, void *unused) 2832 { 2833 2834 switch (type) { 2835 case MOD_LOAD: 2836 MROUTER_LOCK_INIT(); 2837 2838 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2839 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2840 if (if_detach_event_tag == NULL) { 2841 printf("ip_mroute: unable to register " 2842 "ifnet_departure_event handler\n"); 2843 MROUTER_LOCK_DESTROY(); 2844 return (EINVAL); 2845 } 2846 2847 MFC_LOCK_INIT(); 2848 VIF_LOCK_INIT(); 2849 2850 mfchashsize = MFCHASHSIZE; 2851 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2852 !powerof2(mfchashsize)) { 2853 printf("WARNING: %s not a power of 2; using default\n", 2854 "net.inet.ip.mfchashsize"); 2855 mfchashsize = MFCHASHSIZE; 2856 } 2857 2858 pim_squelch_wholepkt = 0; 2859 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2860 &pim_squelch_wholepkt); 2861 2862 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2863 pim_encapcheck, &in_pim_protosw, NULL); 2864 if (pim_encap_cookie == NULL) { 2865 printf("ip_mroute: unable to attach pim encap\n"); 2866 VIF_LOCK_DESTROY(); 2867 MFC_LOCK_DESTROY(); 2868 MROUTER_LOCK_DESTROY(); 2869 return (EINVAL); 2870 } 2871 2872 ip_mcast_src = X_ip_mcast_src; 2873 ip_mforward = X_ip_mforward; 2874 ip_mrouter_done = X_ip_mrouter_done; 2875 ip_mrouter_get = X_ip_mrouter_get; 2876 ip_mrouter_set = X_ip_mrouter_set; 2877 2878 ip_rsvp_force_done = X_ip_rsvp_force_done; 2879 ip_rsvp_vif = X_ip_rsvp_vif; 2880 2881 legal_vif_num = X_legal_vif_num; 2882 mrt_ioctl = X_mrt_ioctl; 2883 rsvp_input_p = X_rsvp_input; 2884 break; 2885 2886 case MOD_UNLOAD: 2887 /* 2888 * Typically module unload happens after the user-level 2889 * process has shutdown the kernel services (the check 2890 * below insures someone can't just yank the module out 2891 * from under a running process). But if the module is 2892 * just loaded and then unloaded w/o starting up a user 2893 * process we still need to cleanup. 2894 */ 2895 MROUTER_LOCK(); 2896 if (ip_mrouter_cnt != 0) { 2897 MROUTER_UNLOCK(); 2898 return (EINVAL); 2899 } 2900 ip_mrouter_unloading = 1; 2901 MROUTER_UNLOCK(); 2902 2903 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2904 2905 if (pim_encap_cookie) { 2906 encap_detach(pim_encap_cookie); 2907 pim_encap_cookie = NULL; 2908 } 2909 2910 ip_mcast_src = NULL; 2911 ip_mforward = NULL; 2912 ip_mrouter_done = NULL; 2913 ip_mrouter_get = NULL; 2914 ip_mrouter_set = NULL; 2915 2916 ip_rsvp_force_done = NULL; 2917 ip_rsvp_vif = NULL; 2918 2919 legal_vif_num = NULL; 2920 mrt_ioctl = NULL; 2921 rsvp_input_p = NULL; 2922 2923 VIF_LOCK_DESTROY(); 2924 MFC_LOCK_DESTROY(); 2925 MROUTER_LOCK_DESTROY(); 2926 break; 2927 2928 default: 2929 return EOPNOTSUPP; 2930 } 2931 return 0; 2932 } 2933 2934 static moduledata_t ip_mroutemod = { 2935 "ip_mroute", 2936 ip_mroute_modevent, 2937 0 2938 }; 2939 2940 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE); 2941