xref: /freebsd/sys/netinet/ip_mroute.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  *
55  * $FreeBSD$
56  */
57 
58 #include "opt_inet.h"
59 #include "opt_inet6.h"
60 #include "opt_mac.h"
61 #include "opt_mrouting.h"
62 
63 #define _PIM_VT 1
64 
65 #include <sys/param.h>
66 #include <sys/kernel.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/module.h>
71 #include <sys/priv.h>
72 #include <sys/protosw.h>
73 #include <sys/signalvar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/time.h>
82 #include <net/if.h>
83 #include <net/netisr.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/igmp.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_encap.h>
91 #include <netinet/ip_mroute.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #include <netinet/pim.h>
95 #include <netinet/pim_var.h>
96 #include <netinet/udp.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_var.h>
100 #include <netinet6/ip6_mroute.h>
101 #include <netinet6/ip6_var.h>
102 #endif
103 #include <machine/in_cksum.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 /*
108  * Control debugging code for rsvp and multicast routing code.
109  * Can only set them with the debugger.
110  */
111 static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112 
113 static u_int	mrtdebug;		/* any set of the flags below	*/
114 #define		DEBUG_MFC	0x02
115 #define		DEBUG_FORWARD	0x04
116 #define		DEBUG_EXPIRE	0x08
117 #define		DEBUG_XMIT	0x10
118 #define		DEBUG_PIM	0x20
119 
120 #define		VIFI_INVALID	((vifi_t) -1)
121 
122 #define M_HASCL(m)	((m)->m_flags & M_EXT)
123 
124 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125 
126 /*
127  * Locking.  We use two locks: one for the virtual interface table and
128  * one for the forwarding table.  These locks may be nested in which case
129  * the VIF lock must always be taken first.  Note that each lock is used
130  * to cover not only the specific data structure but also related data
131  * structures.  It may be better to add more fine-grained locking later;
132  * it's not clear how performance-critical this code is.
133  *
134  * XXX: This module could particularly benefit from being cleaned
135  *      up to use the <sys/queue.h> macros.
136  *
137  */
138 
139 static struct mrtstat	mrtstat;
140 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141     &mrtstat, mrtstat,
142     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143 
144 static struct mfc	*mfctable[MFCTBLSIZ];
145 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148 
149 static struct mtx mrouter_mtx;
150 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
151 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
152 #define	MROUTER_LOCK_ASSERT()	do {					\
153 	mtx_assert(&mrouter_mtx, MA_OWNED);				\
154 	NET_ASSERT_GIANT();						\
155 } while (0)
156 #define	MROUTER_LOCK_INIT()	\
157 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
158 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
159 
160 static struct mtx mfc_mtx;
161 #define	MFC_LOCK()	mtx_lock(&mfc_mtx)
162 #define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
163 #define	MFC_LOCK_ASSERT()	do {					\
164 	mtx_assert(&mfc_mtx, MA_OWNED);					\
165 	NET_ASSERT_GIANT();						\
166 } while (0)
167 #define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
168 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
169 
170 static struct vif	viftable[MAXVIFS];
171 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
172     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
173     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
174 
175 static struct mtx vif_mtx;
176 #define	VIF_LOCK()	mtx_lock(&vif_mtx)
177 #define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
178 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
179 #define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
180 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181 
182 static u_char		nexpire[MFCTBLSIZ];
183 
184 static eventhandler_tag if_detach_event_tag = NULL;
185 
186 static struct callout expire_upcalls_ch;
187 
188 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
189 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
190 
191 #define ENCAP_TTL 64
192 
193 /*
194  * Bandwidth meter variables and constants
195  */
196 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
197 /*
198  * Pending timeouts are stored in a hash table, the key being the
199  * expiration time. Periodically, the entries are analysed and processed.
200  */
201 #define BW_METER_BUCKETS	1024
202 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
203 static struct callout bw_meter_ch;
204 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
205 
206 /*
207  * Pending upcalls are stored in a vector which is flushed when
208  * full, or periodically
209  */
210 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
211 static u_int	bw_upcalls_n; /* # of pending upcalls */
212 static struct callout bw_upcalls_ch;
213 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
214 
215 static struct pimstat pimstat;
216 
217 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
218 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
219     &pimstat, pimstat,
220     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
221 
222 static u_long	pim_squelch_wholepkt = 0;
223 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
224     &pim_squelch_wholepkt, 0,
225     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
226 
227 extern  struct domain inetdomain;
228 struct protosw in_pim_protosw = {
229 	.pr_type =		SOCK_RAW,
230 	.pr_domain =		&inetdomain,
231 	.pr_protocol =		IPPROTO_PIM,
232 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
233 	.pr_input =		pim_input,
234 	.pr_output =		(pr_output_t*)rip_output,
235 	.pr_ctloutput =		rip_ctloutput,
236 	.pr_usrreqs =		&rip_usrreqs
237 };
238 static const struct encaptab *pim_encap_cookie;
239 
240 #ifdef INET6
241 /* ip6_mroute.c glue */
242 extern struct in6_protosw in6_pim_protosw;
243 static const struct encaptab *pim6_encap_cookie;
244 
245 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
246 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
247 extern int X_ip6_mrouter_done(void);
248 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
249 extern int X_mrt6_ioctl(int, caddr_t);
250 #endif
251 
252 static int pim_encapcheck(const struct mbuf *, int, int, void *);
253 
254 /*
255  * Note: the PIM Register encapsulation adds the following in front of a
256  * data packet:
257  *
258  * struct pim_encap_hdr {
259  *    struct ip ip;
260  *    struct pim_encap_pimhdr  pim;
261  * }
262  *
263  */
264 
265 struct pim_encap_pimhdr {
266 	struct pim pim;
267 	uint32_t   flags;
268 };
269 
270 static struct ip pim_encap_iphdr = {
271 #if BYTE_ORDER == LITTLE_ENDIAN
272 	sizeof(struct ip) >> 2,
273 	IPVERSION,
274 #else
275 	IPVERSION,
276 	sizeof(struct ip) >> 2,
277 #endif
278 	0,			/* tos */
279 	sizeof(struct ip),	/* total length */
280 	0,			/* id */
281 	0,			/* frag offset */
282 	ENCAP_TTL,
283 	IPPROTO_PIM,
284 	0,			/* checksum */
285 };
286 
287 static struct pim_encap_pimhdr pim_encap_pimhdr = {
288     {
289 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
290 	0,			/* reserved */
291 	0,			/* checksum */
292     },
293     0				/* flags */
294 };
295 
296 static struct ifnet multicast_register_if;
297 static vifi_t reg_vif_num = VIFI_INVALID;
298 
299 /*
300  * Private variables.
301  */
302 static vifi_t	   numvifs;
303 
304 static u_long	X_ip_mcast_src(int vifi);
305 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
306 			struct mbuf *m, struct ip_moptions *imo);
307 static int	X_ip_mrouter_done(void);
308 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
309 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
310 static int	X_legal_vif_num(int vif);
311 static int	X_mrt_ioctl(int cmd, caddr_t data);
312 
313 static int get_sg_cnt(struct sioc_sg_req *);
314 static int get_vif_cnt(struct sioc_vif_req *);
315 static void if_detached_event(void *arg __unused, struct ifnet *);
316 static int ip_mrouter_init(struct socket *, int);
317 static int add_vif(struct vifctl *);
318 static int del_vif_locked(vifi_t);
319 static int del_vif(vifi_t);
320 static int add_mfc(struct mfcctl2 *);
321 static int del_mfc(struct mfcctl2 *);
322 static int set_api_config(uint32_t *); /* chose API capabilities */
323 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
324 static int set_assert(int);
325 static void expire_upcalls(void *);
326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
328 static void send_packet(struct vif *, struct mbuf *);
329 
330 /*
331  * Bandwidth monitoring
332  */
333 static void free_bw_list(struct bw_meter *list);
334 static int add_bw_upcall(struct bw_upcall *);
335 static int del_bw_upcall(struct bw_upcall *);
336 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
337 		struct timeval *nowp);
338 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
339 static void bw_upcalls_send(void);
340 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
341 static void unschedule_bw_meter(struct bw_meter *x);
342 static void bw_meter_process(void);
343 static void expire_bw_upcalls_send(void *);
344 static void expire_bw_meter_process(void *);
345 
346 static int pim_register_send(struct ip *, struct vif *,
347 		struct mbuf *, struct mfc *);
348 static int pim_register_send_rp(struct ip *, struct vif *,
349 		struct mbuf *, struct mfc *);
350 static int pim_register_send_upcall(struct ip *, struct vif *,
351 		struct mbuf *, struct mfc *);
352 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
353 
354 /*
355  * whether or not special PIM assert processing is enabled.
356  */
357 static int pim_assert;
358 /*
359  * Rate limit for assert notification messages, in usec
360  */
361 #define ASSERT_MSG_TIME		3000000
362 
363 /*
364  * Kernel multicast routing API capabilities and setup.
365  * If more API capabilities are added to the kernel, they should be
366  * recorded in `mrt_api_support'.
367  */
368 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369 					 MRT_MFC_FLAGS_BORDER_VIF |
370 					 MRT_MFC_RP |
371 					 MRT_MFC_BW_UPCALL);
372 static uint32_t mrt_api_config = 0;
373 
374 /*
375  * Hash function for a source, group entry
376  */
377 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
378 			((g) >> 20) ^ ((g) >> 10) ^ (g))
379 
380 /*
381  * Find a route for a given origin IP address and Multicast group address
382  * Type of service parameter to be added in the future!!!
383  * Statistics are updated by the caller if needed
384  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
385  */
386 static struct mfc *
387 mfc_find(in_addr_t o, in_addr_t g)
388 {
389     struct mfc *rt;
390 
391     MFC_LOCK_ASSERT();
392 
393     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
394 	if ((rt->mfc_origin.s_addr == o) &&
395 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
396 	    break;
397     return rt;
398 }
399 
400 /*
401  * Macros to compute elapsed time efficiently
402  * Borrowed from Van Jacobson's scheduling code
403  */
404 #define TV_DELTA(a, b, delta) {					\
405 	int xxs;						\
406 	delta = (a).tv_usec - (b).tv_usec;			\
407 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
408 		switch (xxs) {					\
409 		case 2:						\
410 		      delta += 1000000;				\
411 		      /* FALLTHROUGH */				\
412 		case 1:						\
413 		      delta += 1000000;				\
414 		      break;					\
415 		default:					\
416 		      delta += (1000000 * xxs);			\
417 		}						\
418 	}							\
419 }
420 
421 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
422 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
423 
424 /*
425  * Handle MRT setsockopt commands to modify the multicast routing tables.
426  */
427 static int
428 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
429 {
430     int	error, optval;
431     vifi_t	vifi;
432     struct	vifctl vifc;
433     struct	mfcctl2 mfc;
434     struct	bw_upcall bw_upcall;
435     uint32_t	i;
436 
437     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
438 	return EPERM;
439 
440     error = 0;
441     switch (sopt->sopt_name) {
442     case MRT_INIT:
443 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
444 	if (error)
445 	    break;
446 	error = ip_mrouter_init(so, optval);
447 	break;
448 
449     case MRT_DONE:
450 	error = ip_mrouter_done();
451 	break;
452 
453     case MRT_ADD_VIF:
454 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
455 	if (error)
456 	    break;
457 	error = add_vif(&vifc);
458 	break;
459 
460     case MRT_DEL_VIF:
461 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
462 	if (error)
463 	    break;
464 	error = del_vif(vifi);
465 	break;
466 
467     case MRT_ADD_MFC:
468     case MRT_DEL_MFC:
469 	/*
470 	 * select data size depending on API version.
471 	 */
472 	if (sopt->sopt_name == MRT_ADD_MFC &&
473 		mrt_api_config & MRT_API_FLAGS_ALL) {
474 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
475 				sizeof(struct mfcctl2));
476 	} else {
477 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
478 				sizeof(struct mfcctl));
479 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
480 			sizeof(mfc) - sizeof(struct mfcctl));
481 	}
482 	if (error)
483 	    break;
484 	if (sopt->sopt_name == MRT_ADD_MFC)
485 	    error = add_mfc(&mfc);
486 	else
487 	    error = del_mfc(&mfc);
488 	break;
489 
490     case MRT_ASSERT:
491 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
492 	if (error)
493 	    break;
494 	set_assert(optval);
495 	break;
496 
497     case MRT_API_CONFIG:
498 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
499 	if (!error)
500 	    error = set_api_config(&i);
501 	if (!error)
502 	    error = sooptcopyout(sopt, &i, sizeof i);
503 	break;
504 
505     case MRT_ADD_BW_UPCALL:
506     case MRT_DEL_BW_UPCALL:
507 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
508 				sizeof bw_upcall);
509 	if (error)
510 	    break;
511 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
512 	    error = add_bw_upcall(&bw_upcall);
513 	else
514 	    error = del_bw_upcall(&bw_upcall);
515 	break;
516 
517     default:
518 	error = EOPNOTSUPP;
519 	break;
520     }
521     return error;
522 }
523 
524 /*
525  * Handle MRT getsockopt commands
526  */
527 static int
528 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
529 {
530     int error;
531     static int version = 0x0305; /* !!! why is this here? XXX */
532 
533     switch (sopt->sopt_name) {
534     case MRT_VERSION:
535 	error = sooptcopyout(sopt, &version, sizeof version);
536 	break;
537 
538     case MRT_ASSERT:
539 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
540 	break;
541 
542     case MRT_API_SUPPORT:
543 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
544 	break;
545 
546     case MRT_API_CONFIG:
547 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
548 	break;
549 
550     default:
551 	error = EOPNOTSUPP;
552 	break;
553     }
554     return error;
555 }
556 
557 /*
558  * Handle ioctl commands to obtain information from the cache
559  */
560 static int
561 X_mrt_ioctl(int cmd, caddr_t data)
562 {
563     int error = 0;
564 
565     /*
566      * Currently the only function calling this ioctl routine is rtioctl().
567      * Typically, only root can create the raw socket in order to execute
568      * this ioctl method, however the request might be coming from a prison
569      */
570     error = priv_check(curthread, PRIV_NETINET_MROUTE);
571     if (error)
572 	return (error);
573     switch (cmd) {
574     case (SIOCGETVIFCNT):
575 	error = get_vif_cnt((struct sioc_vif_req *)data);
576 	break;
577 
578     case (SIOCGETSGCNT):
579 	error = get_sg_cnt((struct sioc_sg_req *)data);
580 	break;
581 
582     default:
583 	error = EINVAL;
584 	break;
585     }
586     return error;
587 }
588 
589 /*
590  * returns the packet, byte, rpf-failure count for the source group provided
591  */
592 static int
593 get_sg_cnt(struct sioc_sg_req *req)
594 {
595     struct mfc *rt;
596 
597     MFC_LOCK();
598     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
599     if (rt == NULL) {
600 	MFC_UNLOCK();
601 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
602 	return EADDRNOTAVAIL;
603     }
604     req->pktcnt = rt->mfc_pkt_cnt;
605     req->bytecnt = rt->mfc_byte_cnt;
606     req->wrong_if = rt->mfc_wrong_if;
607     MFC_UNLOCK();
608     return 0;
609 }
610 
611 /*
612  * returns the input and output packet and byte counts on the vif provided
613  */
614 static int
615 get_vif_cnt(struct sioc_vif_req *req)
616 {
617     vifi_t vifi = req->vifi;
618 
619     VIF_LOCK();
620     if (vifi >= numvifs) {
621 	VIF_UNLOCK();
622 	return EINVAL;
623     }
624 
625     req->icount = viftable[vifi].v_pkt_in;
626     req->ocount = viftable[vifi].v_pkt_out;
627     req->ibytes = viftable[vifi].v_bytes_in;
628     req->obytes = viftable[vifi].v_bytes_out;
629     VIF_UNLOCK();
630 
631     return 0;
632 }
633 
634 static void
635 ip_mrouter_reset(void)
636 {
637     bzero((caddr_t)mfctable, sizeof(mfctable));
638     bzero((caddr_t)nexpire, sizeof(nexpire));
639 
640     pim_assert = 0;
641     mrt_api_config = 0;
642 
643     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
644 
645     bw_upcalls_n = 0;
646     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
647     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
648     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
649 }
650 
651 static void
652 if_detached_event(void *arg __unused, struct ifnet *ifp)
653 {
654     vifi_t vifi;
655     int i;
656     struct mfc *mfc;
657     struct mfc *nmfc;
658     struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
659     struct rtdetq *pq;
660     struct rtdetq *npq;
661 
662     MROUTER_LOCK();
663     if (ip_mrouter == NULL) {
664 	MROUTER_UNLOCK();
665     }
666 
667     /*
668      * Tear down multicast forwarder state associated with this ifnet.
669      * 1. Walk the vif list, matching vifs against this ifnet.
670      * 2. Walk the multicast forwarding cache (mfc) looking for
671      *    inner matches with this vif's index.
672      * 3. Free any pending mbufs for this mfc.
673      * 4. Free the associated mfc entry and state associated with this vif.
674      *    Be very careful about unlinking from a singly-linked list whose
675      *    "head node" is a pointer in a simple array.
676      * 5. Free vif state. This should disable ALLMULTI on the interface.
677      */
678     VIF_LOCK();
679     MFC_LOCK();
680     for (vifi = 0; vifi < numvifs; vifi++) {
681 	if (viftable[vifi].v_ifp != ifp)
682 		continue;
683 	for (i = 0; i < MFCTBLSIZ; i++) {
684 	    ppmfc = &mfctable[i];
685 	    for (mfc = mfctable[i]; mfc != NULL; ) {
686 		nmfc = mfc->mfc_next;
687 		if (mfc->mfc_parent == vifi) {
688 		    for (pq = mfc->mfc_stall; pq != NULL; ) {
689 			npq = pq->next;
690 			m_freem(pq->m);
691 			free(pq, M_MRTABLE);
692 			pq = npq;
693 		    }
694 		    free_bw_list(mfc->mfc_bw_meter);
695 		    free(mfc, M_MRTABLE);
696 		    *ppmfc = nmfc;
697 		} else {
698 		    ppmfc = &mfc->mfc_next;
699 		}
700 		mfc = nmfc;
701 	    }
702 	}
703 	del_vif_locked(vifi);
704     }
705     MFC_UNLOCK();
706     VIF_UNLOCK();
707 
708     MROUTER_UNLOCK();
709 }
710 
711 /*
712  * Enable multicast routing
713  */
714 static int
715 ip_mrouter_init(struct socket *so, int version)
716 {
717     if (mrtdebug)
718 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
719 	    so->so_type, so->so_proto->pr_protocol);
720 
721     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
722 	return EOPNOTSUPP;
723 
724     if (version != 1)
725 	return ENOPROTOOPT;
726 
727     MROUTER_LOCK();
728 
729     if (ip_mrouter != NULL) {
730 	MROUTER_UNLOCK();
731 	return EADDRINUSE;
732     }
733 
734     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
735         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
736     if (if_detach_event_tag == NULL) {
737 	MROUTER_UNLOCK();
738 	return (ENOMEM);
739     }
740 
741     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
742 
743     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
744 	expire_bw_upcalls_send, NULL);
745     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
746 
747     ip_mrouter = so;
748 
749     MROUTER_UNLOCK();
750 
751     if (mrtdebug)
752 	log(LOG_DEBUG, "ip_mrouter_init\n");
753 
754     return 0;
755 }
756 
757 /*
758  * Disable multicast routing
759  */
760 static int
761 X_ip_mrouter_done(void)
762 {
763     vifi_t vifi;
764     int i;
765     struct ifnet *ifp;
766     struct ifreq ifr;
767     struct mfc *rt;
768     struct rtdetq *rte;
769 
770     MROUTER_LOCK();
771 
772     if (ip_mrouter == NULL) {
773 	MROUTER_UNLOCK();
774 	return EINVAL;
775     }
776 
777     /*
778      * Detach/disable hooks to the reset of the system.
779      */
780     ip_mrouter = NULL;
781     mrt_api_config = 0;
782 
783     VIF_LOCK();
784     /*
785      * For each phyint in use, disable promiscuous reception of all IP
786      * multicasts.
787      */
788     for (vifi = 0; vifi < numvifs; vifi++) {
789 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
790 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
791 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
792 
793 	    so->sin_len = sizeof(struct sockaddr_in);
794 	    so->sin_family = AF_INET;
795 	    so->sin_addr.s_addr = INADDR_ANY;
796 	    ifp = viftable[vifi].v_ifp;
797 	    if_allmulti(ifp, 0);
798 	}
799     }
800     bzero((caddr_t)viftable, sizeof(viftable));
801     numvifs = 0;
802     pim_assert = 0;
803     VIF_UNLOCK();
804     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
805 
806     /*
807      * Free all multicast forwarding cache entries.
808      */
809     callout_stop(&expire_upcalls_ch);
810     callout_stop(&bw_upcalls_ch);
811     callout_stop(&bw_meter_ch);
812 
813     MFC_LOCK();
814     for (i = 0; i < MFCTBLSIZ; i++) {
815 	for (rt = mfctable[i]; rt != NULL; ) {
816 	    struct mfc *nr = rt->mfc_next;
817 
818 	    for (rte = rt->mfc_stall; rte != NULL; ) {
819 		struct rtdetq *n = rte->next;
820 
821 		m_freem(rte->m);
822 		free(rte, M_MRTABLE);
823 		rte = n;
824 	    }
825 	    free_bw_list(rt->mfc_bw_meter);
826 	    free(rt, M_MRTABLE);
827 	    rt = nr;
828 	}
829     }
830     bzero((caddr_t)mfctable, sizeof(mfctable));
831     bzero((caddr_t)nexpire, sizeof(nexpire));
832     bw_upcalls_n = 0;
833     bzero(bw_meter_timers, sizeof(bw_meter_timers));
834     MFC_UNLOCK();
835 
836     reg_vif_num = VIFI_INVALID;
837 
838     MROUTER_UNLOCK();
839 
840     if (mrtdebug)
841 	log(LOG_DEBUG, "ip_mrouter_done\n");
842 
843     return 0;
844 }
845 
846 /*
847  * Set PIM assert processing global
848  */
849 static int
850 set_assert(int i)
851 {
852     if ((i != 1) && (i != 0))
853 	return EINVAL;
854 
855     pim_assert = i;
856 
857     return 0;
858 }
859 
860 /*
861  * Configure API capabilities
862  */
863 int
864 set_api_config(uint32_t *apival)
865 {
866     int i;
867 
868     /*
869      * We can set the API capabilities only if it is the first operation
870      * after MRT_INIT. I.e.:
871      *  - there are no vifs installed
872      *  - pim_assert is not enabled
873      *  - the MFC table is empty
874      */
875     if (numvifs > 0) {
876 	*apival = 0;
877 	return EPERM;
878     }
879     if (pim_assert) {
880 	*apival = 0;
881 	return EPERM;
882     }
883     for (i = 0; i < MFCTBLSIZ; i++) {
884 	if (mfctable[i] != NULL) {
885 	    *apival = 0;
886 	    return EPERM;
887 	}
888     }
889 
890     mrt_api_config = *apival & mrt_api_support;
891     *apival = mrt_api_config;
892 
893     return 0;
894 }
895 
896 /*
897  * Add a vif to the vif table
898  */
899 static int
900 add_vif(struct vifctl *vifcp)
901 {
902     struct vif *vifp = viftable + vifcp->vifc_vifi;
903     struct sockaddr_in sin = {sizeof sin, AF_INET};
904     struct ifaddr *ifa;
905     struct ifnet *ifp;
906     int error;
907 
908     VIF_LOCK();
909     if (vifcp->vifc_vifi >= MAXVIFS) {
910 	VIF_UNLOCK();
911 	return EINVAL;
912     }
913     /* rate limiting is no longer supported by this code */
914     if (vifcp->vifc_rate_limit != 0) {
915 	log(LOG_ERR, "rate limiting is no longer supported\n");
916 	VIF_UNLOCK();
917 	return EINVAL;
918     }
919     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
920 	VIF_UNLOCK();
921 	return EADDRINUSE;
922     }
923     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
924 	VIF_UNLOCK();
925 	return EADDRNOTAVAIL;
926     }
927 
928     /* Find the interface with an address in AF_INET family */
929     if (vifcp->vifc_flags & VIFF_REGISTER) {
930 	/*
931 	 * XXX: Because VIFF_REGISTER does not really need a valid
932 	 * local interface (e.g. it could be 127.0.0.2), we don't
933 	 * check its address.
934 	 */
935 	ifp = NULL;
936     } else {
937 	sin.sin_addr = vifcp->vifc_lcl_addr;
938 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
939 	if (ifa == NULL) {
940 	    VIF_UNLOCK();
941 	    return EADDRNOTAVAIL;
942 	}
943 	ifp = ifa->ifa_ifp;
944     }
945 
946     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
947 	log(LOG_ERR, "tunnels are no longer supported\n");
948 	VIF_UNLOCK();
949 	return EOPNOTSUPP;
950     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
951 	ifp = &multicast_register_if;
952 	if (mrtdebug)
953 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
954 		    (void *)&multicast_register_if);
955 	if (reg_vif_num == VIFI_INVALID) {
956 	    if_initname(&multicast_register_if, "register_vif", 0);
957 	    multicast_register_if.if_flags = IFF_LOOPBACK;
958 	    reg_vif_num = vifcp->vifc_vifi;
959 	}
960     } else {		/* Make sure the interface supports multicast */
961 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
962 	    VIF_UNLOCK();
963 	    return EOPNOTSUPP;
964 	}
965 
966 	/* Enable promiscuous reception of all IP multicasts from the if */
967 	error = if_allmulti(ifp, 1);
968 	if (error) {
969 	    VIF_UNLOCK();
970 	    return error;
971 	}
972     }
973 
974     vifp->v_flags     = vifcp->vifc_flags;
975     vifp->v_threshold = vifcp->vifc_threshold;
976     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
977     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
978     vifp->v_ifp       = ifp;
979     vifp->v_rsvp_on   = 0;
980     vifp->v_rsvpd     = NULL;
981     /* initialize per vif pkt counters */
982     vifp->v_pkt_in    = 0;
983     vifp->v_pkt_out   = 0;
984     vifp->v_bytes_in  = 0;
985     vifp->v_bytes_out = 0;
986     bzero(&vifp->v_route, sizeof(vifp->v_route));
987 
988     /* Adjust numvifs up if the vifi is higher than numvifs */
989     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
990 
991     VIF_UNLOCK();
992 
993     if (mrtdebug)
994 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
995 	    vifcp->vifc_vifi,
996 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
997 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
998 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
999 	    vifcp->vifc_threshold);
1000 
1001     return 0;
1002 }
1003 
1004 /*
1005  * Delete a vif from the vif table
1006  */
1007 static int
1008 del_vif_locked(vifi_t vifi)
1009 {
1010     struct vif *vifp;
1011 
1012     VIF_LOCK_ASSERT();
1013 
1014     if (vifi >= numvifs) {
1015 	return EINVAL;
1016     }
1017     vifp = &viftable[vifi];
1018     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1019 	return EADDRNOTAVAIL;
1020     }
1021 
1022     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1023 	if_allmulti(vifp->v_ifp, 0);
1024 
1025     if (vifp->v_flags & VIFF_REGISTER)
1026 	reg_vif_num = VIFI_INVALID;
1027 
1028     bzero((caddr_t)vifp, sizeof (*vifp));
1029 
1030     if (mrtdebug)
1031 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1032 
1033     /* Adjust numvifs down */
1034     for (vifi = numvifs; vifi > 0; vifi--)
1035 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1036 	    break;
1037     numvifs = vifi;
1038 
1039     return 0;
1040 }
1041 
1042 static int
1043 del_vif(vifi_t vifi)
1044 {
1045     int cc;
1046 
1047     VIF_LOCK();
1048     cc = del_vif_locked(vifi);
1049     VIF_UNLOCK();
1050 
1051     return cc;
1052 }
1053 
1054 /*
1055  * update an mfc entry without resetting counters and S,G addresses.
1056  */
1057 static void
1058 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1059 {
1060     int i;
1061 
1062     rt->mfc_parent = mfccp->mfcc_parent;
1063     for (i = 0; i < numvifs; i++) {
1064 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1065 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1066 	    MRT_MFC_FLAGS_ALL;
1067     }
1068     /* set the RP address */
1069     if (mrt_api_config & MRT_MFC_RP)
1070 	rt->mfc_rp = mfccp->mfcc_rp;
1071     else
1072 	rt->mfc_rp.s_addr = INADDR_ANY;
1073 }
1074 
1075 /*
1076  * fully initialize an mfc entry from the parameter.
1077  */
1078 static void
1079 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1080 {
1081     rt->mfc_origin     = mfccp->mfcc_origin;
1082     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1083 
1084     update_mfc_params(rt, mfccp);
1085 
1086     /* initialize pkt counters per src-grp */
1087     rt->mfc_pkt_cnt    = 0;
1088     rt->mfc_byte_cnt   = 0;
1089     rt->mfc_wrong_if   = 0;
1090     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1091 }
1092 
1093 
1094 /*
1095  * Add an mfc entry
1096  */
1097 static int
1098 add_mfc(struct mfcctl2 *mfccp)
1099 {
1100     struct mfc *rt;
1101     u_long hash;
1102     struct rtdetq *rte;
1103     u_short nstl;
1104 
1105     VIF_LOCK();
1106     MFC_LOCK();
1107 
1108     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1109 
1110     /* If an entry already exists, just update the fields */
1111     if (rt) {
1112 	if (mrtdebug & DEBUG_MFC)
1113 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1114 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1115 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1116 		mfccp->mfcc_parent);
1117 
1118 	update_mfc_params(rt, mfccp);
1119 	MFC_UNLOCK();
1120 	VIF_UNLOCK();
1121 	return 0;
1122     }
1123 
1124     /*
1125      * Find the entry for which the upcall was made and update
1126      */
1127     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1128     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1129 
1130 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1131 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1132 		(rt->mfc_stall != NULL)) {
1133 
1134 	    if (nstl++)
1135 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1136 		    "multiple kernel entries",
1137 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1138 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1139 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1140 
1141 	    if (mrtdebug & DEBUG_MFC)
1142 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1143 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1144 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1145 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1146 
1147 	    init_mfc_params(rt, mfccp);
1148 
1149 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1150 	    nexpire[hash]--;
1151 
1152 	    /* free packets Qed at the end of this entry */
1153 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1154 		struct rtdetq *n = rte->next;
1155 
1156 		ip_mdq(rte->m, rte->ifp, rt, -1);
1157 		m_freem(rte->m);
1158 		free(rte, M_MRTABLE);
1159 		rte = n;
1160 	    }
1161 	    rt->mfc_stall = NULL;
1162 	}
1163     }
1164 
1165     /*
1166      * It is possible that an entry is being inserted without an upcall
1167      */
1168     if (nstl == 0) {
1169 	if (mrtdebug & DEBUG_MFC)
1170 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1171 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1172 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1173 		mfccp->mfcc_parent);
1174 
1175 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1176 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1177 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1178 		init_mfc_params(rt, mfccp);
1179 		if (rt->mfc_expire)
1180 		    nexpire[hash]--;
1181 		rt->mfc_expire = 0;
1182 		break; /* XXX */
1183 	    }
1184 	}
1185 	if (rt == NULL) {		/* no upcall, so make a new entry */
1186 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1187 	    if (rt == NULL) {
1188 		MFC_UNLOCK();
1189 		VIF_UNLOCK();
1190 		return ENOBUFS;
1191 	    }
1192 
1193 	    init_mfc_params(rt, mfccp);
1194 	    rt->mfc_expire     = 0;
1195 	    rt->mfc_stall      = NULL;
1196 
1197 	    rt->mfc_bw_meter = NULL;
1198 	    /* insert new entry at head of hash chain */
1199 	    rt->mfc_next = mfctable[hash];
1200 	    mfctable[hash] = rt;
1201 	}
1202     }
1203     MFC_UNLOCK();
1204     VIF_UNLOCK();
1205     return 0;
1206 }
1207 
1208 /*
1209  * Delete an mfc entry
1210  */
1211 static int
1212 del_mfc(struct mfcctl2 *mfccp)
1213 {
1214     struct in_addr	origin;
1215     struct in_addr	mcastgrp;
1216     struct mfc		*rt;
1217     struct mfc		**nptr;
1218     u_long		hash;
1219     struct bw_meter	*list;
1220 
1221     origin = mfccp->mfcc_origin;
1222     mcastgrp = mfccp->mfcc_mcastgrp;
1223 
1224     if (mrtdebug & DEBUG_MFC)
1225 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1226 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1227 
1228     MFC_LOCK();
1229 
1230     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1231     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1232 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1233 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1234 		rt->mfc_stall == NULL)
1235 	    break;
1236     if (rt == NULL) {
1237 	MFC_UNLOCK();
1238 	return EADDRNOTAVAIL;
1239     }
1240 
1241     *nptr = rt->mfc_next;
1242 
1243     /*
1244      * free the bw_meter entries
1245      */
1246     list = rt->mfc_bw_meter;
1247     rt->mfc_bw_meter = NULL;
1248 
1249     free(rt, M_MRTABLE);
1250 
1251     free_bw_list(list);
1252 
1253     MFC_UNLOCK();
1254 
1255     return 0;
1256 }
1257 
1258 /*
1259  * Send a message to the routing daemon on the multicast routing socket
1260  */
1261 static int
1262 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1263 {
1264     if (s) {
1265 	SOCKBUF_LOCK(&s->so_rcv);
1266 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1267 	    NULL) != 0) {
1268 	    sorwakeup_locked(s);
1269 	    return 0;
1270 	}
1271 	SOCKBUF_UNLOCK(&s->so_rcv);
1272     }
1273     m_freem(mm);
1274     return -1;
1275 }
1276 
1277 /*
1278  * IP multicast forwarding function. This function assumes that the packet
1279  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1280  * pointed to by "ifp", and the packet is to be relayed to other networks
1281  * that have members of the packet's destination IP multicast group.
1282  *
1283  * The packet is returned unscathed to the caller, unless it is
1284  * erroneous, in which case a non-zero return value tells the caller to
1285  * discard it.
1286  */
1287 
1288 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1289 
1290 static int
1291 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1292     struct ip_moptions *imo)
1293 {
1294     struct mfc *rt;
1295     int error;
1296     vifi_t vifi;
1297 
1298     if (mrtdebug & DEBUG_FORWARD)
1299 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1300 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1301 	    (void *)ifp);
1302 
1303     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1304 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1305 	/*
1306 	 * Packet arrived via a physical interface or
1307 	 * an encapsulated tunnel or a register_vif.
1308 	 */
1309     } else {
1310 	/*
1311 	 * Packet arrived through a source-route tunnel.
1312 	 * Source-route tunnels are no longer supported.
1313 	 */
1314 	static int last_log;
1315 	if (last_log != time_uptime) {
1316 	    last_log = time_uptime;
1317 	    log(LOG_ERR,
1318 		"ip_mforward: received source-routed packet from %lx\n",
1319 		(u_long)ntohl(ip->ip_src.s_addr));
1320 	}
1321 	return 1;
1322     }
1323 
1324     VIF_LOCK();
1325     MFC_LOCK();
1326     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1327 	if (ip->ip_ttl < MAXTTL)
1328 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1329 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1330 	    struct vif *vifp = viftable + vifi;
1331 
1332 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1333 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1334 		vifi,
1335 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1336 		vifp->v_ifp->if_xname);
1337 	}
1338 	error = ip_mdq(m, ifp, NULL, vifi);
1339 	MFC_UNLOCK();
1340 	VIF_UNLOCK();
1341 	return error;
1342     }
1343     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1344 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1345 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1346 	if (!imo)
1347 	    printf("In fact, no options were specified at all\n");
1348     }
1349 
1350     /*
1351      * Don't forward a packet with time-to-live of zero or one,
1352      * or a packet destined to a local-only group.
1353      */
1354     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1355 	MFC_UNLOCK();
1356 	VIF_UNLOCK();
1357 	return 0;
1358     }
1359 
1360     /*
1361      * Determine forwarding vifs from the forwarding cache table
1362      */
1363     ++mrtstat.mrts_mfc_lookups;
1364     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1365 
1366     /* Entry exists, so forward if necessary */
1367     if (rt != NULL) {
1368 	error = ip_mdq(m, ifp, rt, -1);
1369 	MFC_UNLOCK();
1370 	VIF_UNLOCK();
1371 	return error;
1372     } else {
1373 	/*
1374 	 * If we don't have a route for packet's origin,
1375 	 * Make a copy of the packet & send message to routing daemon
1376 	 */
1377 
1378 	struct mbuf *mb0;
1379 	struct rtdetq *rte;
1380 	u_long hash;
1381 	int hlen = ip->ip_hl << 2;
1382 
1383 	++mrtstat.mrts_mfc_misses;
1384 
1385 	mrtstat.mrts_no_route++;
1386 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1387 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1388 		(u_long)ntohl(ip->ip_src.s_addr),
1389 		(u_long)ntohl(ip->ip_dst.s_addr));
1390 
1391 	/*
1392 	 * Allocate mbufs early so that we don't do extra work if we are
1393 	 * just going to fail anyway.  Make sure to pullup the header so
1394 	 * that other people can't step on it.
1395 	 */
1396 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1397 	if (rte == NULL) {
1398 	    MFC_UNLOCK();
1399 	    VIF_UNLOCK();
1400 	    return ENOBUFS;
1401 	}
1402 	mb0 = m_copypacket(m, M_DONTWAIT);
1403 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1404 	    mb0 = m_pullup(mb0, hlen);
1405 	if (mb0 == NULL) {
1406 	    free(rte, M_MRTABLE);
1407 	    MFC_UNLOCK();
1408 	    VIF_UNLOCK();
1409 	    return ENOBUFS;
1410 	}
1411 
1412 	/* is there an upcall waiting for this flow ? */
1413 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1414 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1415 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1416 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1417 		    (rt->mfc_stall != NULL))
1418 		break;
1419 	}
1420 
1421 	if (rt == NULL) {
1422 	    int i;
1423 	    struct igmpmsg *im;
1424 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1425 	    struct mbuf *mm;
1426 
1427 	    /*
1428 	     * Locate the vifi for the incoming interface for this packet.
1429 	     * If none found, drop packet.
1430 	     */
1431 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1432 		;
1433 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1434 		goto non_fatal;
1435 
1436 	    /* no upcall, so make a new entry */
1437 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1438 	    if (rt == NULL)
1439 		goto fail;
1440 	    /* Make a copy of the header to send to the user level process */
1441 	    mm = m_copy(mb0, 0, hlen);
1442 	    if (mm == NULL)
1443 		goto fail1;
1444 
1445 	    /*
1446 	     * Send message to routing daemon to install
1447 	     * a route into the kernel table
1448 	     */
1449 
1450 	    im = mtod(mm, struct igmpmsg *);
1451 	    im->im_msgtype = IGMPMSG_NOCACHE;
1452 	    im->im_mbz = 0;
1453 	    im->im_vif = vifi;
1454 
1455 	    mrtstat.mrts_upcalls++;
1456 
1457 	    k_igmpsrc.sin_addr = ip->ip_src;
1458 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1459 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1460 		++mrtstat.mrts_upq_sockfull;
1461 fail1:
1462 		free(rt, M_MRTABLE);
1463 fail:
1464 		free(rte, M_MRTABLE);
1465 		m_freem(mb0);
1466 		MFC_UNLOCK();
1467 		VIF_UNLOCK();
1468 		return ENOBUFS;
1469 	    }
1470 
1471 	    /* insert new entry at head of hash chain */
1472 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1473 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1474 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1475 	    nexpire[hash]++;
1476 	    for (i = 0; i < numvifs; i++) {
1477 		rt->mfc_ttls[i] = 0;
1478 		rt->mfc_flags[i] = 0;
1479 	    }
1480 	    rt->mfc_parent = -1;
1481 
1482 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1483 
1484 	    rt->mfc_bw_meter = NULL;
1485 
1486 	    /* link into table */
1487 	    rt->mfc_next   = mfctable[hash];
1488 	    mfctable[hash] = rt;
1489 	    rt->mfc_stall = rte;
1490 
1491 	} else {
1492 	    /* determine if q has overflowed */
1493 	    int npkts = 0;
1494 	    struct rtdetq **p;
1495 
1496 	    /*
1497 	     * XXX ouch! we need to append to the list, but we
1498 	     * only have a pointer to the front, so we have to
1499 	     * scan the entire list every time.
1500 	     */
1501 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1502 		npkts++;
1503 
1504 	    if (npkts > MAX_UPQ) {
1505 		mrtstat.mrts_upq_ovflw++;
1506 non_fatal:
1507 		free(rte, M_MRTABLE);
1508 		m_freem(mb0);
1509 		MFC_UNLOCK();
1510 		VIF_UNLOCK();
1511 		return 0;
1512 	    }
1513 
1514 	    /* Add this entry to the end of the queue */
1515 	    *p = rte;
1516 	}
1517 
1518 	rte->m			= mb0;
1519 	rte->ifp		= ifp;
1520 	rte->next		= NULL;
1521 
1522 	MFC_UNLOCK();
1523 	VIF_UNLOCK();
1524 
1525 	return 0;
1526     }
1527 }
1528 
1529 /*
1530  * Clean up the cache entry if upcall is not serviced
1531  */
1532 static void
1533 expire_upcalls(void *unused)
1534 {
1535     struct rtdetq *rte;
1536     struct mfc *mfc, **nptr;
1537     int i;
1538 
1539     MFC_LOCK();
1540     for (i = 0; i < MFCTBLSIZ; i++) {
1541 	if (nexpire[i] == 0)
1542 	    continue;
1543 	nptr = &mfctable[i];
1544 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1545 	    /*
1546 	     * Skip real cache entries
1547 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1548 	     * If it expires now
1549 	     */
1550 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1551 		    --mfc->mfc_expire == 0) {
1552 		if (mrtdebug & DEBUG_EXPIRE)
1553 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1554 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1555 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1556 		/*
1557 		 * drop all the packets
1558 		 * free the mbuf with the pkt, if, timing info
1559 		 */
1560 		for (rte = mfc->mfc_stall; rte; ) {
1561 		    struct rtdetq *n = rte->next;
1562 
1563 		    m_freem(rte->m);
1564 		    free(rte, M_MRTABLE);
1565 		    rte = n;
1566 		}
1567 		++mrtstat.mrts_cache_cleanups;
1568 		nexpire[i]--;
1569 
1570 		/*
1571 		 * free the bw_meter entries
1572 		 */
1573 		while (mfc->mfc_bw_meter != NULL) {
1574 		    struct bw_meter *x = mfc->mfc_bw_meter;
1575 
1576 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1577 		    free(x, M_BWMETER);
1578 		}
1579 
1580 		*nptr = mfc->mfc_next;
1581 		free(mfc, M_MRTABLE);
1582 	    } else {
1583 		nptr = &mfc->mfc_next;
1584 	    }
1585 	}
1586     }
1587     MFC_UNLOCK();
1588 
1589     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1590 }
1591 
1592 /*
1593  * Packet forwarding routine once entry in the cache is made
1594  */
1595 static int
1596 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1597 {
1598     struct ip  *ip = mtod(m, struct ip *);
1599     vifi_t vifi;
1600     int plen = ip->ip_len;
1601 
1602     VIF_LOCK_ASSERT();
1603 
1604     /*
1605      * If xmt_vif is not -1, send on only the requested vif.
1606      *
1607      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1608      */
1609     if (xmt_vif < numvifs) {
1610 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1611 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1612 	else
1613 		phyint_send(ip, viftable + xmt_vif, m);
1614 	return 1;
1615     }
1616 
1617     /*
1618      * Don't forward if it didn't arrive from the parent vif for its origin.
1619      */
1620     vifi = rt->mfc_parent;
1621     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1622 	/* came in the wrong interface */
1623 	if (mrtdebug & DEBUG_FORWARD)
1624 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1625 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1626 	++mrtstat.mrts_wrong_if;
1627 	++rt->mfc_wrong_if;
1628 	/*
1629 	 * If we are doing PIM assert processing, send a message
1630 	 * to the routing daemon.
1631 	 *
1632 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1633 	 * can complete the SPT switch, regardless of the type
1634 	 * of the iif (broadcast media, GRE tunnel, etc).
1635 	 */
1636 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1637 	    struct timeval now;
1638 	    u_long delta;
1639 
1640 	    if (ifp == &multicast_register_if)
1641 		pimstat.pims_rcv_registers_wrongiif++;
1642 
1643 	    /* Get vifi for the incoming packet */
1644 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1645 		;
1646 	    if (vifi >= numvifs)
1647 		return 0;	/* The iif is not found: ignore the packet. */
1648 
1649 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1650 		return 0;	/* WRONGVIF disabled: ignore the packet */
1651 
1652 	    GET_TIME(now);
1653 
1654 	    TV_DELTA(now, rt->mfc_last_assert, delta);
1655 
1656 	    if (delta > ASSERT_MSG_TIME) {
1657 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1658 		struct igmpmsg *im;
1659 		int hlen = ip->ip_hl << 2;
1660 		struct mbuf *mm = m_copy(m, 0, hlen);
1661 
1662 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1663 		    mm = m_pullup(mm, hlen);
1664 		if (mm == NULL)
1665 		    return ENOBUFS;
1666 
1667 		rt->mfc_last_assert = now;
1668 
1669 		im = mtod(mm, struct igmpmsg *);
1670 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1671 		im->im_mbz		= 0;
1672 		im->im_vif		= vifi;
1673 
1674 		mrtstat.mrts_upcalls++;
1675 
1676 		k_igmpsrc.sin_addr = im->im_src;
1677 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1678 		    log(LOG_WARNING,
1679 			"ip_mforward: ip_mrouter socket queue full\n");
1680 		    ++mrtstat.mrts_upq_sockfull;
1681 		    return ENOBUFS;
1682 		}
1683 	    }
1684 	}
1685 	return 0;
1686     }
1687 
1688     /* If I sourced this packet, it counts as output, else it was input. */
1689     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1690 	viftable[vifi].v_pkt_out++;
1691 	viftable[vifi].v_bytes_out += plen;
1692     } else {
1693 	viftable[vifi].v_pkt_in++;
1694 	viftable[vifi].v_bytes_in += plen;
1695     }
1696     rt->mfc_pkt_cnt++;
1697     rt->mfc_byte_cnt += plen;
1698 
1699     /*
1700      * For each vif, decide if a copy of the packet should be forwarded.
1701      * Forward if:
1702      *		- the ttl exceeds the vif's threshold
1703      *		- there are group members downstream on interface
1704      */
1705     for (vifi = 0; vifi < numvifs; vifi++)
1706 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1707 	    viftable[vifi].v_pkt_out++;
1708 	    viftable[vifi].v_bytes_out += plen;
1709 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1710 		pim_register_send(ip, viftable + vifi, m, rt);
1711 	    else
1712 		phyint_send(ip, viftable + vifi, m);
1713 	}
1714 
1715     /*
1716      * Perform upcall-related bw measuring.
1717      */
1718     if (rt->mfc_bw_meter != NULL) {
1719 	struct bw_meter *x;
1720 	struct timeval now;
1721 
1722 	GET_TIME(now);
1723 	MFC_LOCK_ASSERT();
1724 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1725 	    bw_meter_receive_packet(x, plen, &now);
1726     }
1727 
1728     return 0;
1729 }
1730 
1731 /*
1732  * check if a vif number is legal/ok. This is used by ip_output.
1733  */
1734 static int
1735 X_legal_vif_num(int vif)
1736 {
1737     /* XXX unlocked, matter? */
1738     return (vif >= 0 && vif < numvifs);
1739 }
1740 
1741 /*
1742  * Return the local address used by this vif
1743  */
1744 static u_long
1745 X_ip_mcast_src(int vifi)
1746 {
1747     /* XXX unlocked, matter? */
1748     if (vifi >= 0 && vifi < numvifs)
1749 	return viftable[vifi].v_lcl_addr.s_addr;
1750     else
1751 	return INADDR_ANY;
1752 }
1753 
1754 static void
1755 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1756 {
1757     struct mbuf *mb_copy;
1758     int hlen = ip->ip_hl << 2;
1759 
1760     VIF_LOCK_ASSERT();
1761 
1762     /*
1763      * Make a new reference to the packet; make sure that
1764      * the IP header is actually copied, not just referenced,
1765      * so that ip_output() only scribbles on the copy.
1766      */
1767     mb_copy = m_copypacket(m, M_DONTWAIT);
1768     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1769 	mb_copy = m_pullup(mb_copy, hlen);
1770     if (mb_copy == NULL)
1771 	return;
1772 
1773     send_packet(vifp, mb_copy);
1774 }
1775 
1776 static void
1777 send_packet(struct vif *vifp, struct mbuf *m)
1778 {
1779 	struct ip_moptions imo;
1780 	struct in_multi *imm[2];
1781 	int error;
1782 
1783 	VIF_LOCK_ASSERT();
1784 
1785 	imo.imo_multicast_ifp  = vifp->v_ifp;
1786 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1787 	imo.imo_multicast_loop = 1;
1788 	imo.imo_multicast_vif  = -1;
1789 	imo.imo_num_memberships = 0;
1790 	imo.imo_max_memberships = 2;
1791 	imo.imo_membership  = &imm[0];
1792 
1793 	/*
1794 	 * Re-entrancy should not be a problem here, because
1795 	 * the packets that we send out and are looped back at us
1796 	 * should get rejected because they appear to come from
1797 	 * the loopback interface, thus preventing looping.
1798 	 */
1799 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1800 	if (mrtdebug & DEBUG_XMIT) {
1801 	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1802 		vifp - viftable, error);
1803 	}
1804 }
1805 
1806 static int
1807 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1808 {
1809     int error, vifi;
1810 
1811     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1812 	return EOPNOTSUPP;
1813 
1814     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1815     if (error)
1816 	return error;
1817 
1818     VIF_LOCK();
1819 
1820     if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1821 	VIF_UNLOCK();
1822 	return EADDRNOTAVAIL;
1823     }
1824 
1825     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1826 	/* Check if socket is available. */
1827 	if (viftable[vifi].v_rsvpd != NULL) {
1828 	    VIF_UNLOCK();
1829 	    return EADDRINUSE;
1830 	}
1831 
1832 	viftable[vifi].v_rsvpd = so;
1833 	/* This may seem silly, but we need to be sure we don't over-increment
1834 	 * the RSVP counter, in case something slips up.
1835 	 */
1836 	if (!viftable[vifi].v_rsvp_on) {
1837 	    viftable[vifi].v_rsvp_on = 1;
1838 	    rsvp_on++;
1839 	}
1840     } else { /* must be VIF_OFF */
1841 	/*
1842 	 * XXX as an additional consistency check, one could make sure
1843 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1844 	 * first parameter is pretty useless.
1845 	 */
1846 	viftable[vifi].v_rsvpd = NULL;
1847 	/*
1848 	 * This may seem silly, but we need to be sure we don't over-decrement
1849 	 * the RSVP counter, in case something slips up.
1850 	 */
1851 	if (viftable[vifi].v_rsvp_on) {
1852 	    viftable[vifi].v_rsvp_on = 0;
1853 	    rsvp_on--;
1854 	}
1855     }
1856     VIF_UNLOCK();
1857     return 0;
1858 }
1859 
1860 static void
1861 X_ip_rsvp_force_done(struct socket *so)
1862 {
1863     int vifi;
1864 
1865     /* Don't bother if it is not the right type of socket. */
1866     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1867 	return;
1868 
1869     VIF_LOCK();
1870 
1871     /* The socket may be attached to more than one vif...this
1872      * is perfectly legal.
1873      */
1874     for (vifi = 0; vifi < numvifs; vifi++) {
1875 	if (viftable[vifi].v_rsvpd == so) {
1876 	    viftable[vifi].v_rsvpd = NULL;
1877 	    /* This may seem silly, but we need to be sure we don't
1878 	     * over-decrement the RSVP counter, in case something slips up.
1879 	     */
1880 	    if (viftable[vifi].v_rsvp_on) {
1881 		viftable[vifi].v_rsvp_on = 0;
1882 		rsvp_on--;
1883 	    }
1884 	}
1885     }
1886 
1887     VIF_UNLOCK();
1888 }
1889 
1890 static void
1891 X_rsvp_input(struct mbuf *m, int off)
1892 {
1893     int vifi;
1894     struct ip *ip = mtod(m, struct ip *);
1895     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1896     struct ifnet *ifp;
1897 
1898     if (rsvpdebug)
1899 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1900 
1901     /* Can still get packets with rsvp_on = 0 if there is a local member
1902      * of the group to which the RSVP packet is addressed.  But in this
1903      * case we want to throw the packet away.
1904      */
1905     if (!rsvp_on) {
1906 	m_freem(m);
1907 	return;
1908     }
1909 
1910     if (rsvpdebug)
1911 	printf("rsvp_input: check vifs\n");
1912 
1913 #ifdef DIAGNOSTIC
1914     M_ASSERTPKTHDR(m);
1915 #endif
1916 
1917     ifp = m->m_pkthdr.rcvif;
1918 
1919     VIF_LOCK();
1920     /* Find which vif the packet arrived on. */
1921     for (vifi = 0; vifi < numvifs; vifi++)
1922 	if (viftable[vifi].v_ifp == ifp)
1923 	    break;
1924 
1925     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1926 	/*
1927 	 * Drop the lock here to avoid holding it across rip_input.
1928 	 * This could make rsvpdebug printfs wrong.  If you care,
1929 	 * record the state of stuff before dropping the lock.
1930 	 */
1931 	VIF_UNLOCK();
1932 	/*
1933 	 * If the old-style non-vif-associated socket is set,
1934 	 * then use it.  Otherwise, drop packet since there
1935 	 * is no specific socket for this vif.
1936 	 */
1937 	if (ip_rsvpd != NULL) {
1938 	    if (rsvpdebug)
1939 		printf("rsvp_input: Sending packet up old-style socket\n");
1940 	    rip_input(m, off);  /* xxx */
1941 	} else {
1942 	    if (rsvpdebug && vifi == numvifs)
1943 		printf("rsvp_input: Can't find vif for packet.\n");
1944 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1945 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1946 	    m_freem(m);
1947 	}
1948 	return;
1949     }
1950     rsvp_src.sin_addr = ip->ip_src;
1951 
1952     if (rsvpdebug && m)
1953 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1954 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1955 
1956     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1957 	if (rsvpdebug)
1958 	    printf("rsvp_input: Failed to append to socket\n");
1959     } else {
1960 	if (rsvpdebug)
1961 	    printf("rsvp_input: send packet up\n");
1962     }
1963     VIF_UNLOCK();
1964 }
1965 
1966 /*
1967  * Code for bandwidth monitors
1968  */
1969 
1970 /*
1971  * Define common interface for timeval-related methods
1972  */
1973 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1974 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1975 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1976 
1977 static uint32_t
1978 compute_bw_meter_flags(struct bw_upcall *req)
1979 {
1980     uint32_t flags = 0;
1981 
1982     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1983 	flags |= BW_METER_UNIT_PACKETS;
1984     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1985 	flags |= BW_METER_UNIT_BYTES;
1986     if (req->bu_flags & BW_UPCALL_GEQ)
1987 	flags |= BW_METER_GEQ;
1988     if (req->bu_flags & BW_UPCALL_LEQ)
1989 	flags |= BW_METER_LEQ;
1990 
1991     return flags;
1992 }
1993 
1994 /*
1995  * Add a bw_meter entry
1996  */
1997 static int
1998 add_bw_upcall(struct bw_upcall *req)
1999 {
2000     struct mfc *mfc;
2001     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2002 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2003     struct timeval now;
2004     struct bw_meter *x;
2005     uint32_t flags;
2006 
2007     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2008 	return EOPNOTSUPP;
2009 
2010     /* Test if the flags are valid */
2011     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2012 	return EINVAL;
2013     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2014 	return EINVAL;
2015     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2016 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2017 	return EINVAL;
2018 
2019     /* Test if the threshold time interval is valid */
2020     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2021 	return EINVAL;
2022 
2023     flags = compute_bw_meter_flags(req);
2024 
2025     /*
2026      * Find if we have already same bw_meter entry
2027      */
2028     MFC_LOCK();
2029     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2030     if (mfc == NULL) {
2031 	MFC_UNLOCK();
2032 	return EADDRNOTAVAIL;
2033     }
2034     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2035 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2036 			   &req->bu_threshold.b_time, ==)) &&
2037 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2038 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2039 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2040 	    MFC_UNLOCK();
2041 	    return 0;		/* XXX Already installed */
2042 	}
2043     }
2044 
2045     /* Allocate the new bw_meter entry */
2046     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2047     if (x == NULL) {
2048 	MFC_UNLOCK();
2049 	return ENOBUFS;
2050     }
2051 
2052     /* Set the new bw_meter entry */
2053     x->bm_threshold.b_time = req->bu_threshold.b_time;
2054     GET_TIME(now);
2055     x->bm_start_time = now;
2056     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2057     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2058     x->bm_measured.b_packets = 0;
2059     x->bm_measured.b_bytes = 0;
2060     x->bm_flags = flags;
2061     x->bm_time_next = NULL;
2062     x->bm_time_hash = BW_METER_BUCKETS;
2063 
2064     /* Add the new bw_meter entry to the front of entries for this MFC */
2065     x->bm_mfc = mfc;
2066     x->bm_mfc_next = mfc->mfc_bw_meter;
2067     mfc->mfc_bw_meter = x;
2068     schedule_bw_meter(x, &now);
2069     MFC_UNLOCK();
2070 
2071     return 0;
2072 }
2073 
2074 static void
2075 free_bw_list(struct bw_meter *list)
2076 {
2077     while (list != NULL) {
2078 	struct bw_meter *x = list;
2079 
2080 	list = list->bm_mfc_next;
2081 	unschedule_bw_meter(x);
2082 	free(x, M_BWMETER);
2083     }
2084 }
2085 
2086 /*
2087  * Delete one or multiple bw_meter entries
2088  */
2089 static int
2090 del_bw_upcall(struct bw_upcall *req)
2091 {
2092     struct mfc *mfc;
2093     struct bw_meter *x;
2094 
2095     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2096 	return EOPNOTSUPP;
2097 
2098     MFC_LOCK();
2099     /* Find the corresponding MFC entry */
2100     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2101     if (mfc == NULL) {
2102 	MFC_UNLOCK();
2103 	return EADDRNOTAVAIL;
2104     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2105 	/*
2106 	 * Delete all bw_meter entries for this mfc
2107 	 */
2108 	struct bw_meter *list;
2109 
2110 	list = mfc->mfc_bw_meter;
2111 	mfc->mfc_bw_meter = NULL;
2112 	free_bw_list(list);
2113 	MFC_UNLOCK();
2114 	return 0;
2115     } else {			/* Delete a single bw_meter entry */
2116 	struct bw_meter *prev;
2117 	uint32_t flags = 0;
2118 
2119 	flags = compute_bw_meter_flags(req);
2120 
2121 	/* Find the bw_meter entry to delete */
2122 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2123 	     prev = x, x = x->bm_mfc_next) {
2124 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2125 			       &req->bu_threshold.b_time, ==)) &&
2126 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2127 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2128 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2129 		break;
2130 	}
2131 	if (x != NULL) { /* Delete entry from the list for this MFC */
2132 	    if (prev != NULL)
2133 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2134 	    else
2135 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2136 
2137 	    unschedule_bw_meter(x);
2138 	    MFC_UNLOCK();
2139 	    /* Free the bw_meter entry */
2140 	    free(x, M_BWMETER);
2141 	    return 0;
2142 	} else {
2143 	    MFC_UNLOCK();
2144 	    return EINVAL;
2145 	}
2146     }
2147     /* NOTREACHED */
2148 }
2149 
2150 /*
2151  * Perform bandwidth measurement processing that may result in an upcall
2152  */
2153 static void
2154 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2155 {
2156     struct timeval delta;
2157 
2158     MFC_LOCK_ASSERT();
2159 
2160     delta = *nowp;
2161     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2162 
2163     if (x->bm_flags & BW_METER_GEQ) {
2164 	/*
2165 	 * Processing for ">=" type of bw_meter entry
2166 	 */
2167 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2168 	    /* Reset the bw_meter entry */
2169 	    x->bm_start_time = *nowp;
2170 	    x->bm_measured.b_packets = 0;
2171 	    x->bm_measured.b_bytes = 0;
2172 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2173 	}
2174 
2175 	/* Record that a packet is received */
2176 	x->bm_measured.b_packets++;
2177 	x->bm_measured.b_bytes += plen;
2178 
2179 	/*
2180 	 * Test if we should deliver an upcall
2181 	 */
2182 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2183 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2184 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2185 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2186 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2187 		/* Prepare an upcall for delivery */
2188 		bw_meter_prepare_upcall(x, nowp);
2189 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2190 	    }
2191 	}
2192     } else if (x->bm_flags & BW_METER_LEQ) {
2193 	/*
2194 	 * Processing for "<=" type of bw_meter entry
2195 	 */
2196 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2197 	    /*
2198 	     * We are behind time with the multicast forwarding table
2199 	     * scanning for "<=" type of bw_meter entries, so test now
2200 	     * if we should deliver an upcall.
2201 	     */
2202 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2203 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2204 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2205 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2206 		/* Prepare an upcall for delivery */
2207 		bw_meter_prepare_upcall(x, nowp);
2208 	    }
2209 	    /* Reschedule the bw_meter entry */
2210 	    unschedule_bw_meter(x);
2211 	    schedule_bw_meter(x, nowp);
2212 	}
2213 
2214 	/* Record that a packet is received */
2215 	x->bm_measured.b_packets++;
2216 	x->bm_measured.b_bytes += plen;
2217 
2218 	/*
2219 	 * Test if we should restart the measuring interval
2220 	 */
2221 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2222 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2223 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2224 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2225 	    /* Don't restart the measuring interval */
2226 	} else {
2227 	    /* Do restart the measuring interval */
2228 	    /*
2229 	     * XXX: note that we don't unschedule and schedule, because this
2230 	     * might be too much overhead per packet. Instead, when we process
2231 	     * all entries for a given timer hash bin, we check whether it is
2232 	     * really a timeout. If not, we reschedule at that time.
2233 	     */
2234 	    x->bm_start_time = *nowp;
2235 	    x->bm_measured.b_packets = 0;
2236 	    x->bm_measured.b_bytes = 0;
2237 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2238 	}
2239     }
2240 }
2241 
2242 /*
2243  * Prepare a bandwidth-related upcall
2244  */
2245 static void
2246 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2247 {
2248     struct timeval delta;
2249     struct bw_upcall *u;
2250 
2251     MFC_LOCK_ASSERT();
2252 
2253     /*
2254      * Compute the measured time interval
2255      */
2256     delta = *nowp;
2257     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2258 
2259     /*
2260      * If there are too many pending upcalls, deliver them now
2261      */
2262     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2263 	bw_upcalls_send();
2264 
2265     /*
2266      * Set the bw_upcall entry
2267      */
2268     u = &bw_upcalls[bw_upcalls_n++];
2269     u->bu_src = x->bm_mfc->mfc_origin;
2270     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2271     u->bu_threshold.b_time = x->bm_threshold.b_time;
2272     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2273     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2274     u->bu_measured.b_time = delta;
2275     u->bu_measured.b_packets = x->bm_measured.b_packets;
2276     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2277     u->bu_flags = 0;
2278     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2279 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2280     if (x->bm_flags & BW_METER_UNIT_BYTES)
2281 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2282     if (x->bm_flags & BW_METER_GEQ)
2283 	u->bu_flags |= BW_UPCALL_GEQ;
2284     if (x->bm_flags & BW_METER_LEQ)
2285 	u->bu_flags |= BW_UPCALL_LEQ;
2286 }
2287 
2288 /*
2289  * Send the pending bandwidth-related upcalls
2290  */
2291 static void
2292 bw_upcalls_send(void)
2293 {
2294     struct mbuf *m;
2295     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2296     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2297     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2298 				      0,		/* unused2 */
2299 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2300 				      0,		/* im_mbz  */
2301 				      0,		/* im_vif  */
2302 				      0,		/* unused3 */
2303 				      { 0 },		/* im_src  */
2304 				      { 0 } };		/* im_dst  */
2305 
2306     MFC_LOCK_ASSERT();
2307 
2308     if (bw_upcalls_n == 0)
2309 	return;			/* No pending upcalls */
2310 
2311     bw_upcalls_n = 0;
2312 
2313     /*
2314      * Allocate a new mbuf, initialize it with the header and
2315      * the payload for the pending calls.
2316      */
2317     MGETHDR(m, M_DONTWAIT, MT_DATA);
2318     if (m == NULL) {
2319 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2320 	return;
2321     }
2322 
2323     m->m_len = m->m_pkthdr.len = 0;
2324     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2325     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2326 
2327     /*
2328      * Send the upcalls
2329      * XXX do we need to set the address in k_igmpsrc ?
2330      */
2331     mrtstat.mrts_upcalls++;
2332     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2333 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2334 	++mrtstat.mrts_upq_sockfull;
2335     }
2336 }
2337 
2338 /*
2339  * Compute the timeout hash value for the bw_meter entries
2340  */
2341 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2342     do {								\
2343 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2344 									\
2345 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2346 	(hash) = next_timeval.tv_sec;					\
2347 	if (next_timeval.tv_usec)					\
2348 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2349 	(hash) %= BW_METER_BUCKETS;					\
2350     } while (0)
2351 
2352 /*
2353  * Schedule a timer to process periodically bw_meter entry of type "<="
2354  * by linking the entry in the proper hash bucket.
2355  */
2356 static void
2357 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2358 {
2359     int time_hash;
2360 
2361     MFC_LOCK_ASSERT();
2362 
2363     if (!(x->bm_flags & BW_METER_LEQ))
2364 	return;		/* XXX: we schedule timers only for "<=" entries */
2365 
2366     /*
2367      * Reset the bw_meter entry
2368      */
2369     x->bm_start_time = *nowp;
2370     x->bm_measured.b_packets = 0;
2371     x->bm_measured.b_bytes = 0;
2372     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2373 
2374     /*
2375      * Compute the timeout hash value and insert the entry
2376      */
2377     BW_METER_TIMEHASH(x, time_hash);
2378     x->bm_time_next = bw_meter_timers[time_hash];
2379     bw_meter_timers[time_hash] = x;
2380     x->bm_time_hash = time_hash;
2381 }
2382 
2383 /*
2384  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2385  * by removing the entry from the proper hash bucket.
2386  */
2387 static void
2388 unschedule_bw_meter(struct bw_meter *x)
2389 {
2390     int time_hash;
2391     struct bw_meter *prev, *tmp;
2392 
2393     MFC_LOCK_ASSERT();
2394 
2395     if (!(x->bm_flags & BW_METER_LEQ))
2396 	return;		/* XXX: we schedule timers only for "<=" entries */
2397 
2398     /*
2399      * Compute the timeout hash value and delete the entry
2400      */
2401     time_hash = x->bm_time_hash;
2402     if (time_hash >= BW_METER_BUCKETS)
2403 	return;		/* Entry was not scheduled */
2404 
2405     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2406 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2407 	if (tmp == x)
2408 	    break;
2409 
2410     if (tmp == NULL)
2411 	panic("unschedule_bw_meter: bw_meter entry not found");
2412 
2413     if (prev != NULL)
2414 	prev->bm_time_next = x->bm_time_next;
2415     else
2416 	bw_meter_timers[time_hash] = x->bm_time_next;
2417 
2418     x->bm_time_next = NULL;
2419     x->bm_time_hash = BW_METER_BUCKETS;
2420 }
2421 
2422 
2423 /*
2424  * Process all "<=" type of bw_meter that should be processed now,
2425  * and for each entry prepare an upcall if necessary. Each processed
2426  * entry is rescheduled again for the (periodic) processing.
2427  *
2428  * This is run periodically (once per second normally). On each round,
2429  * all the potentially matching entries are in the hash slot that we are
2430  * looking at.
2431  */
2432 static void
2433 bw_meter_process()
2434 {
2435     static uint32_t last_tv_sec;	/* last time we processed this */
2436 
2437     uint32_t loops;
2438     int i;
2439     struct timeval now, process_endtime;
2440 
2441     GET_TIME(now);
2442     if (last_tv_sec == now.tv_sec)
2443 	return;		/* nothing to do */
2444 
2445     loops = now.tv_sec - last_tv_sec;
2446     last_tv_sec = now.tv_sec;
2447     if (loops > BW_METER_BUCKETS)
2448 	loops = BW_METER_BUCKETS;
2449 
2450     MFC_LOCK();
2451     /*
2452      * Process all bins of bw_meter entries from the one after the last
2453      * processed to the current one. On entry, i points to the last bucket
2454      * visited, so we need to increment i at the beginning of the loop.
2455      */
2456     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2457 	struct bw_meter *x, *tmp_list;
2458 
2459 	if (++i >= BW_METER_BUCKETS)
2460 	    i = 0;
2461 
2462 	/* Disconnect the list of bw_meter entries from the bin */
2463 	tmp_list = bw_meter_timers[i];
2464 	bw_meter_timers[i] = NULL;
2465 
2466 	/* Process the list of bw_meter entries */
2467 	while (tmp_list != NULL) {
2468 	    x = tmp_list;
2469 	    tmp_list = tmp_list->bm_time_next;
2470 
2471 	    /* Test if the time interval is over */
2472 	    process_endtime = x->bm_start_time;
2473 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2474 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2475 		/* Not yet: reschedule, but don't reset */
2476 		int time_hash;
2477 
2478 		BW_METER_TIMEHASH(x, time_hash);
2479 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2480 		    /*
2481 		     * XXX: somehow the bin processing is a bit ahead of time.
2482 		     * Put the entry in the next bin.
2483 		     */
2484 		    if (++time_hash >= BW_METER_BUCKETS)
2485 			time_hash = 0;
2486 		}
2487 		x->bm_time_next = bw_meter_timers[time_hash];
2488 		bw_meter_timers[time_hash] = x;
2489 		x->bm_time_hash = time_hash;
2490 
2491 		continue;
2492 	    }
2493 
2494 	    /*
2495 	     * Test if we should deliver an upcall
2496 	     */
2497 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2498 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2499 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2500 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2501 		/* Prepare an upcall for delivery */
2502 		bw_meter_prepare_upcall(x, &now);
2503 	    }
2504 
2505 	    /*
2506 	     * Reschedule for next processing
2507 	     */
2508 	    schedule_bw_meter(x, &now);
2509 	}
2510     }
2511 
2512     /* Send all upcalls that are pending delivery */
2513     bw_upcalls_send();
2514 
2515     MFC_UNLOCK();
2516 }
2517 
2518 /*
2519  * A periodic function for sending all upcalls that are pending delivery
2520  */
2521 static void
2522 expire_bw_upcalls_send(void *unused)
2523 {
2524     MFC_LOCK();
2525     bw_upcalls_send();
2526     MFC_UNLOCK();
2527 
2528     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2529 	expire_bw_upcalls_send, NULL);
2530 }
2531 
2532 /*
2533  * A periodic function for periodic scanning of the multicast forwarding
2534  * table for processing all "<=" bw_meter entries.
2535  */
2536 static void
2537 expire_bw_meter_process(void *unused)
2538 {
2539     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2540 	bw_meter_process();
2541 
2542     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2543 }
2544 
2545 /*
2546  * End of bandwidth monitoring code
2547  */
2548 
2549 /*
2550  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2551  *
2552  */
2553 static int
2554 pim_register_send(struct ip *ip, struct vif *vifp,
2555 	struct mbuf *m, struct mfc *rt)
2556 {
2557     struct mbuf *mb_copy, *mm;
2558 
2559     if (mrtdebug & DEBUG_PIM)
2560 	log(LOG_DEBUG, "pim_register_send: ");
2561 
2562     /*
2563      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2564      * rendezvous point was unspecified, and we were told not to.
2565      */
2566     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2567 	(rt->mfc_rp.s_addr == INADDR_ANY))
2568 	return 0;
2569 
2570     mb_copy = pim_register_prepare(ip, m);
2571     if (mb_copy == NULL)
2572 	return ENOBUFS;
2573 
2574     /*
2575      * Send all the fragments. Note that the mbuf for each fragment
2576      * is freed by the sending machinery.
2577      */
2578     for (mm = mb_copy; mm; mm = mb_copy) {
2579 	mb_copy = mm->m_nextpkt;
2580 	mm->m_nextpkt = 0;
2581 	mm = m_pullup(mm, sizeof(struct ip));
2582 	if (mm != NULL) {
2583 	    ip = mtod(mm, struct ip *);
2584 	    if ((mrt_api_config & MRT_MFC_RP) &&
2585 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2586 		pim_register_send_rp(ip, vifp, mm, rt);
2587 	    } else {
2588 		pim_register_send_upcall(ip, vifp, mm, rt);
2589 	    }
2590 	}
2591     }
2592 
2593     return 0;
2594 }
2595 
2596 /*
2597  * Return a copy of the data packet that is ready for PIM Register
2598  * encapsulation.
2599  * XXX: Note that in the returned copy the IP header is a valid one.
2600  */
2601 static struct mbuf *
2602 pim_register_prepare(struct ip *ip, struct mbuf *m)
2603 {
2604     struct mbuf *mb_copy = NULL;
2605     int mtu;
2606 
2607     /* Take care of delayed checksums */
2608     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2609 	in_delayed_cksum(m);
2610 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2611     }
2612 
2613     /*
2614      * Copy the old packet & pullup its IP header into the
2615      * new mbuf so we can modify it.
2616      */
2617     mb_copy = m_copypacket(m, M_DONTWAIT);
2618     if (mb_copy == NULL)
2619 	return NULL;
2620     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2621     if (mb_copy == NULL)
2622 	return NULL;
2623 
2624     /* take care of the TTL */
2625     ip = mtod(mb_copy, struct ip *);
2626     --ip->ip_ttl;
2627 
2628     /* Compute the MTU after the PIM Register encapsulation */
2629     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2630 
2631     if (ip->ip_len <= mtu) {
2632 	/* Turn the IP header into a valid one */
2633 	ip->ip_len = htons(ip->ip_len);
2634 	ip->ip_off = htons(ip->ip_off);
2635 	ip->ip_sum = 0;
2636 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2637     } else {
2638 	/* Fragment the packet */
2639 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2640 	    m_freem(mb_copy);
2641 	    return NULL;
2642 	}
2643     }
2644     return mb_copy;
2645 }
2646 
2647 /*
2648  * Send an upcall with the data packet to the user-level process.
2649  */
2650 static int
2651 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2652 	struct mbuf *mb_copy, struct mfc *rt)
2653 {
2654     struct mbuf *mb_first;
2655     int len = ntohs(ip->ip_len);
2656     struct igmpmsg *im;
2657     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2658 
2659     VIF_LOCK_ASSERT();
2660 
2661     /*
2662      * Add a new mbuf with an upcall header
2663      */
2664     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2665     if (mb_first == NULL) {
2666 	m_freem(mb_copy);
2667 	return ENOBUFS;
2668     }
2669     mb_first->m_data += max_linkhdr;
2670     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2671     mb_first->m_len = sizeof(struct igmpmsg);
2672     mb_first->m_next = mb_copy;
2673 
2674     /* Send message to routing daemon */
2675     im = mtod(mb_first, struct igmpmsg *);
2676     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2677     im->im_mbz		= 0;
2678     im->im_vif		= vifp - viftable;
2679     im->im_src		= ip->ip_src;
2680     im->im_dst		= ip->ip_dst;
2681 
2682     k_igmpsrc.sin_addr	= ip->ip_src;
2683 
2684     mrtstat.mrts_upcalls++;
2685 
2686     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2687 	if (mrtdebug & DEBUG_PIM)
2688 	    log(LOG_WARNING,
2689 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2690 	++mrtstat.mrts_upq_sockfull;
2691 	return ENOBUFS;
2692     }
2693 
2694     /* Keep statistics */
2695     pimstat.pims_snd_registers_msgs++;
2696     pimstat.pims_snd_registers_bytes += len;
2697 
2698     return 0;
2699 }
2700 
2701 /*
2702  * Encapsulate the data packet in PIM Register message and send it to the RP.
2703  */
2704 static int
2705 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2706 	struct mbuf *mb_copy, struct mfc *rt)
2707 {
2708     struct mbuf *mb_first;
2709     struct ip *ip_outer;
2710     struct pim_encap_pimhdr *pimhdr;
2711     int len = ntohs(ip->ip_len);
2712     vifi_t vifi = rt->mfc_parent;
2713 
2714     VIF_LOCK_ASSERT();
2715 
2716     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2717 	m_freem(mb_copy);
2718 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2719     }
2720 
2721     /*
2722      * Add a new mbuf with the encapsulating header
2723      */
2724     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2725     if (mb_first == NULL) {
2726 	m_freem(mb_copy);
2727 	return ENOBUFS;
2728     }
2729     mb_first->m_data += max_linkhdr;
2730     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2731     mb_first->m_next = mb_copy;
2732 
2733     mb_first->m_pkthdr.len = len + mb_first->m_len;
2734 
2735     /*
2736      * Fill in the encapsulating IP and PIM header
2737      */
2738     ip_outer = mtod(mb_first, struct ip *);
2739     *ip_outer = pim_encap_iphdr;
2740     ip_outer->ip_id = ip_newid();
2741     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2742     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2743     ip_outer->ip_dst = rt->mfc_rp;
2744     /*
2745      * Copy the inner header TOS to the outer header, and take care of the
2746      * IP_DF bit.
2747      */
2748     ip_outer->ip_tos = ip->ip_tos;
2749     if (ntohs(ip->ip_off) & IP_DF)
2750 	ip_outer->ip_off |= IP_DF;
2751     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2752 					 + sizeof(pim_encap_iphdr));
2753     *pimhdr = pim_encap_pimhdr;
2754     /* If the iif crosses a border, set the Border-bit */
2755     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2756 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2757 
2758     mb_first->m_data += sizeof(pim_encap_iphdr);
2759     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2760     mb_first->m_data -= sizeof(pim_encap_iphdr);
2761 
2762     send_packet(vifp, mb_first);
2763 
2764     /* Keep statistics */
2765     pimstat.pims_snd_registers_msgs++;
2766     pimstat.pims_snd_registers_bytes += len;
2767 
2768     return 0;
2769 }
2770 
2771 /*
2772  * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2773  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2774  * into the kernel.
2775  */
2776 static int
2777 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2778 {
2779 
2780 #ifdef DIAGNOSTIC
2781     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2782 #endif
2783     if (proto != IPPROTO_PIM)
2784 	return 0;	/* not for us; reject the datagram. */
2785 
2786     return 64;		/* claim the datagram. */
2787 }
2788 
2789 /*
2790  * PIM-SMv2 and PIM-DM messages processing.
2791  * Receives and verifies the PIM control messages, and passes them
2792  * up to the listening socket, using rip_input().
2793  * The only message with special processing is the PIM_REGISTER message
2794  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2795  * is passed to if_simloop().
2796  */
2797 void
2798 pim_input(struct mbuf *m, int off)
2799 {
2800     struct ip *ip = mtod(m, struct ip *);
2801     struct pim *pim;
2802     int minlen;
2803     int datalen = ip->ip_len;
2804     int ip_tos;
2805     int iphlen = off;
2806 
2807     /* Keep statistics */
2808     pimstat.pims_rcv_total_msgs++;
2809     pimstat.pims_rcv_total_bytes += datalen;
2810 
2811     /*
2812      * Validate lengths
2813      */
2814     if (datalen < PIM_MINLEN) {
2815 	pimstat.pims_rcv_tooshort++;
2816 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2817 	    datalen, (u_long)ip->ip_src.s_addr);
2818 	m_freem(m);
2819 	return;
2820     }
2821 
2822     /*
2823      * If the packet is at least as big as a REGISTER, go agead
2824      * and grab the PIM REGISTER header size, to avoid another
2825      * possible m_pullup() later.
2826      *
2827      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2828      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2829      */
2830     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2831     /*
2832      * Get the IP and PIM headers in contiguous memory, and
2833      * possibly the PIM REGISTER header.
2834      */
2835     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2836 	(m = m_pullup(m, minlen)) == 0) {
2837 	log(LOG_ERR, "pim_input: m_pullup failure\n");
2838 	return;
2839     }
2840     /* m_pullup() may have given us a new mbuf so reset ip. */
2841     ip = mtod(m, struct ip *);
2842     ip_tos = ip->ip_tos;
2843 
2844     /* adjust mbuf to point to the PIM header */
2845     m->m_data += iphlen;
2846     m->m_len  -= iphlen;
2847     pim = mtod(m, struct pim *);
2848 
2849     /*
2850      * Validate checksum. If PIM REGISTER, exclude the data packet.
2851      *
2852      * XXX: some older PIMv2 implementations don't make this distinction,
2853      * so for compatibility reason perform the checksum over part of the
2854      * message, and if error, then over the whole message.
2855      */
2856     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2857 	/* do nothing, checksum okay */
2858     } else if (in_cksum(m, datalen)) {
2859 	pimstat.pims_rcv_badsum++;
2860 	if (mrtdebug & DEBUG_PIM)
2861 	    log(LOG_DEBUG, "pim_input: invalid checksum");
2862 	m_freem(m);
2863 	return;
2864     }
2865 
2866     /* PIM version check */
2867     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2868 	pimstat.pims_rcv_badversion++;
2869 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2870 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2871 	m_freem(m);
2872 	return;
2873     }
2874 
2875     /* restore mbuf back to the outer IP */
2876     m->m_data -= iphlen;
2877     m->m_len  += iphlen;
2878 
2879     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2880 	/*
2881 	 * Since this is a REGISTER, we'll make a copy of the register
2882 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2883 	 * routing daemon.
2884 	 */
2885 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2886 	struct mbuf *mcp;
2887 	struct ip *encap_ip;
2888 	u_int32_t *reghdr;
2889 	struct ifnet *vifp;
2890 
2891 	VIF_LOCK();
2892 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2893 	    VIF_UNLOCK();
2894 	    if (mrtdebug & DEBUG_PIM)
2895 		log(LOG_DEBUG,
2896 		    "pim_input: register vif not set: %d\n", reg_vif_num);
2897 	    m_freem(m);
2898 	    return;
2899 	}
2900 	/* XXX need refcnt? */
2901 	vifp = viftable[reg_vif_num].v_ifp;
2902 	VIF_UNLOCK();
2903 
2904 	/*
2905 	 * Validate length
2906 	 */
2907 	if (datalen < PIM_REG_MINLEN) {
2908 	    pimstat.pims_rcv_tooshort++;
2909 	    pimstat.pims_rcv_badregisters++;
2910 	    log(LOG_ERR,
2911 		"pim_input: register packet size too small %d from %lx\n",
2912 		datalen, (u_long)ip->ip_src.s_addr);
2913 	    m_freem(m);
2914 	    return;
2915 	}
2916 
2917 	reghdr = (u_int32_t *)(pim + 1);
2918 	encap_ip = (struct ip *)(reghdr + 1);
2919 
2920 	if (mrtdebug & DEBUG_PIM) {
2921 	    log(LOG_DEBUG,
2922 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2923 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2924 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2925 		ntohs(encap_ip->ip_len));
2926 	}
2927 
2928 	/* verify the version number of the inner packet */
2929 	if (encap_ip->ip_v != IPVERSION) {
2930 	    pimstat.pims_rcv_badregisters++;
2931 	    if (mrtdebug & DEBUG_PIM) {
2932 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2933 		    "of the inner packet\n", encap_ip->ip_v);
2934 	    }
2935 	    m_freem(m);
2936 	    return;
2937 	}
2938 
2939 	/* verify the inner packet is destined to a mcast group */
2940 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2941 	    pimstat.pims_rcv_badregisters++;
2942 	    if (mrtdebug & DEBUG_PIM)
2943 		log(LOG_DEBUG,
2944 		    "pim_input: inner packet of register is not "
2945 		    "multicast %lx\n",
2946 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2947 	    m_freem(m);
2948 	    return;
2949 	}
2950 
2951 	/* If a NULL_REGISTER, pass it to the daemon */
2952 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2953 	    goto pim_input_to_daemon;
2954 
2955 	/*
2956 	 * Copy the TOS from the outer IP header to the inner IP header.
2957 	 */
2958 	if (encap_ip->ip_tos != ip_tos) {
2959 	    /* Outer TOS -> inner TOS */
2960 	    encap_ip->ip_tos = ip_tos;
2961 	    /* Recompute the inner header checksum. Sigh... */
2962 
2963 	    /* adjust mbuf to point to the inner IP header */
2964 	    m->m_data += (iphlen + PIM_MINLEN);
2965 	    m->m_len  -= (iphlen + PIM_MINLEN);
2966 
2967 	    encap_ip->ip_sum = 0;
2968 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2969 
2970 	    /* restore mbuf to point back to the outer IP header */
2971 	    m->m_data -= (iphlen + PIM_MINLEN);
2972 	    m->m_len  += (iphlen + PIM_MINLEN);
2973 	}
2974 
2975 	/*
2976 	 * Decapsulate the inner IP packet and loopback to forward it
2977 	 * as a normal multicast packet. Also, make a copy of the
2978 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2979 	 * to pass to the daemon later, so it can take the appropriate
2980 	 * actions (e.g., send back PIM_REGISTER_STOP).
2981 	 * XXX: here m->m_data points to the outer IP header.
2982 	 */
2983 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2984 	if (mcp == NULL) {
2985 	    log(LOG_ERR,
2986 		"pim_input: pim register: could not copy register head\n");
2987 	    m_freem(m);
2988 	    return;
2989 	}
2990 
2991 	/* Keep statistics */
2992 	/* XXX: registers_bytes include only the encap. mcast pkt */
2993 	pimstat.pims_rcv_registers_msgs++;
2994 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2995 
2996 	/*
2997 	 * forward the inner ip packet; point m_data at the inner ip.
2998 	 */
2999 	m_adj(m, iphlen + PIM_MINLEN);
3000 
3001 	if (mrtdebug & DEBUG_PIM) {
3002 	    log(LOG_DEBUG,
3003 		"pim_input: forwarding decapsulated register: "
3004 		"src %lx, dst %lx, vif %d\n",
3005 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3006 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3007 		reg_vif_num);
3008 	}
3009 	/* NB: vifp was collected above; can it change on us? */
3010 	if_simloop(vifp, m, dst.sin_family, 0);
3011 
3012 	/* prepare the register head to send to the mrouting daemon */
3013 	m = mcp;
3014     }
3015 
3016 pim_input_to_daemon:
3017     /*
3018      * Pass the PIM message up to the daemon; if it is a Register message,
3019      * pass the 'head' only up to the daemon. This includes the
3020      * outer IP header, PIM header, PIM-Register header and the
3021      * inner IP header.
3022      * XXX: the outer IP header pkt size of a Register is not adjust to
3023      * reflect the fact that the inner multicast data is truncated.
3024      */
3025     rip_input(m, iphlen);
3026 
3027     return;
3028 }
3029 
3030 /*
3031  * XXX: This is common code for dealing with initialization for both
3032  * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3033  */
3034 static int
3035 ip_mroute_modevent(module_t mod, int type, void *unused)
3036 {
3037     switch (type) {
3038     case MOD_LOAD:
3039 	MROUTER_LOCK_INIT();
3040 	MFC_LOCK_INIT();
3041 	VIF_LOCK_INIT();
3042 	ip_mrouter_reset();
3043 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3044 	    &pim_squelch_wholepkt);
3045 
3046 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3047 	    pim_encapcheck, &in_pim_protosw, NULL);
3048 	if (pim_encap_cookie == NULL) {
3049 		printf("ip_mroute: unable to attach pim encap\n");
3050 		VIF_LOCK_DESTROY();
3051 		MFC_LOCK_DESTROY();
3052 		MROUTER_LOCK_DESTROY();
3053 		return (EINVAL);
3054 	}
3055 
3056 #ifdef INET6
3057 	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3058 	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3059 	if (pim6_encap_cookie == NULL) {
3060 		printf("ip_mroute: unable to attach pim6 encap\n");
3061 		if (pim_encap_cookie) {
3062 		    encap_detach(pim_encap_cookie);
3063 		    pim_encap_cookie = NULL;
3064 		}
3065 		VIF_LOCK_DESTROY();
3066 		MFC_LOCK_DESTROY();
3067 		MROUTER_LOCK_DESTROY();
3068 		return (EINVAL);
3069 	}
3070 #endif
3071 
3072 	ip_mcast_src = X_ip_mcast_src;
3073 	ip_mforward = X_ip_mforward;
3074 	ip_mrouter_done = X_ip_mrouter_done;
3075 	ip_mrouter_get = X_ip_mrouter_get;
3076 	ip_mrouter_set = X_ip_mrouter_set;
3077 
3078 #ifdef INET6
3079 	ip6_mforward = X_ip6_mforward;
3080 	ip6_mrouter_done = X_ip6_mrouter_done;
3081 	ip6_mrouter_get = X_ip6_mrouter_get;
3082 	ip6_mrouter_set = X_ip6_mrouter_set;
3083 	mrt6_ioctl = X_mrt6_ioctl;
3084 #endif
3085 
3086 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3087 	ip_rsvp_vif = X_ip_rsvp_vif;
3088 
3089 	legal_vif_num = X_legal_vif_num;
3090 	mrt_ioctl = X_mrt_ioctl;
3091 	rsvp_input_p = X_rsvp_input;
3092 	break;
3093 
3094     case MOD_UNLOAD:
3095 	/*
3096 	 * Typically module unload happens after the user-level
3097 	 * process has shutdown the kernel services (the check
3098 	 * below insures someone can't just yank the module out
3099 	 * from under a running process).  But if the module is
3100 	 * just loaded and then unloaded w/o starting up a user
3101 	 * process we still need to cleanup.
3102 	 */
3103 	if (ip_mrouter
3104 #ifdef INET6
3105 	    || ip6_mrouter
3106 #endif
3107 	)
3108 	    return EINVAL;
3109 
3110 #ifdef INET6
3111 	if (pim6_encap_cookie) {
3112 	    encap_detach(pim6_encap_cookie);
3113 	    pim6_encap_cookie = NULL;
3114 	}
3115 	X_ip6_mrouter_done();
3116 	ip6_mforward = NULL;
3117 	ip6_mrouter_done = NULL;
3118 	ip6_mrouter_get = NULL;
3119 	ip6_mrouter_set = NULL;
3120 	mrt6_ioctl = NULL;
3121 #endif
3122 
3123 	if (pim_encap_cookie) {
3124 	    encap_detach(pim_encap_cookie);
3125 	    pim_encap_cookie = NULL;
3126 	}
3127 	X_ip_mrouter_done();
3128 	ip_mcast_src = NULL;
3129 	ip_mforward = NULL;
3130 	ip_mrouter_done = NULL;
3131 	ip_mrouter_get = NULL;
3132 	ip_mrouter_set = NULL;
3133 
3134 	ip_rsvp_force_done = NULL;
3135 	ip_rsvp_vif = NULL;
3136 
3137 	legal_vif_num = NULL;
3138 	mrt_ioctl = NULL;
3139 	rsvp_input_p = NULL;
3140 
3141 	VIF_LOCK_DESTROY();
3142 	MFC_LOCK_DESTROY();
3143 	MROUTER_LOCK_DESTROY();
3144 	break;
3145 
3146     default:
3147 	return EOPNOTSUPP;
3148     }
3149     return 0;
3150 }
3151 
3152 static moduledata_t ip_mroutemod = {
3153     "ip_mroute",
3154     ip_mroute_modevent,
3155     0
3156 };
3157 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3158