xref: /freebsd/sys/netinet/ip_mroute.c (revision 2ad872c5794e4c26fdf6ed219ad3f09ca0d5304a)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $Id: ip_mroute.c,v 1.50 1998/12/07 21:58:41 archie Exp $
13  */
14 
15 #include "opt_mrouting.h"
16 
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/time.h>
24 #include <sys/kernel.h>
25 #include <sys/sockio.h>
26 #include <sys/syslog.h>
27 #include <net/if.h>
28 #include <net/route.h>
29 #include <netinet/in.h>
30 #include <netinet/in_systm.h>
31 #include <netinet/ip.h>
32 #include <netinet/ip_var.h>
33 #include <netinet/in_var.h>
34 #include <netinet/igmp.h>
35 #include <netinet/ip_mroute.h>
36 #include <netinet/udp.h>
37 
38 #ifndef NTOHL
39 #if BYTE_ORDER != BIG_ENDIAN
40 #define NTOHL(d) ((d) = ntohl((d)))
41 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
42 #define HTONL(d) ((d) = htonl((d)))
43 #define HTONS(d) ((d) = htons((u_short)(d)))
44 #else
45 #define NTOHL(d)
46 #define NTOHS(d)
47 #define HTONL(d)
48 #define HTONS(d)
49 #endif
50 #endif
51 
52 #ifndef MROUTING
53 extern u_long	_ip_mcast_src __P((int vifi));
54 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
55 				  struct mbuf *m, struct ip_moptions *imo));
56 extern int	_ip_mrouter_done __P((void));
57 extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
58 extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
59 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
60 
61 /*
62  * Dummy routines and globals used when multicast routing is not compiled in.
63  */
64 
65 struct socket  *ip_mrouter  = NULL;
66 static u_int		ip_mrtproto = 0;
67 static struct mrtstat	mrtstat;
68 u_int		rsvpdebug = 0;
69 
70 int
71 _ip_mrouter_set(so, sopt)
72 	struct socket *so;
73 	struct sockopt *sopt;
74 {
75 	return(EOPNOTSUPP);
76 }
77 
78 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
79 
80 
81 int
82 _ip_mrouter_get(so, sopt)
83 	struct socket *so;
84 	struct sockopt *sopt;
85 {
86 	return(EOPNOTSUPP);
87 }
88 
89 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
90 
91 int
92 _ip_mrouter_done()
93 {
94 	return(0);
95 }
96 
97 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
98 
99 int
100 _ip_mforward(ip, ifp, m, imo)
101 	struct ip *ip;
102 	struct ifnet *ifp;
103 	struct mbuf *m;
104 	struct ip_moptions *imo;
105 {
106 	return(0);
107 }
108 
109 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
110 		   struct ip_moptions *) = _ip_mforward;
111 
112 int
113 _mrt_ioctl(int req, caddr_t data, struct proc *p)
114 {
115 	return EOPNOTSUPP;
116 }
117 
118 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
119 
120 void
121 rsvp_input(m, iphlen)		/* XXX must fixup manually */
122 	struct mbuf *m;
123 	int iphlen;
124 {
125     /* Can still get packets with rsvp_on = 0 if there is a local member
126      * of the group to which the RSVP packet is addressed.  But in this
127      * case we want to throw the packet away.
128      */
129     if (!rsvp_on) {
130 	m_freem(m);
131 	return;
132     }
133 
134     if (ip_rsvpd != NULL) {
135 	if (rsvpdebug)
136 	    printf("rsvp_input: Sending packet up old-style socket\n");
137 	rip_input(m, iphlen);
138 	return;
139     }
140     /* Drop the packet */
141     m_freem(m);
142 }
143 
144 void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
145 	rip_input(m, iphlen);
146 }
147 
148 int (*legal_vif_num)(int) = 0;
149 
150 /*
151  * This should never be called, since IP_MULTICAST_VIF should fail, but
152  * just in case it does get called, the code a little lower in ip_output
153  * will assign the packet a local address.
154  */
155 u_long
156 _ip_mcast_src(int vifi) { return INADDR_ANY; }
157 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
158 
159 int
160 ip_rsvp_vif_init(so, sopt)
161     struct socket *so;
162     struct sockopt *sopt;
163 {
164     return(EINVAL);
165 }
166 
167 int
168 ip_rsvp_vif_done(so, sopt)
169     struct socket *so;
170     struct sockopt *sopt;
171 {
172     return(EINVAL);
173 }
174 
175 void
176 ip_rsvp_force_done(so)
177     struct socket *so;
178 {
179     return;
180 }
181 
182 #else /* MROUTING */
183 
184 #define M_HASCL(m)	((m)->m_flags & M_EXT)
185 
186 #define INSIZ		sizeof(struct in_addr)
187 #define	same(a1, a2) \
188 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
189 
190 #define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
191 
192 /*
193  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
194  * except for netstat or debugging purposes.
195  */
196 #ifndef MROUTE_LKM
197 struct socket  *ip_mrouter  = NULL;
198 static struct mrtstat	mrtstat;
199 
200 static int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
201 #else /* MROUTE_LKM */
202 extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
203 extern struct mrtstat mrtstat;
204 static int ip_mrtproto;
205 #endif
206 
207 #define NO_RTE_FOUND 	0x1
208 #define RTE_FOUND	0x2
209 
210 static struct mbuf    *mfctable[MFCTBLSIZ];
211 static u_char		nexpire[MFCTBLSIZ];
212 static struct vif	viftable[MAXVIFS];
213 static u_int	mrtdebug = 0;	  /* debug level 	*/
214 #define		DEBUG_MFC	0x02
215 #define		DEBUG_FORWARD	0x04
216 #define		DEBUG_EXPIRE	0x08
217 #define		DEBUG_XMIT	0x10
218 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
219 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
220 
221 static struct callout_handle expire_upcalls_ch;
222 
223 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
224 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
225 
226 /*
227  * Define the token bucket filter structures
228  * tbftable -> each vif has one of these for storing info
229  */
230 
231 static struct tbf tbftable[MAXVIFS];
232 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
233 
234 /*
235  * 'Interfaces' associated with decapsulator (so we can tell
236  * packets that went through it from ones that get reflected
237  * by a broken gateway).  These interfaces are never linked into
238  * the system ifnet list & no routes point to them.  I.e., packets
239  * can't be sent this way.  They only exist as a placeholder for
240  * multicast source verification.
241  */
242 static struct ifnet multicast_decap_if[MAXVIFS];
243 
244 #define ENCAP_TTL 64
245 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
246 
247 /* prototype IP hdr for encapsulated packets */
248 static struct ip multicast_encap_iphdr = {
249 #if BYTE_ORDER == LITTLE_ENDIAN
250 	sizeof(struct ip) >> 2, IPVERSION,
251 #else
252 	IPVERSION, sizeof(struct ip) >> 2,
253 #endif
254 	0,				/* tos */
255 	sizeof(struct ip),		/* total length */
256 	0,				/* id */
257 	0,				/* frag offset */
258 	ENCAP_TTL, ENCAP_PROTO,
259 	0,				/* checksum */
260 };
261 
262 /*
263  * Private variables.
264  */
265 static vifi_t	   numvifs = 0;
266 static int have_encap_tunnel = 0;
267 
268 /*
269  * one-back cache used by ipip_input to locate a tunnel's vif
270  * given a datagram's src ip address.
271  */
272 static u_long last_encap_src;
273 static struct vif *last_encap_vif;
274 
275 static u_long	X_ip_mcast_src __P((int vifi));
276 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
277 static int	X_ip_mrouter_done __P((void));
278 static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
279 static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
280 static int	X_legal_vif_num __P((int vif));
281 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
282 
283 static int get_sg_cnt(struct sioc_sg_req *);
284 static int get_vif_cnt(struct sioc_vif_req *);
285 static int ip_mrouter_init(struct socket *, int);
286 static int add_vif(struct vifctl *);
287 static int del_vif(vifi_t);
288 static int add_mfc(struct mfcctl *);
289 static int del_mfc(struct mfcctl *);
290 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
291 static int set_assert(int);
292 static void expire_upcalls(void *);
293 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
294 		  vifi_t);
295 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
296 static void encap_send(struct ip *, struct vif *, struct mbuf *);
297 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
298 static void tbf_queue(struct vif *, struct mbuf *);
299 static void tbf_process_q(struct vif *);
300 static void tbf_reprocess_q(void *);
301 static int tbf_dq_sel(struct vif *, struct ip *);
302 static void tbf_send_packet(struct vif *, struct mbuf *);
303 static void tbf_update_tokens(struct vif *);
304 static int priority(struct vif *, struct ip *);
305 void multiencap_decap(struct mbuf *);
306 
307 /*
308  * whether or not special PIM assert processing is enabled.
309  */
310 static int pim_assert;
311 /*
312  * Rate limit for assert notification messages, in usec
313  */
314 #define ASSERT_MSG_TIME		3000000
315 
316 /*
317  * Hash function for a source, group entry
318  */
319 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
320 			((g) >> 20) ^ ((g) >> 10) ^ (g))
321 
322 /*
323  * Find a route for a given origin IP address and Multicast group address
324  * Type of service parameter to be added in the future!!!
325  */
326 
327 #define MFCFIND(o, g, rt) { \
328 	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
329 	register struct mfc *_rt = NULL; \
330 	rt = NULL; \
331 	++mrtstat.mrts_mfc_lookups; \
332 	while (_mb_rt) { \
333 		_rt = mtod(_mb_rt, struct mfc *); \
334 		if ((_rt->mfc_origin.s_addr == o) && \
335 		    (_rt->mfc_mcastgrp.s_addr == g) && \
336 		    (_mb_rt->m_act == NULL)) { \
337 			rt = _rt; \
338 			break; \
339 		} \
340 		_mb_rt = _mb_rt->m_next; \
341 	} \
342 	if (rt == NULL) { \
343 		++mrtstat.mrts_mfc_misses; \
344 	} \
345 }
346 
347 
348 /*
349  * Macros to compute elapsed time efficiently
350  * Borrowed from Van Jacobson's scheduling code
351  */
352 #define TV_DELTA(a, b, delta) { \
353 	    register int xxs; \
354 		\
355 	    delta = (a).tv_usec - (b).tv_usec; \
356 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
357 	       switch (xxs) { \
358 		      case 2: \
359 			  delta += 1000000; \
360 			      /* fall through */ \
361 		      case 1: \
362 			  delta += 1000000; \
363 			  break; \
364 		      default: \
365 			  delta += (1000000 * xxs); \
366 	       } \
367 	    } \
368 }
369 
370 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
371 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
372 
373 #ifdef UPCALL_TIMING
374 u_long upcall_data[51];
375 static void collate(struct timeval *);
376 #endif /* UPCALL_TIMING */
377 
378 
379 /*
380  * Handle MRT setsockopt commands to modify the multicast routing tables.
381  */
382 static int
383 X_ip_mrouter_set(so, sopt)
384 	struct socket *so;
385 	struct sockopt *sopt;
386 {
387 	int	error, optval;
388 	vifi_t	vifi;
389 	struct	vifctl vifc;
390 	struct	mfcctl mfc;
391 
392 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
393 		return (EPERM);
394 
395 	error = 0;
396 	switch (sopt->sopt_name) {
397 	case MRT_INIT:
398 		error = sooptcopyin(sopt, &optval, sizeof optval,
399 				    sizeof optval);
400 		if (error)
401 			break;
402 		error = ip_mrouter_init(so, optval);
403 		break;
404 
405 	case MRT_DONE:
406 		error = ip_mrouter_done();
407 		break;
408 
409 	case MRT_ADD_VIF:
410 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
411 		if (error)
412 			break;
413 		error = add_vif(&vifc);
414 		break;
415 
416 	case MRT_DEL_VIF:
417 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
418 		if (error)
419 			break;
420 		error = del_vif(vifi);
421 		break;
422 
423 	case MRT_ADD_MFC:
424 	case MRT_DEL_MFC:
425 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
426 		if (error)
427 			break;
428 		if (sopt->sopt_name == MRT_ADD_MFC)
429 			error = add_mfc(&mfc);
430 		else
431 			error = del_mfc(&mfc);
432 		break;
433 
434 	case MRT_ASSERT:
435 		error = sooptcopyin(sopt, &optval, sizeof optval,
436 				    sizeof optval);
437 		if (error)
438 			break;
439 		set_assert(optval);
440 		break;
441 
442 	default:
443 		error = EOPNOTSUPP;
444 		break;
445 	}
446 	return (error);
447 }
448 
449 #ifndef MROUTE_LKM
450 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
451 #endif
452 
453 /*
454  * Handle MRT getsockopt commands
455  */
456 static int
457 X_ip_mrouter_get(so, sopt)
458 	struct socket *so;
459 	struct sockopt *sopt;
460 {
461 	int error;
462 	static int version = 0x0305; /* !!! why is this here? XXX */
463 
464 	switch (sopt->sopt_name) {
465 	case MRT_VERSION:
466 		error = sooptcopyout(sopt, &version, sizeof version);
467 		break;
468 
469 	case MRT_ASSERT:
470 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
471 		break;
472 	default:
473 		error = EOPNOTSUPP;
474 		break;
475 	}
476 	return (error);
477 }
478 
479 #ifndef MROUTE_LKM
480 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
481 #endif
482 
483 /*
484  * Handle ioctl commands to obtain information from the cache
485  */
486 static int
487 X_mrt_ioctl(cmd, data)
488     int cmd;
489     caddr_t data;
490 {
491     int error = 0;
492 
493     switch (cmd) {
494 	case (SIOCGETVIFCNT):
495 	    return (get_vif_cnt((struct sioc_vif_req *)data));
496 	    break;
497 	case (SIOCGETSGCNT):
498 	    return (get_sg_cnt((struct sioc_sg_req *)data));
499 	    break;
500 	default:
501 	    return (EINVAL);
502 	    break;
503     }
504     return error;
505 }
506 
507 #ifndef MROUTE_LKM
508 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
509 #endif
510 
511 /*
512  * returns the packet, byte, rpf-failure count for the source group provided
513  */
514 static int
515 get_sg_cnt(req)
516     register struct sioc_sg_req *req;
517 {
518     register struct mfc *rt;
519     int s;
520 
521     s = splnet();
522     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
523     splx(s);
524     if (rt != NULL) {
525 	req->pktcnt = rt->mfc_pkt_cnt;
526 	req->bytecnt = rt->mfc_byte_cnt;
527 	req->wrong_if = rt->mfc_wrong_if;
528     } else
529 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
530 
531     return 0;
532 }
533 
534 /*
535  * returns the input and output packet and byte counts on the vif provided
536  */
537 static int
538 get_vif_cnt(req)
539     register struct sioc_vif_req *req;
540 {
541     register vifi_t vifi = req->vifi;
542 
543     if (vifi >= numvifs) return EINVAL;
544 
545     req->icount = viftable[vifi].v_pkt_in;
546     req->ocount = viftable[vifi].v_pkt_out;
547     req->ibytes = viftable[vifi].v_bytes_in;
548     req->obytes = viftable[vifi].v_bytes_out;
549 
550     return 0;
551 }
552 
553 /*
554  * Enable multicast routing
555  */
556 static int
557 ip_mrouter_init(so, version)
558 	struct socket *so;
559 	int version;
560 {
561     if (mrtdebug)
562 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
563 		so->so_type, so->so_proto->pr_protocol);
564 
565     if (so->so_type != SOCK_RAW ||
566 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
567 
568     if (version != 1)
569 	return ENOPROTOOPT;
570 
571     if (ip_mrouter != NULL) return EADDRINUSE;
572 
573     ip_mrouter = so;
574 
575     bzero((caddr_t)mfctable, sizeof(mfctable));
576     bzero((caddr_t)nexpire, sizeof(nexpire));
577 
578     pim_assert = 0;
579 
580     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
581 
582     if (mrtdebug)
583 	log(LOG_DEBUG, "ip_mrouter_init\n");
584 
585     return 0;
586 }
587 
588 /*
589  * Disable multicast routing
590  */
591 static int
592 X_ip_mrouter_done()
593 {
594     vifi_t vifi;
595     int i;
596     struct ifnet *ifp;
597     struct ifreq ifr;
598     struct mbuf *mb_rt;
599     struct mbuf *m;
600     struct rtdetq *rte;
601     int s;
602 
603     s = splnet();
604 
605     /*
606      * For each phyint in use, disable promiscuous reception of all IP
607      * multicasts.
608      */
609     for (vifi = 0; vifi < numvifs; vifi++) {
610 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
611 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
612 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
613 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
614 								= INADDR_ANY;
615 	    ifp = viftable[vifi].v_ifp;
616 	    if_allmulti(ifp, 0);
617 	}
618     }
619     bzero((caddr_t)tbftable, sizeof(tbftable));
620     bzero((caddr_t)viftable, sizeof(viftable));
621     numvifs = 0;
622     pim_assert = 0;
623 
624     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
625 
626     /*
627      * Free all multicast forwarding cache entries.
628      */
629     for (i = 0; i < MFCTBLSIZ; i++) {
630 	mb_rt = mfctable[i];
631 	while (mb_rt) {
632 	    if (mb_rt->m_act != NULL) {
633 		while (mb_rt->m_act) {
634 		    m = mb_rt->m_act;
635 		    mb_rt->m_act = m->m_act;
636 		    rte = mtod(m, struct rtdetq *);
637 		    m_freem(rte->m);
638 		    m_free(m);
639 		}
640 	    }
641 	    mb_rt = m_free(mb_rt);
642 	}
643     }
644 
645     bzero((caddr_t)mfctable, sizeof(mfctable));
646 
647     /*
648      * Reset de-encapsulation cache
649      */
650     last_encap_src = 0;
651     last_encap_vif = NULL;
652     have_encap_tunnel = 0;
653 
654     ip_mrouter = NULL;
655 
656     splx(s);
657 
658     if (mrtdebug)
659 	log(LOG_DEBUG, "ip_mrouter_done\n");
660 
661     return 0;
662 }
663 
664 #ifndef MROUTE_LKM
665 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
666 #endif
667 
668 /*
669  * Set PIM assert processing global
670  */
671 static int
672 set_assert(i)
673 	int i;
674 {
675     if ((i != 1) && (i != 0))
676 	return EINVAL;
677 
678     pim_assert = i;
679 
680     return 0;
681 }
682 
683 /*
684  * Add a vif to the vif table
685  */
686 static int
687 add_vif(vifcp)
688     register struct vifctl *vifcp;
689 {
690     register struct vif *vifp = viftable + vifcp->vifc_vifi;
691     static struct sockaddr_in sin = {sizeof sin, AF_INET};
692     struct ifaddr *ifa;
693     struct ifnet *ifp;
694     int error, s;
695     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
696 
697     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
698     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
699 
700     /* Find the interface with an address in AF_INET family */
701     sin.sin_addr = vifcp->vifc_lcl_addr;
702     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
703     if (ifa == 0) return EADDRNOTAVAIL;
704     ifp = ifa->ifa_ifp;
705 
706     if (vifcp->vifc_flags & VIFF_TUNNEL) {
707 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
708 		/*
709 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
710 		 * start paying attention to encapsulated packets.
711 		 */
712 		if (have_encap_tunnel == 0) {
713 			have_encap_tunnel = 1;
714 			for (s = 0; s < MAXVIFS; ++s) {
715 				multicast_decap_if[s].if_name = "mdecap";
716 				multicast_decap_if[s].if_unit = s;
717 			}
718 		}
719 		/*
720 		 * Set interface to fake encapsulator interface
721 		 */
722 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
723 		/*
724 		 * Prepare cached route entry
725 		 */
726 		bzero(&vifp->v_route, sizeof(vifp->v_route));
727 	} else {
728 	    log(LOG_ERR, "source routed tunnels not supported\n");
729 	    return EOPNOTSUPP;
730 	}
731     } else {
732 	/* Make sure the interface supports multicast */
733 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
734 	    return EOPNOTSUPP;
735 
736 	/* Enable promiscuous reception of all IP multicasts from the if */
737 	s = splnet();
738 	error = if_allmulti(ifp, 1);
739 	splx(s);
740 	if (error)
741 	    return error;
742     }
743 
744     s = splnet();
745     /* define parameters for the tbf structure */
746     vifp->v_tbf = v_tbf;
747     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
748     vifp->v_tbf->tbf_n_tok = 0;
749     vifp->v_tbf->tbf_q_len = 0;
750     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
751     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
752 
753     vifp->v_flags     = vifcp->vifc_flags;
754     vifp->v_threshold = vifcp->vifc_threshold;
755     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
756     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
757     vifp->v_ifp       = ifp;
758     /* scaling up here allows division by 1024 in critical code */
759     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
760     vifp->v_rsvp_on   = 0;
761     vifp->v_rsvpd     = NULL;
762     /* initialize per vif pkt counters */
763     vifp->v_pkt_in    = 0;
764     vifp->v_pkt_out   = 0;
765     vifp->v_bytes_in  = 0;
766     vifp->v_bytes_out = 0;
767     splx(s);
768 
769     /* Adjust numvifs up if the vifi is higher than numvifs */
770     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
771 
772     if (mrtdebug)
773 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
774 	    vifcp->vifc_vifi,
775 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
776 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
777 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
778 	    vifcp->vifc_threshold,
779 	    vifcp->vifc_rate_limit);
780 
781     return 0;
782 }
783 
784 /*
785  * Delete a vif from the vif table
786  */
787 static int
788 del_vif(vifi)
789 	vifi_t vifi;
790 {
791     register struct vif *vifp = &viftable[vifi];
792     register struct mbuf *m;
793     struct ifnet *ifp;
794     struct ifreq ifr;
795     int s;
796 
797     if (vifi >= numvifs) return EINVAL;
798     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
799 
800     s = splnet();
801 
802     if (!(vifp->v_flags & VIFF_TUNNEL)) {
803 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
804 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
805 	ifp = vifp->v_ifp;
806 	if_allmulti(ifp, 0);
807     }
808 
809     if (vifp == last_encap_vif) {
810 	last_encap_vif = 0;
811 	last_encap_src = 0;
812     }
813 
814     /*
815      * Free packets queued at the interface
816      */
817     while (vifp->v_tbf->tbf_q) {
818 	m = vifp->v_tbf->tbf_q;
819 	vifp->v_tbf->tbf_q = m->m_act;
820 	m_freem(m);
821     }
822 
823     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
824     bzero((caddr_t)vifp, sizeof (*vifp));
825 
826     if (mrtdebug)
827       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
828 
829     /* Adjust numvifs down */
830     for (vifi = numvifs; vifi > 0; vifi--)
831 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
832     numvifs = vifi;
833 
834     splx(s);
835 
836     return 0;
837 }
838 
839 /*
840  * Add an mfc entry
841  */
842 static int
843 add_mfc(mfccp)
844     struct mfcctl *mfccp;
845 {
846     struct mfc *rt;
847     register struct mbuf *mb_rt;
848     u_long hash;
849     struct mbuf *mb_ntry;
850     struct rtdetq *rte;
851     register u_short nstl;
852     int s;
853     int i;
854 
855     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
856 
857     /* If an entry already exists, just update the fields */
858     if (rt) {
859 	if (mrtdebug & DEBUG_MFC)
860 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
861 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
862 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
863 		mfccp->mfcc_parent);
864 
865 	s = splnet();
866 	rt->mfc_parent = mfccp->mfcc_parent;
867 	for (i = 0; i < numvifs; i++)
868 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
869 	splx(s);
870 	return 0;
871     }
872 
873     /*
874      * Find the entry for which the upcall was made and update
875      */
876     s = splnet();
877     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
878     for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
879 
880 	rt = mtod(mb_rt, struct mfc *);
881 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
882 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
883 	    (mb_rt->m_act != NULL)) {
884 
885 	    if (nstl++)
886 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
887 		    "multiple kernel entries",
888 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
889 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
890 		    mfccp->mfcc_parent, (void *)mb_rt->m_act);
891 
892 	    if (mrtdebug & DEBUG_MFC)
893 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
894 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
895 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
896 		    mfccp->mfcc_parent, (void *)mb_rt->m_act);
897 
898 	    rt->mfc_origin     = mfccp->mfcc_origin;
899 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
900 	    rt->mfc_parent     = mfccp->mfcc_parent;
901 	    for (i = 0; i < numvifs; i++)
902 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
903 	    /* initialize pkt counters per src-grp */
904 	    rt->mfc_pkt_cnt    = 0;
905 	    rt->mfc_byte_cnt   = 0;
906 	    rt->mfc_wrong_if   = 0;
907 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
908 
909 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
910 	    nexpire[hash]--;
911 
912 	    /* free packets Qed at the end of this entry */
913 	    while (mb_rt->m_act) {
914 		mb_ntry = mb_rt->m_act;
915 		rte = mtod(mb_ntry, struct rtdetq *);
916 /* #ifdef RSVP_ISI */
917 		ip_mdq(rte->m, rte->ifp, rt, -1);
918 /* #endif */
919 		mb_rt->m_act = mb_ntry->m_act;
920 		m_freem(rte->m);
921 #ifdef UPCALL_TIMING
922 		collate(&(rte->t));
923 #endif /* UPCALL_TIMING */
924 		m_free(mb_ntry);
925 	    }
926 	}
927     }
928 
929     /*
930      * It is possible that an entry is being inserted without an upcall
931      */
932     if (nstl == 0) {
933 	if (mrtdebug & DEBUG_MFC)
934 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
935 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
936 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
937 		mfccp->mfcc_parent);
938 
939 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
940 
941 	    rt = mtod(mb_rt, struct mfc *);
942 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
943 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
944 
945 		rt->mfc_origin     = mfccp->mfcc_origin;
946 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
947 		rt->mfc_parent     = mfccp->mfcc_parent;
948 		for (i = 0; i < numvifs; i++)
949 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
950 		/* initialize pkt counters per src-grp */
951 		rt->mfc_pkt_cnt    = 0;
952 		rt->mfc_byte_cnt   = 0;
953 		rt->mfc_wrong_if   = 0;
954 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
955 		if (rt->mfc_expire)
956 		    nexpire[hash]--;
957 		rt->mfc_expire	   = 0;
958 	    }
959 	}
960 	if (mb_rt == NULL) {
961 	    /* no upcall, so make a new entry */
962 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
963 	    if (mb_rt == NULL) {
964 		splx(s);
965 		return ENOBUFS;
966 	    }
967 
968 	    rt = mtod(mb_rt, struct mfc *);
969 
970 	    /* insert new entry at head of hash chain */
971 	    rt->mfc_origin     = mfccp->mfcc_origin;
972 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
973 	    rt->mfc_parent     = mfccp->mfcc_parent;
974 	    for (i = 0; i < numvifs; i++)
975 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
976 	    /* initialize pkt counters per src-grp */
977 	    rt->mfc_pkt_cnt    = 0;
978 	    rt->mfc_byte_cnt   = 0;
979 	    rt->mfc_wrong_if   = 0;
980 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
981 	    rt->mfc_expire     = 0;
982 
983 	    /* link into table */
984 	    mb_rt->m_next  = mfctable[hash];
985 	    mfctable[hash] = mb_rt;
986 	    mb_rt->m_act = NULL;
987 	}
988     }
989     splx(s);
990     return 0;
991 }
992 
993 #ifdef UPCALL_TIMING
994 /*
995  * collect delay statistics on the upcalls
996  */
997 static void collate(t)
998 register struct timeval *t;
999 {
1000     register u_long d;
1001     register struct timeval tp;
1002     register u_long delta;
1003 
1004     GET_TIME(tp);
1005 
1006     if (TV_LT(*t, tp))
1007     {
1008 	TV_DELTA(tp, *t, delta);
1009 
1010 	d = delta >> 10;
1011 	if (d > 50)
1012 	    d = 50;
1013 
1014 	++upcall_data[d];
1015     }
1016 }
1017 #endif /* UPCALL_TIMING */
1018 
1019 /*
1020  * Delete an mfc entry
1021  */
1022 static int
1023 del_mfc(mfccp)
1024     struct mfcctl *mfccp;
1025 {
1026     struct in_addr 	origin;
1027     struct in_addr 	mcastgrp;
1028     struct mfc 		*rt;
1029     struct mbuf 	*mb_rt;
1030     struct mbuf 	**nptr;
1031     u_long 		hash;
1032     int s;
1033 
1034     origin = mfccp->mfcc_origin;
1035     mcastgrp = mfccp->mfcc_mcastgrp;
1036     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1037 
1038     if (mrtdebug & DEBUG_MFC)
1039 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1040 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1041 
1042     s = splnet();
1043 
1044     nptr = &mfctable[hash];
1045     while ((mb_rt = *nptr) != NULL) {
1046         rt = mtod(mb_rt, struct mfc *);
1047 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1048 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1049 	    mb_rt->m_act == NULL)
1050 	    break;
1051 
1052 	nptr = &mb_rt->m_next;
1053     }
1054     if (mb_rt == NULL) {
1055 	splx(s);
1056 	return EADDRNOTAVAIL;
1057     }
1058 
1059     MFREE(mb_rt, *nptr);
1060 
1061     splx(s);
1062 
1063     return 0;
1064 }
1065 
1066 /*
1067  * Send a message to mrouted on the multicast routing socket
1068  */
1069 static int
1070 socket_send(s, mm, src)
1071 	struct socket *s;
1072 	struct mbuf *mm;
1073 	struct sockaddr_in *src;
1074 {
1075 	if (s) {
1076 		if (sbappendaddr(&s->so_rcv,
1077 				 (struct sockaddr *)src,
1078 				 mm, (struct mbuf *)0) != 0) {
1079 			sorwakeup(s);
1080 			return 0;
1081 		}
1082 	}
1083 	m_freem(mm);
1084 	return -1;
1085 }
1086 
1087 /*
1088  * IP multicast forwarding function. This function assumes that the packet
1089  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1090  * pointed to by "ifp", and the packet is to be relayed to other networks
1091  * that have members of the packet's destination IP multicast group.
1092  *
1093  * The packet is returned unscathed to the caller, unless it is
1094  * erroneous, in which case a non-zero return value tells the caller to
1095  * discard it.
1096  */
1097 
1098 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1099 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1100 
1101 static int
1102 X_ip_mforward(ip, ifp, m, imo)
1103     register struct ip *ip;
1104     struct ifnet *ifp;
1105     struct mbuf *m;
1106     struct ip_moptions *imo;
1107 {
1108     register struct mfc *rt;
1109     register u_char *ipoptions;
1110     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1111     static int srctun = 0;
1112     register struct mbuf *mm;
1113     int s;
1114     vifi_t vifi;
1115     struct vif *vifp;
1116 
1117     if (mrtdebug & DEBUG_FORWARD)
1118 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1119 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1120 	    (void *)ifp);
1121 
1122     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1123 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1124 	/*
1125 	 * Packet arrived via a physical interface or
1126 	 * an encapsulated tunnel.
1127 	 */
1128     } else {
1129 	/*
1130 	 * Packet arrived through a source-route tunnel.
1131 	 * Source-route tunnels are no longer supported.
1132 	 */
1133 	if ((srctun++ % 1000) == 0)
1134 	    log(LOG_ERR,
1135 		"ip_mforward: received source-routed packet from %lx\n",
1136 		(u_long)ntohl(ip->ip_src.s_addr));
1137 
1138 	return 1;
1139     }
1140 
1141     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1142 	if (ip->ip_ttl < 255)
1143 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1144 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1145 	    vifp = viftable + vifi;
1146 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1147 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1148 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1149 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1150 	}
1151 	return (ip_mdq(m, ifp, NULL, vifi));
1152     }
1153     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1154 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1155 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1156 	if(!imo)
1157 		printf("In fact, no options were specified at all\n");
1158     }
1159 
1160     /*
1161      * Don't forward a packet with time-to-live of zero or one,
1162      * or a packet destined to a local-only group.
1163      */
1164     if (ip->ip_ttl <= 1 ||
1165 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1166 	return 0;
1167 
1168     /*
1169      * Determine forwarding vifs from the forwarding cache table
1170      */
1171     s = splnet();
1172     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1173 
1174     /* Entry exists, so forward if necessary */
1175     if (rt != NULL) {
1176 	splx(s);
1177 	return (ip_mdq(m, ifp, rt, -1));
1178     } else {
1179 	/*
1180 	 * If we don't have a route for packet's origin,
1181 	 * Make a copy of the packet &
1182 	 * send message to routing daemon
1183 	 */
1184 
1185 	register struct mbuf *mb_rt;
1186 	register struct mbuf *mb_ntry;
1187 	register struct mbuf *mb0;
1188 	register struct rtdetq *rte;
1189 	register struct mbuf *rte_m;
1190 	register u_long hash;
1191 	register int npkts;
1192 	int hlen = ip->ip_hl << 2;
1193 #ifdef UPCALL_TIMING
1194 	struct timeval tp;
1195 
1196 	GET_TIME(tp);
1197 #endif
1198 
1199 	mrtstat.mrts_no_route++;
1200 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1201 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1202 		(u_long)ntohl(ip->ip_src.s_addr),
1203 		(u_long)ntohl(ip->ip_dst.s_addr));
1204 
1205 	/*
1206 	 * Allocate mbufs early so that we don't do extra work if we are
1207 	 * just going to fail anyway.  Make sure to pullup the header so
1208 	 * that other people can't step on it.
1209 	 */
1210 	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1211 	if (mb_ntry == NULL) {
1212 	    splx(s);
1213 	    return ENOBUFS;
1214 	}
1215 	mb0 = m_copy(m, 0, M_COPYALL);
1216 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1217 	    mb0 = m_pullup(mb0, hlen);
1218 	if (mb0 == NULL) {
1219 	    m_free(mb_ntry);
1220 	    splx(s);
1221 	    return ENOBUFS;
1222 	}
1223 
1224 	/* is there an upcall waiting for this packet? */
1225 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1226 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1227 	    rt = mtod(mb_rt, struct mfc *);
1228 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1229 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1230 		(mb_rt->m_act != NULL))
1231 		break;
1232 	}
1233 
1234 	if (mb_rt == NULL) {
1235 	    int i;
1236 	    struct igmpmsg *im;
1237 
1238 	    /* no upcall, so make a new entry */
1239 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1240 	    if (mb_rt == NULL) {
1241 		m_free(mb_ntry);
1242 		m_freem(mb0);
1243 		splx(s);
1244 		return ENOBUFS;
1245 	    }
1246 	    /* Make a copy of the header to send to the user level process */
1247 	    mm = m_copy(mb0, 0, hlen);
1248 	    if (mm == NULL) {
1249 		m_free(mb_ntry);
1250 		m_freem(mb0);
1251 		m_free(mb_rt);
1252 		splx(s);
1253 		return ENOBUFS;
1254 	    }
1255 
1256 	    /*
1257 	     * Send message to routing daemon to install
1258 	     * a route into the kernel table
1259 	     */
1260 	    k_igmpsrc.sin_addr = ip->ip_src;
1261 
1262 	    im = mtod(mm, struct igmpmsg *);
1263 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1264 	    im->im_mbz		= 0;
1265 
1266 	    mrtstat.mrts_upcalls++;
1267 
1268 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1269 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1270 		++mrtstat.mrts_upq_sockfull;
1271 		m_free(mb_ntry);
1272 		m_freem(mb0);
1273 		m_free(mb_rt);
1274 		splx(s);
1275 		return ENOBUFS;
1276 	    }
1277 
1278 	    rt = mtod(mb_rt, struct mfc *);
1279 
1280 	    /* insert new entry at head of hash chain */
1281 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1282 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1283 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1284 	    nexpire[hash]++;
1285 	    for (i = 0; i < numvifs; i++)
1286 		rt->mfc_ttls[i] = 0;
1287 	    rt->mfc_parent = -1;
1288 
1289 	    /* link into table */
1290 	    mb_rt->m_next  = mfctable[hash];
1291 	    mfctable[hash] = mb_rt;
1292 	    mb_rt->m_act = NULL;
1293 
1294 	    rte_m = mb_rt;
1295 	} else {
1296 	    /* determine if q has overflowed */
1297 	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1298 		npkts++;
1299 
1300 	    if (npkts > MAX_UPQ) {
1301 		mrtstat.mrts_upq_ovflw++;
1302 		m_free(mb_ntry);
1303 		m_freem(mb0);
1304 		splx(s);
1305 		return 0;
1306 	    }
1307 	}
1308 
1309 	mb_ntry->m_act = NULL;
1310 	rte = mtod(mb_ntry, struct rtdetq *);
1311 
1312 	rte->m 			= mb0;
1313 	rte->ifp 		= ifp;
1314 #ifdef UPCALL_TIMING
1315 	rte->t			= tp;
1316 #endif
1317 
1318 	/* Add this entry to the end of the queue */
1319 	rte_m->m_act		= mb_ntry;
1320 
1321 	splx(s);
1322 
1323 	return 0;
1324     }
1325 }
1326 
1327 #ifndef MROUTE_LKM
1328 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1329 		   struct ip_moptions *) = X_ip_mforward;
1330 #endif
1331 
1332 /*
1333  * Clean up the cache entry if upcall is not serviced
1334  */
1335 static void
1336 expire_upcalls(void *unused)
1337 {
1338     struct mbuf *mb_rt, *m, **nptr;
1339     struct rtdetq *rte;
1340     struct mfc *mfc;
1341     int i;
1342     int s;
1343 
1344     s = splnet();
1345     for (i = 0; i < MFCTBLSIZ; i++) {
1346 	if (nexpire[i] == 0)
1347 	    continue;
1348 	nptr = &mfctable[i];
1349 	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1350 	    mfc = mtod(mb_rt, struct mfc *);
1351 
1352 	    /*
1353 	     * Skip real cache entries
1354 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1355 	     * If it expires now
1356 	     */
1357 	    if (mb_rt->m_act != NULL &&
1358 	        mfc->mfc_expire != 0 &&
1359 		--mfc->mfc_expire == 0) {
1360 		if (mrtdebug & DEBUG_EXPIRE)
1361 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1362 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1363 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1364 		/*
1365 		 * drop all the packets
1366 		 * free the mbuf with the pkt, if, timing info
1367 		 */
1368 		while (mb_rt->m_act) {
1369 		    m = mb_rt->m_act;
1370 		    mb_rt->m_act = m->m_act;
1371 
1372 		    rte = mtod(m, struct rtdetq *);
1373 		    m_freem(rte->m);
1374 		    m_free(m);
1375 		}
1376 		++mrtstat.mrts_cache_cleanups;
1377 		nexpire[i]--;
1378 
1379 		MFREE(mb_rt, *nptr);
1380 	    } else {
1381 		nptr = &mb_rt->m_next;
1382 	    }
1383 	}
1384     }
1385     splx(s);
1386     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1387 }
1388 
1389 /*
1390  * Packet forwarding routine once entry in the cache is made
1391  */
1392 static int
1393 ip_mdq(m, ifp, rt, xmt_vif)
1394     register struct mbuf *m;
1395     register struct ifnet *ifp;
1396     register struct mfc *rt;
1397     register vifi_t xmt_vif;
1398 {
1399     register struct ip  *ip = mtod(m, struct ip *);
1400     register vifi_t vifi;
1401     register struct vif *vifp;
1402     register int plen = ip->ip_len;
1403 
1404 /*
1405  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1406  * input, they shouldn't get counted on output, so statistics keeping is
1407  * seperate.
1408  */
1409 #define MC_SEND(ip,vifp,m) {                             \
1410                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1411                     encap_send((ip), (vifp), (m));       \
1412                 else                                     \
1413                     phyint_send((ip), (vifp), (m));      \
1414 }
1415 
1416     /*
1417      * If xmt_vif is not -1, send on only the requested vif.
1418      *
1419      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1420      */
1421     if (xmt_vif < numvifs) {
1422 	MC_SEND(ip, viftable + xmt_vif, m);
1423 	return 1;
1424     }
1425 
1426     /*
1427      * Don't forward if it didn't arrive from the parent vif for its origin.
1428      */
1429     vifi = rt->mfc_parent;
1430     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1431 	/* came in the wrong interface */
1432 	if (mrtdebug & DEBUG_FORWARD)
1433 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1434 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1435 	++mrtstat.mrts_wrong_if;
1436 	++rt->mfc_wrong_if;
1437 	/*
1438 	 * If we are doing PIM assert processing, and we are forwarding
1439 	 * packets on this interface, and it is a broadcast medium
1440 	 * interface (and not a tunnel), send a message to the routing daemon.
1441 	 */
1442 	if (pim_assert && rt->mfc_ttls[vifi] &&
1443 		(ifp->if_flags & IFF_BROADCAST) &&
1444 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1445 	    struct sockaddr_in k_igmpsrc;
1446 	    struct mbuf *mm;
1447 	    struct igmpmsg *im;
1448 	    int hlen = ip->ip_hl << 2;
1449 	    struct timeval now;
1450 	    register u_long delta;
1451 
1452 	    GET_TIME(now);
1453 
1454 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1455 
1456 	    if (delta > ASSERT_MSG_TIME) {
1457 		mm = m_copy(m, 0, hlen);
1458 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1459 		    mm = m_pullup(mm, hlen);
1460 		if (mm == NULL) {
1461 		    return ENOBUFS;
1462 		}
1463 
1464 		rt->mfc_last_assert = now;
1465 
1466 		im = mtod(mm, struct igmpmsg *);
1467 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1468 		im->im_mbz		= 0;
1469 		im->im_vif		= vifi;
1470 
1471 		k_igmpsrc.sin_addr = im->im_src;
1472 
1473 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1474 	    }
1475 	}
1476 	return 0;
1477     }
1478 
1479     /* If I sourced this packet, it counts as output, else it was input. */
1480     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1481 	viftable[vifi].v_pkt_out++;
1482 	viftable[vifi].v_bytes_out += plen;
1483     } else {
1484 	viftable[vifi].v_pkt_in++;
1485 	viftable[vifi].v_bytes_in += plen;
1486     }
1487     rt->mfc_pkt_cnt++;
1488     rt->mfc_byte_cnt += plen;
1489 
1490     /*
1491      * For each vif, decide if a copy of the packet should be forwarded.
1492      * Forward if:
1493      *		- the ttl exceeds the vif's threshold
1494      *		- there are group members downstream on interface
1495      */
1496     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1497 	if ((rt->mfc_ttls[vifi] > 0) &&
1498 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1499 	    vifp->v_pkt_out++;
1500 	    vifp->v_bytes_out += plen;
1501 	    MC_SEND(ip, vifp, m);
1502 	}
1503 
1504     return 0;
1505 }
1506 
1507 /*
1508  * check if a vif number is legal/ok. This is used by ip_output, to export
1509  * numvifs there,
1510  */
1511 static int
1512 X_legal_vif_num(vif)
1513     int vif;
1514 {
1515     if (vif >= 0 && vif < numvifs)
1516        return(1);
1517     else
1518        return(0);
1519 }
1520 
1521 #ifndef MROUTE_LKM
1522 int (*legal_vif_num)(int) = X_legal_vif_num;
1523 #endif
1524 
1525 /*
1526  * Return the local address used by this vif
1527  */
1528 static u_long
1529 X_ip_mcast_src(vifi)
1530     int vifi;
1531 {
1532     if (vifi >= 0 && vifi < numvifs)
1533 	return viftable[vifi].v_lcl_addr.s_addr;
1534     else
1535 	return INADDR_ANY;
1536 }
1537 
1538 #ifndef MROUTE_LKM
1539 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1540 #endif
1541 
1542 static void
1543 phyint_send(ip, vifp, m)
1544     struct ip *ip;
1545     struct vif *vifp;
1546     struct mbuf *m;
1547 {
1548     register struct mbuf *mb_copy;
1549     register int hlen = ip->ip_hl << 2;
1550 
1551     /*
1552      * Make a new reference to the packet; make sure that
1553      * the IP header is actually copied, not just referenced,
1554      * so that ip_output() only scribbles on the copy.
1555      */
1556     mb_copy = m_copy(m, 0, M_COPYALL);
1557     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1558 	mb_copy = m_pullup(mb_copy, hlen);
1559     if (mb_copy == NULL)
1560 	return;
1561 
1562     if (vifp->v_rate_limit <= 0)
1563 	tbf_send_packet(vifp, mb_copy);
1564     else
1565 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1566 }
1567 
1568 static void
1569 encap_send(ip, vifp, m)
1570     register struct ip *ip;
1571     register struct vif *vifp;
1572     register struct mbuf *m;
1573 {
1574     register struct mbuf *mb_copy;
1575     register struct ip *ip_copy;
1576     register int i, len = ip->ip_len;
1577 
1578     /*
1579      * copy the old packet & pullup its IP header into the
1580      * new mbuf so we can modify it.  Try to fill the new
1581      * mbuf since if we don't the ethernet driver will.
1582      */
1583     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1584     if (mb_copy == NULL)
1585 	return;
1586     mb_copy->m_data += max_linkhdr;
1587     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1588 
1589     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1590 	m_freem(mb_copy);
1591 	return;
1592     }
1593     i = MHLEN - M_LEADINGSPACE(mb_copy);
1594     if (i > len)
1595 	i = len;
1596     mb_copy = m_pullup(mb_copy, i);
1597     if (mb_copy == NULL)
1598 	return;
1599     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1600 
1601     /*
1602      * fill in the encapsulating IP header.
1603      */
1604     ip_copy = mtod(mb_copy, struct ip *);
1605     *ip_copy = multicast_encap_iphdr;
1606     ip_copy->ip_id = htons(ip_id++);
1607     ip_copy->ip_len += len;
1608     ip_copy->ip_src = vifp->v_lcl_addr;
1609     ip_copy->ip_dst = vifp->v_rmt_addr;
1610 
1611     /*
1612      * turn the encapsulated IP header back into a valid one.
1613      */
1614     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1615     --ip->ip_ttl;
1616     HTONS(ip->ip_len);
1617     HTONS(ip->ip_off);
1618     ip->ip_sum = 0;
1619     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1620     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1621     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1622 
1623     if (vifp->v_rate_limit <= 0)
1624 	tbf_send_packet(vifp, mb_copy);
1625     else
1626 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1627 }
1628 
1629 /*
1630  * De-encapsulate a packet and feed it back through ip input (this
1631  * routine is called whenever IP gets a packet with proto type
1632  * ENCAP_PROTO and a local destination address).
1633  */
1634 void
1635 #ifdef MROUTE_LKM
1636 X_ipip_input(m, iphlen)
1637 #else
1638 ipip_input(m, iphlen)
1639 #endif
1640 	register struct mbuf *m;
1641 	int iphlen;
1642 {
1643     struct ifnet *ifp = m->m_pkthdr.rcvif;
1644     register struct ip *ip = mtod(m, struct ip *);
1645     register int hlen = ip->ip_hl << 2;
1646     register int s;
1647     register struct ifqueue *ifq;
1648     register struct vif *vifp;
1649 
1650     if (!have_encap_tunnel) {
1651 	    rip_input(m, iphlen);
1652 	    return;
1653     }
1654     /*
1655      * dump the packet if it's not to a multicast destination or if
1656      * we don't have an encapsulating tunnel with the source.
1657      * Note:  This code assumes that the remote site IP address
1658      * uniquely identifies the tunnel (i.e., that this site has
1659      * at most one tunnel with the remote site).
1660      */
1661     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1662 	++mrtstat.mrts_bad_tunnel;
1663 	m_freem(m);
1664 	return;
1665     }
1666     if (ip->ip_src.s_addr != last_encap_src) {
1667 	register struct vif *vife;
1668 
1669 	vifp = viftable;
1670 	vife = vifp + numvifs;
1671 	last_encap_src = ip->ip_src.s_addr;
1672 	last_encap_vif = 0;
1673 	for ( ; vifp < vife; ++vifp)
1674 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1675 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1676 		    == VIFF_TUNNEL)
1677 		    last_encap_vif = vifp;
1678 		break;
1679 	    }
1680     }
1681     if ((vifp = last_encap_vif) == 0) {
1682 	last_encap_src = 0;
1683 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1684 	m_freem(m);
1685 	if (mrtdebug)
1686 	  log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1687 		(u_long)ntohl(ip->ip_src.s_addr));
1688 	return;
1689     }
1690     ifp = vifp->v_ifp;
1691 
1692     if (hlen > IP_HDR_LEN)
1693       ip_stripoptions(m, (struct mbuf *) 0);
1694     m->m_data += IP_HDR_LEN;
1695     m->m_len -= IP_HDR_LEN;
1696     m->m_pkthdr.len -= IP_HDR_LEN;
1697     m->m_pkthdr.rcvif = ifp;
1698 
1699     ifq = &ipintrq;
1700     s = splimp();
1701     if (IF_QFULL(ifq)) {
1702 	IF_DROP(ifq);
1703 	m_freem(m);
1704     } else {
1705 	IF_ENQUEUE(ifq, m);
1706 	/*
1707 	 * normally we would need a "schednetisr(NETISR_IP)"
1708 	 * here but we were called by ip_input and it is going
1709 	 * to loop back & try to dequeue the packet we just
1710 	 * queued as soon as we return so we avoid the
1711 	 * unnecessary software interrrupt.
1712 	 */
1713     }
1714     splx(s);
1715 }
1716 
1717 /*
1718  * Token bucket filter module
1719  */
1720 
1721 static void
1722 tbf_control(vifp, m, ip, p_len)
1723 	register struct vif *vifp;
1724 	register struct mbuf *m;
1725 	register struct ip *ip;
1726 	register u_long p_len;
1727 {
1728     register struct tbf *t = vifp->v_tbf;
1729 
1730     if (p_len > MAX_BKT_SIZE) {
1731 	/* drop if packet is too large */
1732 	mrtstat.mrts_pkt2large++;
1733 	m_freem(m);
1734 	return;
1735     }
1736 
1737     tbf_update_tokens(vifp);
1738 
1739     /* if there are enough tokens,
1740      * and the queue is empty,
1741      * send this packet out
1742      */
1743 
1744     if (t->tbf_q_len == 0) {
1745 	/* queue empty, send packet if enough tokens */
1746 	if (p_len <= t->tbf_n_tok) {
1747 	    t->tbf_n_tok -= p_len;
1748 	    tbf_send_packet(vifp, m);
1749 	} else {
1750 	    /* queue packet and timeout till later */
1751 	    tbf_queue(vifp, m);
1752 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1753 	}
1754     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1755 	/* finite queue length, so queue pkts and process queue */
1756 	tbf_queue(vifp, m);
1757 	tbf_process_q(vifp);
1758     } else {
1759 	/* queue length too much, try to dq and queue and process */
1760 	if (!tbf_dq_sel(vifp, ip)) {
1761 	    mrtstat.mrts_q_overflow++;
1762 	    m_freem(m);
1763 	    return;
1764 	} else {
1765 	    tbf_queue(vifp, m);
1766 	    tbf_process_q(vifp);
1767 	}
1768     }
1769     return;
1770 }
1771 
1772 /*
1773  * adds a packet to the queue at the interface
1774  */
1775 static void
1776 tbf_queue(vifp, m)
1777 	register struct vif *vifp;
1778 	register struct mbuf *m;
1779 {
1780     register int s = splnet();
1781     register struct tbf *t = vifp->v_tbf;
1782 
1783     if (t->tbf_t == NULL) {
1784 	/* Queue was empty */
1785 	t->tbf_q = m;
1786     } else {
1787 	/* Insert at tail */
1788 	t->tbf_t->m_act = m;
1789     }
1790 
1791     /* Set new tail pointer */
1792     t->tbf_t = m;
1793 
1794 #ifdef DIAGNOSTIC
1795     /* Make sure we didn't get fed a bogus mbuf */
1796     if (m->m_act)
1797 	panic("tbf_queue: m_act");
1798 #endif
1799     m->m_act = NULL;
1800 
1801     t->tbf_q_len++;
1802 
1803     splx(s);
1804 }
1805 
1806 
1807 /*
1808  * processes the queue at the interface
1809  */
1810 static void
1811 tbf_process_q(vifp)
1812     register struct vif *vifp;
1813 {
1814     register struct mbuf *m;
1815     register int len;
1816     register int s = splnet();
1817     register struct tbf *t = vifp->v_tbf;
1818 
1819     /* loop through the queue at the interface and send as many packets
1820      * as possible
1821      */
1822     while (t->tbf_q_len > 0) {
1823 	m = t->tbf_q;
1824 
1825 	len = mtod(m, struct ip *)->ip_len;
1826 
1827 	/* determine if the packet can be sent */
1828 	if (len <= t->tbf_n_tok) {
1829 	    /* if so,
1830 	     * reduce no of tokens, dequeue the packet,
1831 	     * send the packet.
1832 	     */
1833 	    t->tbf_n_tok -= len;
1834 
1835 	    t->tbf_q = m->m_act;
1836 	    if (--t->tbf_q_len == 0)
1837 		t->tbf_t = NULL;
1838 
1839 	    m->m_act = NULL;
1840 	    tbf_send_packet(vifp, m);
1841 
1842 	} else break;
1843     }
1844     splx(s);
1845 }
1846 
1847 static void
1848 tbf_reprocess_q(xvifp)
1849 	void *xvifp;
1850 {
1851     register struct vif *vifp = xvifp;
1852     if (ip_mrouter == NULL)
1853 	return;
1854 
1855     tbf_update_tokens(vifp);
1856 
1857     tbf_process_q(vifp);
1858 
1859     if (vifp->v_tbf->tbf_q_len)
1860 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1861 }
1862 
1863 /* function that will selectively discard a member of the queue
1864  * based on the precedence value and the priority
1865  */
1866 static int
1867 tbf_dq_sel(vifp, ip)
1868     register struct vif *vifp;
1869     register struct ip *ip;
1870 {
1871     register int s = splnet();
1872     register u_int p;
1873     register struct mbuf *m, *last;
1874     register struct mbuf **np;
1875     register struct tbf *t = vifp->v_tbf;
1876 
1877     p = priority(vifp, ip);
1878 
1879     np = &t->tbf_q;
1880     last = NULL;
1881     while ((m = *np) != NULL) {
1882 	if (p > priority(vifp, mtod(m, struct ip *))) {
1883 	    *np = m->m_act;
1884 	    /* If we're removing the last packet, fix the tail pointer */
1885 	    if (m == t->tbf_t)
1886 		t->tbf_t = last;
1887 	    m_freem(m);
1888 	    /* it's impossible for the queue to be empty, but
1889 	     * we check anyway. */
1890 	    if (--t->tbf_q_len == 0)
1891 		t->tbf_t = NULL;
1892 	    splx(s);
1893 	    mrtstat.mrts_drop_sel++;
1894 	    return(1);
1895 	}
1896 	np = &m->m_act;
1897 	last = m;
1898     }
1899     splx(s);
1900     return(0);
1901 }
1902 
1903 static void
1904 tbf_send_packet(vifp, m)
1905     register struct vif *vifp;
1906     register struct mbuf *m;
1907 {
1908     struct ip_moptions imo;
1909     int error;
1910     static struct route ro;
1911     int s = splnet();
1912 
1913     if (vifp->v_flags & VIFF_TUNNEL) {
1914 	/* If tunnel options */
1915 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1916 		  IP_FORWARDING, (struct ip_moptions *)0);
1917     } else {
1918 	imo.imo_multicast_ifp  = vifp->v_ifp;
1919 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1920 	imo.imo_multicast_loop = 1;
1921 	imo.imo_multicast_vif  = -1;
1922 
1923 	/*
1924 	 * Re-entrancy should not be a problem here, because
1925 	 * the packets that we send out and are looped back at us
1926 	 * should get rejected because they appear to come from
1927 	 * the loopback interface, thus preventing looping.
1928 	 */
1929 	error = ip_output(m, (struct mbuf *)0, &ro,
1930 			  IP_FORWARDING, &imo);
1931 
1932 	if (mrtdebug & DEBUG_XMIT)
1933 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1934 		vifp - viftable, error);
1935     }
1936     splx(s);
1937 }
1938 
1939 /* determine the current time and then
1940  * the elapsed time (between the last time and time now)
1941  * in milliseconds & update the no. of tokens in the bucket
1942  */
1943 static void
1944 tbf_update_tokens(vifp)
1945     register struct vif *vifp;
1946 {
1947     struct timeval tp;
1948     register u_long tm;
1949     register int s = splnet();
1950     register struct tbf *t = vifp->v_tbf;
1951 
1952     GET_TIME(tp);
1953 
1954     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1955 
1956     /*
1957      * This formula is actually
1958      * "time in seconds" * "bytes/second".
1959      *
1960      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1961      *
1962      * The (1000/1024) was introduced in add_vif to optimize
1963      * this divide into a shift.
1964      */
1965     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1966     t->tbf_last_pkt_t = tp;
1967 
1968     if (t->tbf_n_tok > MAX_BKT_SIZE)
1969 	t->tbf_n_tok = MAX_BKT_SIZE;
1970 
1971     splx(s);
1972 }
1973 
1974 static int
1975 priority(vifp, ip)
1976     register struct vif *vifp;
1977     register struct ip *ip;
1978 {
1979     register int prio;
1980 
1981     /* temporary hack; may add general packet classifier some day */
1982 
1983     /*
1984      * The UDP port space is divided up into four priority ranges:
1985      * [0, 16384)     : unclassified - lowest priority
1986      * [16384, 32768) : audio - highest priority
1987      * [32768, 49152) : whiteboard - medium priority
1988      * [49152, 65536) : video - low priority
1989      */
1990     if (ip->ip_p == IPPROTO_UDP) {
1991 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1992 	switch (ntohs(udp->uh_dport) & 0xc000) {
1993 	    case 0x4000:
1994 		prio = 70;
1995 		break;
1996 	    case 0x8000:
1997 		prio = 60;
1998 		break;
1999 	    case 0xc000:
2000 		prio = 55;
2001 		break;
2002 	    default:
2003 		prio = 50;
2004 		break;
2005 	}
2006 	if (tbfdebug > 1)
2007 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2008     } else {
2009 	    prio = 50;
2010     }
2011     return prio;
2012 }
2013 
2014 /*
2015  * End of token bucket filter modifications
2016  */
2017 
2018 int
2019 ip_rsvp_vif_init(so, sopt)
2020 	struct socket *so;
2021 	struct sockopt *sopt;
2022 {
2023     int error, i, s;
2024 
2025     if (rsvpdebug)
2026 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2027 	       so->so_type, so->so_proto->pr_protocol);
2028 
2029     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2030 	return EOPNOTSUPP;
2031 
2032     /* Check mbuf. */
2033     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2034     if (error)
2035 	    return (error);
2036 
2037     if (rsvpdebug)
2038 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2039 
2040     s = splnet();
2041 
2042     /* Check vif. */
2043     if (!legal_vif_num(i)) {
2044 	splx(s);
2045 	return EADDRNOTAVAIL;
2046     }
2047 
2048     /* Check if socket is available. */
2049     if (viftable[i].v_rsvpd != NULL) {
2050 	splx(s);
2051 	return EADDRINUSE;
2052     }
2053 
2054     viftable[i].v_rsvpd = so;
2055     /* This may seem silly, but we need to be sure we don't over-increment
2056      * the RSVP counter, in case something slips up.
2057      */
2058     if (!viftable[i].v_rsvp_on) {
2059 	viftable[i].v_rsvp_on = 1;
2060 	rsvp_on++;
2061     }
2062 
2063     splx(s);
2064     return 0;
2065 }
2066 
2067 int
2068 ip_rsvp_vif_done(so, sopt)
2069 	struct socket *so;
2070 	struct sockopt *sopt;
2071 {
2072 	int error, i, s;
2073 
2074 	if (rsvpdebug)
2075 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2076 		       so->so_type, so->so_proto->pr_protocol);
2077 
2078 	if (so->so_type != SOCK_RAW ||
2079 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2080 		return EOPNOTSUPP;
2081 
2082 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2083 	if (error)
2084 		return (error);
2085 
2086 	s = splnet();
2087 
2088 	/* Check vif. */
2089 	if (!legal_vif_num(i)) {
2090 		splx(s);
2091 		return EADDRNOTAVAIL;
2092 	}
2093 
2094 	if (rsvpdebug)
2095 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2096 		       viftable[i].v_rsvpd, so);
2097 
2098 	viftable[i].v_rsvpd = NULL;
2099 	/*
2100 	 * This may seem silly, but we need to be sure we don't over-decrement
2101 	 * the RSVP counter, in case something slips up.
2102 	 */
2103 	if (viftable[i].v_rsvp_on) {
2104 		viftable[i].v_rsvp_on = 0;
2105 		rsvp_on--;
2106 	}
2107 
2108 	splx(s);
2109 	return 0;
2110 }
2111 
2112 void
2113 ip_rsvp_force_done(so)
2114     struct socket *so;
2115 {
2116     int vifi;
2117     register int s;
2118 
2119     /* Don't bother if it is not the right type of socket. */
2120     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2121 	return;
2122 
2123     s = splnet();
2124 
2125     /* The socket may be attached to more than one vif...this
2126      * is perfectly legal.
2127      */
2128     for (vifi = 0; vifi < numvifs; vifi++) {
2129 	if (viftable[vifi].v_rsvpd == so) {
2130 	    viftable[vifi].v_rsvpd = NULL;
2131 	    /* This may seem silly, but we need to be sure we don't
2132 	     * over-decrement the RSVP counter, in case something slips up.
2133 	     */
2134 	    if (viftable[vifi].v_rsvp_on) {
2135 		viftable[vifi].v_rsvp_on = 0;
2136 		rsvp_on--;
2137 	    }
2138 	}
2139     }
2140 
2141     splx(s);
2142     return;
2143 }
2144 
2145 void
2146 rsvp_input(m, iphlen)
2147 	struct mbuf *m;
2148 	int iphlen;
2149 {
2150     int vifi;
2151     register struct ip *ip = mtod(m, struct ip *);
2152     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2153     register int s;
2154     struct ifnet *ifp;
2155 
2156     if (rsvpdebug)
2157 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2158 
2159     /* Can still get packets with rsvp_on = 0 if there is a local member
2160      * of the group to which the RSVP packet is addressed.  But in this
2161      * case we want to throw the packet away.
2162      */
2163     if (!rsvp_on) {
2164 	m_freem(m);
2165 	return;
2166     }
2167 
2168     /* If the old-style non-vif-associated socket is set, then use
2169      * it and ignore the new ones.
2170      */
2171     if (ip_rsvpd != NULL) {
2172 	if (rsvpdebug)
2173 	    printf("rsvp_input: Sending packet up old-style socket\n");
2174 	rip_input(m, iphlen);
2175 	return;
2176     }
2177 
2178     s = splnet();
2179 
2180     if (rsvpdebug)
2181 	printf("rsvp_input: check vifs\n");
2182 
2183 #ifdef DIAGNOSTIC
2184     if (!(m->m_flags & M_PKTHDR))
2185 	    panic("rsvp_input no hdr");
2186 #endif
2187 
2188     ifp = m->m_pkthdr.rcvif;
2189     /* Find which vif the packet arrived on. */
2190     for (vifi = 0; vifi < numvifs; vifi++) {
2191 	if (viftable[vifi].v_ifp == ifp)
2192  		break;
2193  	}
2194 
2195     if (vifi == numvifs) {
2196 	/* Can't find vif packet arrived on. Drop packet. */
2197 	if (rsvpdebug)
2198 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2199 	m_freem(m);
2200 	splx(s);
2201 	return;
2202     }
2203 
2204     if (rsvpdebug)
2205 	printf("rsvp_input: check socket\n");
2206 
2207     if (viftable[vifi].v_rsvpd == NULL) {
2208 	/* drop packet, since there is no specific socket for this
2209 	 * interface */
2210 	    if (rsvpdebug)
2211 		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2212 	    m_freem(m);
2213 	    splx(s);
2214 	    return;
2215     }
2216     rsvp_src.sin_addr = ip->ip_src;
2217 
2218     if (rsvpdebug && m)
2219 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2220 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2221 
2222     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2223 	if (rsvpdebug)
2224 	    printf("rsvp_input: Failed to append to socket\n");
2225     else
2226 	if (rsvpdebug)
2227 	    printf("rsvp_input: send packet up\n");
2228 
2229     splx(s);
2230 }
2231 
2232 #ifdef MROUTE_LKM
2233 #include <sys/conf.h>
2234 #include <sys/exec.h>
2235 #include <sys/sysent.h>
2236 #include <sys/lkm.h>
2237 
2238 MOD_MISC("ip_mroute_mod")
2239 
2240 static int
2241 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2242 {
2243 	int i;
2244 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2245 	int err = 0;
2246 
2247 	switch(cmd) {
2248 		static int (*old_ip_mrouter_cmd)();
2249 		static int (*old_ip_mrouter_done)();
2250 		static int (*old_ip_mforward)();
2251 		static int (*old_mrt_ioctl)();
2252 		static void (*old_proto4_input)();
2253 		static int (*old_legal_vif_num)();
2254 		extern struct protosw inetsw[];
2255 
2256 	case LKM_E_LOAD:
2257 		if(lkmexists(lkmtp) || ip_mrtproto)
2258 		  return(EEXIST);
2259 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2260 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2261 		old_ip_mrouter_done = ip_mrouter_done;
2262 		ip_mrouter_done = X_ip_mrouter_done;
2263 		old_ip_mforward = ip_mforward;
2264 		ip_mforward = X_ip_mforward;
2265 		old_mrt_ioctl = mrt_ioctl;
2266 		mrt_ioctl = X_mrt_ioctl;
2267               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2268               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2269 		old_legal_vif_num = legal_vif_num;
2270 		legal_vif_num = X_legal_vif_num;
2271 		ip_mrtproto = IGMP_DVMRP;
2272 
2273 		printf("\nIP multicast routing loaded\n");
2274 		break;
2275 
2276 	case LKM_E_UNLOAD:
2277 		if (ip_mrouter)
2278 		  return EINVAL;
2279 
2280 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2281 		ip_mrouter_done = old_ip_mrouter_done;
2282 		ip_mforward = old_ip_mforward;
2283 		mrt_ioctl = old_mrt_ioctl;
2284               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2285 		legal_vif_num = old_legal_vif_num;
2286 		ip_mrtproto = 0;
2287 		break;
2288 
2289 	default:
2290 		err = EINVAL;
2291 		break;
2292 	}
2293 
2294 	return(err);
2295 }
2296 
2297 int
2298 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2299 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2300 		 nosys);
2301 }
2302 
2303 #endif /* MROUTE_LKM */
2304 #endif /* MROUTING */
2305