xref: /freebsd/sys/netinet/ip_mroute.c (revision 29332c0dcee1e80c9fb871e06c3160bd5deb1b44)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  * Modified by Wojciech Macek, Semihalf, May 2021
53  *
54  * MROUTING Revision: 3.5
55  * and PIM-SMv2 and PIM-DM support, advanced API support,
56  * bandwidth metering and signaling
57  */
58 
59 /*
60  * TODO: Prefix functions with ipmf_.
61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62  * domain attachment (if_afdata) so we can track consumers of that service.
63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64  * move it to socket options.
65  * TODO: Cleanup LSRR removal further.
66  * TODO: Push RSVP stubs into raw_ip.c.
67  * TODO: Use bitstring.h for vif set.
68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69  * TODO: Sync ip6_mroute.c with this file.
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 #include "opt_inet.h"
76 #include "opt_mrouting.h"
77 
78 #define _PIM_VT 1
79 
80 #include <sys/types.h>
81 #include <sys/param.h>
82 #include <sys/kernel.h>
83 #include <sys/stddef.h>
84 #include <sys/condvar.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/module.h>
92 #include <sys/priv.h>
93 #include <sys/protosw.h>
94 #include <sys/signalvar.h>
95 #include <sys/socket.h>
96 #include <sys/socketvar.h>
97 #include <sys/sockio.h>
98 #include <sys/sx.h>
99 #include <sys/sysctl.h>
100 #include <sys/syslog.h>
101 #include <sys/systm.h>
102 #include <sys/taskqueue.h>
103 #include <sys/time.h>
104 #include <sys/counter.h>
105 #include <machine/atomic.h>
106 
107 #include <net/if.h>
108 #include <net/if_var.h>
109 #include <net/if_types.h>
110 #include <net/netisr.h>
111 #include <net/route.h>
112 #include <net/vnet.h>
113 
114 #include <netinet/in.h>
115 #include <netinet/igmp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/in_var.h>
118 #include <netinet/ip.h>
119 #include <netinet/ip_encap.h>
120 #include <netinet/ip_mroute.h>
121 #include <netinet/ip_var.h>
122 #include <netinet/ip_options.h>
123 #include <netinet/pim.h>
124 #include <netinet/pim_var.h>
125 #include <netinet/udp.h>
126 
127 #include <machine/in_cksum.h>
128 
129 #ifndef KTR_IPMF
130 #define KTR_IPMF KTR_INET
131 #endif
132 
133 #define		VIFI_INVALID	((vifi_t) -1)
134 
135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
136 
137 /*
138  * Locking.  We use two locks: one for the virtual interface table and
139  * one for the forwarding table.  These locks may be nested in which case
140  * the VIF lock must always be taken first.  Note that each lock is used
141  * to cover not only the specific data structure but also related data
142  * structures.
143  */
144 
145 static struct rwlock mrouter_mtx;
146 #define	MRW_RLOCK()		rw_rlock(&mrouter_mtx)
147 #define	MRW_WLOCK()		rw_wlock(&mrouter_mtx)
148 #define	MRW_RUNLOCK()	rw_runlock(&mrouter_mtx)
149 #define	MRW_WUNLOCK()	rw_wunlock(&mrouter_mtx)
150 #define	MRW_UNLOCK()	rw_unlock(&mrouter_mtx)
151 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_LOCKED)
152 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_WLOCKED)
153 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_mtx)
154 #define	MRW_WOWNED()	rw_wowned(&mrouter_mtx)
155 #define	MRW_LOCK_INIT()						\
156 	rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
157 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_mtx)
158 
159 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
161 
162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
163 VNET_PCPUSTAT_SYSINIT(mrtstat);
164 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
166     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
167     "netinet/ip_mroute.h)");
168 
169 VNET_DEFINE_STATIC(u_long, mfchash);
170 #define	V_mfchash		VNET(mfchash)
171 #define	MFCHASH(a, g)							\
172 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
173 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
174 #define	MFCHASHSIZE	256
175 
176 static u_long mfchashsize;			/* Hash size */
177 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
178 #define	V_nexpire		VNET(nexpire)
179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
180 #define	V_mfchashtbl		VNET(mfchashtbl)
181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
182 #define	V_task_queue		VNET(task_queue)
183 VNET_DEFINE_STATIC(struct task, task);
184 #define	V_task		VNET(task)
185 
186 VNET_DEFINE_STATIC(vifi_t, numvifs);
187 #define	V_numvifs		VNET(numvifs)
188 VNET_DEFINE_STATIC(struct vif *, viftable);
189 #define	V_viftable		VNET(viftable)
190 
191 static eventhandler_tag if_detach_event_tag = NULL;
192 
193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
194 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
195 
196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
197 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
198 
199 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
200 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
201 
202 /*
203  * Bandwidth meter variables and constants
204  */
205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
206 
207 /*
208  * Pending upcalls are stored in a ring which is flushed when
209  * full, or periodically
210  */
211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
212 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
214 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
216 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
217 
218 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
219 
220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
221 VNET_PCPUSTAT_SYSINIT(pimstat);
222 VNET_PCPUSTAT_SYSUNINIT(pimstat);
223 
224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
225     "PIM");
226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
227     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
228 
229 static u_long	pim_squelch_wholepkt = 0;
230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
231     &pim_squelch_wholepkt, 0,
232     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
233 
234 static const struct encaptab *pim_encap_cookie;
235 static int pim_encapcheck(const struct mbuf *, int, int, void *);
236 static int pim_input(struct mbuf *, int, int, void *);
237 
238 extern int in_mcast_loop;
239 
240 static const struct encap_config ipv4_encap_cfg = {
241 	.proto = IPPROTO_PIM,
242 	.min_length = sizeof(struct ip) + PIM_MINLEN,
243 	.exact_match = 8,
244 	.check = pim_encapcheck,
245 	.input = pim_input
246 };
247 
248 /*
249  * Note: the PIM Register encapsulation adds the following in front of a
250  * data packet:
251  *
252  * struct pim_encap_hdr {
253  *    struct ip ip;
254  *    struct pim_encap_pimhdr  pim;
255  * }
256  *
257  */
258 
259 struct pim_encap_pimhdr {
260 	struct pim pim;
261 	uint32_t   flags;
262 };
263 #define		PIM_ENCAP_TTL	64
264 
265 static struct ip pim_encap_iphdr = {
266 #if BYTE_ORDER == LITTLE_ENDIAN
267 	sizeof(struct ip) >> 2,
268 	IPVERSION,
269 #else
270 	IPVERSION,
271 	sizeof(struct ip) >> 2,
272 #endif
273 	0,			/* tos */
274 	sizeof(struct ip),	/* total length */
275 	0,			/* id */
276 	0,			/* frag offset */
277 	PIM_ENCAP_TTL,
278 	IPPROTO_PIM,
279 	0,			/* checksum */
280 };
281 
282 static struct pim_encap_pimhdr pim_encap_pimhdr = {
283     {
284 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
285 	0,			/* reserved */
286 	0,			/* checksum */
287     },
288     0				/* flags */
289 };
290 
291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
292 #define	V_reg_vif_num		VNET(reg_vif_num)
293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
294 #define	V_multicast_register_if	VNET(multicast_register_if)
295 
296 /*
297  * Private variables.
298  */
299 
300 static u_long	X_ip_mcast_src(int);
301 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
302 		    struct ip_moptions *);
303 static int	X_ip_mrouter_done(void);
304 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
305 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
306 static int	X_legal_vif_num(int);
307 static int	X_mrt_ioctl(u_long, caddr_t, int);
308 
309 static int	add_bw_upcall(struct bw_upcall *);
310 static int	add_mfc(struct mfcctl2 *);
311 static int	add_vif(struct vifctl *);
312 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
313 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
314 		    struct timeval *);
315 static void	bw_upcalls_send(void);
316 static int	del_bw_upcall(struct bw_upcall *);
317 static int	del_mfc(struct mfcctl2 *);
318 static int	del_vif(vifi_t);
319 static int	del_vif_locked(vifi_t);
320 static void	expire_bw_upcalls_send(void *);
321 static void	expire_mfc(struct mfc *);
322 static void	expire_upcalls(void *);
323 static void	free_bw_list(struct bw_meter *);
324 static int	get_sg_cnt(struct sioc_sg_req *);
325 static int	get_vif_cnt(struct sioc_vif_req *);
326 static void	if_detached_event(void *, struct ifnet *);
327 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
328 static int	ip_mrouter_init(struct socket *, int);
329 static __inline struct mfc *
330 		mfc_find(struct in_addr *, struct in_addr *);
331 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
332 static struct mbuf *
333 		pim_register_prepare(struct ip *, struct mbuf *);
334 static int	pim_register_send(struct ip *, struct vif *,
335 		    struct mbuf *, struct mfc *);
336 static int	pim_register_send_rp(struct ip *, struct vif *,
337 		    struct mbuf *, struct mfc *);
338 static int	pim_register_send_upcall(struct ip *, struct vif *,
339 		    struct mbuf *, struct mfc *);
340 static void	send_packet(struct vif *, struct mbuf *);
341 static int	set_api_config(uint32_t *);
342 static int	set_assert(int);
343 static int	socket_send(struct socket *, struct mbuf *,
344 		    struct sockaddr_in *);
345 
346 /*
347  * Kernel multicast forwarding API capabilities and setup.
348  * If more API capabilities are added to the kernel, they should be
349  * recorded in `mrt_api_support'.
350  */
351 #define MRT_API_VERSION		0x0305
352 
353 static const int mrt_api_version = MRT_API_VERSION;
354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
355 					 MRT_MFC_FLAGS_BORDER_VIF |
356 					 MRT_MFC_RP |
357 					 MRT_MFC_BW_UPCALL);
358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
359 #define	V_mrt_api_config	VNET(mrt_api_config)
360 VNET_DEFINE_STATIC(int, pim_assert_enabled);
361 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
362 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
363 
364 /*
365  * Find a route for a given origin IP address and multicast group address.
366  * Statistics must be updated by the caller.
367  */
368 static __inline struct mfc *
369 mfc_find(struct in_addr *o, struct in_addr *g)
370 {
371 	struct mfc *rt;
372 
373 	/*
374 	 * Might be called both RLOCK and WLOCK.
375 	 * Check if any, it's caller responsibility
376 	 * to choose correct option.
377 	 */
378 	MRW_LOCK_ASSERT();
379 
380 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
381 		if (in_hosteq(rt->mfc_origin, *o) &&
382 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
383 		    buf_ring_empty(rt->mfc_stall_ring))
384 			break;
385 	}
386 
387 	return (rt);
388 }
389 
390 static __inline struct mfc *
391 mfc_alloc(void)
392 {
393 	struct mfc *rt;
394 	rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
395 	if (rt == NULL)
396 		return rt;
397 
398 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
399 	    M_NOWAIT, &V_buf_ring_mtx);
400 	if (rt->mfc_stall_ring == NULL) {
401 		free(rt, M_MRTABLE);
402 		return NULL;
403 	}
404 
405 	return rt;
406 }
407 
408 /*
409  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
410  */
411 static int
412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
413 {
414     int	error, optval;
415     vifi_t	vifi;
416     struct	vifctl vifc;
417     struct	mfcctl2 mfc;
418     struct	bw_upcall bw_upcall;
419     uint32_t	i;
420 
421     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
422 	return EPERM;
423 
424     error = 0;
425     switch (sopt->sopt_name) {
426     case MRT_INIT:
427 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
428 	if (error)
429 	    break;
430 	error = ip_mrouter_init(so, optval);
431 	break;
432 
433     case MRT_DONE:
434 	error = ip_mrouter_done();
435 	break;
436 
437     case MRT_ADD_VIF:
438 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
439 	if (error)
440 	    break;
441 	error = add_vif(&vifc);
442 	break;
443 
444     case MRT_DEL_VIF:
445 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
446 	if (error)
447 	    break;
448 	error = del_vif(vifi);
449 	break;
450 
451     case MRT_ADD_MFC:
452     case MRT_DEL_MFC:
453 	/*
454 	 * select data size depending on API version.
455 	 */
456 	if (sopt->sopt_name == MRT_ADD_MFC &&
457 		V_mrt_api_config & MRT_API_FLAGS_ALL) {
458 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
459 				sizeof(struct mfcctl2));
460 	} else {
461 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
462 				sizeof(struct mfcctl));
463 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
464 			sizeof(mfc) - sizeof(struct mfcctl));
465 	}
466 	if (error)
467 	    break;
468 	if (sopt->sopt_name == MRT_ADD_MFC)
469 	    error = add_mfc(&mfc);
470 	else
471 	    error = del_mfc(&mfc);
472 	break;
473 
474     case MRT_ASSERT:
475 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
476 	if (error)
477 	    break;
478 	set_assert(optval);
479 	break;
480 
481     case MRT_API_CONFIG:
482 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
483 	if (!error)
484 	    error = set_api_config(&i);
485 	if (!error)
486 	    error = sooptcopyout(sopt, &i, sizeof i);
487 	break;
488 
489     case MRT_ADD_BW_UPCALL:
490     case MRT_DEL_BW_UPCALL:
491 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
492 				sizeof bw_upcall);
493 	if (error)
494 	    break;
495 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
496 	    error = add_bw_upcall(&bw_upcall);
497 	else
498 	    error = del_bw_upcall(&bw_upcall);
499 	break;
500 
501     default:
502 	error = EOPNOTSUPP;
503 	break;
504     }
505     return error;
506 }
507 
508 /*
509  * Handle MRT getsockopt commands
510  */
511 static int
512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
513 {
514     int error;
515 
516     switch (sopt->sopt_name) {
517     case MRT_VERSION:
518 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
519 	break;
520 
521     case MRT_ASSERT:
522 	error = sooptcopyout(sopt, &V_pim_assert_enabled,
523 	    sizeof V_pim_assert_enabled);
524 	break;
525 
526     case MRT_API_SUPPORT:
527 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
528 	break;
529 
530     case MRT_API_CONFIG:
531 	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
532 	break;
533 
534     default:
535 	error = EOPNOTSUPP;
536 	break;
537     }
538     return error;
539 }
540 
541 /*
542  * Handle ioctl commands to obtain information from the cache
543  */
544 static int
545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
546 {
547     int error = 0;
548 
549     /*
550      * Currently the only function calling this ioctl routine is rtioctl_fib().
551      * Typically, only root can create the raw socket in order to execute
552      * this ioctl method, however the request might be coming from a prison
553      */
554     error = priv_check(curthread, PRIV_NETINET_MROUTE);
555     if (error)
556 	return (error);
557     switch (cmd) {
558     case (SIOCGETVIFCNT):
559 	error = get_vif_cnt((struct sioc_vif_req *)data);
560 	break;
561 
562     case (SIOCGETSGCNT):
563 	error = get_sg_cnt((struct sioc_sg_req *)data);
564 	break;
565 
566     default:
567 	error = EINVAL;
568 	break;
569     }
570     return error;
571 }
572 
573 /*
574  * returns the packet, byte, rpf-failure count for the source group provided
575  */
576 static int
577 get_sg_cnt(struct sioc_sg_req *req)
578 {
579     struct mfc *rt;
580 
581     MRW_RLOCK();
582     rt = mfc_find(&req->src, &req->grp);
583     if (rt == NULL) {
584 	    MRW_RUNLOCK();
585 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
586 	return EADDRNOTAVAIL;
587     }
588     req->pktcnt = rt->mfc_pkt_cnt;
589     req->bytecnt = rt->mfc_byte_cnt;
590     req->wrong_if = rt->mfc_wrong_if;
591     MRW_RUNLOCK();
592     return 0;
593 }
594 
595 /*
596  * returns the input and output packet and byte counts on the vif provided
597  */
598 static int
599 get_vif_cnt(struct sioc_vif_req *req)
600 {
601     vifi_t vifi = req->vifi;
602 
603     MRW_RLOCK();
604     if (vifi >= V_numvifs) {
605 	MRW_RUNLOCK();
606 	return EINVAL;
607     }
608 
609     mtx_lock_spin(&V_viftable[vifi].v_spin);
610     req->icount = V_viftable[vifi].v_pkt_in;
611     req->ocount = V_viftable[vifi].v_pkt_out;
612     req->ibytes = V_viftable[vifi].v_bytes_in;
613     req->obytes = V_viftable[vifi].v_bytes_out;
614     mtx_unlock_spin(&V_viftable[vifi].v_spin);
615     MRW_RUNLOCK();
616 
617     return 0;
618 }
619 
620 static void
621 if_detached_event(void *arg __unused, struct ifnet *ifp)
622 {
623     vifi_t vifi;
624     u_long i;
625 
626     MRW_WLOCK();
627 
628     if (V_ip_mrouter == NULL) {
629 	MRW_WUNLOCK();
630 	return;
631     }
632 
633     /*
634      * Tear down multicast forwarder state associated with this ifnet.
635      * 1. Walk the vif list, matching vifs against this ifnet.
636      * 2. Walk the multicast forwarding cache (mfc) looking for
637      *    inner matches with this vif's index.
638      * 3. Expire any matching multicast forwarding cache entries.
639      * 4. Free vif state. This should disable ALLMULTI on the interface.
640      */
641     for (vifi = 0; vifi < V_numvifs; vifi++) {
642 	if (V_viftable[vifi].v_ifp != ifp)
643 		continue;
644 	for (i = 0; i < mfchashsize; i++) {
645 		struct mfc *rt, *nrt;
646 
647 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
648 			if (rt->mfc_parent == vifi) {
649 				expire_mfc(rt);
650 			}
651 		}
652 	}
653 	del_vif_locked(vifi);
654     }
655 
656     MRW_WUNLOCK();
657 }
658 
659 static void
660 ip_mrouter_upcall_thread(void *arg, int pending __unused)
661 {
662 	CURVNET_SET((struct vnet *) arg);
663 
664 	MRW_WLOCK();
665 	bw_upcalls_send();
666 	MRW_WUNLOCK();
667 
668 	CURVNET_RESTORE();
669 }
670 
671 /*
672  * Enable multicast forwarding.
673  */
674 static int
675 ip_mrouter_init(struct socket *so, int version)
676 {
677 
678     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
679         so->so_type, so->so_proto->pr_protocol);
680 
681     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
682 	return EOPNOTSUPP;
683 
684     if (version != 1)
685 	return ENOPROTOOPT;
686 
687     MRW_WLOCK();
688 
689     if (ip_mrouter_unloading) {
690 	MRW_WUNLOCK();
691 	return ENOPROTOOPT;
692     }
693 
694     if (V_ip_mrouter != NULL) {
695 	MRW_WUNLOCK();
696 	return EADDRINUSE;
697     }
698 
699     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
700 	HASH_NOWAIT);
701 
702     /* Create upcall ring */
703     mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
704     V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
705 	M_NOWAIT, &V_bw_upcalls_ring_mtx);
706     if (!V_bw_upcalls_ring) {
707 	MRW_WUNLOCK();
708 	return (ENOMEM);
709     }
710 
711     TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
712     taskqueue_cancel(V_task_queue, &V_task, NULL);
713     taskqueue_unblock(V_task_queue);
714 
715     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
716 	curvnet);
717     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
718 	curvnet);
719 
720     V_ip_mrouter = so;
721     atomic_add_int(&ip_mrouter_cnt, 1);
722 
723     /* This is a mutex required by buf_ring init, but not used internally */
724     mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
725 
726     MRW_WUNLOCK();
727 
728     CTR1(KTR_IPMF, "%s: done", __func__);
729 
730     return 0;
731 }
732 
733 /*
734  * Disable multicast forwarding.
735  */
736 static int
737 X_ip_mrouter_done(void)
738 {
739     struct ifnet *ifp;
740     u_long i;
741     vifi_t vifi;
742     struct bw_upcall *bu;
743 
744     if (V_ip_mrouter == NULL)
745 	return (EINVAL);
746 
747     /*
748      * Detach/disable hooks to the reset of the system.
749      */
750     V_ip_mrouter = NULL;
751     atomic_subtract_int(&ip_mrouter_cnt, 1);
752     V_mrt_api_config = 0;
753 
754     /*
755      * Wait for all epoch sections to complete to ensure
756      * V_ip_mrouter = NULL is visible to others.
757      */
758     epoch_wait_preempt(net_epoch_preempt);
759 
760     /* Stop and drain task queue */
761     taskqueue_block(V_task_queue);
762     while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
763     	taskqueue_drain(V_task_queue, &V_task);
764     }
765 
766     MRW_WLOCK();
767     taskqueue_cancel(V_task_queue, &V_task, NULL);
768 
769     /* Destroy upcall ring */
770     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
771 	free(bu, M_MRTABLE);
772     }
773     buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
774     mtx_destroy(&V_bw_upcalls_ring_mtx);
775 
776     /*
777      * For each phyint in use, disable promiscuous reception of all IP
778      * multicasts.
779      */
780     for (vifi = 0; vifi < V_numvifs; vifi++) {
781 	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
782 		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
783 	    ifp = V_viftable[vifi].v_ifp;
784 	    if_allmulti(ifp, 0);
785 	}
786     }
787     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
788     V_numvifs = 0;
789     V_pim_assert_enabled = 0;
790 
791     callout_stop(&V_expire_upcalls_ch);
792     callout_stop(&V_bw_upcalls_ch);
793 
794     /*
795      * Free all multicast forwarding cache entries.
796      * Do not use hashdestroy(), as we must perform other cleanup.
797      */
798     for (i = 0; i < mfchashsize; i++) {
799 	struct mfc *rt, *nrt;
800 
801 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
802 		expire_mfc(rt);
803 	}
804     }
805     free(V_mfchashtbl, M_MRTABLE);
806     V_mfchashtbl = NULL;
807 
808     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
809 
810     V_reg_vif_num = VIFI_INVALID;
811 
812     mtx_destroy(&V_buf_ring_mtx);
813 
814     MRW_WUNLOCK();
815 
816     CTR1(KTR_IPMF, "%s: done", __func__);
817 
818     return 0;
819 }
820 
821 /*
822  * Set PIM assert processing global
823  */
824 static int
825 set_assert(int i)
826 {
827     if ((i != 1) && (i != 0))
828 	return EINVAL;
829 
830     V_pim_assert_enabled = i;
831 
832     return 0;
833 }
834 
835 /*
836  * Configure API capabilities
837  */
838 int
839 set_api_config(uint32_t *apival)
840 {
841     u_long i;
842 
843     /*
844      * We can set the API capabilities only if it is the first operation
845      * after MRT_INIT. I.e.:
846      *  - there are no vifs installed
847      *  - pim_assert is not enabled
848      *  - the MFC table is empty
849      */
850     if (V_numvifs > 0) {
851 	*apival = 0;
852 	return EPERM;
853     }
854     if (V_pim_assert_enabled) {
855 	*apival = 0;
856 	return EPERM;
857     }
858 
859     MRW_RLOCK();
860 
861     for (i = 0; i < mfchashsize; i++) {
862 	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
863 	    MRW_RUNLOCK();
864 	    *apival = 0;
865 	    return EPERM;
866 	}
867     }
868 
869     MRW_RUNLOCK();
870 
871     V_mrt_api_config = *apival & mrt_api_support;
872     *apival = V_mrt_api_config;
873 
874     return 0;
875 }
876 
877 /*
878  * Add a vif to the vif table
879  */
880 static int
881 add_vif(struct vifctl *vifcp)
882 {
883     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
884     struct sockaddr_in sin = {sizeof sin, AF_INET};
885     struct ifaddr *ifa;
886     struct ifnet *ifp;
887     int error;
888 
889 
890     if (vifcp->vifc_vifi >= MAXVIFS)
891 	return EINVAL;
892     /* rate limiting is no longer supported by this code */
893     if (vifcp->vifc_rate_limit != 0) {
894 	log(LOG_ERR, "rate limiting is no longer supported\n");
895 	return EINVAL;
896     }
897 
898     if (in_nullhost(vifcp->vifc_lcl_addr))
899 	return EADDRNOTAVAIL;
900 
901     /* Find the interface with an address in AF_INET family */
902     if (vifcp->vifc_flags & VIFF_REGISTER) {
903 	/*
904 	 * XXX: Because VIFF_REGISTER does not really need a valid
905 	 * local interface (e.g. it could be 127.0.0.2), we don't
906 	 * check its address.
907 	 */
908 	ifp = NULL;
909     } else {
910 	struct epoch_tracker et;
911 
912 	sin.sin_addr = vifcp->vifc_lcl_addr;
913 	NET_EPOCH_ENTER(et);
914 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
915 	if (ifa == NULL) {
916 	    NET_EPOCH_EXIT(et);
917 	    return EADDRNOTAVAIL;
918 	}
919 	ifp = ifa->ifa_ifp;
920 	/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
921 	NET_EPOCH_EXIT(et);
922     }
923 
924     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
925 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
926 	return EOPNOTSUPP;
927     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
928 	ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
929 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
930 	if (V_reg_vif_num == VIFI_INVALID) {
931 	    if_initname(V_multicast_register_if, "register_vif", 0);
932 	    V_reg_vif_num = vifcp->vifc_vifi;
933 	}
934     } else {		/* Make sure the interface supports multicast */
935 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
936 	    return EOPNOTSUPP;
937 
938 	/* Enable promiscuous reception of all IP multicasts from the if */
939 	error = if_allmulti(ifp, 1);
940 	if (error)
941 	    return error;
942     }
943 
944     MRW_WLOCK();
945 
946     if (!in_nullhost(vifp->v_lcl_addr)) {
947 	if (ifp)
948 		V_multicast_register_if = NULL;
949 	MRW_WUNLOCK();
950 	if (ifp)
951 		if_free(ifp);
952 	return EADDRINUSE;
953     }
954 
955     vifp->v_flags     = vifcp->vifc_flags;
956     vifp->v_threshold = vifcp->vifc_threshold;
957     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
958     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
959     vifp->v_ifp       = ifp;
960     /* initialize per vif pkt counters */
961     vifp->v_pkt_in    = 0;
962     vifp->v_pkt_out   = 0;
963     vifp->v_bytes_in  = 0;
964     vifp->v_bytes_out = 0;
965     sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
966     mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
967 
968     /* Adjust numvifs up if the vifi is higher than numvifs */
969     if (V_numvifs <= vifcp->vifc_vifi)
970 	V_numvifs = vifcp->vifc_vifi + 1;
971 
972     MRW_WUNLOCK();
973 
974     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
975 	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
976 	(int)vifcp->vifc_threshold);
977 
978     return 0;
979 }
980 
981 /*
982  * Delete a vif from the vif table
983  */
984 static int
985 del_vif_locked(vifi_t vifi)
986 {
987     struct vif *vifp;
988 
989     MRW_WLOCK_ASSERT();
990 
991     if (vifi >= V_numvifs) {
992 	return EINVAL;
993     }
994     vifp = &V_viftable[vifi];
995     if (in_nullhost(vifp->v_lcl_addr)) {
996 	return EADDRNOTAVAIL;
997     }
998 
999     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1000 	if_allmulti(vifp->v_ifp, 0);
1001 
1002     if (vifp->v_flags & VIFF_REGISTER) {
1003 	V_reg_vif_num = VIFI_INVALID;
1004 	if (vifp->v_ifp) {
1005 	    if (vifp->v_ifp == V_multicast_register_if)
1006 	        V_multicast_register_if = NULL;
1007 	    if_free(vifp->v_ifp);
1008 	}
1009     }
1010 
1011     mtx_destroy(&vifp->v_spin);
1012 
1013     bzero((caddr_t)vifp, sizeof (*vifp));
1014 
1015     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1016 
1017     /* Adjust numvifs down */
1018     for (vifi = V_numvifs; vifi > 0; vifi--)
1019 	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1020 	    break;
1021     V_numvifs = vifi;
1022 
1023     return 0;
1024 }
1025 
1026 static int
1027 del_vif(vifi_t vifi)
1028 {
1029     int cc;
1030 
1031     MRW_WLOCK();
1032     cc = del_vif_locked(vifi);
1033     MRW_WUNLOCK();
1034 
1035     return cc;
1036 }
1037 
1038 /*
1039  * update an mfc entry without resetting counters and S,G addresses.
1040  */
1041 static void
1042 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1043 {
1044     int i;
1045 
1046     rt->mfc_parent = mfccp->mfcc_parent;
1047     for (i = 0; i < V_numvifs; i++) {
1048 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1049 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1050 	    MRT_MFC_FLAGS_ALL;
1051     }
1052     /* set the RP address */
1053     if (V_mrt_api_config & MRT_MFC_RP)
1054 	rt->mfc_rp = mfccp->mfcc_rp;
1055     else
1056 	rt->mfc_rp.s_addr = INADDR_ANY;
1057 }
1058 
1059 /*
1060  * fully initialize an mfc entry from the parameter.
1061  */
1062 static void
1063 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1064 {
1065     rt->mfc_origin     = mfccp->mfcc_origin;
1066     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1067 
1068     update_mfc_params(rt, mfccp);
1069 
1070     /* initialize pkt counters per src-grp */
1071     rt->mfc_pkt_cnt    = 0;
1072     rt->mfc_byte_cnt   = 0;
1073     rt->mfc_wrong_if   = 0;
1074     timevalclear(&rt->mfc_last_assert);
1075 }
1076 
1077 static void
1078 expire_mfc(struct mfc *rt)
1079 {
1080 	struct rtdetq *rte;
1081 
1082 	MRW_WLOCK_ASSERT();
1083 
1084 	free_bw_list(rt->mfc_bw_meter_leq);
1085 	free_bw_list(rt->mfc_bw_meter_geq);
1086 
1087 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1088 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1089 		if (rte) {
1090 			m_freem(rte->m);
1091 			free(rte, M_MRTABLE);
1092 		}
1093 	}
1094 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1095 
1096 	LIST_REMOVE(rt, mfc_hash);
1097 	free(rt, M_MRTABLE);
1098 }
1099 
1100 /*
1101  * Add an mfc entry
1102  */
1103 static int
1104 add_mfc(struct mfcctl2 *mfccp)
1105 {
1106     struct mfc *rt;
1107     struct rtdetq *rte;
1108     u_long hash = 0;
1109     u_short nstl;
1110 
1111     MRW_WLOCK();
1112     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1113 
1114     /* If an entry already exists, just update the fields */
1115     if (rt) {
1116 	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1117 	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1118 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1119 	    mfccp->mfcc_parent);
1120 	update_mfc_params(rt, mfccp);
1121 	MRW_WUNLOCK();
1122 	return (0);
1123     }
1124 
1125     /*
1126      * Find the entry for which the upcall was made and update
1127      */
1128     nstl = 0;
1129     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1130     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1131 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1132 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1133 	    !buf_ring_empty(rt->mfc_stall_ring)) {
1134 		CTR5(KTR_IPMF,
1135 		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1136 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1137 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1138 		    mfccp->mfcc_parent,
1139 		    rt->mfc_stall_ring);
1140 		if (nstl++)
1141 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1142 
1143 		init_mfc_params(rt, mfccp);
1144 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1145 		V_nexpire[hash]--;
1146 
1147 		/* Free queued packets, but attempt to forward them first. */
1148 		while (!buf_ring_empty(rt->mfc_stall_ring)) {
1149 			rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1150 			if (rte->ifp != NULL)
1151 				ip_mdq(rte->m, rte->ifp, rt, -1);
1152 			m_freem(rte->m);
1153 			free(rte, M_MRTABLE);
1154 		}
1155 	}
1156     }
1157 
1158     /*
1159      * It is possible that an entry is being inserted without an upcall
1160      */
1161     if (nstl == 0) {
1162 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1163 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1164 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1165 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1166 			init_mfc_params(rt, mfccp);
1167 			if (rt->mfc_expire)
1168 			    V_nexpire[hash]--;
1169 			rt->mfc_expire = 0;
1170 			break; /* XXX */
1171 		}
1172 	}
1173 
1174 	if (rt == NULL) {		/* no upcall, so make a new entry */
1175 	    rt = mfc_alloc();
1176 	    if (rt == NULL) {
1177 		MRW_WUNLOCK();
1178 		return (ENOBUFS);
1179 	    }
1180 
1181 	    init_mfc_params(rt, mfccp);
1182 
1183 	    rt->mfc_expire     = 0;
1184 	    rt->mfc_bw_meter_leq = NULL;
1185 	    rt->mfc_bw_meter_geq = NULL;
1186 
1187 	    /* insert new entry at head of hash chain */
1188 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1189 	}
1190     }
1191 
1192     MRW_WUNLOCK();
1193 
1194     return (0);
1195 }
1196 
1197 /*
1198  * Delete an mfc entry
1199  */
1200 static int
1201 del_mfc(struct mfcctl2 *mfccp)
1202 {
1203     struct in_addr	origin;
1204     struct in_addr	mcastgrp;
1205     struct mfc		*rt;
1206 
1207     origin = mfccp->mfcc_origin;
1208     mcastgrp = mfccp->mfcc_mcastgrp;
1209 
1210     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1211 	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1212 
1213     MRW_WLOCK();
1214 
1215     rt = mfc_find(&origin, &mcastgrp);
1216     if (rt == NULL) {
1217 	MRW_WUNLOCK();
1218 	return EADDRNOTAVAIL;
1219     }
1220 
1221     /*
1222      * free the bw_meter entries
1223      */
1224     free_bw_list(rt->mfc_bw_meter_leq);
1225     rt->mfc_bw_meter_leq = NULL;
1226     free_bw_list(rt->mfc_bw_meter_geq);
1227     rt->mfc_bw_meter_geq = NULL;
1228 
1229     LIST_REMOVE(rt, mfc_hash);
1230     free(rt, M_MRTABLE);
1231 
1232     MRW_WUNLOCK();
1233 
1234     return (0);
1235 }
1236 
1237 /*
1238  * Send a message to the routing daemon on the multicast routing socket.
1239  */
1240 static int
1241 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1242 {
1243     if (s) {
1244 	SOCKBUF_LOCK(&s->so_rcv);
1245 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1246 	    NULL) != 0) {
1247 	    sorwakeup_locked(s);
1248 	    return 0;
1249 	}
1250 	soroverflow_locked(s);
1251     }
1252     m_freem(mm);
1253     return -1;
1254 }
1255 
1256 /*
1257  * IP multicast forwarding function. This function assumes that the packet
1258  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1259  * pointed to by "ifp", and the packet is to be relayed to other networks
1260  * that have members of the packet's destination IP multicast group.
1261  *
1262  * The packet is returned unscathed to the caller, unless it is
1263  * erroneous, in which case a non-zero return value tells the caller to
1264  * discard it.
1265  */
1266 
1267 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1268 
1269 static int
1270 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1271     struct ip_moptions *imo)
1272 {
1273 	struct mfc *rt;
1274 	int error;
1275 	vifi_t vifi;
1276 	struct mbuf *mb0;
1277 	struct rtdetq *rte;
1278 	u_long hash;
1279 	int hlen;
1280 
1281 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1282 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1283 
1284 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1285 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1286 		/*
1287 		 * Packet arrived via a physical interface or
1288 		 * an encapsulated tunnel or a register_vif.
1289 		 */
1290 	} else {
1291 		/*
1292 		 * Packet arrived through a source-route tunnel.
1293 		 * Source-route tunnels are no longer supported.
1294 		 */
1295 		return (1);
1296 	}
1297 
1298 	/*
1299 	 * BEGIN: MCAST ROUTING HOT PATH
1300 	 */
1301 	MRW_RLOCK();
1302 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1303 		if (ip->ip_ttl < MAXTTL)
1304 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1305 		error = ip_mdq(m, ifp, NULL, vifi);
1306 		MRW_RUNLOCK();
1307 		return error;
1308 	}
1309 
1310 	/*
1311 	 * Don't forward a packet with time-to-live of zero or one,
1312 	 * or a packet destined to a local-only group.
1313 	 */
1314 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1315 		MRW_RUNLOCK();
1316 		return 0;
1317 	}
1318 
1319 	mfc_find_retry:
1320 	/*
1321 	 * Determine forwarding vifs from the forwarding cache table
1322 	 */
1323 	MRTSTAT_INC(mrts_mfc_lookups);
1324 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1325 
1326 	/* Entry exists, so forward if necessary */
1327 	if (rt != NULL) {
1328 		error = ip_mdq(m, ifp, rt, -1);
1329 		/* Generic unlock here as we might release R or W lock */
1330 		MRW_UNLOCK();
1331 		return error;
1332 	}
1333 
1334 	/*
1335 	 * END: MCAST ROUTING HOT PATH
1336 	 */
1337 
1338 	/* Further processing must be done with WLOCK taken */
1339 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1340 		MRW_RUNLOCK();
1341 		MRW_WLOCK();
1342 		goto mfc_find_retry;
1343 	}
1344 
1345 	/*
1346 	 * If we don't have a route for packet's origin,
1347 	 * Make a copy of the packet & send message to routing daemon
1348 	 */
1349 	hlen = ip->ip_hl << 2;
1350 
1351 	MRTSTAT_INC(mrts_mfc_misses);
1352 	MRTSTAT_INC(mrts_no_route);
1353 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1354 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1355 
1356 	/*
1357 	 * Allocate mbufs early so that we don't do extra work if we are
1358 	 * just going to fail anyway.  Make sure to pullup the header so
1359 	 * that other people can't step on it.
1360 	 */
1361 	rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
1362 	    M_NOWAIT|M_ZERO);
1363 	if (rte == NULL) {
1364 		MRW_WUNLOCK();
1365 		return ENOBUFS;
1366 	}
1367 
1368 	mb0 = m_copypacket(m, M_NOWAIT);
1369 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1370 		mb0 = m_pullup(mb0, hlen);
1371 	if (mb0 == NULL) {
1372 		free(rte, M_MRTABLE);
1373 		MRW_WUNLOCK();
1374 		return ENOBUFS;
1375 	}
1376 
1377 	/* is there an upcall waiting for this flow ? */
1378 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1379 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1380 	{
1381 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1382 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1383 		    !buf_ring_empty(rt->mfc_stall_ring))
1384 			break;
1385 	}
1386 
1387 	if (rt == NULL) {
1388 		int i;
1389 		struct igmpmsg *im;
1390 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1391 		struct mbuf *mm;
1392 
1393 		/*
1394 		 * Locate the vifi for the incoming interface for this packet.
1395 		 * If none found, drop packet.
1396 		 */
1397 		for (vifi = 0; vifi < V_numvifs &&
1398 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1399 			;
1400 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1401 			goto non_fatal;
1402 
1403 		/* no upcall, so make a new entry */
1404 		rt = mfc_alloc();
1405 		if (rt == NULL)
1406 			goto fail;
1407 
1408 		/* Make a copy of the header to send to the user level process */
1409 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1410 		if (mm == NULL)
1411 			goto fail1;
1412 
1413 		/*
1414 		 * Send message to routing daemon to install
1415 		 * a route into the kernel table
1416 		 */
1417 
1418 		im = mtod(mm, struct igmpmsg*);
1419 		im->im_msgtype = IGMPMSG_NOCACHE;
1420 		im->im_mbz = 0;
1421 		im->im_vif = vifi;
1422 
1423 		MRTSTAT_INC(mrts_upcalls);
1424 
1425 		k_igmpsrc.sin_addr = ip->ip_src;
1426 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1427 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1428 			MRTSTAT_INC(mrts_upq_sockfull);
1429 			fail1: free(rt, M_MRTABLE);
1430 			fail: free(rte, M_MRTABLE);
1431 			m_freem(mb0);
1432 			MRW_WUNLOCK();
1433 			return ENOBUFS;
1434 		}
1435 
1436 		/* insert new entry at head of hash chain */
1437 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1438 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1439 		rt->mfc_expire = UPCALL_EXPIRE;
1440 		V_nexpire[hash]++;
1441 		for (i = 0; i < V_numvifs; i++) {
1442 			rt->mfc_ttls[i] = 0;
1443 			rt->mfc_flags[i] = 0;
1444 		}
1445 		rt->mfc_parent = -1;
1446 
1447 		/* clear the RP address */
1448 		rt->mfc_rp.s_addr = INADDR_ANY;
1449 		rt->mfc_bw_meter_leq = NULL;
1450 		rt->mfc_bw_meter_geq = NULL;
1451 
1452 		/* initialize pkt counters per src-grp */
1453 		rt->mfc_pkt_cnt = 0;
1454 		rt->mfc_byte_cnt = 0;
1455 		rt->mfc_wrong_if = 0;
1456 		timevalclear(&rt->mfc_last_assert);
1457 
1458 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1459 
1460 		/* Add RT to hashtable as it didn't exist before */
1461 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1462 	} else {
1463 		/* determine if queue has overflowed */
1464 		if (buf_ring_full(rt->mfc_stall_ring)) {
1465 			MRTSTAT_INC(mrts_upq_ovflw);
1466 			non_fatal: free(rte, M_MRTABLE);
1467 			m_freem(mb0);
1468 			MRW_WUNLOCK();
1469 			return (0);
1470 		}
1471 
1472 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1473 	}
1474 
1475 	rte->m = mb0;
1476 	rte->ifp = ifp;
1477 
1478 	MRW_WUNLOCK();
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Clean up the cache entry if upcall is not serviced
1485  */
1486 static void
1487 expire_upcalls(void *arg)
1488 {
1489     u_long i;
1490 
1491     CURVNET_SET((struct vnet *) arg);
1492 
1493     /*This callout is always run with MRW_WLOCK taken. */
1494 
1495     for (i = 0; i < mfchashsize; i++) {
1496 	struct mfc *rt, *nrt;
1497 
1498 	if (V_nexpire[i] == 0)
1499 	    continue;
1500 
1501 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1502 		if (buf_ring_empty(rt->mfc_stall_ring))
1503 			continue;
1504 
1505 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1506 			continue;
1507 
1508 		MRTSTAT_INC(mrts_cache_cleanups);
1509 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1510 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1511 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1512 
1513 		expire_mfc(rt);
1514 	    }
1515     }
1516 
1517     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1518 	curvnet);
1519 
1520     CURVNET_RESTORE();
1521 }
1522 
1523 /*
1524  * Packet forwarding routine once entry in the cache is made
1525  */
1526 static int
1527 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1528 {
1529     struct ip  *ip = mtod(m, struct ip *);
1530     vifi_t vifi;
1531     int plen = ntohs(ip->ip_len);
1532 
1533     MRW_LOCK_ASSERT();
1534 
1535     /*
1536      * If xmt_vif is not -1, send on only the requested vif.
1537      *
1538      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1539      */
1540     if (xmt_vif < V_numvifs) {
1541 	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1542 		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1543 	else
1544 		phyint_send(ip, V_viftable + xmt_vif, m);
1545 	return 1;
1546     }
1547 
1548     /*
1549      * Don't forward if it didn't arrive from the parent vif for its origin.
1550      */
1551     vifi = rt->mfc_parent;
1552     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1553 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1554 	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1555 	MRTSTAT_INC(mrts_wrong_if);
1556 	++rt->mfc_wrong_if;
1557 	/*
1558 	 * If we are doing PIM assert processing, send a message
1559 	 * to the routing daemon.
1560 	 *
1561 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1562 	 * can complete the SPT switch, regardless of the type
1563 	 * of the iif (broadcast media, GRE tunnel, etc).
1564 	 */
1565 	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1566 	    V_viftable[vifi].v_ifp) {
1567 	    if (ifp == V_multicast_register_if)
1568 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1569 
1570 	    /* Get vifi for the incoming packet */
1571 	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1572 		vifi++)
1573 		;
1574 	    if (vifi >= V_numvifs)
1575 		return 0;	/* The iif is not found: ignore the packet. */
1576 
1577 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1578 		return 0;	/* WRONGVIF disabled: ignore the packet */
1579 
1580 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1581 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1582 		struct igmpmsg *im;
1583 		int hlen = ip->ip_hl << 2;
1584 		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1585 
1586 		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1587 		    mm = m_pullup(mm, hlen);
1588 		if (mm == NULL)
1589 		    return ENOBUFS;
1590 
1591 		im = mtod(mm, struct igmpmsg *);
1592 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1593 		im->im_mbz		= 0;
1594 		im->im_vif		= vifi;
1595 
1596 		MRTSTAT_INC(mrts_upcalls);
1597 
1598 		k_igmpsrc.sin_addr = im->im_src;
1599 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1600 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1601 		    MRTSTAT_INC(mrts_upq_sockfull);
1602 		    return ENOBUFS;
1603 		}
1604 	    }
1605 	}
1606 	return 0;
1607     }
1608 
1609     /* If I sourced this packet, it counts as output, else it was input. */
1610     mtx_lock_spin(&V_viftable[vifi].v_spin);
1611     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1612 	V_viftable[vifi].v_pkt_out++;
1613 	V_viftable[vifi].v_bytes_out += plen;
1614     } else {
1615 	V_viftable[vifi].v_pkt_in++;
1616 	V_viftable[vifi].v_bytes_in += plen;
1617     }
1618     mtx_unlock_spin(&V_viftable[vifi].v_spin);
1619 
1620     rt->mfc_pkt_cnt++;
1621     rt->mfc_byte_cnt += plen;
1622 
1623     /*
1624      * For each vif, decide if a copy of the packet should be forwarded.
1625      * Forward if:
1626      *		- the ttl exceeds the vif's threshold
1627      *		- there are group members downstream on interface
1628      */
1629     for (vifi = 0; vifi < V_numvifs; vifi++)
1630 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1631 	    V_viftable[vifi].v_pkt_out++;
1632 	    V_viftable[vifi].v_bytes_out += plen;
1633 	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1634 		pim_register_send(ip, V_viftable + vifi, m, rt);
1635 	    else
1636 		phyint_send(ip, V_viftable + vifi, m);
1637 	}
1638 
1639     /*
1640      * Perform upcall-related bw measuring.
1641      */
1642     if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1643 	struct bw_meter *x;
1644 	struct timeval now;
1645 
1646 	microtime(&now);
1647 	/* Process meters for Greater-or-EQual case */
1648 	for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1649 		bw_meter_geq_receive_packet(x, plen, &now);
1650 
1651 	/* Process meters for Lower-or-EQual case */
1652 	for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1653 		/*
1654 		 * Record that a packet is received.
1655 		 * Spin lock has to be taken as callout context
1656 		 * (expire_bw_meter_leq) might modify these fields
1657 		 * as well
1658 		 */
1659 		mtx_lock_spin(&x->bm_spin);
1660 		x->bm_measured.b_packets++;
1661 		x->bm_measured.b_bytes += plen;
1662 		mtx_unlock_spin(&x->bm_spin);
1663 	}
1664     }
1665 
1666     return 0;
1667 }
1668 
1669 /*
1670  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1671  */
1672 static int
1673 X_legal_vif_num(int vif)
1674 {
1675 	int ret;
1676 
1677 	ret = 0;
1678 	if (vif < 0)
1679 		return (ret);
1680 
1681 	MRW_RLOCK();
1682 	if (vif < V_numvifs)
1683 		ret = 1;
1684 	MRW_RUNLOCK();
1685 
1686 	return (ret);
1687 }
1688 
1689 /*
1690  * Return the local address used by this vif
1691  */
1692 static u_long
1693 X_ip_mcast_src(int vifi)
1694 {
1695 	in_addr_t addr;
1696 
1697 	addr = INADDR_ANY;
1698 	if (vifi < 0)
1699 		return (addr);
1700 
1701 	MRW_RLOCK();
1702 	if (vifi < V_numvifs)
1703 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1704 	MRW_RUNLOCK();
1705 
1706 	return (addr);
1707 }
1708 
1709 static void
1710 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1711 {
1712     struct mbuf *mb_copy;
1713     int hlen = ip->ip_hl << 2;
1714 
1715     MRW_LOCK_ASSERT();
1716 
1717     /*
1718      * Make a new reference to the packet; make sure that
1719      * the IP header is actually copied, not just referenced,
1720      * so that ip_output() only scribbles on the copy.
1721      */
1722     mb_copy = m_copypacket(m, M_NOWAIT);
1723     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1724 	mb_copy = m_pullup(mb_copy, hlen);
1725     if (mb_copy == NULL)
1726 	return;
1727 
1728     send_packet(vifp, mb_copy);
1729 }
1730 
1731 static void
1732 send_packet(struct vif *vifp, struct mbuf *m)
1733 {
1734 	struct ip_moptions imo;
1735 	int error __unused;
1736 
1737 	MRW_LOCK_ASSERT();
1738 
1739 	imo.imo_multicast_ifp  = vifp->v_ifp;
1740 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1741 	imo.imo_multicast_loop = !!in_mcast_loop;
1742 	imo.imo_multicast_vif  = -1;
1743 	STAILQ_INIT(&imo.imo_head);
1744 
1745 	/*
1746 	 * Re-entrancy should not be a problem here, because
1747 	 * the packets that we send out and are looped back at us
1748 	 * should get rejected because they appear to come from
1749 	 * the loopback interface, thus preventing looping.
1750 	 */
1751 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1752 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1753 	    (ptrdiff_t)(vifp - V_viftable), error);
1754 }
1755 
1756 /*
1757  * Stubs for old RSVP socket shim implementation.
1758  */
1759 
1760 static int
1761 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1762 {
1763 
1764 	return (EOPNOTSUPP);
1765 }
1766 
1767 static void
1768 X_ip_rsvp_force_done(struct socket *so __unused)
1769 {
1770 
1771 }
1772 
1773 static int
1774 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1775 {
1776 	struct mbuf *m;
1777 
1778 	m = *mp;
1779 	*mp = NULL;
1780 	if (!V_rsvp_on)
1781 		m_freem(m);
1782 	return (IPPROTO_DONE);
1783 }
1784 
1785 /*
1786  * Code for bandwidth monitors
1787  */
1788 
1789 /*
1790  * Define common interface for timeval-related methods
1791  */
1792 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1793 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1794 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1795 
1796 static uint32_t
1797 compute_bw_meter_flags(struct bw_upcall *req)
1798 {
1799     uint32_t flags = 0;
1800 
1801     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1802 	flags |= BW_METER_UNIT_PACKETS;
1803     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1804 	flags |= BW_METER_UNIT_BYTES;
1805     if (req->bu_flags & BW_UPCALL_GEQ)
1806 	flags |= BW_METER_GEQ;
1807     if (req->bu_flags & BW_UPCALL_LEQ)
1808 	flags |= BW_METER_LEQ;
1809 
1810     return flags;
1811 }
1812 
1813 static void
1814 expire_bw_meter_leq(void *arg)
1815 {
1816 	struct bw_meter *x = arg;
1817 	struct timeval now;
1818 	/*
1819 	 * INFO:
1820 	 * callout is always executed with MRW_WLOCK taken
1821 	 */
1822 
1823 	CURVNET_SET((struct vnet *)x->arg);
1824 
1825 	microtime(&now);
1826 
1827 	/*
1828 	 * Test if we should deliver an upcall
1829 	 */
1830 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1831 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1832 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1833 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1834 		/* Prepare an upcall for delivery */
1835 		bw_meter_prepare_upcall(x, &now);
1836 	}
1837 
1838 	/* Send all upcalls that are pending delivery */
1839 	taskqueue_enqueue(V_task_queue, &V_task);
1840 
1841 	/* Reset counters */
1842 	x->bm_start_time = now;
1843 	/* Spin lock has to be taken as ip_forward context
1844 	 * might modify these fields as well
1845 	 */
1846 	mtx_lock_spin(&x->bm_spin);
1847 	x->bm_measured.b_bytes = 0;
1848 	x->bm_measured.b_packets = 0;
1849 	mtx_unlock_spin(&x->bm_spin);
1850 
1851 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1852 
1853 	CURVNET_RESTORE();
1854 }
1855 
1856 /*
1857  * Add a bw_meter entry
1858  */
1859 static int
1860 add_bw_upcall(struct bw_upcall *req)
1861 {
1862 	struct mfc *mfc;
1863 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1864 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1865 	struct timeval now;
1866 	struct bw_meter *x, **bwm_ptr;
1867 	uint32_t flags;
1868 
1869 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1870 		return EOPNOTSUPP;
1871 
1872 	/* Test if the flags are valid */
1873 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1874 		return EINVAL;
1875 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1876 		return EINVAL;
1877 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1878 			== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1879 		return EINVAL;
1880 
1881 	/* Test if the threshold time interval is valid */
1882 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1883 		return EINVAL;
1884 
1885 	flags = compute_bw_meter_flags(req);
1886 
1887 	/*
1888 	 * Find if we have already same bw_meter entry
1889 	 */
1890 	MRW_WLOCK();
1891 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1892 	if (mfc == NULL) {
1893 		MRW_WUNLOCK();
1894 		return EADDRNOTAVAIL;
1895 	}
1896 
1897 	/* Choose an appropriate bw_meter list */
1898 	if (req->bu_flags & BW_UPCALL_GEQ)
1899 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1900 	else
1901 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1902 
1903 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1904 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1905 		    &req->bu_threshold.b_time, ==))
1906 		    && (x->bm_threshold.b_packets
1907 		    == req->bu_threshold.b_packets)
1908 		    && (x->bm_threshold.b_bytes
1909 		    == req->bu_threshold.b_bytes)
1910 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1911 		    == flags) {
1912 			MRW_WUNLOCK();
1913 			return 0; /* XXX Already installed */
1914 		}
1915 	}
1916 
1917 	/* Allocate the new bw_meter entry */
1918 	x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
1919 	    M_ZERO | M_NOWAIT);
1920 	if (x == NULL) {
1921 		MRW_WUNLOCK();
1922 		return ENOBUFS;
1923 	}
1924 
1925 	/* Set the new bw_meter entry */
1926 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1927 	microtime(&now);
1928 	x->bm_start_time = now;
1929 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1930 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1931 	x->bm_measured.b_packets = 0;
1932 	x->bm_measured.b_bytes = 0;
1933 	x->bm_flags = flags;
1934 	x->bm_time_next = NULL;
1935 	x->bm_mfc = mfc;
1936 	x->arg = curvnet;
1937 	sprintf(x->bm_spin_name, "BM spin %p", x);
1938 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1939 
1940 	/* For LEQ case create periodic callout */
1941 	if (req->bu_flags & BW_UPCALL_LEQ) {
1942 		callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
1943 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1944 		    expire_bw_meter_leq, x);
1945 	}
1946 
1947 	/* Add the new bw_meter entry to the front of entries for this MFC */
1948 	x->bm_mfc_next = *bwm_ptr;
1949 	*bwm_ptr = x;
1950 
1951 	MRW_WUNLOCK();
1952 
1953 	return 0;
1954 }
1955 
1956 static void
1957 free_bw_list(struct bw_meter *list)
1958 {
1959     while (list != NULL) {
1960 	struct bw_meter *x = list;
1961 
1962 	/* MRW_WLOCK must be held here */
1963 	if (x->bm_flags & BW_METER_LEQ) {
1964 		callout_drain(&x->bm_meter_callout);
1965 		mtx_destroy(&x->bm_spin);
1966 	}
1967 
1968 	list = list->bm_mfc_next;
1969 	free(x, M_BWMETER);
1970     }
1971 }
1972 
1973 /*
1974  * Delete one or multiple bw_meter entries
1975  */
1976 static int
1977 del_bw_upcall(struct bw_upcall *req)
1978 {
1979     struct mfc *mfc;
1980     struct bw_meter *x, **bwm_ptr;
1981 
1982     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1983 	return EOPNOTSUPP;
1984 
1985     MRW_WLOCK();
1986 
1987     /* Find the corresponding MFC entry */
1988     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1989     if (mfc == NULL) {
1990 	MRW_WUNLOCK();
1991 	return EADDRNOTAVAIL;
1992     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1993 	/*
1994 	 * Delete all bw_meter entries for this mfc
1995 	 */
1996 	struct bw_meter *list;
1997 
1998 	/* Free LEQ list */
1999 	list = mfc->mfc_bw_meter_leq;
2000 	mfc->mfc_bw_meter_leq = NULL;
2001 	free_bw_list(list);
2002 
2003 	/* Free GEQ list */
2004 	list = mfc->mfc_bw_meter_geq;
2005 	mfc->mfc_bw_meter_geq = NULL;
2006 	free_bw_list(list);
2007 	MRW_WUNLOCK();
2008 	return 0;
2009     } else {			/* Delete a single bw_meter entry */
2010 	struct bw_meter *prev;
2011 	uint32_t flags = 0;
2012 
2013 	flags = compute_bw_meter_flags(req);
2014 
2015 	/* Choose an appropriate bw_meter list */
2016 	if (req->bu_flags & BW_UPCALL_GEQ)
2017 		bwm_ptr = &mfc->mfc_bw_meter_geq;
2018 	else
2019 		bwm_ptr = &mfc->mfc_bw_meter_leq;
2020 
2021 	/* Find the bw_meter entry to delete */
2022 	for (prev = NULL, x = *bwm_ptr; x != NULL;
2023 	     prev = x, x = x->bm_mfc_next) {
2024 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2025 			       &req->bu_threshold.b_time, ==)) &&
2026 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2027 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2028 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2029 		break;
2030 	}
2031 	if (x != NULL) { /* Delete entry from the list for this MFC */
2032 	    if (prev != NULL)
2033 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2034 	    else
2035 		*bwm_ptr = x->bm_mfc_next;/* new head of list */
2036 
2037 	    if (req->bu_flags & BW_UPCALL_LEQ)
2038 		    callout_stop(&x->bm_meter_callout);
2039 
2040 	    MRW_WUNLOCK();
2041 	    /* Free the bw_meter entry */
2042 	    free(x, M_BWMETER);
2043 	    return 0;
2044 	} else {
2045 	    MRW_WUNLOCK();
2046 	    return EINVAL;
2047 	}
2048     }
2049     /* NOTREACHED */
2050 }
2051 
2052 /*
2053  * Perform bandwidth measurement processing that may result in an upcall
2054  */
2055 static void
2056 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2057 {
2058 	struct timeval delta;
2059 
2060 	MRW_LOCK_ASSERT();
2061 
2062 	delta = *nowp;
2063 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2064 
2065 	/*
2066 	 * Processing for ">=" type of bw_meter entry.
2067 	 * bm_spin does not have to be hold here as in GEQ
2068 	 * case this is the only context accessing bm_measured.
2069 	 */
2070 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2071 	    /* Reset the bw_meter entry */
2072 	    x->bm_start_time = *nowp;
2073 	    x->bm_measured.b_packets = 0;
2074 	    x->bm_measured.b_bytes = 0;
2075 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2076 	}
2077 
2078 	/* Record that a packet is received */
2079 	x->bm_measured.b_packets++;
2080 	x->bm_measured.b_bytes += plen;
2081 
2082 	/*
2083 	 * Test if we should deliver an upcall
2084 	 */
2085 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2086 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2087 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2088 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2089 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2090 			/* Prepare an upcall for delivery */
2091 			bw_meter_prepare_upcall(x, nowp);
2092 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2093 		}
2094 	}
2095 }
2096 
2097 /*
2098  * Prepare a bandwidth-related upcall
2099  */
2100 static void
2101 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2102 {
2103 	struct timeval delta;
2104 	struct bw_upcall *u;
2105 
2106 	MRW_LOCK_ASSERT();
2107 
2108 	/*
2109 	 * Compute the measured time interval
2110 	 */
2111 	delta = *nowp;
2112 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2113 
2114 	/*
2115 	 * Set the bw_upcall entry
2116 	 */
2117 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2118 	if (!u) {
2119 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2120 		return;
2121 	}
2122 	u->bu_src = x->bm_mfc->mfc_origin;
2123 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2124 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2125 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2126 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2127 	u->bu_measured.b_time = delta;
2128 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2129 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2130 	u->bu_flags = 0;
2131 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2132 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2133 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2134 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2135 	if (x->bm_flags & BW_METER_GEQ)
2136 		u->bu_flags |= BW_UPCALL_GEQ;
2137 	if (x->bm_flags & BW_METER_LEQ)
2138 		u->bu_flags |= BW_UPCALL_LEQ;
2139 
2140 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2141 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2142 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2143 		taskqueue_enqueue(V_task_queue, &V_task);
2144 	}
2145 }
2146 /*
2147  * Send the pending bandwidth-related upcalls
2148  */
2149 static void
2150 bw_upcalls_send(void)
2151 {
2152     struct mbuf *m;
2153     int len = 0;
2154     struct bw_upcall *bu;
2155     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2156     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2157 				      0,		/* unused2 */
2158 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2159 				      0,		/* im_mbz  */
2160 				      0,		/* im_vif  */
2161 				      0,		/* unused3 */
2162 				      { 0 },		/* im_src  */
2163 				      { 0 } };		/* im_dst  */
2164 
2165     MRW_LOCK_ASSERT();
2166 
2167     if (buf_ring_empty(V_bw_upcalls_ring))
2168 	return;
2169 
2170     /*
2171      * Allocate a new mbuf, initialize it with the header and
2172      * the payload for the pending calls.
2173      */
2174     m = m_gethdr(M_NOWAIT, MT_DATA);
2175     if (m == NULL) {
2176 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2177 	return;
2178     }
2179 
2180     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2181     len += sizeof(struct igmpmsg);
2182     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2183 	m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2184 	len += sizeof(struct bw_upcall);
2185 	free(bu, M_MRTABLE);
2186     }
2187 
2188     /*
2189      * Send the upcalls
2190      * XXX do we need to set the address in k_igmpsrc ?
2191      */
2192     MRTSTAT_INC(mrts_upcalls);
2193     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2194 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2195 	MRTSTAT_INC(mrts_upq_sockfull);
2196     }
2197 }
2198 
2199 /*
2200  * A periodic function for sending all upcalls that are pending delivery
2201  */
2202 static void
2203 expire_bw_upcalls_send(void *arg)
2204 {
2205     CURVNET_SET((struct vnet *) arg);
2206 
2207     /* This callout is run with MRW_RLOCK taken */
2208 
2209     bw_upcalls_send();
2210 
2211     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2212 	curvnet);
2213     CURVNET_RESTORE();
2214 }
2215 
2216 /*
2217  * End of bandwidth monitoring code
2218  */
2219 
2220 /*
2221  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2222  *
2223  */
2224 static int
2225 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2226     struct mfc *rt)
2227 {
2228     struct mbuf *mb_copy, *mm;
2229 
2230     /*
2231      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2232      * rendezvous point was unspecified, and we were told not to.
2233      */
2234     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2235 	in_nullhost(rt->mfc_rp))
2236 	return 0;
2237 
2238     mb_copy = pim_register_prepare(ip, m);
2239     if (mb_copy == NULL)
2240 	return ENOBUFS;
2241 
2242     /*
2243      * Send all the fragments. Note that the mbuf for each fragment
2244      * is freed by the sending machinery.
2245      */
2246     for (mm = mb_copy; mm; mm = mb_copy) {
2247 	mb_copy = mm->m_nextpkt;
2248 	mm->m_nextpkt = 0;
2249 	mm = m_pullup(mm, sizeof(struct ip));
2250 	if (mm != NULL) {
2251 	    ip = mtod(mm, struct ip *);
2252 	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2253 		pim_register_send_rp(ip, vifp, mm, rt);
2254 	    } else {
2255 		pim_register_send_upcall(ip, vifp, mm, rt);
2256 	    }
2257 	}
2258     }
2259 
2260     return 0;
2261 }
2262 
2263 /*
2264  * Return a copy of the data packet that is ready for PIM Register
2265  * encapsulation.
2266  * XXX: Note that in the returned copy the IP header is a valid one.
2267  */
2268 static struct mbuf *
2269 pim_register_prepare(struct ip *ip, struct mbuf *m)
2270 {
2271     struct mbuf *mb_copy = NULL;
2272     int mtu;
2273 
2274     /* Take care of delayed checksums */
2275     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2276 	in_delayed_cksum(m);
2277 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2278     }
2279 
2280     /*
2281      * Copy the old packet & pullup its IP header into the
2282      * new mbuf so we can modify it.
2283      */
2284     mb_copy = m_copypacket(m, M_NOWAIT);
2285     if (mb_copy == NULL)
2286 	return NULL;
2287     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2288     if (mb_copy == NULL)
2289 	return NULL;
2290 
2291     /* take care of the TTL */
2292     ip = mtod(mb_copy, struct ip *);
2293     --ip->ip_ttl;
2294 
2295     /* Compute the MTU after the PIM Register encapsulation */
2296     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2297 
2298     if (ntohs(ip->ip_len) <= mtu) {
2299 	/* Turn the IP header into a valid one */
2300 	ip->ip_sum = 0;
2301 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2302     } else {
2303 	/* Fragment the packet */
2304 	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2305 	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2306 	    m_freem(mb_copy);
2307 	    return NULL;
2308 	}
2309     }
2310     return mb_copy;
2311 }
2312 
2313 /*
2314  * Send an upcall with the data packet to the user-level process.
2315  */
2316 static int
2317 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2318     struct mbuf *mb_copy, struct mfc *rt)
2319 {
2320     struct mbuf *mb_first;
2321     int len = ntohs(ip->ip_len);
2322     struct igmpmsg *im;
2323     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2324 
2325     MRW_LOCK_ASSERT();
2326 
2327     /*
2328      * Add a new mbuf with an upcall header
2329      */
2330     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2331     if (mb_first == NULL) {
2332 	m_freem(mb_copy);
2333 	return ENOBUFS;
2334     }
2335     mb_first->m_data += max_linkhdr;
2336     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2337     mb_first->m_len = sizeof(struct igmpmsg);
2338     mb_first->m_next = mb_copy;
2339 
2340     /* Send message to routing daemon */
2341     im = mtod(mb_first, struct igmpmsg *);
2342     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2343     im->im_mbz		= 0;
2344     im->im_vif		= vifp - V_viftable;
2345     im->im_src		= ip->ip_src;
2346     im->im_dst		= ip->ip_dst;
2347 
2348     k_igmpsrc.sin_addr	= ip->ip_src;
2349 
2350     MRTSTAT_INC(mrts_upcalls);
2351 
2352     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2353 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2354 	MRTSTAT_INC(mrts_upq_sockfull);
2355 	return ENOBUFS;
2356     }
2357 
2358     /* Keep statistics */
2359     PIMSTAT_INC(pims_snd_registers_msgs);
2360     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2361 
2362     return 0;
2363 }
2364 
2365 /*
2366  * Encapsulate the data packet in PIM Register message and send it to the RP.
2367  */
2368 static int
2369 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2370     struct mfc *rt)
2371 {
2372     struct mbuf *mb_first;
2373     struct ip *ip_outer;
2374     struct pim_encap_pimhdr *pimhdr;
2375     int len = ntohs(ip->ip_len);
2376     vifi_t vifi = rt->mfc_parent;
2377 
2378     MRW_LOCK_ASSERT();
2379 
2380     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2381 	m_freem(mb_copy);
2382 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2383     }
2384 
2385     /*
2386      * Add a new mbuf with the encapsulating header
2387      */
2388     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2389     if (mb_first == NULL) {
2390 	m_freem(mb_copy);
2391 	return ENOBUFS;
2392     }
2393     mb_first->m_data += max_linkhdr;
2394     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2395     mb_first->m_next = mb_copy;
2396 
2397     mb_first->m_pkthdr.len = len + mb_first->m_len;
2398 
2399     /*
2400      * Fill in the encapsulating IP and PIM header
2401      */
2402     ip_outer = mtod(mb_first, struct ip *);
2403     *ip_outer = pim_encap_iphdr;
2404     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2405 	sizeof(pim_encap_pimhdr));
2406     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2407     ip_outer->ip_dst = rt->mfc_rp;
2408     /*
2409      * Copy the inner header TOS to the outer header, and take care of the
2410      * IP_DF bit.
2411      */
2412     ip_outer->ip_tos = ip->ip_tos;
2413     if (ip->ip_off & htons(IP_DF))
2414 	ip_outer->ip_off |= htons(IP_DF);
2415     ip_fillid(ip_outer);
2416     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2417 					 + sizeof(pim_encap_iphdr));
2418     *pimhdr = pim_encap_pimhdr;
2419     /* If the iif crosses a border, set the Border-bit */
2420     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2421 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2422 
2423     mb_first->m_data += sizeof(pim_encap_iphdr);
2424     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2425     mb_first->m_data -= sizeof(pim_encap_iphdr);
2426 
2427     send_packet(vifp, mb_first);
2428 
2429     /* Keep statistics */
2430     PIMSTAT_INC(pims_snd_registers_msgs);
2431     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2432 
2433     return 0;
2434 }
2435 
2436 /*
2437  * pim_encapcheck() is called by the encap4_input() path at runtime to
2438  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2439  * into the kernel.
2440  */
2441 static int
2442 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2443     int proto __unused, void *arg __unused)
2444 {
2445 
2446     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2447     return (8);		/* claim the datagram. */
2448 }
2449 
2450 /*
2451  * PIM-SMv2 and PIM-DM messages processing.
2452  * Receives and verifies the PIM control messages, and passes them
2453  * up to the listening socket, using rip_input().
2454  * The only message with special processing is the PIM_REGISTER message
2455  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2456  * is passed to if_simloop().
2457  */
2458 static int
2459 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2460 {
2461     struct ip *ip = mtod(m, struct ip *);
2462     struct pim *pim;
2463     int iphlen = off;
2464     int minlen;
2465     int datalen = ntohs(ip->ip_len) - iphlen;
2466     int ip_tos;
2467 
2468     /* Keep statistics */
2469     PIMSTAT_INC(pims_rcv_total_msgs);
2470     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2471 
2472     /*
2473      * Validate lengths
2474      */
2475     if (datalen < PIM_MINLEN) {
2476 	PIMSTAT_INC(pims_rcv_tooshort);
2477 	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2478 	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2479 	m_freem(m);
2480 	return (IPPROTO_DONE);
2481     }
2482 
2483     /*
2484      * If the packet is at least as big as a REGISTER, go agead
2485      * and grab the PIM REGISTER header size, to avoid another
2486      * possible m_pullup() later.
2487      *
2488      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2489      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2490      */
2491     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2492     /*
2493      * Get the IP and PIM headers in contiguous memory, and
2494      * possibly the PIM REGISTER header.
2495      */
2496     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2497 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2498 	return (IPPROTO_DONE);
2499     }
2500 
2501     /* m_pullup() may have given us a new mbuf so reset ip. */
2502     ip = mtod(m, struct ip *);
2503     ip_tos = ip->ip_tos;
2504 
2505     /* adjust mbuf to point to the PIM header */
2506     m->m_data += iphlen;
2507     m->m_len  -= iphlen;
2508     pim = mtod(m, struct pim *);
2509 
2510     /*
2511      * Validate checksum. If PIM REGISTER, exclude the data packet.
2512      *
2513      * XXX: some older PIMv2 implementations don't make this distinction,
2514      * so for compatibility reason perform the checksum over part of the
2515      * message, and if error, then over the whole message.
2516      */
2517     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2518 	/* do nothing, checksum okay */
2519     } else if (in_cksum(m, datalen)) {
2520 	PIMSTAT_INC(pims_rcv_badsum);
2521 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2522 	m_freem(m);
2523 	return (IPPROTO_DONE);
2524     }
2525 
2526     /* PIM version check */
2527     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2528 	PIMSTAT_INC(pims_rcv_badversion);
2529 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2530 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2531 	m_freem(m);
2532 	return (IPPROTO_DONE);
2533     }
2534 
2535     /* restore mbuf back to the outer IP */
2536     m->m_data -= iphlen;
2537     m->m_len  += iphlen;
2538 
2539     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2540 	/*
2541 	 * Since this is a REGISTER, we'll make a copy of the register
2542 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2543 	 * routing daemon.
2544 	 */
2545 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2546 	struct mbuf *mcp;
2547 	struct ip *encap_ip;
2548 	u_int32_t *reghdr;
2549 	struct ifnet *vifp;
2550 
2551 	MRW_RLOCK();
2552 	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2553 	    MRW_RUNLOCK();
2554 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2555 		(int)V_reg_vif_num);
2556 	    m_freem(m);
2557 	    return (IPPROTO_DONE);
2558 	}
2559 	/* XXX need refcnt? */
2560 	vifp = V_viftable[V_reg_vif_num].v_ifp;
2561 	MRW_RUNLOCK();
2562 
2563 	/*
2564 	 * Validate length
2565 	 */
2566 	if (datalen < PIM_REG_MINLEN) {
2567 	    PIMSTAT_INC(pims_rcv_tooshort);
2568 	    PIMSTAT_INC(pims_rcv_badregisters);
2569 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2570 	    m_freem(m);
2571 	    return (IPPROTO_DONE);
2572 	}
2573 
2574 	reghdr = (u_int32_t *)(pim + 1);
2575 	encap_ip = (struct ip *)(reghdr + 1);
2576 
2577 	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2578 	    __func__, ntohl(encap_ip->ip_src.s_addr),
2579 	    ntohs(encap_ip->ip_len));
2580 
2581 	/* verify the version number of the inner packet */
2582 	if (encap_ip->ip_v != IPVERSION) {
2583 	    PIMSTAT_INC(pims_rcv_badregisters);
2584 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2585 	    m_freem(m);
2586 	    return (IPPROTO_DONE);
2587 	}
2588 
2589 	/* verify the inner packet is destined to a mcast group */
2590 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2591 	    PIMSTAT_INC(pims_rcv_badregisters);
2592 	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2593 		ntohl(encap_ip->ip_dst.s_addr));
2594 	    m_freem(m);
2595 	    return (IPPROTO_DONE);
2596 	}
2597 
2598 	/* If a NULL_REGISTER, pass it to the daemon */
2599 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2600 	    goto pim_input_to_daemon;
2601 
2602 	/*
2603 	 * Copy the TOS from the outer IP header to the inner IP header.
2604 	 */
2605 	if (encap_ip->ip_tos != ip_tos) {
2606 	    /* Outer TOS -> inner TOS */
2607 	    encap_ip->ip_tos = ip_tos;
2608 	    /* Recompute the inner header checksum. Sigh... */
2609 
2610 	    /* adjust mbuf to point to the inner IP header */
2611 	    m->m_data += (iphlen + PIM_MINLEN);
2612 	    m->m_len  -= (iphlen + PIM_MINLEN);
2613 
2614 	    encap_ip->ip_sum = 0;
2615 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2616 
2617 	    /* restore mbuf to point back to the outer IP header */
2618 	    m->m_data -= (iphlen + PIM_MINLEN);
2619 	    m->m_len  += (iphlen + PIM_MINLEN);
2620 	}
2621 
2622 	/*
2623 	 * Decapsulate the inner IP packet and loopback to forward it
2624 	 * as a normal multicast packet. Also, make a copy of the
2625 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2626 	 * to pass to the daemon later, so it can take the appropriate
2627 	 * actions (e.g., send back PIM_REGISTER_STOP).
2628 	 * XXX: here m->m_data points to the outer IP header.
2629 	 */
2630 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2631 	if (mcp == NULL) {
2632 	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2633 	    m_freem(m);
2634 	    return (IPPROTO_DONE);
2635 	}
2636 
2637 	/* Keep statistics */
2638 	/* XXX: registers_bytes include only the encap. mcast pkt */
2639 	PIMSTAT_INC(pims_rcv_registers_msgs);
2640 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2641 
2642 	/*
2643 	 * forward the inner ip packet; point m_data at the inner ip.
2644 	 */
2645 	m_adj(m, iphlen + PIM_MINLEN);
2646 
2647 	CTR4(KTR_IPMF,
2648 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2649 	    __func__,
2650 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2651 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2652 	    (int)V_reg_vif_num);
2653 
2654 	/* NB: vifp was collected above; can it change on us? */
2655 	if_simloop(vifp, m, dst.sin_family, 0);
2656 
2657 	/* prepare the register head to send to the mrouting daemon */
2658 	m = mcp;
2659     }
2660 
2661 pim_input_to_daemon:
2662     /*
2663      * Pass the PIM message up to the daemon; if it is a Register message,
2664      * pass the 'head' only up to the daemon. This includes the
2665      * outer IP header, PIM header, PIM-Register header and the
2666      * inner IP header.
2667      * XXX: the outer IP header pkt size of a Register is not adjust to
2668      * reflect the fact that the inner multicast data is truncated.
2669      */
2670     return (rip_input(&m, &off, proto));
2671 }
2672 
2673 static int
2674 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2675 {
2676 	struct mfc	*rt;
2677 	int		 error, i;
2678 
2679 	if (req->newptr)
2680 		return (EPERM);
2681 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2682 		return (0);
2683 	error = sysctl_wire_old_buffer(req, 0);
2684 	if (error)
2685 		return (error);
2686 
2687 	MRW_RLOCK();
2688 	for (i = 0; i < mfchashsize; i++) {
2689 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2690 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2691 			if (error)
2692 				goto out_locked;
2693 		}
2694 	}
2695 out_locked:
2696 	MRW_RUNLOCK();
2697 	return (error);
2698 }
2699 
2700 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2701     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2702     "IPv4 Multicast Forwarding Table "
2703     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2704 
2705 static int
2706 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2707 {
2708 	int error;
2709 
2710 	if (req->newptr)
2711 		return (EPERM);
2712 	if (V_viftable == NULL)		/* XXX unlocked */
2713 		return (0);
2714 	error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS);
2715 	if (error)
2716 		return (error);
2717 
2718 	MRW_RLOCK();
2719 	error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS);
2720 	MRW_RUNLOCK();
2721 	return (error);
2722 }
2723 
2724 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2725     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2726     sysctl_viflist, "S,vif[MAXVIFS]",
2727     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2728 
2729 static void
2730 vnet_mroute_init(const void *unused __unused)
2731 {
2732 
2733 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2734 
2735 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2736 	    M_MRTABLE, M_WAITOK|M_ZERO);
2737 
2738 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
2739 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
2740 
2741 	/* Prepare taskqueue */
2742 	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2743 		    taskqueue_thread_enqueue, &V_task_queue);
2744 	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2745 }
2746 
2747 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2748 	NULL);
2749 
2750 static void
2751 vnet_mroute_uninit(const void *unused __unused)
2752 {
2753 
2754 	/* Taskqueue should be cancelled and drained before freeing */
2755 	taskqueue_free(V_task_queue);
2756 
2757 	free(V_viftable, M_MRTABLE);
2758 	free(V_nexpire, M_MRTABLE);
2759 	V_nexpire = NULL;
2760 }
2761 
2762 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2763 	vnet_mroute_uninit, NULL);
2764 
2765 static int
2766 ip_mroute_modevent(module_t mod, int type, void *unused)
2767 {
2768 
2769     switch (type) {
2770     case MOD_LOAD:
2771 	MRW_LOCK_INIT();
2772 
2773 	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2774 	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2775 	if (if_detach_event_tag == NULL) {
2776 		printf("ip_mroute: unable to register "
2777 		    "ifnet_departure_event handler\n");
2778 		MRW_LOCK_DESTROY();
2779 		return (EINVAL);
2780 	}
2781 
2782 	mfchashsize = MFCHASHSIZE;
2783 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2784 	    !powerof2(mfchashsize)) {
2785 		printf("WARNING: %s not a power of 2; using default\n",
2786 		    "net.inet.ip.mfchashsize");
2787 		mfchashsize = MFCHASHSIZE;
2788 	}
2789 
2790 	pim_squelch_wholepkt = 0;
2791 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2792 	    &pim_squelch_wholepkt);
2793 
2794 	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2795 	if (pim_encap_cookie == NULL) {
2796 		printf("ip_mroute: unable to attach pim encap\n");
2797 		MRW_LOCK_DESTROY();
2798 		return (EINVAL);
2799 	}
2800 
2801 	ip_mcast_src = X_ip_mcast_src;
2802 	ip_mforward = X_ip_mforward;
2803 	ip_mrouter_done = X_ip_mrouter_done;
2804 	ip_mrouter_get = X_ip_mrouter_get;
2805 	ip_mrouter_set = X_ip_mrouter_set;
2806 
2807 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2808 	ip_rsvp_vif = X_ip_rsvp_vif;
2809 
2810 	legal_vif_num = X_legal_vif_num;
2811 	mrt_ioctl = X_mrt_ioctl;
2812 	rsvp_input_p = X_rsvp_input;
2813 	break;
2814 
2815     case MOD_UNLOAD:
2816 	/*
2817 	 * Typically module unload happens after the user-level
2818 	 * process has shutdown the kernel services (the check
2819 	 * below insures someone can't just yank the module out
2820 	 * from under a running process).  But if the module is
2821 	 * just loaded and then unloaded w/o starting up a user
2822 	 * process we still need to cleanup.
2823 	 */
2824 	MRW_WLOCK();
2825 	if (ip_mrouter_cnt != 0) {
2826 	    MRW_WUNLOCK();
2827 	    return (EINVAL);
2828 	}
2829 	ip_mrouter_unloading = 1;
2830 	MRW_WUNLOCK();
2831 
2832 	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2833 
2834 	if (pim_encap_cookie) {
2835 	    ip_encap_detach(pim_encap_cookie);
2836 	    pim_encap_cookie = NULL;
2837 	}
2838 
2839 	ip_mcast_src = NULL;
2840 	ip_mforward = NULL;
2841 	ip_mrouter_done = NULL;
2842 	ip_mrouter_get = NULL;
2843 	ip_mrouter_set = NULL;
2844 
2845 	ip_rsvp_force_done = NULL;
2846 	ip_rsvp_vif = NULL;
2847 
2848 	legal_vif_num = NULL;
2849 	mrt_ioctl = NULL;
2850 	rsvp_input_p = NULL;
2851 
2852 	MRW_LOCK_DESTROY();
2853 	break;
2854 
2855     default:
2856 	return EOPNOTSUPP;
2857     }
2858     return 0;
2859 }
2860 
2861 static moduledata_t ip_mroutemod = {
2862     "ip_mroute",
2863     ip_mroute_modevent,
2864     0
2865 };
2866 
2867 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2868