1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/param.h> 81 #include <sys/kernel.h> 82 #include <sys/stddef.h> 83 #include <sys/condvar.h> 84 #include <sys/eventhandler.h> 85 #include <sys/lock.h> 86 #include <sys/kthread.h> 87 #include <sys/ktr.h> 88 #include <sys/malloc.h> 89 #include <sys/mbuf.h> 90 #include <sys/module.h> 91 #include <sys/priv.h> 92 #include <sys/protosw.h> 93 #include <sys/signalvar.h> 94 #include <sys/socket.h> 95 #include <sys/socketvar.h> 96 #include <sys/sockio.h> 97 #include <sys/sx.h> 98 #include <sys/sysctl.h> 99 #include <sys/syslog.h> 100 #include <sys/systm.h> 101 #include <sys/time.h> 102 #include <sys/counter.h> 103 104 #include <net/if.h> 105 #include <net/if_var.h> 106 #include <net/netisr.h> 107 #include <net/route.h> 108 #include <net/vnet.h> 109 110 #include <netinet/in.h> 111 #include <netinet/igmp.h> 112 #include <netinet/in_systm.h> 113 #include <netinet/in_var.h> 114 #include <netinet/ip.h> 115 #include <netinet/ip_encap.h> 116 #include <netinet/ip_mroute.h> 117 #include <netinet/ip_var.h> 118 #include <netinet/ip_options.h> 119 #include <netinet/pim.h> 120 #include <netinet/pim_var.h> 121 #include <netinet/udp.h> 122 123 #include <machine/in_cksum.h> 124 125 #ifndef KTR_IPMF 126 #define KTR_IPMF KTR_INET 127 #endif 128 129 #define VIFI_INVALID ((vifi_t) -1) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct rwlock mrouter_mtx; 142 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 143 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 144 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 145 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 146 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 147 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 148 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 149 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 150 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 151 #define MRW_LOCK_INIT() \ 152 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 153 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 154 155 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 156 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 157 158 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 159 VNET_PCPUSTAT_SYSINIT(mrtstat); 160 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 161 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 162 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 163 "netinet/ip_mroute.h)"); 164 165 VNET_DEFINE_STATIC(u_long, mfchash); 166 #define V_mfchash VNET(mfchash) 167 #define MFCHASH(a, g) \ 168 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 169 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 170 #define MFCHASHSIZE 256 171 172 static u_long mfchashsize; /* Hash size */ 173 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 174 #define V_nexpire VNET(nexpire) 175 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 176 #define V_mfchashtbl VNET(mfchashtbl) 177 178 VNET_DEFINE_STATIC(vifi_t, numvifs); 179 #define V_numvifs VNET(numvifs) 180 VNET_DEFINE_STATIC(struct vif *, viftable); 181 #define V_viftable VNET(viftable) 182 183 static eventhandler_tag if_detach_event_tag = NULL; 184 185 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 186 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 187 188 VNET_DEFINE_STATIC(struct mtx, upcall_thread_mtx); 189 #define V_upcall_thread_mtx VNET(upcall_thread_mtx) 190 191 VNET_DEFINE_STATIC(struct cv, upcall_thread_cv); 192 #define V_upcall_thread_cv VNET(upcall_thread_cv) 193 194 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 195 #define V_buf_ring_mtx VNET(buf_ring_mtx) 196 197 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 198 #define UPCALL_EXPIRE 6 /* number of timeouts */ 199 200 /* 201 * Bandwidth meter variables and constants 202 */ 203 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 204 205 /* 206 * Pending upcalls are stored in a ring which is flushed when 207 * full, or periodically 208 */ 209 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 210 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 211 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 212 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 213 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 214 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 215 216 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 217 218 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 219 VNET_PCPUSTAT_SYSINIT(pimstat); 220 VNET_PCPUSTAT_SYSUNINIT(pimstat); 221 222 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 223 "PIM"); 224 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 225 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 226 227 static u_long pim_squelch_wholepkt = 0; 228 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 229 &pim_squelch_wholepkt, 0, 230 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 231 232 static volatile int upcall_thread_shutdown = 0; 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i; 625 626 MRW_WLOCK(); 627 628 if (V_ip_mrouter == NULL) { 629 MRW_WUNLOCK(); 630 return; 631 } 632 633 /* 634 * Tear down multicast forwarder state associated with this ifnet. 635 * 1. Walk the vif list, matching vifs against this ifnet. 636 * 2. Walk the multicast forwarding cache (mfc) looking for 637 * inner matches with this vif's index. 638 * 3. Expire any matching multicast forwarding cache entries. 639 * 4. Free vif state. This should disable ALLMULTI on the interface. 640 */ 641 for (vifi = 0; vifi < V_numvifs; vifi++) { 642 if (V_viftable[vifi].v_ifp != ifp) 643 continue; 644 for (i = 0; i < mfchashsize; i++) { 645 struct mfc *rt, *nrt; 646 647 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 648 if (rt->mfc_parent == vifi) { 649 expire_mfc(rt); 650 } 651 } 652 } 653 del_vif_locked(vifi); 654 } 655 656 MRW_WUNLOCK(); 657 } 658 659 static void 660 ip_mrouter_upcall_thread(void *arg) 661 { 662 CURVNET_SET((struct vnet *) arg); 663 664 while (upcall_thread_shutdown == 0) { 665 /* START: Event loop */ 666 667 /* END: Event loop */ 668 mtx_lock(&V_upcall_thread_mtx); 669 cv_timedwait(&V_upcall_thread_cv, &V_upcall_thread_mtx, hz); 670 mtx_unlock(&V_upcall_thread_mtx); 671 } 672 673 upcall_thread_shutdown = 0; 674 CURVNET_RESTORE(); 675 kthread_exit(); 676 } 677 678 /* 679 * Enable multicast forwarding. 680 */ 681 static int 682 ip_mrouter_init(struct socket *so, int version) 683 { 684 685 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 686 so->so_type, so->so_proto->pr_protocol); 687 688 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 689 return EOPNOTSUPP; 690 691 if (version != 1) 692 return ENOPROTOOPT; 693 694 MRW_WLOCK(); 695 696 if (ip_mrouter_unloading) { 697 MRW_WUNLOCK(); 698 return ENOPROTOOPT; 699 } 700 701 if (V_ip_mrouter != NULL) { 702 MRW_WUNLOCK(); 703 return EADDRINUSE; 704 } 705 706 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 707 HASH_NOWAIT); 708 709 /* Create upcall ring */ 710 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 711 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 712 M_NOWAIT, &V_bw_upcalls_ring_mtx); 713 if (!V_bw_upcalls_ring) 714 return (ENOMEM); 715 716 /* Create upcall thread */ 717 upcall_thread_shutdown = 0; 718 mtx_init(&V_upcall_thread_mtx, "ip_mroute upcall thread mtx", NULL, MTX_DEF); 719 cv_init(&V_upcall_thread_cv, "ip_mroute upcall cv"); 720 kthread_add(ip_mrouter_upcall_thread, curvnet, 721 NULL, NULL, 0, 0, "ip_mroute upcall thread"); 722 723 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 724 curvnet); 725 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 726 curvnet); 727 728 V_ip_mrouter = so; 729 ip_mrouter_cnt++; 730 731 /* This is a mutex required by buf_ring init, but not used internally */ 732 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 733 734 MRW_WUNLOCK(); 735 736 CTR1(KTR_IPMF, "%s: done", __func__); 737 738 return 0; 739 } 740 741 /* 742 * Disable multicast forwarding. 743 */ 744 static int 745 X_ip_mrouter_done(void) 746 { 747 struct ifnet *ifp; 748 u_long i; 749 vifi_t vifi; 750 struct bw_upcall *bu; 751 752 MRW_WLOCK(); 753 754 if (V_ip_mrouter == NULL) { 755 MRW_WUNLOCK(); 756 return EINVAL; 757 } 758 759 /* 760 * Detach/disable hooks to the reset of the system. 761 */ 762 V_ip_mrouter = NULL; 763 ip_mrouter_cnt--; 764 V_mrt_api_config = 0; 765 766 MROUTER_WAIT(); 767 768 upcall_thread_shutdown = 1; 769 mtx_lock(&V_upcall_thread_mtx); 770 cv_signal(&V_upcall_thread_cv); 771 mtx_unlock(&V_upcall_thread_mtx); 772 773 /* Wait for thread shutdown */ 774 while (upcall_thread_shutdown == 1) {}; 775 776 mtx_destroy(&V_upcall_thread_mtx); 777 778 /* Destroy upcall ring */ 779 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 780 free(bu, M_MRTABLE); 781 } 782 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 783 mtx_destroy(&V_bw_upcalls_ring_mtx); 784 785 /* 786 * For each phyint in use, disable promiscuous reception of all IP 787 * multicasts. 788 */ 789 for (vifi = 0; vifi < V_numvifs; vifi++) { 790 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 791 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 792 ifp = V_viftable[vifi].v_ifp; 793 if_allmulti(ifp, 0); 794 } 795 } 796 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 797 V_numvifs = 0; 798 V_pim_assert_enabled = 0; 799 800 callout_stop(&V_expire_upcalls_ch); 801 callout_stop(&V_bw_upcalls_ch); 802 803 /* 804 * Free all multicast forwarding cache entries. 805 * Do not use hashdestroy(), as we must perform other cleanup. 806 */ 807 for (i = 0; i < mfchashsize; i++) { 808 struct mfc *rt, *nrt; 809 810 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 811 expire_mfc(rt); 812 } 813 } 814 free(V_mfchashtbl, M_MRTABLE); 815 V_mfchashtbl = NULL; 816 817 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 818 819 V_reg_vif_num = VIFI_INVALID; 820 821 mtx_destroy(&V_buf_ring_mtx); 822 823 MRW_WUNLOCK(); 824 825 CTR1(KTR_IPMF, "%s: done", __func__); 826 827 return 0; 828 } 829 830 /* 831 * Set PIM assert processing global 832 */ 833 static int 834 set_assert(int i) 835 { 836 if ((i != 1) && (i != 0)) 837 return EINVAL; 838 839 V_pim_assert_enabled = i; 840 841 return 0; 842 } 843 844 /* 845 * Configure API capabilities 846 */ 847 int 848 set_api_config(uint32_t *apival) 849 { 850 u_long i; 851 852 /* 853 * We can set the API capabilities only if it is the first operation 854 * after MRT_INIT. I.e.: 855 * - there are no vifs installed 856 * - pim_assert is not enabled 857 * - the MFC table is empty 858 */ 859 if (V_numvifs > 0) { 860 *apival = 0; 861 return EPERM; 862 } 863 if (V_pim_assert_enabled) { 864 *apival = 0; 865 return EPERM; 866 } 867 868 MRW_RLOCK(); 869 870 for (i = 0; i < mfchashsize; i++) { 871 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 872 MRW_RUNLOCK(); 873 *apival = 0; 874 return EPERM; 875 } 876 } 877 878 MRW_RUNLOCK(); 879 880 V_mrt_api_config = *apival & mrt_api_support; 881 *apival = V_mrt_api_config; 882 883 return 0; 884 } 885 886 /* 887 * Add a vif to the vif table 888 */ 889 static int 890 add_vif(struct vifctl *vifcp) 891 { 892 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 893 struct sockaddr_in sin = {sizeof sin, AF_INET}; 894 struct ifaddr *ifa; 895 struct ifnet *ifp; 896 int error; 897 898 MRW_WLOCK(); 899 if (vifcp->vifc_vifi >= MAXVIFS) { 900 MRW_WUNLOCK(); 901 return EINVAL; 902 } 903 /* rate limiting is no longer supported by this code */ 904 if (vifcp->vifc_rate_limit != 0) { 905 log(LOG_ERR, "rate limiting is no longer supported\n"); 906 MRW_WUNLOCK(); 907 return EINVAL; 908 } 909 if (!in_nullhost(vifp->v_lcl_addr)) { 910 MRW_WUNLOCK(); 911 return EADDRINUSE; 912 } 913 if (in_nullhost(vifcp->vifc_lcl_addr)) { 914 MRW_WUNLOCK(); 915 return EADDRNOTAVAIL; 916 } 917 918 /* Find the interface with an address in AF_INET family */ 919 if (vifcp->vifc_flags & VIFF_REGISTER) { 920 /* 921 * XXX: Because VIFF_REGISTER does not really need a valid 922 * local interface (e.g. it could be 127.0.0.2), we don't 923 * check its address. 924 */ 925 ifp = NULL; 926 } else { 927 struct epoch_tracker et; 928 929 sin.sin_addr = vifcp->vifc_lcl_addr; 930 NET_EPOCH_ENTER(et); 931 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 932 if (ifa == NULL) { 933 NET_EPOCH_EXIT(et); 934 MRW_WUNLOCK(); 935 return EADDRNOTAVAIL; 936 } 937 ifp = ifa->ifa_ifp; 938 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 939 NET_EPOCH_EXIT(et); 940 } 941 942 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 943 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 944 MRW_WUNLOCK(); 945 return EOPNOTSUPP; 946 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 947 ifp = &V_multicast_register_if; 948 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 949 if (V_reg_vif_num == VIFI_INVALID) { 950 if_initname(&V_multicast_register_if, "register_vif", 0); 951 V_multicast_register_if.if_flags = IFF_LOOPBACK; 952 V_reg_vif_num = vifcp->vifc_vifi; 953 } 954 } else { /* Make sure the interface supports multicast */ 955 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 956 MRW_WUNLOCK(); 957 return EOPNOTSUPP; 958 } 959 960 /* Enable promiscuous reception of all IP multicasts from the if */ 961 error = if_allmulti(ifp, 1); 962 if (error) { 963 MRW_WUNLOCK(); 964 return error; 965 } 966 } 967 968 vifp->v_flags = vifcp->vifc_flags; 969 vifp->v_threshold = vifcp->vifc_threshold; 970 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 971 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 972 vifp->v_ifp = ifp; 973 /* initialize per vif pkt counters */ 974 vifp->v_pkt_in = 0; 975 vifp->v_pkt_out = 0; 976 vifp->v_bytes_in = 0; 977 vifp->v_bytes_out = 0; 978 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 979 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 980 981 /* Adjust numvifs up if the vifi is higher than numvifs */ 982 if (V_numvifs <= vifcp->vifc_vifi) 983 V_numvifs = vifcp->vifc_vifi + 1; 984 985 MRW_WUNLOCK(); 986 987 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 988 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 989 (int)vifcp->vifc_threshold); 990 991 return 0; 992 } 993 994 /* 995 * Delete a vif from the vif table 996 */ 997 static int 998 del_vif_locked(vifi_t vifi) 999 { 1000 struct vif *vifp; 1001 1002 MRW_WLOCK_ASSERT(); 1003 1004 if (vifi >= V_numvifs) { 1005 return EINVAL; 1006 } 1007 vifp = &V_viftable[vifi]; 1008 if (in_nullhost(vifp->v_lcl_addr)) { 1009 return EADDRNOTAVAIL; 1010 } 1011 1012 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1013 if_allmulti(vifp->v_ifp, 0); 1014 1015 if (vifp->v_flags & VIFF_REGISTER) 1016 V_reg_vif_num = VIFI_INVALID; 1017 1018 mtx_destroy(&vifp->v_spin); 1019 1020 bzero((caddr_t)vifp, sizeof (*vifp)); 1021 1022 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1023 1024 /* Adjust numvifs down */ 1025 for (vifi = V_numvifs; vifi > 0; vifi--) 1026 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1027 break; 1028 V_numvifs = vifi; 1029 1030 return 0; 1031 } 1032 1033 static int 1034 del_vif(vifi_t vifi) 1035 { 1036 int cc; 1037 1038 MRW_WLOCK(); 1039 cc = del_vif_locked(vifi); 1040 MRW_WUNLOCK(); 1041 1042 return cc; 1043 } 1044 1045 /* 1046 * update an mfc entry without resetting counters and S,G addresses. 1047 */ 1048 static void 1049 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1050 { 1051 int i; 1052 1053 rt->mfc_parent = mfccp->mfcc_parent; 1054 for (i = 0; i < V_numvifs; i++) { 1055 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1056 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1057 MRT_MFC_FLAGS_ALL; 1058 } 1059 /* set the RP address */ 1060 if (V_mrt_api_config & MRT_MFC_RP) 1061 rt->mfc_rp = mfccp->mfcc_rp; 1062 else 1063 rt->mfc_rp.s_addr = INADDR_ANY; 1064 } 1065 1066 /* 1067 * fully initialize an mfc entry from the parameter. 1068 */ 1069 static void 1070 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1071 { 1072 rt->mfc_origin = mfccp->mfcc_origin; 1073 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1074 1075 update_mfc_params(rt, mfccp); 1076 1077 /* initialize pkt counters per src-grp */ 1078 rt->mfc_pkt_cnt = 0; 1079 rt->mfc_byte_cnt = 0; 1080 rt->mfc_wrong_if = 0; 1081 timevalclear(&rt->mfc_last_assert); 1082 } 1083 1084 static void 1085 expire_mfc(struct mfc *rt) 1086 { 1087 struct rtdetq *rte; 1088 1089 MRW_WLOCK_ASSERT(); 1090 1091 free_bw_list(rt->mfc_bw_meter_leq); 1092 free_bw_list(rt->mfc_bw_meter_geq); 1093 1094 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1095 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1096 if (rte) { 1097 m_freem(rte->m); 1098 free(rte, M_MRTABLE); 1099 } 1100 } 1101 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1102 1103 LIST_REMOVE(rt, mfc_hash); 1104 free(rt, M_MRTABLE); 1105 } 1106 1107 /* 1108 * Add an mfc entry 1109 */ 1110 static int 1111 add_mfc(struct mfcctl2 *mfccp) 1112 { 1113 struct mfc *rt; 1114 struct rtdetq *rte; 1115 u_long hash = 0; 1116 u_short nstl; 1117 1118 MRW_WLOCK(); 1119 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1120 1121 /* If an entry already exists, just update the fields */ 1122 if (rt) { 1123 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1124 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1125 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1126 mfccp->mfcc_parent); 1127 update_mfc_params(rt, mfccp); 1128 MRW_WUNLOCK(); 1129 return (0); 1130 } 1131 1132 /* 1133 * Find the entry for which the upcall was made and update 1134 */ 1135 nstl = 0; 1136 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1137 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1138 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1139 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1140 !buf_ring_empty(rt->mfc_stall_ring)) { 1141 CTR5(KTR_IPMF, 1142 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1143 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1144 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1145 mfccp->mfcc_parent, 1146 rt->mfc_stall_ring); 1147 if (nstl++) 1148 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1149 1150 init_mfc_params(rt, mfccp); 1151 rt->mfc_expire = 0; /* Don't clean this guy up */ 1152 V_nexpire[hash]--; 1153 1154 /* Free queued packets, but attempt to forward them first. */ 1155 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1156 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1157 if (rte->ifp != NULL) 1158 ip_mdq(rte->m, rte->ifp, rt, -1); 1159 m_freem(rte->m); 1160 free(rte, M_MRTABLE); 1161 } 1162 } 1163 } 1164 1165 /* 1166 * It is possible that an entry is being inserted without an upcall 1167 */ 1168 if (nstl == 0) { 1169 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1170 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1171 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1172 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1173 init_mfc_params(rt, mfccp); 1174 if (rt->mfc_expire) 1175 V_nexpire[hash]--; 1176 rt->mfc_expire = 0; 1177 break; /* XXX */ 1178 } 1179 } 1180 1181 if (rt == NULL) { /* no upcall, so make a new entry */ 1182 rt = mfc_alloc(); 1183 if (rt == NULL) { 1184 MRW_WUNLOCK(); 1185 return (ENOBUFS); 1186 } 1187 1188 init_mfc_params(rt, mfccp); 1189 1190 rt->mfc_expire = 0; 1191 rt->mfc_bw_meter_leq = NULL; 1192 rt->mfc_bw_meter_geq = NULL; 1193 1194 /* insert new entry at head of hash chain */ 1195 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1196 } 1197 } 1198 1199 MRW_WUNLOCK(); 1200 1201 return (0); 1202 } 1203 1204 /* 1205 * Delete an mfc entry 1206 */ 1207 static int 1208 del_mfc(struct mfcctl2 *mfccp) 1209 { 1210 struct in_addr origin; 1211 struct in_addr mcastgrp; 1212 struct mfc *rt; 1213 1214 origin = mfccp->mfcc_origin; 1215 mcastgrp = mfccp->mfcc_mcastgrp; 1216 1217 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1218 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1219 1220 MRW_WLOCK(); 1221 1222 rt = mfc_find(&origin, &mcastgrp); 1223 if (rt == NULL) { 1224 MRW_WUNLOCK(); 1225 return EADDRNOTAVAIL; 1226 } 1227 1228 /* 1229 * free the bw_meter entries 1230 */ 1231 free_bw_list(rt->mfc_bw_meter_leq); 1232 rt->mfc_bw_meter_leq = NULL; 1233 free_bw_list(rt->mfc_bw_meter_geq); 1234 rt->mfc_bw_meter_geq = NULL; 1235 1236 LIST_REMOVE(rt, mfc_hash); 1237 free(rt, M_MRTABLE); 1238 1239 MRW_WUNLOCK(); 1240 1241 return (0); 1242 } 1243 1244 /* 1245 * Send a message to the routing daemon on the multicast routing socket. 1246 */ 1247 static int 1248 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1249 { 1250 if (s) { 1251 SOCKBUF_LOCK(&s->so_rcv); 1252 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1253 NULL) != 0) { 1254 sorwakeup_locked(s); 1255 return 0; 1256 } 1257 SOCKBUF_UNLOCK(&s->so_rcv); 1258 } 1259 m_freem(mm); 1260 return -1; 1261 } 1262 1263 /* 1264 * IP multicast forwarding function. This function assumes that the packet 1265 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1266 * pointed to by "ifp", and the packet is to be relayed to other networks 1267 * that have members of the packet's destination IP multicast group. 1268 * 1269 * The packet is returned unscathed to the caller, unless it is 1270 * erroneous, in which case a non-zero return value tells the caller to 1271 * discard it. 1272 */ 1273 1274 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1275 1276 static int 1277 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1278 struct ip_moptions *imo) 1279 { 1280 struct mfc *rt; 1281 int error; 1282 vifi_t vifi; 1283 struct mbuf *mb0; 1284 struct rtdetq *rte; 1285 u_long hash; 1286 int hlen; 1287 1288 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1289 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1290 1291 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1292 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1293 /* 1294 * Packet arrived via a physical interface or 1295 * an encapsulated tunnel or a register_vif. 1296 */ 1297 } else { 1298 /* 1299 * Packet arrived through a source-route tunnel. 1300 * Source-route tunnels are no longer supported. 1301 */ 1302 return (1); 1303 } 1304 1305 /* 1306 * BEGIN: MCAST ROUTING HOT PATH 1307 */ 1308 MRW_RLOCK(); 1309 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1310 if (ip->ip_ttl < MAXTTL) 1311 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1312 error = ip_mdq(m, ifp, NULL, vifi); 1313 MRW_RUNLOCK(); 1314 return error; 1315 } 1316 1317 /* 1318 * Don't forward a packet with time-to-live of zero or one, 1319 * or a packet destined to a local-only group. 1320 */ 1321 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1322 MRW_RUNLOCK(); 1323 return 0; 1324 } 1325 1326 mfc_find_retry: 1327 /* 1328 * Determine forwarding vifs from the forwarding cache table 1329 */ 1330 MRTSTAT_INC(mrts_mfc_lookups); 1331 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1332 1333 /* Entry exists, so forward if necessary */ 1334 if (rt != NULL) { 1335 error = ip_mdq(m, ifp, rt, -1); 1336 /* Generic unlock here as we might release R or W lock */ 1337 MRW_UNLOCK(); 1338 return error; 1339 } 1340 1341 /* 1342 * END: MCAST ROUTING HOT PATH 1343 */ 1344 1345 /* Further processing must be done with WLOCK taken */ 1346 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1347 MRW_RUNLOCK(); 1348 MRW_WLOCK(); 1349 goto mfc_find_retry; 1350 } 1351 1352 /* 1353 * If we don't have a route for packet's origin, 1354 * Make a copy of the packet & send message to routing daemon 1355 */ 1356 hlen = ip->ip_hl << 2; 1357 1358 MRTSTAT_INC(mrts_mfc_misses); 1359 MRTSTAT_INC(mrts_no_route); 1360 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1361 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1362 1363 /* 1364 * Allocate mbufs early so that we don't do extra work if we are 1365 * just going to fail anyway. Make sure to pullup the header so 1366 * that other people can't step on it. 1367 */ 1368 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1369 M_NOWAIT|M_ZERO); 1370 if (rte == NULL) { 1371 MRW_WUNLOCK(); 1372 return ENOBUFS; 1373 } 1374 1375 mb0 = m_copypacket(m, M_NOWAIT); 1376 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1377 mb0 = m_pullup(mb0, hlen); 1378 if (mb0 == NULL) { 1379 free(rte, M_MRTABLE); 1380 MRW_WUNLOCK(); 1381 return ENOBUFS; 1382 } 1383 1384 /* is there an upcall waiting for this flow ? */ 1385 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1386 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1387 { 1388 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1389 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1390 !buf_ring_empty(rt->mfc_stall_ring)) 1391 break; 1392 } 1393 1394 if (rt == NULL) { 1395 int i; 1396 struct igmpmsg *im; 1397 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1398 struct mbuf *mm; 1399 1400 /* 1401 * Locate the vifi for the incoming interface for this packet. 1402 * If none found, drop packet. 1403 */ 1404 for (vifi = 0; vifi < V_numvifs && 1405 V_viftable[vifi].v_ifp != ifp; vifi++) 1406 ; 1407 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1408 goto non_fatal; 1409 1410 /* no upcall, so make a new entry */ 1411 rt = mfc_alloc(); 1412 if (rt == NULL) 1413 goto fail; 1414 1415 /* Make a copy of the header to send to the user level process */ 1416 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1417 if (mm == NULL) 1418 goto fail1; 1419 1420 /* 1421 * Send message to routing daemon to install 1422 * a route into the kernel table 1423 */ 1424 1425 im = mtod(mm, struct igmpmsg*); 1426 im->im_msgtype = IGMPMSG_NOCACHE; 1427 im->im_mbz = 0; 1428 im->im_vif = vifi; 1429 1430 MRTSTAT_INC(mrts_upcalls); 1431 1432 k_igmpsrc.sin_addr = ip->ip_src; 1433 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1434 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1435 MRTSTAT_INC(mrts_upq_sockfull); 1436 fail1: free(rt, M_MRTABLE); 1437 fail: free(rte, M_MRTABLE); 1438 m_freem(mb0); 1439 MRW_WUNLOCK(); 1440 return ENOBUFS; 1441 } 1442 1443 /* insert new entry at head of hash chain */ 1444 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1445 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1446 rt->mfc_expire = UPCALL_EXPIRE; 1447 V_nexpire[hash]++; 1448 for (i = 0; i < V_numvifs; i++) { 1449 rt->mfc_ttls[i] = 0; 1450 rt->mfc_flags[i] = 0; 1451 } 1452 rt->mfc_parent = -1; 1453 1454 /* clear the RP address */ 1455 rt->mfc_rp.s_addr = INADDR_ANY; 1456 rt->mfc_bw_meter_leq = NULL; 1457 rt->mfc_bw_meter_geq = NULL; 1458 1459 /* initialize pkt counters per src-grp */ 1460 rt->mfc_pkt_cnt = 0; 1461 rt->mfc_byte_cnt = 0; 1462 rt->mfc_wrong_if = 0; 1463 timevalclear(&rt->mfc_last_assert); 1464 1465 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1466 } else { 1467 /* determine if queue has overflowed */ 1468 if (buf_ring_full(rt->mfc_stall_ring)) { 1469 MRTSTAT_INC(mrts_upq_ovflw); 1470 non_fatal: free(rte, M_MRTABLE); 1471 m_freem(mb0); 1472 MRW_WUNLOCK(); 1473 return (0); 1474 } 1475 1476 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1477 } 1478 1479 rte->m = mb0; 1480 rte->ifp = ifp; 1481 1482 MRW_WUNLOCK(); 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * Clean up the cache entry if upcall is not serviced 1489 */ 1490 static void 1491 expire_upcalls(void *arg) 1492 { 1493 u_long i; 1494 1495 CURVNET_SET((struct vnet *) arg); 1496 1497 /*This callout is always run with MRW_WLOCK taken. */ 1498 1499 for (i = 0; i < mfchashsize; i++) { 1500 struct mfc *rt, *nrt; 1501 1502 if (V_nexpire[i] == 0) 1503 continue; 1504 1505 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1506 if (buf_ring_empty(rt->mfc_stall_ring)) 1507 continue; 1508 1509 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1510 continue; 1511 1512 MRTSTAT_INC(mrts_cache_cleanups); 1513 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1514 (u_long)ntohl(rt->mfc_origin.s_addr), 1515 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1516 1517 expire_mfc(rt); 1518 } 1519 } 1520 1521 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1522 curvnet); 1523 1524 CURVNET_RESTORE(); 1525 } 1526 1527 /* 1528 * Packet forwarding routine once entry in the cache is made 1529 */ 1530 static int 1531 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1532 { 1533 struct ip *ip = mtod(m, struct ip *); 1534 vifi_t vifi; 1535 int plen = ntohs(ip->ip_len); 1536 1537 MRW_LOCK_ASSERT(); 1538 1539 /* 1540 * If xmt_vif is not -1, send on only the requested vif. 1541 * 1542 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1543 */ 1544 if (xmt_vif < V_numvifs) { 1545 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1546 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1547 else 1548 phyint_send(ip, V_viftable + xmt_vif, m); 1549 return 1; 1550 } 1551 1552 /* 1553 * Don't forward if it didn't arrive from the parent vif for its origin. 1554 */ 1555 vifi = rt->mfc_parent; 1556 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1557 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1558 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1559 MRTSTAT_INC(mrts_wrong_if); 1560 ++rt->mfc_wrong_if; 1561 /* 1562 * If we are doing PIM assert processing, send a message 1563 * to the routing daemon. 1564 * 1565 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1566 * can complete the SPT switch, regardless of the type 1567 * of the iif (broadcast media, GRE tunnel, etc). 1568 */ 1569 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1570 V_viftable[vifi].v_ifp) { 1571 if (ifp == &V_multicast_register_if) 1572 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1573 1574 /* Get vifi for the incoming packet */ 1575 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1576 vifi++) 1577 ; 1578 if (vifi >= V_numvifs) 1579 return 0; /* The iif is not found: ignore the packet. */ 1580 1581 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1582 return 0; /* WRONGVIF disabled: ignore the packet */ 1583 1584 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1585 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1586 struct igmpmsg *im; 1587 int hlen = ip->ip_hl << 2; 1588 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1589 1590 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1591 mm = m_pullup(mm, hlen); 1592 if (mm == NULL) 1593 return ENOBUFS; 1594 1595 im = mtod(mm, struct igmpmsg *); 1596 im->im_msgtype = IGMPMSG_WRONGVIF; 1597 im->im_mbz = 0; 1598 im->im_vif = vifi; 1599 1600 MRTSTAT_INC(mrts_upcalls); 1601 1602 k_igmpsrc.sin_addr = im->im_src; 1603 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1604 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1605 MRTSTAT_INC(mrts_upq_sockfull); 1606 return ENOBUFS; 1607 } 1608 } 1609 } 1610 return 0; 1611 } 1612 1613 /* If I sourced this packet, it counts as output, else it was input. */ 1614 mtx_lock_spin(&V_viftable[vifi].v_spin); 1615 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1616 V_viftable[vifi].v_pkt_out++; 1617 V_viftable[vifi].v_bytes_out += plen; 1618 } else { 1619 V_viftable[vifi].v_pkt_in++; 1620 V_viftable[vifi].v_bytes_in += plen; 1621 } 1622 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1623 1624 rt->mfc_pkt_cnt++; 1625 rt->mfc_byte_cnt += plen; 1626 1627 /* 1628 * For each vif, decide if a copy of the packet should be forwarded. 1629 * Forward if: 1630 * - the ttl exceeds the vif's threshold 1631 * - there are group members downstream on interface 1632 */ 1633 for (vifi = 0; vifi < V_numvifs; vifi++) 1634 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1635 V_viftable[vifi].v_pkt_out++; 1636 V_viftable[vifi].v_bytes_out += plen; 1637 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1638 pim_register_send(ip, V_viftable + vifi, m, rt); 1639 else 1640 phyint_send(ip, V_viftable + vifi, m); 1641 } 1642 1643 /* 1644 * Perform upcall-related bw measuring. 1645 */ 1646 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1647 struct bw_meter *x; 1648 struct timeval now; 1649 1650 microtime(&now); 1651 /* Process meters for Greater-or-EQual case */ 1652 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1653 bw_meter_geq_receive_packet(x, plen, &now); 1654 1655 /* Process meters for Lower-or-EQual case */ 1656 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1657 /* 1658 * Record that a packet is received. 1659 * Spin lock has to be taken as callout context 1660 * (expire_bw_meter_leq) might modify these fields 1661 * as well 1662 */ 1663 mtx_lock_spin(&x->bm_spin); 1664 x->bm_measured.b_packets++; 1665 x->bm_measured.b_bytes += plen; 1666 mtx_unlock_spin(&x->bm_spin); 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 /* 1674 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1675 */ 1676 static int 1677 X_legal_vif_num(int vif) 1678 { 1679 int ret; 1680 1681 ret = 0; 1682 if (vif < 0) 1683 return (ret); 1684 1685 MRW_RLOCK(); 1686 if (vif < V_numvifs) 1687 ret = 1; 1688 MRW_RUNLOCK(); 1689 1690 return (ret); 1691 } 1692 1693 /* 1694 * Return the local address used by this vif 1695 */ 1696 static u_long 1697 X_ip_mcast_src(int vifi) 1698 { 1699 in_addr_t addr; 1700 1701 addr = INADDR_ANY; 1702 if (vifi < 0) 1703 return (addr); 1704 1705 MRW_RLOCK(); 1706 if (vifi < V_numvifs) 1707 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1708 MRW_RUNLOCK(); 1709 1710 return (addr); 1711 } 1712 1713 static void 1714 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1715 { 1716 struct mbuf *mb_copy; 1717 int hlen = ip->ip_hl << 2; 1718 1719 MRW_LOCK_ASSERT(); 1720 1721 /* 1722 * Make a new reference to the packet; make sure that 1723 * the IP header is actually copied, not just referenced, 1724 * so that ip_output() only scribbles on the copy. 1725 */ 1726 mb_copy = m_copypacket(m, M_NOWAIT); 1727 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1728 mb_copy = m_pullup(mb_copy, hlen); 1729 if (mb_copy == NULL) 1730 return; 1731 1732 send_packet(vifp, mb_copy); 1733 } 1734 1735 static void 1736 send_packet(struct vif *vifp, struct mbuf *m) 1737 { 1738 struct ip_moptions imo; 1739 int error __unused; 1740 1741 MRW_LOCK_ASSERT(); 1742 1743 imo.imo_multicast_ifp = vifp->v_ifp; 1744 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1745 imo.imo_multicast_loop = !!in_mcast_loop; 1746 imo.imo_multicast_vif = -1; 1747 STAILQ_INIT(&imo.imo_head); 1748 1749 /* 1750 * Re-entrancy should not be a problem here, because 1751 * the packets that we send out and are looped back at us 1752 * should get rejected because they appear to come from 1753 * the loopback interface, thus preventing looping. 1754 */ 1755 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1756 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1757 (ptrdiff_t)(vifp - V_viftable), error); 1758 } 1759 1760 /* 1761 * Stubs for old RSVP socket shim implementation. 1762 */ 1763 1764 static int 1765 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1766 { 1767 1768 return (EOPNOTSUPP); 1769 } 1770 1771 static void 1772 X_ip_rsvp_force_done(struct socket *so __unused) 1773 { 1774 1775 } 1776 1777 static int 1778 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1779 { 1780 struct mbuf *m; 1781 1782 m = *mp; 1783 *mp = NULL; 1784 if (!V_rsvp_on) 1785 m_freem(m); 1786 return (IPPROTO_DONE); 1787 } 1788 1789 /* 1790 * Code for bandwidth monitors 1791 */ 1792 1793 /* 1794 * Define common interface for timeval-related methods 1795 */ 1796 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1797 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1798 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1799 1800 static uint32_t 1801 compute_bw_meter_flags(struct bw_upcall *req) 1802 { 1803 uint32_t flags = 0; 1804 1805 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1806 flags |= BW_METER_UNIT_PACKETS; 1807 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1808 flags |= BW_METER_UNIT_BYTES; 1809 if (req->bu_flags & BW_UPCALL_GEQ) 1810 flags |= BW_METER_GEQ; 1811 if (req->bu_flags & BW_UPCALL_LEQ) 1812 flags |= BW_METER_LEQ; 1813 1814 return flags; 1815 } 1816 1817 static void 1818 expire_bw_meter_leq(void *arg) 1819 { 1820 struct bw_meter *x = arg; 1821 struct timeval now; 1822 /* 1823 * INFO: 1824 * callout is always executed with MRW_WLOCK taken 1825 */ 1826 1827 CURVNET_SET((struct vnet *)x->arg); 1828 1829 microtime(&now); 1830 1831 /* 1832 * Test if we should deliver an upcall 1833 */ 1834 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1835 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1836 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1837 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1838 /* Prepare an upcall for delivery */ 1839 bw_meter_prepare_upcall(x, &now); 1840 } 1841 1842 /* Send all upcalls that are pending delivery */ 1843 mtx_lock(&V_upcall_thread_mtx); 1844 cv_signal(&V_upcall_thread_cv); 1845 mtx_unlock(&V_upcall_thread_mtx); 1846 1847 /* Reset counters */ 1848 x->bm_start_time = now; 1849 /* Spin lock has to be taken as ip_forward context 1850 * might modify these fields as well 1851 */ 1852 mtx_lock_spin(&x->bm_spin); 1853 x->bm_measured.b_bytes = 0; 1854 x->bm_measured.b_packets = 0; 1855 mtx_unlock_spin(&x->bm_spin); 1856 1857 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1858 1859 CURVNET_RESTORE(); 1860 } 1861 1862 /* 1863 * Add a bw_meter entry 1864 */ 1865 static int 1866 add_bw_upcall(struct bw_upcall *req) 1867 { 1868 struct mfc *mfc; 1869 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1870 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1871 struct timeval now; 1872 struct bw_meter *x, **bwm_ptr; 1873 uint32_t flags; 1874 1875 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1876 return EOPNOTSUPP; 1877 1878 /* Test if the flags are valid */ 1879 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1880 return EINVAL; 1881 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1882 return EINVAL; 1883 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1884 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1885 return EINVAL; 1886 1887 /* Test if the threshold time interval is valid */ 1888 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1889 return EINVAL; 1890 1891 flags = compute_bw_meter_flags(req); 1892 1893 /* 1894 * Find if we have already same bw_meter entry 1895 */ 1896 MRW_WLOCK(); 1897 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1898 if (mfc == NULL) { 1899 MRW_WUNLOCK(); 1900 return EADDRNOTAVAIL; 1901 } 1902 1903 /* Choose an appropriate bw_meter list */ 1904 if (req->bu_flags & BW_UPCALL_GEQ) 1905 bwm_ptr = &mfc->mfc_bw_meter_geq; 1906 else 1907 bwm_ptr = &mfc->mfc_bw_meter_leq; 1908 1909 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1910 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1911 &req->bu_threshold.b_time, ==)) 1912 && (x->bm_threshold.b_packets 1913 == req->bu_threshold.b_packets) 1914 && (x->bm_threshold.b_bytes 1915 == req->bu_threshold.b_bytes) 1916 && (x->bm_flags & BW_METER_USER_FLAGS) 1917 == flags) { 1918 MRW_WUNLOCK(); 1919 return 0; /* XXX Already installed */ 1920 } 1921 } 1922 1923 /* Allocate the new bw_meter entry */ 1924 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1925 M_ZERO | M_NOWAIT); 1926 if (x == NULL) { 1927 MRW_WUNLOCK(); 1928 return ENOBUFS; 1929 } 1930 1931 /* Set the new bw_meter entry */ 1932 x->bm_threshold.b_time = req->bu_threshold.b_time; 1933 microtime(&now); 1934 x->bm_start_time = now; 1935 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1936 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1937 x->bm_measured.b_packets = 0; 1938 x->bm_measured.b_bytes = 0; 1939 x->bm_flags = flags; 1940 x->bm_time_next = NULL; 1941 x->bm_mfc = mfc; 1942 x->arg = curvnet; 1943 sprintf(x->bm_spin_name, "BM spin %p", x); 1944 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1945 1946 /* For LEQ case create periodic callout */ 1947 if (req->bu_flags & BW_UPCALL_LEQ) { 1948 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1949 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1950 expire_bw_meter_leq, x); 1951 } 1952 1953 /* Add the new bw_meter entry to the front of entries for this MFC */ 1954 x->bm_mfc_next = *bwm_ptr; 1955 *bwm_ptr = x; 1956 1957 MRW_WUNLOCK(); 1958 1959 return 0; 1960 } 1961 1962 static void 1963 free_bw_list(struct bw_meter *list) 1964 { 1965 while (list != NULL) { 1966 struct bw_meter *x = list; 1967 1968 /* MRW_WLOCK must be held here */ 1969 if (x->bm_flags & BW_METER_LEQ) { 1970 callout_drain(&x->bm_meter_callout); 1971 mtx_destroy(&x->bm_spin); 1972 } 1973 1974 list = list->bm_mfc_next; 1975 free(x, M_BWMETER); 1976 } 1977 } 1978 1979 /* 1980 * Delete one or multiple bw_meter entries 1981 */ 1982 static int 1983 del_bw_upcall(struct bw_upcall *req) 1984 { 1985 struct mfc *mfc; 1986 struct bw_meter *x, **bwm_ptr; 1987 1988 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1989 return EOPNOTSUPP; 1990 1991 MRW_WLOCK(); 1992 1993 /* Find the corresponding MFC entry */ 1994 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1995 if (mfc == NULL) { 1996 MRW_WUNLOCK(); 1997 return EADDRNOTAVAIL; 1998 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1999 /* 2000 * Delete all bw_meter entries for this mfc 2001 */ 2002 struct bw_meter *list; 2003 2004 /* Free LEQ list */ 2005 list = mfc->mfc_bw_meter_leq; 2006 mfc->mfc_bw_meter_leq = NULL; 2007 free_bw_list(list); 2008 2009 /* Free GEQ list */ 2010 list = mfc->mfc_bw_meter_geq; 2011 mfc->mfc_bw_meter_geq = NULL; 2012 free_bw_list(list); 2013 MRW_WUNLOCK(); 2014 return 0; 2015 } else { /* Delete a single bw_meter entry */ 2016 struct bw_meter *prev; 2017 uint32_t flags = 0; 2018 2019 flags = compute_bw_meter_flags(req); 2020 2021 /* Choose an appropriate bw_meter list */ 2022 if (req->bu_flags & BW_UPCALL_GEQ) 2023 bwm_ptr = &mfc->mfc_bw_meter_geq; 2024 else 2025 bwm_ptr = &mfc->mfc_bw_meter_leq; 2026 2027 /* Find the bw_meter entry to delete */ 2028 for (prev = NULL, x = *bwm_ptr; x != NULL; 2029 prev = x, x = x->bm_mfc_next) { 2030 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2031 &req->bu_threshold.b_time, ==)) && 2032 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2033 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2034 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2035 break; 2036 } 2037 if (x != NULL) { /* Delete entry from the list for this MFC */ 2038 if (prev != NULL) 2039 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2040 else 2041 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2042 2043 if (req->bu_flags & BW_UPCALL_LEQ) 2044 callout_stop(&x->bm_meter_callout); 2045 2046 MRW_WUNLOCK(); 2047 /* Free the bw_meter entry */ 2048 free(x, M_BWMETER); 2049 return 0; 2050 } else { 2051 MRW_WUNLOCK(); 2052 return EINVAL; 2053 } 2054 } 2055 /* NOTREACHED */ 2056 } 2057 2058 /* 2059 * Perform bandwidth measurement processing that may result in an upcall 2060 */ 2061 static void 2062 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2063 { 2064 struct timeval delta; 2065 2066 MRW_LOCK_ASSERT(); 2067 2068 delta = *nowp; 2069 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2070 2071 /* 2072 * Processing for ">=" type of bw_meter entry. 2073 * bm_spin does not have to be hold here as in GEQ 2074 * case this is the only context accessing bm_measured. 2075 */ 2076 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2077 /* Reset the bw_meter entry */ 2078 x->bm_start_time = *nowp; 2079 x->bm_measured.b_packets = 0; 2080 x->bm_measured.b_bytes = 0; 2081 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2082 } 2083 2084 /* Record that a packet is received */ 2085 x->bm_measured.b_packets++; 2086 x->bm_measured.b_bytes += plen; 2087 2088 /* 2089 * Test if we should deliver an upcall 2090 */ 2091 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2092 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2093 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2094 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2095 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2096 /* Prepare an upcall for delivery */ 2097 bw_meter_prepare_upcall(x, nowp); 2098 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2099 } 2100 } 2101 } 2102 2103 /* 2104 * Prepare a bandwidth-related upcall 2105 */ 2106 static void 2107 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2108 { 2109 struct timeval delta; 2110 struct bw_upcall *u; 2111 2112 MRW_LOCK_ASSERT(); 2113 2114 /* 2115 * Compute the measured time interval 2116 */ 2117 delta = *nowp; 2118 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2119 2120 /* 2121 * Set the bw_upcall entry 2122 */ 2123 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2124 if (!u) { 2125 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2126 return; 2127 } 2128 u->bu_src = x->bm_mfc->mfc_origin; 2129 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2130 u->bu_threshold.b_time = x->bm_threshold.b_time; 2131 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2132 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2133 u->bu_measured.b_time = delta; 2134 u->bu_measured.b_packets = x->bm_measured.b_packets; 2135 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2136 u->bu_flags = 0; 2137 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2138 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2139 if (x->bm_flags & BW_METER_UNIT_BYTES) 2140 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2141 if (x->bm_flags & BW_METER_GEQ) 2142 u->bu_flags |= BW_UPCALL_GEQ; 2143 if (x->bm_flags & BW_METER_LEQ) 2144 u->bu_flags |= BW_UPCALL_LEQ; 2145 2146 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2147 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2148 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2149 mtx_lock(&V_upcall_thread_mtx); 2150 cv_signal(&V_upcall_thread_cv); 2151 mtx_unlock(&V_upcall_thread_mtx); 2152 } 2153 } 2154 /* 2155 * Send the pending bandwidth-related upcalls 2156 */ 2157 static void 2158 bw_upcalls_send(void) 2159 { 2160 struct mbuf *m; 2161 int len = 0; 2162 struct bw_upcall *bu; 2163 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2164 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2165 0, /* unused2 */ 2166 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2167 0, /* im_mbz */ 2168 0, /* im_vif */ 2169 0, /* unused3 */ 2170 { 0 }, /* im_src */ 2171 { 0 } }; /* im_dst */ 2172 2173 MRW_LOCK_ASSERT(); 2174 2175 if (buf_ring_empty(V_bw_upcalls_ring)) 2176 return; 2177 2178 /* 2179 * Allocate a new mbuf, initialize it with the header and 2180 * the payload for the pending calls. 2181 */ 2182 m = m_gethdr(M_NOWAIT, MT_DATA); 2183 if (m == NULL) { 2184 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2185 return; 2186 } 2187 2188 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2189 len += sizeof(struct igmpmsg); 2190 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2191 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2192 len += sizeof(struct bw_upcall); 2193 free(bu, M_MRTABLE); 2194 } 2195 2196 /* 2197 * Send the upcalls 2198 * XXX do we need to set the address in k_igmpsrc ? 2199 */ 2200 MRTSTAT_INC(mrts_upcalls); 2201 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2202 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2203 MRTSTAT_INC(mrts_upq_sockfull); 2204 } 2205 } 2206 2207 /* 2208 * A periodic function for sending all upcalls that are pending delivery 2209 */ 2210 static void 2211 expire_bw_upcalls_send(void *arg) 2212 { 2213 CURVNET_SET((struct vnet *) arg); 2214 2215 /* This callout is run with MRW_RLOCK taken */ 2216 2217 bw_upcalls_send(); 2218 2219 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2220 curvnet); 2221 CURVNET_RESTORE(); 2222 } 2223 2224 /* 2225 * End of bandwidth monitoring code 2226 */ 2227 2228 /* 2229 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2230 * 2231 */ 2232 static int 2233 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2234 struct mfc *rt) 2235 { 2236 struct mbuf *mb_copy, *mm; 2237 2238 /* 2239 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2240 * rendezvous point was unspecified, and we were told not to. 2241 */ 2242 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2243 in_nullhost(rt->mfc_rp)) 2244 return 0; 2245 2246 mb_copy = pim_register_prepare(ip, m); 2247 if (mb_copy == NULL) 2248 return ENOBUFS; 2249 2250 /* 2251 * Send all the fragments. Note that the mbuf for each fragment 2252 * is freed by the sending machinery. 2253 */ 2254 for (mm = mb_copy; mm; mm = mb_copy) { 2255 mb_copy = mm->m_nextpkt; 2256 mm->m_nextpkt = 0; 2257 mm = m_pullup(mm, sizeof(struct ip)); 2258 if (mm != NULL) { 2259 ip = mtod(mm, struct ip *); 2260 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2261 pim_register_send_rp(ip, vifp, mm, rt); 2262 } else { 2263 pim_register_send_upcall(ip, vifp, mm, rt); 2264 } 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 /* 2272 * Return a copy of the data packet that is ready for PIM Register 2273 * encapsulation. 2274 * XXX: Note that in the returned copy the IP header is a valid one. 2275 */ 2276 static struct mbuf * 2277 pim_register_prepare(struct ip *ip, struct mbuf *m) 2278 { 2279 struct mbuf *mb_copy = NULL; 2280 int mtu; 2281 2282 /* Take care of delayed checksums */ 2283 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2284 in_delayed_cksum(m); 2285 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2286 } 2287 2288 /* 2289 * Copy the old packet & pullup its IP header into the 2290 * new mbuf so we can modify it. 2291 */ 2292 mb_copy = m_copypacket(m, M_NOWAIT); 2293 if (mb_copy == NULL) 2294 return NULL; 2295 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2296 if (mb_copy == NULL) 2297 return NULL; 2298 2299 /* take care of the TTL */ 2300 ip = mtod(mb_copy, struct ip *); 2301 --ip->ip_ttl; 2302 2303 /* Compute the MTU after the PIM Register encapsulation */ 2304 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2305 2306 if (ntohs(ip->ip_len) <= mtu) { 2307 /* Turn the IP header into a valid one */ 2308 ip->ip_sum = 0; 2309 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2310 } else { 2311 /* Fragment the packet */ 2312 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2313 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2314 m_freem(mb_copy); 2315 return NULL; 2316 } 2317 } 2318 return mb_copy; 2319 } 2320 2321 /* 2322 * Send an upcall with the data packet to the user-level process. 2323 */ 2324 static int 2325 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2326 struct mbuf *mb_copy, struct mfc *rt) 2327 { 2328 struct mbuf *mb_first; 2329 int len = ntohs(ip->ip_len); 2330 struct igmpmsg *im; 2331 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2332 2333 MRW_LOCK_ASSERT(); 2334 2335 /* 2336 * Add a new mbuf with an upcall header 2337 */ 2338 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2339 if (mb_first == NULL) { 2340 m_freem(mb_copy); 2341 return ENOBUFS; 2342 } 2343 mb_first->m_data += max_linkhdr; 2344 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2345 mb_first->m_len = sizeof(struct igmpmsg); 2346 mb_first->m_next = mb_copy; 2347 2348 /* Send message to routing daemon */ 2349 im = mtod(mb_first, struct igmpmsg *); 2350 im->im_msgtype = IGMPMSG_WHOLEPKT; 2351 im->im_mbz = 0; 2352 im->im_vif = vifp - V_viftable; 2353 im->im_src = ip->ip_src; 2354 im->im_dst = ip->ip_dst; 2355 2356 k_igmpsrc.sin_addr = ip->ip_src; 2357 2358 MRTSTAT_INC(mrts_upcalls); 2359 2360 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2361 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2362 MRTSTAT_INC(mrts_upq_sockfull); 2363 return ENOBUFS; 2364 } 2365 2366 /* Keep statistics */ 2367 PIMSTAT_INC(pims_snd_registers_msgs); 2368 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2369 2370 return 0; 2371 } 2372 2373 /* 2374 * Encapsulate the data packet in PIM Register message and send it to the RP. 2375 */ 2376 static int 2377 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2378 struct mfc *rt) 2379 { 2380 struct mbuf *mb_first; 2381 struct ip *ip_outer; 2382 struct pim_encap_pimhdr *pimhdr; 2383 int len = ntohs(ip->ip_len); 2384 vifi_t vifi = rt->mfc_parent; 2385 2386 MRW_LOCK_ASSERT(); 2387 2388 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2389 m_freem(mb_copy); 2390 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2391 } 2392 2393 /* 2394 * Add a new mbuf with the encapsulating header 2395 */ 2396 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2397 if (mb_first == NULL) { 2398 m_freem(mb_copy); 2399 return ENOBUFS; 2400 } 2401 mb_first->m_data += max_linkhdr; 2402 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2403 mb_first->m_next = mb_copy; 2404 2405 mb_first->m_pkthdr.len = len + mb_first->m_len; 2406 2407 /* 2408 * Fill in the encapsulating IP and PIM header 2409 */ 2410 ip_outer = mtod(mb_first, struct ip *); 2411 *ip_outer = pim_encap_iphdr; 2412 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2413 sizeof(pim_encap_pimhdr)); 2414 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2415 ip_outer->ip_dst = rt->mfc_rp; 2416 /* 2417 * Copy the inner header TOS to the outer header, and take care of the 2418 * IP_DF bit. 2419 */ 2420 ip_outer->ip_tos = ip->ip_tos; 2421 if (ip->ip_off & htons(IP_DF)) 2422 ip_outer->ip_off |= htons(IP_DF); 2423 ip_fillid(ip_outer); 2424 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2425 + sizeof(pim_encap_iphdr)); 2426 *pimhdr = pim_encap_pimhdr; 2427 /* If the iif crosses a border, set the Border-bit */ 2428 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2429 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2430 2431 mb_first->m_data += sizeof(pim_encap_iphdr); 2432 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2433 mb_first->m_data -= sizeof(pim_encap_iphdr); 2434 2435 send_packet(vifp, mb_first); 2436 2437 /* Keep statistics */ 2438 PIMSTAT_INC(pims_snd_registers_msgs); 2439 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2440 2441 return 0; 2442 } 2443 2444 /* 2445 * pim_encapcheck() is called by the encap4_input() path at runtime to 2446 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2447 * into the kernel. 2448 */ 2449 static int 2450 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2451 int proto __unused, void *arg __unused) 2452 { 2453 2454 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2455 return (8); /* claim the datagram. */ 2456 } 2457 2458 /* 2459 * PIM-SMv2 and PIM-DM messages processing. 2460 * Receives and verifies the PIM control messages, and passes them 2461 * up to the listening socket, using rip_input(). 2462 * The only message with special processing is the PIM_REGISTER message 2463 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2464 * is passed to if_simloop(). 2465 */ 2466 static int 2467 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2468 { 2469 struct ip *ip = mtod(m, struct ip *); 2470 struct pim *pim; 2471 int iphlen = off; 2472 int minlen; 2473 int datalen = ntohs(ip->ip_len) - iphlen; 2474 int ip_tos; 2475 2476 /* Keep statistics */ 2477 PIMSTAT_INC(pims_rcv_total_msgs); 2478 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2479 2480 /* 2481 * Validate lengths 2482 */ 2483 if (datalen < PIM_MINLEN) { 2484 PIMSTAT_INC(pims_rcv_tooshort); 2485 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2486 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2487 m_freem(m); 2488 return (IPPROTO_DONE); 2489 } 2490 2491 /* 2492 * If the packet is at least as big as a REGISTER, go agead 2493 * and grab the PIM REGISTER header size, to avoid another 2494 * possible m_pullup() later. 2495 * 2496 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2497 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2498 */ 2499 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2500 /* 2501 * Get the IP and PIM headers in contiguous memory, and 2502 * possibly the PIM REGISTER header. 2503 */ 2504 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2505 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2506 return (IPPROTO_DONE); 2507 } 2508 2509 /* m_pullup() may have given us a new mbuf so reset ip. */ 2510 ip = mtod(m, struct ip *); 2511 ip_tos = ip->ip_tos; 2512 2513 /* adjust mbuf to point to the PIM header */ 2514 m->m_data += iphlen; 2515 m->m_len -= iphlen; 2516 pim = mtod(m, struct pim *); 2517 2518 /* 2519 * Validate checksum. If PIM REGISTER, exclude the data packet. 2520 * 2521 * XXX: some older PIMv2 implementations don't make this distinction, 2522 * so for compatibility reason perform the checksum over part of the 2523 * message, and if error, then over the whole message. 2524 */ 2525 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2526 /* do nothing, checksum okay */ 2527 } else if (in_cksum(m, datalen)) { 2528 PIMSTAT_INC(pims_rcv_badsum); 2529 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2530 m_freem(m); 2531 return (IPPROTO_DONE); 2532 } 2533 2534 /* PIM version check */ 2535 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2536 PIMSTAT_INC(pims_rcv_badversion); 2537 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2538 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2539 m_freem(m); 2540 return (IPPROTO_DONE); 2541 } 2542 2543 /* restore mbuf back to the outer IP */ 2544 m->m_data -= iphlen; 2545 m->m_len += iphlen; 2546 2547 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2548 /* 2549 * Since this is a REGISTER, we'll make a copy of the register 2550 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2551 * routing daemon. 2552 */ 2553 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2554 struct mbuf *mcp; 2555 struct ip *encap_ip; 2556 u_int32_t *reghdr; 2557 struct ifnet *vifp; 2558 2559 MRW_RLOCK(); 2560 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2561 MRW_RUNLOCK(); 2562 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2563 (int)V_reg_vif_num); 2564 m_freem(m); 2565 return (IPPROTO_DONE); 2566 } 2567 /* XXX need refcnt? */ 2568 vifp = V_viftable[V_reg_vif_num].v_ifp; 2569 MRW_RUNLOCK(); 2570 2571 /* 2572 * Validate length 2573 */ 2574 if (datalen < PIM_REG_MINLEN) { 2575 PIMSTAT_INC(pims_rcv_tooshort); 2576 PIMSTAT_INC(pims_rcv_badregisters); 2577 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2578 m_freem(m); 2579 return (IPPROTO_DONE); 2580 } 2581 2582 reghdr = (u_int32_t *)(pim + 1); 2583 encap_ip = (struct ip *)(reghdr + 1); 2584 2585 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2586 __func__, ntohl(encap_ip->ip_src.s_addr), 2587 ntohs(encap_ip->ip_len)); 2588 2589 /* verify the version number of the inner packet */ 2590 if (encap_ip->ip_v != IPVERSION) { 2591 PIMSTAT_INC(pims_rcv_badregisters); 2592 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2593 m_freem(m); 2594 return (IPPROTO_DONE); 2595 } 2596 2597 /* verify the inner packet is destined to a mcast group */ 2598 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2599 PIMSTAT_INC(pims_rcv_badregisters); 2600 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2601 ntohl(encap_ip->ip_dst.s_addr)); 2602 m_freem(m); 2603 return (IPPROTO_DONE); 2604 } 2605 2606 /* If a NULL_REGISTER, pass it to the daemon */ 2607 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2608 goto pim_input_to_daemon; 2609 2610 /* 2611 * Copy the TOS from the outer IP header to the inner IP header. 2612 */ 2613 if (encap_ip->ip_tos != ip_tos) { 2614 /* Outer TOS -> inner TOS */ 2615 encap_ip->ip_tos = ip_tos; 2616 /* Recompute the inner header checksum. Sigh... */ 2617 2618 /* adjust mbuf to point to the inner IP header */ 2619 m->m_data += (iphlen + PIM_MINLEN); 2620 m->m_len -= (iphlen + PIM_MINLEN); 2621 2622 encap_ip->ip_sum = 0; 2623 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2624 2625 /* restore mbuf to point back to the outer IP header */ 2626 m->m_data -= (iphlen + PIM_MINLEN); 2627 m->m_len += (iphlen + PIM_MINLEN); 2628 } 2629 2630 /* 2631 * Decapsulate the inner IP packet and loopback to forward it 2632 * as a normal multicast packet. Also, make a copy of the 2633 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2634 * to pass to the daemon later, so it can take the appropriate 2635 * actions (e.g., send back PIM_REGISTER_STOP). 2636 * XXX: here m->m_data points to the outer IP header. 2637 */ 2638 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2639 if (mcp == NULL) { 2640 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2641 m_freem(m); 2642 return (IPPROTO_DONE); 2643 } 2644 2645 /* Keep statistics */ 2646 /* XXX: registers_bytes include only the encap. mcast pkt */ 2647 PIMSTAT_INC(pims_rcv_registers_msgs); 2648 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2649 2650 /* 2651 * forward the inner ip packet; point m_data at the inner ip. 2652 */ 2653 m_adj(m, iphlen + PIM_MINLEN); 2654 2655 CTR4(KTR_IPMF, 2656 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2657 __func__, 2658 (u_long)ntohl(encap_ip->ip_src.s_addr), 2659 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2660 (int)V_reg_vif_num); 2661 2662 /* NB: vifp was collected above; can it change on us? */ 2663 if_simloop(vifp, m, dst.sin_family, 0); 2664 2665 /* prepare the register head to send to the mrouting daemon */ 2666 m = mcp; 2667 } 2668 2669 pim_input_to_daemon: 2670 /* 2671 * Pass the PIM message up to the daemon; if it is a Register message, 2672 * pass the 'head' only up to the daemon. This includes the 2673 * outer IP header, PIM header, PIM-Register header and the 2674 * inner IP header. 2675 * XXX: the outer IP header pkt size of a Register is not adjust to 2676 * reflect the fact that the inner multicast data is truncated. 2677 */ 2678 return (rip_input(&m, &off, proto)); 2679 } 2680 2681 static int 2682 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2683 { 2684 struct mfc *rt; 2685 int error, i; 2686 2687 if (req->newptr) 2688 return (EPERM); 2689 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2690 return (0); 2691 error = sysctl_wire_old_buffer(req, 0); 2692 if (error) 2693 return (error); 2694 2695 MRW_RLOCK(); 2696 for (i = 0; i < mfchashsize; i++) { 2697 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2698 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2699 if (error) 2700 goto out_locked; 2701 } 2702 } 2703 out_locked: 2704 MRW_RUNLOCK(); 2705 return (error); 2706 } 2707 2708 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2709 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2710 "IPv4 Multicast Forwarding Table " 2711 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2712 2713 static int 2714 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2715 { 2716 int error; 2717 2718 if (req->newptr) 2719 return (EPERM); 2720 if (V_viftable == NULL) /* XXX unlocked */ 2721 return (0); 2722 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2723 if (error) 2724 return (error); 2725 2726 MRW_RLOCK(); 2727 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2728 MRW_RUNLOCK(); 2729 return (error); 2730 } 2731 2732 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2733 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2734 sysctl_viflist, "S,vif[MAXVIFS]", 2735 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2736 2737 static void 2738 vnet_mroute_init(const void *unused __unused) 2739 { 2740 2741 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2742 2743 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2744 M_MRTABLE, M_WAITOK|M_ZERO); 2745 2746 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2747 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2748 } 2749 2750 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2751 NULL); 2752 2753 static void 2754 vnet_mroute_uninit(const void *unused __unused) 2755 { 2756 2757 free(V_viftable, M_MRTABLE); 2758 free(V_nexpire, M_MRTABLE); 2759 V_nexpire = NULL; 2760 } 2761 2762 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2763 vnet_mroute_uninit, NULL); 2764 2765 static int 2766 ip_mroute_modevent(module_t mod, int type, void *unused) 2767 { 2768 2769 switch (type) { 2770 case MOD_LOAD: 2771 MRW_LOCK_INIT(); 2772 2773 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2774 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2775 if (if_detach_event_tag == NULL) { 2776 printf("ip_mroute: unable to register " 2777 "ifnet_departure_event handler\n"); 2778 MRW_LOCK_DESTROY(); 2779 return (EINVAL); 2780 } 2781 2782 mfchashsize = MFCHASHSIZE; 2783 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2784 !powerof2(mfchashsize)) { 2785 printf("WARNING: %s not a power of 2; using default\n", 2786 "net.inet.ip.mfchashsize"); 2787 mfchashsize = MFCHASHSIZE; 2788 } 2789 2790 pim_squelch_wholepkt = 0; 2791 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2792 &pim_squelch_wholepkt); 2793 2794 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2795 if (pim_encap_cookie == NULL) { 2796 printf("ip_mroute: unable to attach pim encap\n"); 2797 MRW_LOCK_DESTROY(); 2798 return (EINVAL); 2799 } 2800 2801 ip_mcast_src = X_ip_mcast_src; 2802 ip_mforward = X_ip_mforward; 2803 ip_mrouter_done = X_ip_mrouter_done; 2804 ip_mrouter_get = X_ip_mrouter_get; 2805 ip_mrouter_set = X_ip_mrouter_set; 2806 2807 ip_rsvp_force_done = X_ip_rsvp_force_done; 2808 ip_rsvp_vif = X_ip_rsvp_vif; 2809 2810 legal_vif_num = X_legal_vif_num; 2811 mrt_ioctl = X_mrt_ioctl; 2812 rsvp_input_p = X_rsvp_input; 2813 break; 2814 2815 case MOD_UNLOAD: 2816 /* 2817 * Typically module unload happens after the user-level 2818 * process has shutdown the kernel services (the check 2819 * below insures someone can't just yank the module out 2820 * from under a running process). But if the module is 2821 * just loaded and then unloaded w/o starting up a user 2822 * process we still need to cleanup. 2823 */ 2824 MRW_WLOCK(); 2825 if (ip_mrouter_cnt != 0) { 2826 MRW_WUNLOCK(); 2827 return (EINVAL); 2828 } 2829 ip_mrouter_unloading = 1; 2830 MRW_WUNLOCK(); 2831 2832 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2833 2834 if (pim_encap_cookie) { 2835 ip_encap_detach(pim_encap_cookie); 2836 pim_encap_cookie = NULL; 2837 } 2838 2839 ip_mcast_src = NULL; 2840 ip_mforward = NULL; 2841 ip_mrouter_done = NULL; 2842 ip_mrouter_get = NULL; 2843 ip_mrouter_set = NULL; 2844 2845 ip_rsvp_force_done = NULL; 2846 ip_rsvp_vif = NULL; 2847 2848 legal_vif_num = NULL; 2849 mrt_ioctl = NULL; 2850 rsvp_input_p = NULL; 2851 2852 MRW_LOCK_DESTROY(); 2853 break; 2854 2855 default: 2856 return EOPNOTSUPP; 2857 } 2858 return 0; 2859 } 2860 2861 static moduledata_t ip_mroutemod = { 2862 "ip_mroute", 2863 ip_mroute_modevent, 2864 0 2865 }; 2866 2867 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2868