1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 97 #include <net/if.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/igmp.h> 104 #include <netinet/in_systm.h> 105 #include <netinet/in_var.h> 106 #include <netinet/ip.h> 107 #include <netinet/ip_encap.h> 108 #include <netinet/ip_mroute.h> 109 #include <netinet/ip_var.h> 110 #include <netinet/ip_options.h> 111 #include <netinet/pim.h> 112 #include <netinet/pim_var.h> 113 #include <netinet/udp.h> 114 115 #include <machine/in_cksum.h> 116 117 #ifndef KTR_IPMF 118 #define KTR_IPMF KTR_INET 119 #endif 120 121 #define VIFI_INVALID ((vifi_t) -1) 122 #define M_HASCL(m) ((m)->m_flags & M_EXT) 123 124 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 125 #define V_last_tv_sec VNET(last_tv_sec) 126 127 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 128 129 /* 130 * Locking. We use two locks: one for the virtual interface table and 131 * one for the forwarding table. These locks may be nested in which case 132 * the VIF lock must always be taken first. Note that each lock is used 133 * to cover not only the specific data structure but also related data 134 * structures. 135 */ 136 137 static struct mtx mrouter_mtx; 138 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 139 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 140 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 141 #define MROUTER_LOCK_INIT() \ 142 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 143 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 144 145 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 146 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 147 148 static VNET_DEFINE(struct mrtstat, mrtstat); 149 #define V_mrtstat VNET(mrtstat) 150 SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 151 &VNET_NAME(mrtstat), mrtstat, 152 "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 153 "netinet/ip_mroute.h)"); 154 155 static VNET_DEFINE(u_long, mfchash); 156 #define V_mfchash VNET(mfchash) 157 #define MFCHASH(a, g) \ 158 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 159 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 160 #define MFCHASHSIZE 256 161 162 static u_long mfchashsize; /* Hash size */ 163 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 164 #define V_nexpire VNET(nexpire) 165 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 166 #define V_mfchashtbl VNET(mfchashtbl) 167 168 static struct mtx mfc_mtx; 169 #define MFC_LOCK() mtx_lock(&mfc_mtx) 170 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 171 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 172 #define MFC_LOCK_INIT() \ 173 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 174 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 175 176 static VNET_DEFINE(vifi_t, numvifs); 177 #define V_numvifs VNET(numvifs) 178 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 179 #define V_viftable VNET(viftable) 180 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 181 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 182 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 183 184 static struct mtx vif_mtx; 185 #define VIF_LOCK() mtx_lock(&vif_mtx) 186 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 187 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 188 #define VIF_LOCK_INIT() \ 189 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 190 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 static VNET_DEFINE(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 198 #define UPCALL_EXPIRE 6 /* number of timeouts */ 199 200 /* 201 * Bandwidth meter variables and constants 202 */ 203 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 204 /* 205 * Pending timeouts are stored in a hash table, the key being the 206 * expiration time. Periodically, the entries are analysed and processed. 207 */ 208 #define BW_METER_BUCKETS 1024 209 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 210 #define V_bw_meter_timers VNET(bw_meter_timers) 211 static VNET_DEFINE(struct callout, bw_meter_ch); 212 #define V_bw_meter_ch VNET(bw_meter_ch) 213 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 214 215 /* 216 * Pending upcalls are stored in a vector which is flushed when 217 * full, or periodically 218 */ 219 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 220 #define V_bw_upcalls VNET(bw_upcalls) 221 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 222 #define V_bw_upcalls_n VNET(bw_upcalls_n) 223 static VNET_DEFINE(struct callout, bw_upcalls_ch); 224 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 225 226 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 227 228 static VNET_DEFINE(struct pimstat, pimstat); 229 #define V_pimstat VNET(pimstat) 230 231 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 232 SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 233 &VNET_NAME(pimstat), pimstat, 234 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 235 236 static u_long pim_squelch_wholepkt = 0; 237 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 238 &pim_squelch_wholepkt, 0, 239 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 240 241 extern struct domain inetdomain; 242 static const struct protosw in_pim_protosw = { 243 .pr_type = SOCK_RAW, 244 .pr_domain = &inetdomain, 245 .pr_protocol = IPPROTO_PIM, 246 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 247 .pr_input = pim_input, 248 .pr_output = (pr_output_t*)rip_output, 249 .pr_ctloutput = rip_ctloutput, 250 .pr_usrreqs = &rip_usrreqs 251 }; 252 static const struct encaptab *pim_encap_cookie; 253 254 static int pim_encapcheck(const struct mbuf *, int, int, void *); 255 256 /* 257 * Note: the PIM Register encapsulation adds the following in front of a 258 * data packet: 259 * 260 * struct pim_encap_hdr { 261 * struct ip ip; 262 * struct pim_encap_pimhdr pim; 263 * } 264 * 265 */ 266 267 struct pim_encap_pimhdr { 268 struct pim pim; 269 uint32_t flags; 270 }; 271 #define PIM_ENCAP_TTL 64 272 273 static struct ip pim_encap_iphdr = { 274 #if BYTE_ORDER == LITTLE_ENDIAN 275 sizeof(struct ip) >> 2, 276 IPVERSION, 277 #else 278 IPVERSION, 279 sizeof(struct ip) >> 2, 280 #endif 281 0, /* tos */ 282 sizeof(struct ip), /* total length */ 283 0, /* id */ 284 0, /* frag offset */ 285 PIM_ENCAP_TTL, 286 IPPROTO_PIM, 287 0, /* checksum */ 288 }; 289 290 static struct pim_encap_pimhdr pim_encap_pimhdr = { 291 { 292 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 293 0, /* reserved */ 294 0, /* checksum */ 295 }, 296 0 /* flags */ 297 }; 298 299 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 300 #define V_reg_vif_num VNET(reg_vif_num) 301 static VNET_DEFINE(struct ifnet, multicast_register_if); 302 #define V_multicast_register_if VNET(multicast_register_if) 303 304 /* 305 * Private variables. 306 */ 307 308 static u_long X_ip_mcast_src(int); 309 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 310 struct ip_moptions *); 311 static int X_ip_mrouter_done(void); 312 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 313 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 314 static int X_legal_vif_num(int); 315 static int X_mrt_ioctl(u_long, caddr_t, int); 316 317 static int add_bw_upcall(struct bw_upcall *); 318 static int add_mfc(struct mfcctl2 *); 319 static int add_vif(struct vifctl *); 320 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 321 static void bw_meter_process(void); 322 static void bw_meter_receive_packet(struct bw_meter *, int, 323 struct timeval *); 324 static void bw_upcalls_send(void); 325 static int del_bw_upcall(struct bw_upcall *); 326 static int del_mfc(struct mfcctl2 *); 327 static int del_vif(vifi_t); 328 static int del_vif_locked(vifi_t); 329 static void expire_bw_meter_process(void *); 330 static void expire_bw_upcalls_send(void *); 331 static void expire_mfc(struct mfc *); 332 static void expire_upcalls(void *); 333 static void free_bw_list(struct bw_meter *); 334 static int get_sg_cnt(struct sioc_sg_req *); 335 static int get_vif_cnt(struct sioc_vif_req *); 336 static void if_detached_event(void *, struct ifnet *); 337 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 338 static int ip_mrouter_init(struct socket *, int); 339 static __inline struct mfc * 340 mfc_find(struct in_addr *, struct in_addr *); 341 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 342 static struct mbuf * 343 pim_register_prepare(struct ip *, struct mbuf *); 344 static int pim_register_send(struct ip *, struct vif *, 345 struct mbuf *, struct mfc *); 346 static int pim_register_send_rp(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static int pim_register_send_upcall(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 351 static void send_packet(struct vif *, struct mbuf *); 352 static int set_api_config(uint32_t *); 353 static int set_assert(int); 354 static int socket_send(struct socket *, struct mbuf *, 355 struct sockaddr_in *); 356 static void unschedule_bw_meter(struct bw_meter *); 357 358 /* 359 * Kernel multicast forwarding API capabilities and setup. 360 * If more API capabilities are added to the kernel, they should be 361 * recorded in `mrt_api_support'. 362 */ 363 #define MRT_API_VERSION 0x0305 364 365 static const int mrt_api_version = MRT_API_VERSION; 366 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 367 MRT_MFC_FLAGS_BORDER_VIF | 368 MRT_MFC_RP | 369 MRT_MFC_BW_UPCALL); 370 static VNET_DEFINE(uint32_t, mrt_api_config); 371 #define V_mrt_api_config VNET(mrt_api_config) 372 static VNET_DEFINE(int, pim_assert_enabled); 373 #define V_pim_assert_enabled VNET(pim_assert_enabled) 374 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 375 376 /* 377 * Find a route for a given origin IP address and multicast group address. 378 * Statistics must be updated by the caller. 379 */ 380 static __inline struct mfc * 381 mfc_find(struct in_addr *o, struct in_addr *g) 382 { 383 struct mfc *rt; 384 385 MFC_LOCK_ASSERT(); 386 387 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 388 if (in_hosteq(rt->mfc_origin, *o) && 389 in_hosteq(rt->mfc_mcastgrp, *g) && 390 TAILQ_EMPTY(&rt->mfc_stall)) 391 break; 392 } 393 394 return (rt); 395 } 396 397 /* 398 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 399 */ 400 static int 401 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 402 { 403 int error, optval; 404 vifi_t vifi; 405 struct vifctl vifc; 406 struct mfcctl2 mfc; 407 struct bw_upcall bw_upcall; 408 uint32_t i; 409 410 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 411 return EPERM; 412 413 error = 0; 414 switch (sopt->sopt_name) { 415 case MRT_INIT: 416 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 417 if (error) 418 break; 419 error = ip_mrouter_init(so, optval); 420 break; 421 422 case MRT_DONE: 423 error = ip_mrouter_done(); 424 break; 425 426 case MRT_ADD_VIF: 427 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 428 if (error) 429 break; 430 error = add_vif(&vifc); 431 break; 432 433 case MRT_DEL_VIF: 434 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 435 if (error) 436 break; 437 error = del_vif(vifi); 438 break; 439 440 case MRT_ADD_MFC: 441 case MRT_DEL_MFC: 442 /* 443 * select data size depending on API version. 444 */ 445 if (sopt->sopt_name == MRT_ADD_MFC && 446 V_mrt_api_config & MRT_API_FLAGS_ALL) { 447 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 448 sizeof(struct mfcctl2)); 449 } else { 450 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 451 sizeof(struct mfcctl)); 452 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 453 sizeof(mfc) - sizeof(struct mfcctl)); 454 } 455 if (error) 456 break; 457 if (sopt->sopt_name == MRT_ADD_MFC) 458 error = add_mfc(&mfc); 459 else 460 error = del_mfc(&mfc); 461 break; 462 463 case MRT_ASSERT: 464 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 465 if (error) 466 break; 467 set_assert(optval); 468 break; 469 470 case MRT_API_CONFIG: 471 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 472 if (!error) 473 error = set_api_config(&i); 474 if (!error) 475 error = sooptcopyout(sopt, &i, sizeof i); 476 break; 477 478 case MRT_ADD_BW_UPCALL: 479 case MRT_DEL_BW_UPCALL: 480 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 481 sizeof bw_upcall); 482 if (error) 483 break; 484 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 485 error = add_bw_upcall(&bw_upcall); 486 else 487 error = del_bw_upcall(&bw_upcall); 488 break; 489 490 default: 491 error = EOPNOTSUPP; 492 break; 493 } 494 return error; 495 } 496 497 /* 498 * Handle MRT getsockopt commands 499 */ 500 static int 501 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 502 { 503 int error; 504 505 switch (sopt->sopt_name) { 506 case MRT_VERSION: 507 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 508 break; 509 510 case MRT_ASSERT: 511 error = sooptcopyout(sopt, &V_pim_assert_enabled, 512 sizeof V_pim_assert_enabled); 513 break; 514 515 case MRT_API_SUPPORT: 516 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 517 break; 518 519 case MRT_API_CONFIG: 520 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 521 break; 522 523 default: 524 error = EOPNOTSUPP; 525 break; 526 } 527 return error; 528 } 529 530 /* 531 * Handle ioctl commands to obtain information from the cache 532 */ 533 static int 534 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 535 { 536 int error = 0; 537 538 /* 539 * Currently the only function calling this ioctl routine is rtioctl(). 540 * Typically, only root can create the raw socket in order to execute 541 * this ioctl method, however the request might be coming from a prison 542 */ 543 error = priv_check(curthread, PRIV_NETINET_MROUTE); 544 if (error) 545 return (error); 546 switch (cmd) { 547 case (SIOCGETVIFCNT): 548 error = get_vif_cnt((struct sioc_vif_req *)data); 549 break; 550 551 case (SIOCGETSGCNT): 552 error = get_sg_cnt((struct sioc_sg_req *)data); 553 break; 554 555 default: 556 error = EINVAL; 557 break; 558 } 559 return error; 560 } 561 562 /* 563 * returns the packet, byte, rpf-failure count for the source group provided 564 */ 565 static int 566 get_sg_cnt(struct sioc_sg_req *req) 567 { 568 struct mfc *rt; 569 570 MFC_LOCK(); 571 rt = mfc_find(&req->src, &req->grp); 572 if (rt == NULL) { 573 MFC_UNLOCK(); 574 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 575 return EADDRNOTAVAIL; 576 } 577 req->pktcnt = rt->mfc_pkt_cnt; 578 req->bytecnt = rt->mfc_byte_cnt; 579 req->wrong_if = rt->mfc_wrong_if; 580 MFC_UNLOCK(); 581 return 0; 582 } 583 584 /* 585 * returns the input and output packet and byte counts on the vif provided 586 */ 587 static int 588 get_vif_cnt(struct sioc_vif_req *req) 589 { 590 vifi_t vifi = req->vifi; 591 592 VIF_LOCK(); 593 if (vifi >= V_numvifs) { 594 VIF_UNLOCK(); 595 return EINVAL; 596 } 597 598 req->icount = V_viftable[vifi].v_pkt_in; 599 req->ocount = V_viftable[vifi].v_pkt_out; 600 req->ibytes = V_viftable[vifi].v_bytes_in; 601 req->obytes = V_viftable[vifi].v_bytes_out; 602 VIF_UNLOCK(); 603 604 return 0; 605 } 606 607 static void 608 if_detached_event(void *arg __unused, struct ifnet *ifp) 609 { 610 vifi_t vifi; 611 int i; 612 613 MROUTER_LOCK(); 614 615 if (V_ip_mrouter == NULL) { 616 MROUTER_UNLOCK(); 617 return; 618 } 619 620 VIF_LOCK(); 621 MFC_LOCK(); 622 623 /* 624 * Tear down multicast forwarder state associated with this ifnet. 625 * 1. Walk the vif list, matching vifs against this ifnet. 626 * 2. Walk the multicast forwarding cache (mfc) looking for 627 * inner matches with this vif's index. 628 * 3. Expire any matching multicast forwarding cache entries. 629 * 4. Free vif state. This should disable ALLMULTI on the interface. 630 */ 631 for (vifi = 0; vifi < V_numvifs; vifi++) { 632 if (V_viftable[vifi].v_ifp != ifp) 633 continue; 634 for (i = 0; i < mfchashsize; i++) { 635 struct mfc *rt, *nrt; 636 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 637 nrt = LIST_NEXT(rt, mfc_hash); 638 if (rt->mfc_parent == vifi) { 639 expire_mfc(rt); 640 } 641 } 642 } 643 del_vif_locked(vifi); 644 } 645 646 MFC_UNLOCK(); 647 VIF_UNLOCK(); 648 649 MROUTER_UNLOCK(); 650 } 651 652 /* 653 * Enable multicast forwarding. 654 */ 655 static int 656 ip_mrouter_init(struct socket *so, int version) 657 { 658 659 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 660 so->so_type, so->so_proto->pr_protocol); 661 662 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 663 return EOPNOTSUPP; 664 665 if (version != 1) 666 return ENOPROTOOPT; 667 668 MROUTER_LOCK(); 669 670 if (ip_mrouter_unloading) { 671 MROUTER_UNLOCK(); 672 return ENOPROTOOPT; 673 } 674 675 if (V_ip_mrouter != NULL) { 676 MROUTER_UNLOCK(); 677 return EADDRINUSE; 678 } 679 680 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 681 HASH_NOWAIT); 682 683 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 684 curvnet); 685 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 686 curvnet); 687 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 688 curvnet); 689 690 V_ip_mrouter = so; 691 ip_mrouter_cnt++; 692 693 MROUTER_UNLOCK(); 694 695 CTR1(KTR_IPMF, "%s: done", __func__); 696 697 return 0; 698 } 699 700 /* 701 * Disable multicast forwarding. 702 */ 703 static int 704 X_ip_mrouter_done(void) 705 { 706 vifi_t vifi; 707 int i; 708 struct ifnet *ifp; 709 struct ifreq ifr; 710 711 MROUTER_LOCK(); 712 713 if (V_ip_mrouter == NULL) { 714 MROUTER_UNLOCK(); 715 return EINVAL; 716 } 717 718 /* 719 * Detach/disable hooks to the reset of the system. 720 */ 721 V_ip_mrouter = NULL; 722 ip_mrouter_cnt--; 723 V_mrt_api_config = 0; 724 725 VIF_LOCK(); 726 727 /* 728 * For each phyint in use, disable promiscuous reception of all IP 729 * multicasts. 730 */ 731 for (vifi = 0; vifi < V_numvifs; vifi++) { 732 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 733 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 734 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 735 736 so->sin_len = sizeof(struct sockaddr_in); 737 so->sin_family = AF_INET; 738 so->sin_addr.s_addr = INADDR_ANY; 739 ifp = V_viftable[vifi].v_ifp; 740 if_allmulti(ifp, 0); 741 } 742 } 743 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 744 V_numvifs = 0; 745 V_pim_assert_enabled = 0; 746 747 VIF_UNLOCK(); 748 749 callout_stop(&V_expire_upcalls_ch); 750 callout_stop(&V_bw_upcalls_ch); 751 callout_stop(&V_bw_meter_ch); 752 753 MFC_LOCK(); 754 755 /* 756 * Free all multicast forwarding cache entries. 757 * Do not use hashdestroy(), as we must perform other cleanup. 758 */ 759 for (i = 0; i < mfchashsize; i++) { 760 struct mfc *rt, *nrt; 761 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 762 nrt = LIST_NEXT(rt, mfc_hash); 763 expire_mfc(rt); 764 } 765 } 766 free(V_mfchashtbl, M_MRTABLE); 767 V_mfchashtbl = NULL; 768 769 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 770 771 V_bw_upcalls_n = 0; 772 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 773 774 MFC_UNLOCK(); 775 776 V_reg_vif_num = VIFI_INVALID; 777 778 MROUTER_UNLOCK(); 779 780 CTR1(KTR_IPMF, "%s: done", __func__); 781 782 return 0; 783 } 784 785 /* 786 * Set PIM assert processing global 787 */ 788 static int 789 set_assert(int i) 790 { 791 if ((i != 1) && (i != 0)) 792 return EINVAL; 793 794 V_pim_assert_enabled = i; 795 796 return 0; 797 } 798 799 /* 800 * Configure API capabilities 801 */ 802 int 803 set_api_config(uint32_t *apival) 804 { 805 int i; 806 807 /* 808 * We can set the API capabilities only if it is the first operation 809 * after MRT_INIT. I.e.: 810 * - there are no vifs installed 811 * - pim_assert is not enabled 812 * - the MFC table is empty 813 */ 814 if (V_numvifs > 0) { 815 *apival = 0; 816 return EPERM; 817 } 818 if (V_pim_assert_enabled) { 819 *apival = 0; 820 return EPERM; 821 } 822 823 MFC_LOCK(); 824 825 for (i = 0; i < mfchashsize; i++) { 826 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 827 *apival = 0; 828 return EPERM; 829 } 830 } 831 832 MFC_UNLOCK(); 833 834 V_mrt_api_config = *apival & mrt_api_support; 835 *apival = V_mrt_api_config; 836 837 return 0; 838 } 839 840 /* 841 * Add a vif to the vif table 842 */ 843 static int 844 add_vif(struct vifctl *vifcp) 845 { 846 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 847 struct sockaddr_in sin = {sizeof sin, AF_INET}; 848 struct ifaddr *ifa; 849 struct ifnet *ifp; 850 int error; 851 852 VIF_LOCK(); 853 if (vifcp->vifc_vifi >= MAXVIFS) { 854 VIF_UNLOCK(); 855 return EINVAL; 856 } 857 /* rate limiting is no longer supported by this code */ 858 if (vifcp->vifc_rate_limit != 0) { 859 log(LOG_ERR, "rate limiting is no longer supported\n"); 860 VIF_UNLOCK(); 861 return EINVAL; 862 } 863 if (!in_nullhost(vifp->v_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRINUSE; 866 } 867 if (in_nullhost(vifcp->vifc_lcl_addr)) { 868 VIF_UNLOCK(); 869 return EADDRNOTAVAIL; 870 } 871 872 /* Find the interface with an address in AF_INET family */ 873 if (vifcp->vifc_flags & VIFF_REGISTER) { 874 /* 875 * XXX: Because VIFF_REGISTER does not really need a valid 876 * local interface (e.g. it could be 127.0.0.2), we don't 877 * check its address. 878 */ 879 ifp = NULL; 880 } else { 881 sin.sin_addr = vifcp->vifc_lcl_addr; 882 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 883 if (ifa == NULL) { 884 VIF_UNLOCK(); 885 return EADDRNOTAVAIL; 886 } 887 ifp = ifa->ifa_ifp; 888 ifa_free(ifa); 889 } 890 891 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 892 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 893 VIF_UNLOCK(); 894 return EOPNOTSUPP; 895 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 896 ifp = &V_multicast_register_if; 897 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 898 if (V_reg_vif_num == VIFI_INVALID) { 899 if_initname(&V_multicast_register_if, "register_vif", 0); 900 V_multicast_register_if.if_flags = IFF_LOOPBACK; 901 V_reg_vif_num = vifcp->vifc_vifi; 902 } 903 } else { /* Make sure the interface supports multicast */ 904 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 905 VIF_UNLOCK(); 906 return EOPNOTSUPP; 907 } 908 909 /* Enable promiscuous reception of all IP multicasts from the if */ 910 error = if_allmulti(ifp, 1); 911 if (error) { 912 VIF_UNLOCK(); 913 return error; 914 } 915 } 916 917 vifp->v_flags = vifcp->vifc_flags; 918 vifp->v_threshold = vifcp->vifc_threshold; 919 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 920 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 921 vifp->v_ifp = ifp; 922 /* initialize per vif pkt counters */ 923 vifp->v_pkt_in = 0; 924 vifp->v_pkt_out = 0; 925 vifp->v_bytes_in = 0; 926 vifp->v_bytes_out = 0; 927 928 /* Adjust numvifs up if the vifi is higher than numvifs */ 929 if (V_numvifs <= vifcp->vifc_vifi) 930 V_numvifs = vifcp->vifc_vifi + 1; 931 932 VIF_UNLOCK(); 933 934 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 935 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 936 (int)vifcp->vifc_threshold); 937 938 return 0; 939 } 940 941 /* 942 * Delete a vif from the vif table 943 */ 944 static int 945 del_vif_locked(vifi_t vifi) 946 { 947 struct vif *vifp; 948 949 VIF_LOCK_ASSERT(); 950 951 if (vifi >= V_numvifs) { 952 return EINVAL; 953 } 954 vifp = &V_viftable[vifi]; 955 if (in_nullhost(vifp->v_lcl_addr)) { 956 return EADDRNOTAVAIL; 957 } 958 959 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 960 if_allmulti(vifp->v_ifp, 0); 961 962 if (vifp->v_flags & VIFF_REGISTER) 963 V_reg_vif_num = VIFI_INVALID; 964 965 bzero((caddr_t)vifp, sizeof (*vifp)); 966 967 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 968 969 /* Adjust numvifs down */ 970 for (vifi = V_numvifs; vifi > 0; vifi--) 971 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 972 break; 973 V_numvifs = vifi; 974 975 return 0; 976 } 977 978 static int 979 del_vif(vifi_t vifi) 980 { 981 int cc; 982 983 VIF_LOCK(); 984 cc = del_vif_locked(vifi); 985 VIF_UNLOCK(); 986 987 return cc; 988 } 989 990 /* 991 * update an mfc entry without resetting counters and S,G addresses. 992 */ 993 static void 994 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 995 { 996 int i; 997 998 rt->mfc_parent = mfccp->mfcc_parent; 999 for (i = 0; i < V_numvifs; i++) { 1000 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1001 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1002 MRT_MFC_FLAGS_ALL; 1003 } 1004 /* set the RP address */ 1005 if (V_mrt_api_config & MRT_MFC_RP) 1006 rt->mfc_rp = mfccp->mfcc_rp; 1007 else 1008 rt->mfc_rp.s_addr = INADDR_ANY; 1009 } 1010 1011 /* 1012 * fully initialize an mfc entry from the parameter. 1013 */ 1014 static void 1015 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1016 { 1017 rt->mfc_origin = mfccp->mfcc_origin; 1018 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1019 1020 update_mfc_params(rt, mfccp); 1021 1022 /* initialize pkt counters per src-grp */ 1023 rt->mfc_pkt_cnt = 0; 1024 rt->mfc_byte_cnt = 0; 1025 rt->mfc_wrong_if = 0; 1026 timevalclear(&rt->mfc_last_assert); 1027 } 1028 1029 static void 1030 expire_mfc(struct mfc *rt) 1031 { 1032 struct rtdetq *rte, *nrte; 1033 1034 MFC_LOCK_ASSERT(); 1035 1036 free_bw_list(rt->mfc_bw_meter); 1037 1038 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1039 m_freem(rte->m); 1040 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1041 free(rte, M_MRTABLE); 1042 } 1043 1044 LIST_REMOVE(rt, mfc_hash); 1045 free(rt, M_MRTABLE); 1046 } 1047 1048 /* 1049 * Add an mfc entry 1050 */ 1051 static int 1052 add_mfc(struct mfcctl2 *mfccp) 1053 { 1054 struct mfc *rt; 1055 struct rtdetq *rte, *nrte; 1056 u_long hash = 0; 1057 u_short nstl; 1058 1059 VIF_LOCK(); 1060 MFC_LOCK(); 1061 1062 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1063 1064 /* If an entry already exists, just update the fields */ 1065 if (rt) { 1066 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1067 __func__, inet_ntoa(mfccp->mfcc_origin), 1068 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1069 mfccp->mfcc_parent); 1070 update_mfc_params(rt, mfccp); 1071 MFC_UNLOCK(); 1072 VIF_UNLOCK(); 1073 return (0); 1074 } 1075 1076 /* 1077 * Find the entry for which the upcall was made and update 1078 */ 1079 nstl = 0; 1080 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1081 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1082 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1083 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1084 !TAILQ_EMPTY(&rt->mfc_stall)) { 1085 CTR5(KTR_IPMF, 1086 "%s: add mfc orig %s group %lx parent %x qh %p", 1087 __func__, inet_ntoa(mfccp->mfcc_origin), 1088 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1089 mfccp->mfcc_parent, 1090 TAILQ_FIRST(&rt->mfc_stall)); 1091 if (nstl++) 1092 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1093 1094 init_mfc_params(rt, mfccp); 1095 rt->mfc_expire = 0; /* Don't clean this guy up */ 1096 V_nexpire[hash]--; 1097 1098 /* Free queued packets, but attempt to forward them first. */ 1099 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1100 if (rte->ifp != NULL) 1101 ip_mdq(rte->m, rte->ifp, rt, -1); 1102 m_freem(rte->m); 1103 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1104 rt->mfc_nstall--; 1105 free(rte, M_MRTABLE); 1106 } 1107 } 1108 } 1109 1110 /* 1111 * It is possible that an entry is being inserted without an upcall 1112 */ 1113 if (nstl == 0) { 1114 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1115 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1116 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1117 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1118 init_mfc_params(rt, mfccp); 1119 if (rt->mfc_expire) 1120 V_nexpire[hash]--; 1121 rt->mfc_expire = 0; 1122 break; /* XXX */ 1123 } 1124 } 1125 1126 if (rt == NULL) { /* no upcall, so make a new entry */ 1127 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1128 if (rt == NULL) { 1129 MFC_UNLOCK(); 1130 VIF_UNLOCK(); 1131 return (ENOBUFS); 1132 } 1133 1134 init_mfc_params(rt, mfccp); 1135 TAILQ_INIT(&rt->mfc_stall); 1136 rt->mfc_nstall = 0; 1137 1138 rt->mfc_expire = 0; 1139 rt->mfc_bw_meter = NULL; 1140 1141 /* insert new entry at head of hash chain */ 1142 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1143 } 1144 } 1145 1146 MFC_UNLOCK(); 1147 VIF_UNLOCK(); 1148 1149 return (0); 1150 } 1151 1152 /* 1153 * Delete an mfc entry 1154 */ 1155 static int 1156 del_mfc(struct mfcctl2 *mfccp) 1157 { 1158 struct in_addr origin; 1159 struct in_addr mcastgrp; 1160 struct mfc *rt; 1161 1162 origin = mfccp->mfcc_origin; 1163 mcastgrp = mfccp->mfcc_mcastgrp; 1164 1165 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1166 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1167 1168 MFC_LOCK(); 1169 1170 rt = mfc_find(&origin, &mcastgrp); 1171 if (rt == NULL) { 1172 MFC_UNLOCK(); 1173 return EADDRNOTAVAIL; 1174 } 1175 1176 /* 1177 * free the bw_meter entries 1178 */ 1179 free_bw_list(rt->mfc_bw_meter); 1180 rt->mfc_bw_meter = NULL; 1181 1182 LIST_REMOVE(rt, mfc_hash); 1183 free(rt, M_MRTABLE); 1184 1185 MFC_UNLOCK(); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Send a message to the routing daemon on the multicast routing socket. 1192 */ 1193 static int 1194 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1195 { 1196 if (s) { 1197 SOCKBUF_LOCK(&s->so_rcv); 1198 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1199 NULL) != 0) { 1200 sorwakeup_locked(s); 1201 return 0; 1202 } 1203 SOCKBUF_UNLOCK(&s->so_rcv); 1204 } 1205 m_freem(mm); 1206 return -1; 1207 } 1208 1209 /* 1210 * IP multicast forwarding function. This function assumes that the packet 1211 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1212 * pointed to by "ifp", and the packet is to be relayed to other networks 1213 * that have members of the packet's destination IP multicast group. 1214 * 1215 * The packet is returned unscathed to the caller, unless it is 1216 * erroneous, in which case a non-zero return value tells the caller to 1217 * discard it. 1218 */ 1219 1220 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1221 1222 static int 1223 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1224 struct ip_moptions *imo) 1225 { 1226 struct mfc *rt; 1227 int error; 1228 vifi_t vifi; 1229 1230 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1231 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1232 1233 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1234 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1235 /* 1236 * Packet arrived via a physical interface or 1237 * an encapsulated tunnel or a register_vif. 1238 */ 1239 } else { 1240 /* 1241 * Packet arrived through a source-route tunnel. 1242 * Source-route tunnels are no longer supported. 1243 */ 1244 return (1); 1245 } 1246 1247 VIF_LOCK(); 1248 MFC_LOCK(); 1249 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1250 if (ip->ip_ttl < MAXTTL) 1251 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1252 error = ip_mdq(m, ifp, NULL, vifi); 1253 MFC_UNLOCK(); 1254 VIF_UNLOCK(); 1255 return error; 1256 } 1257 1258 /* 1259 * Don't forward a packet with time-to-live of zero or one, 1260 * or a packet destined to a local-only group. 1261 */ 1262 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1263 MFC_UNLOCK(); 1264 VIF_UNLOCK(); 1265 return 0; 1266 } 1267 1268 /* 1269 * Determine forwarding vifs from the forwarding cache table 1270 */ 1271 MRTSTAT_INC(mrts_mfc_lookups); 1272 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1273 1274 /* Entry exists, so forward if necessary */ 1275 if (rt != NULL) { 1276 error = ip_mdq(m, ifp, rt, -1); 1277 MFC_UNLOCK(); 1278 VIF_UNLOCK(); 1279 return error; 1280 } else { 1281 /* 1282 * If we don't have a route for packet's origin, 1283 * Make a copy of the packet & send message to routing daemon 1284 */ 1285 1286 struct mbuf *mb0; 1287 struct rtdetq *rte; 1288 u_long hash; 1289 int hlen = ip->ip_hl << 2; 1290 1291 MRTSTAT_INC(mrts_mfc_misses); 1292 MRTSTAT_INC(mrts_no_route); 1293 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1294 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1295 1296 /* 1297 * Allocate mbufs early so that we don't do extra work if we are 1298 * just going to fail anyway. Make sure to pullup the header so 1299 * that other people can't step on it. 1300 */ 1301 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1302 M_NOWAIT|M_ZERO); 1303 if (rte == NULL) { 1304 MFC_UNLOCK(); 1305 VIF_UNLOCK(); 1306 return ENOBUFS; 1307 } 1308 1309 mb0 = m_copypacket(m, M_DONTWAIT); 1310 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1311 mb0 = m_pullup(mb0, hlen); 1312 if (mb0 == NULL) { 1313 free(rte, M_MRTABLE); 1314 MFC_UNLOCK(); 1315 VIF_UNLOCK(); 1316 return ENOBUFS; 1317 } 1318 1319 /* is there an upcall waiting for this flow ? */ 1320 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1321 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1322 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1323 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1324 !TAILQ_EMPTY(&rt->mfc_stall)) 1325 break; 1326 } 1327 1328 if (rt == NULL) { 1329 int i; 1330 struct igmpmsg *im; 1331 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1332 struct mbuf *mm; 1333 1334 /* 1335 * Locate the vifi for the incoming interface for this packet. 1336 * If none found, drop packet. 1337 */ 1338 for (vifi = 0; vifi < V_numvifs && 1339 V_viftable[vifi].v_ifp != ifp; vifi++) 1340 ; 1341 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1342 goto non_fatal; 1343 1344 /* no upcall, so make a new entry */ 1345 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1346 if (rt == NULL) 1347 goto fail; 1348 1349 /* Make a copy of the header to send to the user level process */ 1350 mm = m_copy(mb0, 0, hlen); 1351 if (mm == NULL) 1352 goto fail1; 1353 1354 /* 1355 * Send message to routing daemon to install 1356 * a route into the kernel table 1357 */ 1358 1359 im = mtod(mm, struct igmpmsg *); 1360 im->im_msgtype = IGMPMSG_NOCACHE; 1361 im->im_mbz = 0; 1362 im->im_vif = vifi; 1363 1364 MRTSTAT_INC(mrts_upcalls); 1365 1366 k_igmpsrc.sin_addr = ip->ip_src; 1367 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1368 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1369 MRTSTAT_INC(mrts_upq_sockfull); 1370 fail1: 1371 free(rt, M_MRTABLE); 1372 fail: 1373 free(rte, M_MRTABLE); 1374 m_freem(mb0); 1375 MFC_UNLOCK(); 1376 VIF_UNLOCK(); 1377 return ENOBUFS; 1378 } 1379 1380 /* insert new entry at head of hash chain */ 1381 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1382 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1383 rt->mfc_expire = UPCALL_EXPIRE; 1384 V_nexpire[hash]++; 1385 for (i = 0; i < V_numvifs; i++) { 1386 rt->mfc_ttls[i] = 0; 1387 rt->mfc_flags[i] = 0; 1388 } 1389 rt->mfc_parent = -1; 1390 1391 /* clear the RP address */ 1392 rt->mfc_rp.s_addr = INADDR_ANY; 1393 rt->mfc_bw_meter = NULL; 1394 1395 /* initialize pkt counters per src-grp */ 1396 rt->mfc_pkt_cnt = 0; 1397 rt->mfc_byte_cnt = 0; 1398 rt->mfc_wrong_if = 0; 1399 timevalclear(&rt->mfc_last_assert); 1400 1401 TAILQ_INIT(&rt->mfc_stall); 1402 rt->mfc_nstall = 0; 1403 1404 /* link into table */ 1405 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1406 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1407 rt->mfc_nstall++; 1408 1409 } else { 1410 /* determine if queue has overflowed */ 1411 if (rt->mfc_nstall > MAX_UPQ) { 1412 MRTSTAT_INC(mrts_upq_ovflw); 1413 non_fatal: 1414 free(rte, M_MRTABLE); 1415 m_freem(mb0); 1416 MFC_UNLOCK(); 1417 VIF_UNLOCK(); 1418 return (0); 1419 } 1420 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1421 rt->mfc_nstall++; 1422 } 1423 1424 rte->m = mb0; 1425 rte->ifp = ifp; 1426 1427 MFC_UNLOCK(); 1428 VIF_UNLOCK(); 1429 1430 return 0; 1431 } 1432 } 1433 1434 /* 1435 * Clean up the cache entry if upcall is not serviced 1436 */ 1437 static void 1438 expire_upcalls(void *arg) 1439 { 1440 int i; 1441 1442 CURVNET_SET((struct vnet *) arg); 1443 1444 MFC_LOCK(); 1445 1446 for (i = 0; i < mfchashsize; i++) { 1447 struct mfc *rt, *nrt; 1448 1449 if (V_nexpire[i] == 0) 1450 continue; 1451 1452 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 1453 nrt = LIST_NEXT(rt, mfc_hash); 1454 1455 if (TAILQ_EMPTY(&rt->mfc_stall)) 1456 continue; 1457 1458 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1459 continue; 1460 1461 /* 1462 * free the bw_meter entries 1463 */ 1464 while (rt->mfc_bw_meter != NULL) { 1465 struct bw_meter *x = rt->mfc_bw_meter; 1466 1467 rt->mfc_bw_meter = x->bm_mfc_next; 1468 free(x, M_BWMETER); 1469 } 1470 1471 MRTSTAT_INC(mrts_cache_cleanups); 1472 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1473 (u_long)ntohl(rt->mfc_origin.s_addr), 1474 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1475 1476 expire_mfc(rt); 1477 } 1478 } 1479 1480 MFC_UNLOCK(); 1481 1482 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1483 curvnet); 1484 1485 CURVNET_RESTORE(); 1486 } 1487 1488 /* 1489 * Packet forwarding routine once entry in the cache is made 1490 */ 1491 static int 1492 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1493 { 1494 struct ip *ip = mtod(m, struct ip *); 1495 vifi_t vifi; 1496 int plen = ip->ip_len; 1497 1498 VIF_LOCK_ASSERT(); 1499 1500 /* 1501 * If xmt_vif is not -1, send on only the requested vif. 1502 * 1503 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1504 */ 1505 if (xmt_vif < V_numvifs) { 1506 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1507 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1508 else 1509 phyint_send(ip, V_viftable + xmt_vif, m); 1510 return 1; 1511 } 1512 1513 /* 1514 * Don't forward if it didn't arrive from the parent vif for its origin. 1515 */ 1516 vifi = rt->mfc_parent; 1517 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1518 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1519 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1520 MRTSTAT_INC(mrts_wrong_if); 1521 ++rt->mfc_wrong_if; 1522 /* 1523 * If we are doing PIM assert processing, send a message 1524 * to the routing daemon. 1525 * 1526 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1527 * can complete the SPT switch, regardless of the type 1528 * of the iif (broadcast media, GRE tunnel, etc). 1529 */ 1530 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1531 V_viftable[vifi].v_ifp) { 1532 1533 if (ifp == &V_multicast_register_if) 1534 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1535 1536 /* Get vifi for the incoming packet */ 1537 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1538 vifi++) 1539 ; 1540 if (vifi >= V_numvifs) 1541 return 0; /* The iif is not found: ignore the packet. */ 1542 1543 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1544 return 0; /* WRONGVIF disabled: ignore the packet */ 1545 1546 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1547 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1548 struct igmpmsg *im; 1549 int hlen = ip->ip_hl << 2; 1550 struct mbuf *mm = m_copy(m, 0, hlen); 1551 1552 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1553 mm = m_pullup(mm, hlen); 1554 if (mm == NULL) 1555 return ENOBUFS; 1556 1557 im = mtod(mm, struct igmpmsg *); 1558 im->im_msgtype = IGMPMSG_WRONGVIF; 1559 im->im_mbz = 0; 1560 im->im_vif = vifi; 1561 1562 MRTSTAT_INC(mrts_upcalls); 1563 1564 k_igmpsrc.sin_addr = im->im_src; 1565 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1566 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1567 MRTSTAT_INC(mrts_upq_sockfull); 1568 return ENOBUFS; 1569 } 1570 } 1571 } 1572 return 0; 1573 } 1574 1575 1576 /* If I sourced this packet, it counts as output, else it was input. */ 1577 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1578 V_viftable[vifi].v_pkt_out++; 1579 V_viftable[vifi].v_bytes_out += plen; 1580 } else { 1581 V_viftable[vifi].v_pkt_in++; 1582 V_viftable[vifi].v_bytes_in += plen; 1583 } 1584 rt->mfc_pkt_cnt++; 1585 rt->mfc_byte_cnt += plen; 1586 1587 /* 1588 * For each vif, decide if a copy of the packet should be forwarded. 1589 * Forward if: 1590 * - the ttl exceeds the vif's threshold 1591 * - there are group members downstream on interface 1592 */ 1593 for (vifi = 0; vifi < V_numvifs; vifi++) 1594 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1595 V_viftable[vifi].v_pkt_out++; 1596 V_viftable[vifi].v_bytes_out += plen; 1597 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1598 pim_register_send(ip, V_viftable + vifi, m, rt); 1599 else 1600 phyint_send(ip, V_viftable + vifi, m); 1601 } 1602 1603 /* 1604 * Perform upcall-related bw measuring. 1605 */ 1606 if (rt->mfc_bw_meter != NULL) { 1607 struct bw_meter *x; 1608 struct timeval now; 1609 1610 microtime(&now); 1611 MFC_LOCK_ASSERT(); 1612 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1613 bw_meter_receive_packet(x, plen, &now); 1614 } 1615 1616 return 0; 1617 } 1618 1619 /* 1620 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1621 */ 1622 static int 1623 X_legal_vif_num(int vif) 1624 { 1625 int ret; 1626 1627 ret = 0; 1628 if (vif < 0) 1629 return (ret); 1630 1631 VIF_LOCK(); 1632 if (vif < V_numvifs) 1633 ret = 1; 1634 VIF_UNLOCK(); 1635 1636 return (ret); 1637 } 1638 1639 /* 1640 * Return the local address used by this vif 1641 */ 1642 static u_long 1643 X_ip_mcast_src(int vifi) 1644 { 1645 in_addr_t addr; 1646 1647 addr = INADDR_ANY; 1648 if (vifi < 0) 1649 return (addr); 1650 1651 VIF_LOCK(); 1652 if (vifi < V_numvifs) 1653 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1654 VIF_UNLOCK(); 1655 1656 return (addr); 1657 } 1658 1659 static void 1660 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1661 { 1662 struct mbuf *mb_copy; 1663 int hlen = ip->ip_hl << 2; 1664 1665 VIF_LOCK_ASSERT(); 1666 1667 /* 1668 * Make a new reference to the packet; make sure that 1669 * the IP header is actually copied, not just referenced, 1670 * so that ip_output() only scribbles on the copy. 1671 */ 1672 mb_copy = m_copypacket(m, M_DONTWAIT); 1673 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1674 mb_copy = m_pullup(mb_copy, hlen); 1675 if (mb_copy == NULL) 1676 return; 1677 1678 send_packet(vifp, mb_copy); 1679 } 1680 1681 static void 1682 send_packet(struct vif *vifp, struct mbuf *m) 1683 { 1684 struct ip_moptions imo; 1685 struct in_multi *imm[2]; 1686 int error; 1687 1688 VIF_LOCK_ASSERT(); 1689 1690 imo.imo_multicast_ifp = vifp->v_ifp; 1691 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1692 imo.imo_multicast_loop = 1; 1693 imo.imo_multicast_vif = -1; 1694 imo.imo_num_memberships = 0; 1695 imo.imo_max_memberships = 2; 1696 imo.imo_membership = &imm[0]; 1697 1698 /* 1699 * Re-entrancy should not be a problem here, because 1700 * the packets that we send out and are looped back at us 1701 * should get rejected because they appear to come from 1702 * the loopback interface, thus preventing looping. 1703 */ 1704 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1705 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1706 (ptrdiff_t)(vifp - V_viftable), error); 1707 } 1708 1709 /* 1710 * Stubs for old RSVP socket shim implementation. 1711 */ 1712 1713 static int 1714 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1715 { 1716 1717 return (EOPNOTSUPP); 1718 } 1719 1720 static void 1721 X_ip_rsvp_force_done(struct socket *so __unused) 1722 { 1723 1724 } 1725 1726 static void 1727 X_rsvp_input(struct mbuf *m, int off __unused) 1728 { 1729 1730 if (!V_rsvp_on) 1731 m_freem(m); 1732 } 1733 1734 /* 1735 * Code for bandwidth monitors 1736 */ 1737 1738 /* 1739 * Define common interface for timeval-related methods 1740 */ 1741 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1742 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1743 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1744 1745 static uint32_t 1746 compute_bw_meter_flags(struct bw_upcall *req) 1747 { 1748 uint32_t flags = 0; 1749 1750 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1751 flags |= BW_METER_UNIT_PACKETS; 1752 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1753 flags |= BW_METER_UNIT_BYTES; 1754 if (req->bu_flags & BW_UPCALL_GEQ) 1755 flags |= BW_METER_GEQ; 1756 if (req->bu_flags & BW_UPCALL_LEQ) 1757 flags |= BW_METER_LEQ; 1758 1759 return flags; 1760 } 1761 1762 /* 1763 * Add a bw_meter entry 1764 */ 1765 static int 1766 add_bw_upcall(struct bw_upcall *req) 1767 { 1768 struct mfc *mfc; 1769 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1770 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1771 struct timeval now; 1772 struct bw_meter *x; 1773 uint32_t flags; 1774 1775 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1776 return EOPNOTSUPP; 1777 1778 /* Test if the flags are valid */ 1779 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1780 return EINVAL; 1781 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1782 return EINVAL; 1783 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1784 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1785 return EINVAL; 1786 1787 /* Test if the threshold time interval is valid */ 1788 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1789 return EINVAL; 1790 1791 flags = compute_bw_meter_flags(req); 1792 1793 /* 1794 * Find if we have already same bw_meter entry 1795 */ 1796 MFC_LOCK(); 1797 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1798 if (mfc == NULL) { 1799 MFC_UNLOCK(); 1800 return EADDRNOTAVAIL; 1801 } 1802 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1803 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1804 &req->bu_threshold.b_time, ==)) && 1805 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1806 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1807 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1808 MFC_UNLOCK(); 1809 return 0; /* XXX Already installed */ 1810 } 1811 } 1812 1813 /* Allocate the new bw_meter entry */ 1814 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1815 if (x == NULL) { 1816 MFC_UNLOCK(); 1817 return ENOBUFS; 1818 } 1819 1820 /* Set the new bw_meter entry */ 1821 x->bm_threshold.b_time = req->bu_threshold.b_time; 1822 microtime(&now); 1823 x->bm_start_time = now; 1824 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1825 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1826 x->bm_measured.b_packets = 0; 1827 x->bm_measured.b_bytes = 0; 1828 x->bm_flags = flags; 1829 x->bm_time_next = NULL; 1830 x->bm_time_hash = BW_METER_BUCKETS; 1831 1832 /* Add the new bw_meter entry to the front of entries for this MFC */ 1833 x->bm_mfc = mfc; 1834 x->bm_mfc_next = mfc->mfc_bw_meter; 1835 mfc->mfc_bw_meter = x; 1836 schedule_bw_meter(x, &now); 1837 MFC_UNLOCK(); 1838 1839 return 0; 1840 } 1841 1842 static void 1843 free_bw_list(struct bw_meter *list) 1844 { 1845 while (list != NULL) { 1846 struct bw_meter *x = list; 1847 1848 list = list->bm_mfc_next; 1849 unschedule_bw_meter(x); 1850 free(x, M_BWMETER); 1851 } 1852 } 1853 1854 /* 1855 * Delete one or multiple bw_meter entries 1856 */ 1857 static int 1858 del_bw_upcall(struct bw_upcall *req) 1859 { 1860 struct mfc *mfc; 1861 struct bw_meter *x; 1862 1863 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1864 return EOPNOTSUPP; 1865 1866 MFC_LOCK(); 1867 1868 /* Find the corresponding MFC entry */ 1869 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1870 if (mfc == NULL) { 1871 MFC_UNLOCK(); 1872 return EADDRNOTAVAIL; 1873 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1874 /* 1875 * Delete all bw_meter entries for this mfc 1876 */ 1877 struct bw_meter *list; 1878 1879 list = mfc->mfc_bw_meter; 1880 mfc->mfc_bw_meter = NULL; 1881 free_bw_list(list); 1882 MFC_UNLOCK(); 1883 return 0; 1884 } else { /* Delete a single bw_meter entry */ 1885 struct bw_meter *prev; 1886 uint32_t flags = 0; 1887 1888 flags = compute_bw_meter_flags(req); 1889 1890 /* Find the bw_meter entry to delete */ 1891 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1892 prev = x, x = x->bm_mfc_next) { 1893 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1894 &req->bu_threshold.b_time, ==)) && 1895 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1896 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1897 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1898 break; 1899 } 1900 if (x != NULL) { /* Delete entry from the list for this MFC */ 1901 if (prev != NULL) 1902 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1903 else 1904 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1905 1906 unschedule_bw_meter(x); 1907 MFC_UNLOCK(); 1908 /* Free the bw_meter entry */ 1909 free(x, M_BWMETER); 1910 return 0; 1911 } else { 1912 MFC_UNLOCK(); 1913 return EINVAL; 1914 } 1915 } 1916 /* NOTREACHED */ 1917 } 1918 1919 /* 1920 * Perform bandwidth measurement processing that may result in an upcall 1921 */ 1922 static void 1923 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1924 { 1925 struct timeval delta; 1926 1927 MFC_LOCK_ASSERT(); 1928 1929 delta = *nowp; 1930 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1931 1932 if (x->bm_flags & BW_METER_GEQ) { 1933 /* 1934 * Processing for ">=" type of bw_meter entry 1935 */ 1936 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1937 /* Reset the bw_meter entry */ 1938 x->bm_start_time = *nowp; 1939 x->bm_measured.b_packets = 0; 1940 x->bm_measured.b_bytes = 0; 1941 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1942 } 1943 1944 /* Record that a packet is received */ 1945 x->bm_measured.b_packets++; 1946 x->bm_measured.b_bytes += plen; 1947 1948 /* 1949 * Test if we should deliver an upcall 1950 */ 1951 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1952 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1953 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1954 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1955 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1956 /* Prepare an upcall for delivery */ 1957 bw_meter_prepare_upcall(x, nowp); 1958 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1959 } 1960 } 1961 } else if (x->bm_flags & BW_METER_LEQ) { 1962 /* 1963 * Processing for "<=" type of bw_meter entry 1964 */ 1965 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1966 /* 1967 * We are behind time with the multicast forwarding table 1968 * scanning for "<=" type of bw_meter entries, so test now 1969 * if we should deliver an upcall. 1970 */ 1971 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1972 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1973 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1974 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1975 /* Prepare an upcall for delivery */ 1976 bw_meter_prepare_upcall(x, nowp); 1977 } 1978 /* Reschedule the bw_meter entry */ 1979 unschedule_bw_meter(x); 1980 schedule_bw_meter(x, nowp); 1981 } 1982 1983 /* Record that a packet is received */ 1984 x->bm_measured.b_packets++; 1985 x->bm_measured.b_bytes += plen; 1986 1987 /* 1988 * Test if we should restart the measuring interval 1989 */ 1990 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1991 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1992 (x->bm_flags & BW_METER_UNIT_BYTES && 1993 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1994 /* Don't restart the measuring interval */ 1995 } else { 1996 /* Do restart the measuring interval */ 1997 /* 1998 * XXX: note that we don't unschedule and schedule, because this 1999 * might be too much overhead per packet. Instead, when we process 2000 * all entries for a given timer hash bin, we check whether it is 2001 * really a timeout. If not, we reschedule at that time. 2002 */ 2003 x->bm_start_time = *nowp; 2004 x->bm_measured.b_packets = 0; 2005 x->bm_measured.b_bytes = 0; 2006 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2007 } 2008 } 2009 } 2010 2011 /* 2012 * Prepare a bandwidth-related upcall 2013 */ 2014 static void 2015 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2016 { 2017 struct timeval delta; 2018 struct bw_upcall *u; 2019 2020 MFC_LOCK_ASSERT(); 2021 2022 /* 2023 * Compute the measured time interval 2024 */ 2025 delta = *nowp; 2026 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2027 2028 /* 2029 * If there are too many pending upcalls, deliver them now 2030 */ 2031 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2032 bw_upcalls_send(); 2033 2034 /* 2035 * Set the bw_upcall entry 2036 */ 2037 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2038 u->bu_src = x->bm_mfc->mfc_origin; 2039 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2040 u->bu_threshold.b_time = x->bm_threshold.b_time; 2041 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2042 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2043 u->bu_measured.b_time = delta; 2044 u->bu_measured.b_packets = x->bm_measured.b_packets; 2045 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2046 u->bu_flags = 0; 2047 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2048 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2049 if (x->bm_flags & BW_METER_UNIT_BYTES) 2050 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2051 if (x->bm_flags & BW_METER_GEQ) 2052 u->bu_flags |= BW_UPCALL_GEQ; 2053 if (x->bm_flags & BW_METER_LEQ) 2054 u->bu_flags |= BW_UPCALL_LEQ; 2055 } 2056 2057 /* 2058 * Send the pending bandwidth-related upcalls 2059 */ 2060 static void 2061 bw_upcalls_send(void) 2062 { 2063 struct mbuf *m; 2064 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2065 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2066 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2067 0, /* unused2 */ 2068 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2069 0, /* im_mbz */ 2070 0, /* im_vif */ 2071 0, /* unused3 */ 2072 { 0 }, /* im_src */ 2073 { 0 } }; /* im_dst */ 2074 2075 MFC_LOCK_ASSERT(); 2076 2077 if (V_bw_upcalls_n == 0) 2078 return; /* No pending upcalls */ 2079 2080 V_bw_upcalls_n = 0; 2081 2082 /* 2083 * Allocate a new mbuf, initialize it with the header and 2084 * the payload for the pending calls. 2085 */ 2086 MGETHDR(m, M_DONTWAIT, MT_DATA); 2087 if (m == NULL) { 2088 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2089 return; 2090 } 2091 2092 m->m_len = m->m_pkthdr.len = 0; 2093 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2094 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2095 2096 /* 2097 * Send the upcalls 2098 * XXX do we need to set the address in k_igmpsrc ? 2099 */ 2100 MRTSTAT_INC(mrts_upcalls); 2101 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2102 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2103 MRTSTAT_INC(mrts_upq_sockfull); 2104 } 2105 } 2106 2107 /* 2108 * Compute the timeout hash value for the bw_meter entries 2109 */ 2110 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2111 do { \ 2112 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2113 \ 2114 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2115 (hash) = next_timeval.tv_sec; \ 2116 if (next_timeval.tv_usec) \ 2117 (hash)++; /* XXX: make sure we don't timeout early */ \ 2118 (hash) %= BW_METER_BUCKETS; \ 2119 } while (0) 2120 2121 /* 2122 * Schedule a timer to process periodically bw_meter entry of type "<=" 2123 * by linking the entry in the proper hash bucket. 2124 */ 2125 static void 2126 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2127 { 2128 int time_hash; 2129 2130 MFC_LOCK_ASSERT(); 2131 2132 if (!(x->bm_flags & BW_METER_LEQ)) 2133 return; /* XXX: we schedule timers only for "<=" entries */ 2134 2135 /* 2136 * Reset the bw_meter entry 2137 */ 2138 x->bm_start_time = *nowp; 2139 x->bm_measured.b_packets = 0; 2140 x->bm_measured.b_bytes = 0; 2141 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2142 2143 /* 2144 * Compute the timeout hash value and insert the entry 2145 */ 2146 BW_METER_TIMEHASH(x, time_hash); 2147 x->bm_time_next = V_bw_meter_timers[time_hash]; 2148 V_bw_meter_timers[time_hash] = x; 2149 x->bm_time_hash = time_hash; 2150 } 2151 2152 /* 2153 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2154 * by removing the entry from the proper hash bucket. 2155 */ 2156 static void 2157 unschedule_bw_meter(struct bw_meter *x) 2158 { 2159 int time_hash; 2160 struct bw_meter *prev, *tmp; 2161 2162 MFC_LOCK_ASSERT(); 2163 2164 if (!(x->bm_flags & BW_METER_LEQ)) 2165 return; /* XXX: we schedule timers only for "<=" entries */ 2166 2167 /* 2168 * Compute the timeout hash value and delete the entry 2169 */ 2170 time_hash = x->bm_time_hash; 2171 if (time_hash >= BW_METER_BUCKETS) 2172 return; /* Entry was not scheduled */ 2173 2174 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2175 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2176 if (tmp == x) 2177 break; 2178 2179 if (tmp == NULL) 2180 panic("unschedule_bw_meter: bw_meter entry not found"); 2181 2182 if (prev != NULL) 2183 prev->bm_time_next = x->bm_time_next; 2184 else 2185 V_bw_meter_timers[time_hash] = x->bm_time_next; 2186 2187 x->bm_time_next = NULL; 2188 x->bm_time_hash = BW_METER_BUCKETS; 2189 } 2190 2191 2192 /* 2193 * Process all "<=" type of bw_meter that should be processed now, 2194 * and for each entry prepare an upcall if necessary. Each processed 2195 * entry is rescheduled again for the (periodic) processing. 2196 * 2197 * This is run periodically (once per second normally). On each round, 2198 * all the potentially matching entries are in the hash slot that we are 2199 * looking at. 2200 */ 2201 static void 2202 bw_meter_process() 2203 { 2204 uint32_t loops; 2205 int i; 2206 struct timeval now, process_endtime; 2207 2208 microtime(&now); 2209 if (V_last_tv_sec == now.tv_sec) 2210 return; /* nothing to do */ 2211 2212 loops = now.tv_sec - V_last_tv_sec; 2213 V_last_tv_sec = now.tv_sec; 2214 if (loops > BW_METER_BUCKETS) 2215 loops = BW_METER_BUCKETS; 2216 2217 MFC_LOCK(); 2218 /* 2219 * Process all bins of bw_meter entries from the one after the last 2220 * processed to the current one. On entry, i points to the last bucket 2221 * visited, so we need to increment i at the beginning of the loop. 2222 */ 2223 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2224 struct bw_meter *x, *tmp_list; 2225 2226 if (++i >= BW_METER_BUCKETS) 2227 i = 0; 2228 2229 /* Disconnect the list of bw_meter entries from the bin */ 2230 tmp_list = V_bw_meter_timers[i]; 2231 V_bw_meter_timers[i] = NULL; 2232 2233 /* Process the list of bw_meter entries */ 2234 while (tmp_list != NULL) { 2235 x = tmp_list; 2236 tmp_list = tmp_list->bm_time_next; 2237 2238 /* Test if the time interval is over */ 2239 process_endtime = x->bm_start_time; 2240 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2241 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2242 /* Not yet: reschedule, but don't reset */ 2243 int time_hash; 2244 2245 BW_METER_TIMEHASH(x, time_hash); 2246 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2247 /* 2248 * XXX: somehow the bin processing is a bit ahead of time. 2249 * Put the entry in the next bin. 2250 */ 2251 if (++time_hash >= BW_METER_BUCKETS) 2252 time_hash = 0; 2253 } 2254 x->bm_time_next = V_bw_meter_timers[time_hash]; 2255 V_bw_meter_timers[time_hash] = x; 2256 x->bm_time_hash = time_hash; 2257 2258 continue; 2259 } 2260 2261 /* 2262 * Test if we should deliver an upcall 2263 */ 2264 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2265 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2266 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2267 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2268 /* Prepare an upcall for delivery */ 2269 bw_meter_prepare_upcall(x, &now); 2270 } 2271 2272 /* 2273 * Reschedule for next processing 2274 */ 2275 schedule_bw_meter(x, &now); 2276 } 2277 } 2278 2279 /* Send all upcalls that are pending delivery */ 2280 bw_upcalls_send(); 2281 2282 MFC_UNLOCK(); 2283 } 2284 2285 /* 2286 * A periodic function for sending all upcalls that are pending delivery 2287 */ 2288 static void 2289 expire_bw_upcalls_send(void *arg) 2290 { 2291 CURVNET_SET((struct vnet *) arg); 2292 2293 MFC_LOCK(); 2294 bw_upcalls_send(); 2295 MFC_UNLOCK(); 2296 2297 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2298 curvnet); 2299 CURVNET_RESTORE(); 2300 } 2301 2302 /* 2303 * A periodic function for periodic scanning of the multicast forwarding 2304 * table for processing all "<=" bw_meter entries. 2305 */ 2306 static void 2307 expire_bw_meter_process(void *arg) 2308 { 2309 CURVNET_SET((struct vnet *) arg); 2310 2311 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2312 bw_meter_process(); 2313 2314 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2315 curvnet); 2316 CURVNET_RESTORE(); 2317 } 2318 2319 /* 2320 * End of bandwidth monitoring code 2321 */ 2322 2323 /* 2324 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2325 * 2326 */ 2327 static int 2328 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2329 struct mfc *rt) 2330 { 2331 struct mbuf *mb_copy, *mm; 2332 2333 /* 2334 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2335 * rendezvous point was unspecified, and we were told not to. 2336 */ 2337 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2338 in_nullhost(rt->mfc_rp)) 2339 return 0; 2340 2341 mb_copy = pim_register_prepare(ip, m); 2342 if (mb_copy == NULL) 2343 return ENOBUFS; 2344 2345 /* 2346 * Send all the fragments. Note that the mbuf for each fragment 2347 * is freed by the sending machinery. 2348 */ 2349 for (mm = mb_copy; mm; mm = mb_copy) { 2350 mb_copy = mm->m_nextpkt; 2351 mm->m_nextpkt = 0; 2352 mm = m_pullup(mm, sizeof(struct ip)); 2353 if (mm != NULL) { 2354 ip = mtod(mm, struct ip *); 2355 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2356 pim_register_send_rp(ip, vifp, mm, rt); 2357 } else { 2358 pim_register_send_upcall(ip, vifp, mm, rt); 2359 } 2360 } 2361 } 2362 2363 return 0; 2364 } 2365 2366 /* 2367 * Return a copy of the data packet that is ready for PIM Register 2368 * encapsulation. 2369 * XXX: Note that in the returned copy the IP header is a valid one. 2370 */ 2371 static struct mbuf * 2372 pim_register_prepare(struct ip *ip, struct mbuf *m) 2373 { 2374 struct mbuf *mb_copy = NULL; 2375 int mtu; 2376 2377 /* Take care of delayed checksums */ 2378 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2379 /* XXX: in_delayed_cksum() expects net byte order */ 2380 ip->ip_len = htons(ip->ip_len); 2381 in_delayed_cksum(m); 2382 ip->ip_len = ntohs(ip->ip_len); 2383 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2384 } 2385 2386 /* 2387 * Copy the old packet & pullup its IP header into the 2388 * new mbuf so we can modify it. 2389 */ 2390 mb_copy = m_copypacket(m, M_DONTWAIT); 2391 if (mb_copy == NULL) 2392 return NULL; 2393 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2394 if (mb_copy == NULL) 2395 return NULL; 2396 2397 /* take care of the TTL */ 2398 ip = mtod(mb_copy, struct ip *); 2399 --ip->ip_ttl; 2400 2401 /* Compute the MTU after the PIM Register encapsulation */ 2402 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2403 2404 if (ip->ip_len <= mtu) { 2405 /* Turn the IP header into a valid one */ 2406 ip->ip_len = htons(ip->ip_len); 2407 ip->ip_off = htons(ip->ip_off); 2408 ip->ip_sum = 0; 2409 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2410 } else { 2411 /* Fragment the packet */ 2412 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2413 m_freem(mb_copy); 2414 return NULL; 2415 } 2416 } 2417 return mb_copy; 2418 } 2419 2420 /* 2421 * Send an upcall with the data packet to the user-level process. 2422 */ 2423 static int 2424 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2425 struct mbuf *mb_copy, struct mfc *rt) 2426 { 2427 struct mbuf *mb_first; 2428 int len = ntohs(ip->ip_len); 2429 struct igmpmsg *im; 2430 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2431 2432 VIF_LOCK_ASSERT(); 2433 2434 /* 2435 * Add a new mbuf with an upcall header 2436 */ 2437 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2438 if (mb_first == NULL) { 2439 m_freem(mb_copy); 2440 return ENOBUFS; 2441 } 2442 mb_first->m_data += max_linkhdr; 2443 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2444 mb_first->m_len = sizeof(struct igmpmsg); 2445 mb_first->m_next = mb_copy; 2446 2447 /* Send message to routing daemon */ 2448 im = mtod(mb_first, struct igmpmsg *); 2449 im->im_msgtype = IGMPMSG_WHOLEPKT; 2450 im->im_mbz = 0; 2451 im->im_vif = vifp - V_viftable; 2452 im->im_src = ip->ip_src; 2453 im->im_dst = ip->ip_dst; 2454 2455 k_igmpsrc.sin_addr = ip->ip_src; 2456 2457 MRTSTAT_INC(mrts_upcalls); 2458 2459 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2460 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2461 MRTSTAT_INC(mrts_upq_sockfull); 2462 return ENOBUFS; 2463 } 2464 2465 /* Keep statistics */ 2466 PIMSTAT_INC(pims_snd_registers_msgs); 2467 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Encapsulate the data packet in PIM Register message and send it to the RP. 2474 */ 2475 static int 2476 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2477 struct mfc *rt) 2478 { 2479 struct mbuf *mb_first; 2480 struct ip *ip_outer; 2481 struct pim_encap_pimhdr *pimhdr; 2482 int len = ntohs(ip->ip_len); 2483 vifi_t vifi = rt->mfc_parent; 2484 2485 VIF_LOCK_ASSERT(); 2486 2487 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2488 m_freem(mb_copy); 2489 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2490 } 2491 2492 /* 2493 * Add a new mbuf with the encapsulating header 2494 */ 2495 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2496 if (mb_first == NULL) { 2497 m_freem(mb_copy); 2498 return ENOBUFS; 2499 } 2500 mb_first->m_data += max_linkhdr; 2501 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2502 mb_first->m_next = mb_copy; 2503 2504 mb_first->m_pkthdr.len = len + mb_first->m_len; 2505 2506 /* 2507 * Fill in the encapsulating IP and PIM header 2508 */ 2509 ip_outer = mtod(mb_first, struct ip *); 2510 *ip_outer = pim_encap_iphdr; 2511 ip_outer->ip_id = ip_newid(); 2512 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2513 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2514 ip_outer->ip_dst = rt->mfc_rp; 2515 /* 2516 * Copy the inner header TOS to the outer header, and take care of the 2517 * IP_DF bit. 2518 */ 2519 ip_outer->ip_tos = ip->ip_tos; 2520 if (ntohs(ip->ip_off) & IP_DF) 2521 ip_outer->ip_off |= IP_DF; 2522 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2523 + sizeof(pim_encap_iphdr)); 2524 *pimhdr = pim_encap_pimhdr; 2525 /* If the iif crosses a border, set the Border-bit */ 2526 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2527 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2528 2529 mb_first->m_data += sizeof(pim_encap_iphdr); 2530 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2531 mb_first->m_data -= sizeof(pim_encap_iphdr); 2532 2533 send_packet(vifp, mb_first); 2534 2535 /* Keep statistics */ 2536 PIMSTAT_INC(pims_snd_registers_msgs); 2537 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2538 2539 return 0; 2540 } 2541 2542 /* 2543 * pim_encapcheck() is called by the encap4_input() path at runtime to 2544 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2545 * into the kernel. 2546 */ 2547 static int 2548 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2549 { 2550 2551 #ifdef DIAGNOSTIC 2552 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2553 #endif 2554 if (proto != IPPROTO_PIM) 2555 return 0; /* not for us; reject the datagram. */ 2556 2557 return 64; /* claim the datagram. */ 2558 } 2559 2560 /* 2561 * PIM-SMv2 and PIM-DM messages processing. 2562 * Receives and verifies the PIM control messages, and passes them 2563 * up to the listening socket, using rip_input(). 2564 * The only message with special processing is the PIM_REGISTER message 2565 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2566 * is passed to if_simloop(). 2567 */ 2568 void 2569 pim_input(struct mbuf *m, int off) 2570 { 2571 struct ip *ip = mtod(m, struct ip *); 2572 struct pim *pim; 2573 int minlen; 2574 int datalen = ip->ip_len; 2575 int ip_tos; 2576 int iphlen = off; 2577 2578 /* Keep statistics */ 2579 PIMSTAT_INC(pims_rcv_total_msgs); 2580 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2581 2582 /* 2583 * Validate lengths 2584 */ 2585 if (datalen < PIM_MINLEN) { 2586 PIMSTAT_INC(pims_rcv_tooshort); 2587 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2588 __func__, datalen, inet_ntoa(ip->ip_src)); 2589 m_freem(m); 2590 return; 2591 } 2592 2593 /* 2594 * If the packet is at least as big as a REGISTER, go agead 2595 * and grab the PIM REGISTER header size, to avoid another 2596 * possible m_pullup() later. 2597 * 2598 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2599 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2600 */ 2601 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2602 /* 2603 * Get the IP and PIM headers in contiguous memory, and 2604 * possibly the PIM REGISTER header. 2605 */ 2606 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2607 (m = m_pullup(m, minlen)) == 0) { 2608 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2609 return; 2610 } 2611 2612 /* m_pullup() may have given us a new mbuf so reset ip. */ 2613 ip = mtod(m, struct ip *); 2614 ip_tos = ip->ip_tos; 2615 2616 /* adjust mbuf to point to the PIM header */ 2617 m->m_data += iphlen; 2618 m->m_len -= iphlen; 2619 pim = mtod(m, struct pim *); 2620 2621 /* 2622 * Validate checksum. If PIM REGISTER, exclude the data packet. 2623 * 2624 * XXX: some older PIMv2 implementations don't make this distinction, 2625 * so for compatibility reason perform the checksum over part of the 2626 * message, and if error, then over the whole message. 2627 */ 2628 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2629 /* do nothing, checksum okay */ 2630 } else if (in_cksum(m, datalen)) { 2631 PIMSTAT_INC(pims_rcv_badsum); 2632 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2633 m_freem(m); 2634 return; 2635 } 2636 2637 /* PIM version check */ 2638 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2639 PIMSTAT_INC(pims_rcv_badversion); 2640 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2641 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2642 m_freem(m); 2643 return; 2644 } 2645 2646 /* restore mbuf back to the outer IP */ 2647 m->m_data -= iphlen; 2648 m->m_len += iphlen; 2649 2650 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2651 /* 2652 * Since this is a REGISTER, we'll make a copy of the register 2653 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2654 * routing daemon. 2655 */ 2656 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2657 struct mbuf *mcp; 2658 struct ip *encap_ip; 2659 u_int32_t *reghdr; 2660 struct ifnet *vifp; 2661 2662 VIF_LOCK(); 2663 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2664 VIF_UNLOCK(); 2665 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2666 (int)V_reg_vif_num); 2667 m_freem(m); 2668 return; 2669 } 2670 /* XXX need refcnt? */ 2671 vifp = V_viftable[V_reg_vif_num].v_ifp; 2672 VIF_UNLOCK(); 2673 2674 /* 2675 * Validate length 2676 */ 2677 if (datalen < PIM_REG_MINLEN) { 2678 PIMSTAT_INC(pims_rcv_tooshort); 2679 PIMSTAT_INC(pims_rcv_badregisters); 2680 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2681 m_freem(m); 2682 return; 2683 } 2684 2685 reghdr = (u_int32_t *)(pim + 1); 2686 encap_ip = (struct ip *)(reghdr + 1); 2687 2688 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2689 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2690 2691 /* verify the version number of the inner packet */ 2692 if (encap_ip->ip_v != IPVERSION) { 2693 PIMSTAT_INC(pims_rcv_badregisters); 2694 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2695 m_freem(m); 2696 return; 2697 } 2698 2699 /* verify the inner packet is destined to a mcast group */ 2700 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2701 PIMSTAT_INC(pims_rcv_badregisters); 2702 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2703 inet_ntoa(encap_ip->ip_dst)); 2704 m_freem(m); 2705 return; 2706 } 2707 2708 /* If a NULL_REGISTER, pass it to the daemon */ 2709 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2710 goto pim_input_to_daemon; 2711 2712 /* 2713 * Copy the TOS from the outer IP header to the inner IP header. 2714 */ 2715 if (encap_ip->ip_tos != ip_tos) { 2716 /* Outer TOS -> inner TOS */ 2717 encap_ip->ip_tos = ip_tos; 2718 /* Recompute the inner header checksum. Sigh... */ 2719 2720 /* adjust mbuf to point to the inner IP header */ 2721 m->m_data += (iphlen + PIM_MINLEN); 2722 m->m_len -= (iphlen + PIM_MINLEN); 2723 2724 encap_ip->ip_sum = 0; 2725 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2726 2727 /* restore mbuf to point back to the outer IP header */ 2728 m->m_data -= (iphlen + PIM_MINLEN); 2729 m->m_len += (iphlen + PIM_MINLEN); 2730 } 2731 2732 /* 2733 * Decapsulate the inner IP packet and loopback to forward it 2734 * as a normal multicast packet. Also, make a copy of the 2735 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2736 * to pass to the daemon later, so it can take the appropriate 2737 * actions (e.g., send back PIM_REGISTER_STOP). 2738 * XXX: here m->m_data points to the outer IP header. 2739 */ 2740 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2741 if (mcp == NULL) { 2742 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2743 m_freem(m); 2744 return; 2745 } 2746 2747 /* Keep statistics */ 2748 /* XXX: registers_bytes include only the encap. mcast pkt */ 2749 PIMSTAT_INC(pims_rcv_registers_msgs); 2750 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2751 2752 /* 2753 * forward the inner ip packet; point m_data at the inner ip. 2754 */ 2755 m_adj(m, iphlen + PIM_MINLEN); 2756 2757 CTR4(KTR_IPMF, 2758 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2759 __func__, 2760 (u_long)ntohl(encap_ip->ip_src.s_addr), 2761 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2762 (int)V_reg_vif_num); 2763 2764 /* NB: vifp was collected above; can it change on us? */ 2765 if_simloop(vifp, m, dst.sin_family, 0); 2766 2767 /* prepare the register head to send to the mrouting daemon */ 2768 m = mcp; 2769 } 2770 2771 pim_input_to_daemon: 2772 /* 2773 * Pass the PIM message up to the daemon; if it is a Register message, 2774 * pass the 'head' only up to the daemon. This includes the 2775 * outer IP header, PIM header, PIM-Register header and the 2776 * inner IP header. 2777 * XXX: the outer IP header pkt size of a Register is not adjust to 2778 * reflect the fact that the inner multicast data is truncated. 2779 */ 2780 rip_input(m, iphlen); 2781 2782 return; 2783 } 2784 2785 static int 2786 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2787 { 2788 struct mfc *rt; 2789 int error, i; 2790 2791 if (req->newptr) 2792 return (EPERM); 2793 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2794 return (0); 2795 error = sysctl_wire_old_buffer(req, 0); 2796 if (error) 2797 return (error); 2798 2799 MFC_LOCK(); 2800 for (i = 0; i < mfchashsize; i++) { 2801 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2802 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2803 if (error) 2804 goto out_locked; 2805 } 2806 } 2807 out_locked: 2808 MFC_UNLOCK(); 2809 return (error); 2810 } 2811 2812 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2813 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2814 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2815 2816 static void 2817 vnet_mroute_init(const void *unused __unused) 2818 { 2819 2820 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2821 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2822 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE); 2823 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE); 2824 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE); 2825 } 2826 2827 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init, 2828 NULL); 2829 2830 static void 2831 vnet_mroute_uninit(const void *unused __unused) 2832 { 2833 2834 FREE(V_nexpire, M_MRTABLE); 2835 V_nexpire = NULL; 2836 } 2837 2838 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 2839 vnet_mroute_uninit, NULL); 2840 2841 static int 2842 ip_mroute_modevent(module_t mod, int type, void *unused) 2843 { 2844 2845 switch (type) { 2846 case MOD_LOAD: 2847 MROUTER_LOCK_INIT(); 2848 2849 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2850 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2851 if (if_detach_event_tag == NULL) { 2852 printf("ip_mroute: unable to ifnet_deperture_even handler\n"); 2853 MROUTER_LOCK_DESTROY(); 2854 return (EINVAL); 2855 } 2856 2857 MFC_LOCK_INIT(); 2858 VIF_LOCK_INIT(); 2859 2860 mfchashsize = MFCHASHSIZE; 2861 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2862 !powerof2(mfchashsize)) { 2863 printf("WARNING: %s not a power of 2; using default\n", 2864 "net.inet.ip.mfchashsize"); 2865 mfchashsize = MFCHASHSIZE; 2866 } 2867 2868 pim_squelch_wholepkt = 0; 2869 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2870 &pim_squelch_wholepkt); 2871 2872 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2873 pim_encapcheck, &in_pim_protosw, NULL); 2874 if (pim_encap_cookie == NULL) { 2875 printf("ip_mroute: unable to attach pim encap\n"); 2876 VIF_LOCK_DESTROY(); 2877 MFC_LOCK_DESTROY(); 2878 MROUTER_LOCK_DESTROY(); 2879 return (EINVAL); 2880 } 2881 2882 ip_mcast_src = X_ip_mcast_src; 2883 ip_mforward = X_ip_mforward; 2884 ip_mrouter_done = X_ip_mrouter_done; 2885 ip_mrouter_get = X_ip_mrouter_get; 2886 ip_mrouter_set = X_ip_mrouter_set; 2887 2888 ip_rsvp_force_done = X_ip_rsvp_force_done; 2889 ip_rsvp_vif = X_ip_rsvp_vif; 2890 2891 legal_vif_num = X_legal_vif_num; 2892 mrt_ioctl = X_mrt_ioctl; 2893 rsvp_input_p = X_rsvp_input; 2894 break; 2895 2896 case MOD_UNLOAD: 2897 /* 2898 * Typically module unload happens after the user-level 2899 * process has shutdown the kernel services (the check 2900 * below insures someone can't just yank the module out 2901 * from under a running process). But if the module is 2902 * just loaded and then unloaded w/o starting up a user 2903 * process we still need to cleanup. 2904 */ 2905 MROUTER_LOCK(); 2906 if (ip_mrouter_cnt != 0) { 2907 MROUTER_UNLOCK(); 2908 return (EINVAL); 2909 } 2910 ip_mrouter_unloading = 1; 2911 MROUTER_UNLOCK(); 2912 2913 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2914 2915 if (pim_encap_cookie) { 2916 encap_detach(pim_encap_cookie); 2917 pim_encap_cookie = NULL; 2918 } 2919 2920 ip_mcast_src = NULL; 2921 ip_mforward = NULL; 2922 ip_mrouter_done = NULL; 2923 ip_mrouter_get = NULL; 2924 ip_mrouter_set = NULL; 2925 2926 ip_rsvp_force_done = NULL; 2927 ip_rsvp_vif = NULL; 2928 2929 legal_vif_num = NULL; 2930 mrt_ioctl = NULL; 2931 rsvp_input_p = NULL; 2932 2933 VIF_LOCK_DESTROY(); 2934 MFC_LOCK_DESTROY(); 2935 MROUTER_LOCK_DESTROY(); 2936 break; 2937 2938 default: 2939 return EOPNOTSUPP; 2940 } 2941 return 0; 2942 } 2943 2944 static moduledata_t ip_mroutemod = { 2945 "ip_mroute", 2946 ip_mroute_modevent, 2947 0 2948 }; 2949 2950 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE); 2951