1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mac.h" 74 #include "opt_mrouting.h" 75 76 #define _PIM_VT 1 77 78 #include <sys/param.h> 79 #include <sys/kernel.h> 80 #include <sys/stddef.h> 81 #include <sys/lock.h> 82 #include <sys/ktr.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/module.h> 86 #include <sys/priv.h> 87 #include <sys/protosw.h> 88 #include <sys/signalvar.h> 89 #include <sys/socket.h> 90 #include <sys/socketvar.h> 91 #include <sys/sockio.h> 92 #include <sys/sx.h> 93 #include <sys/sysctl.h> 94 #include <sys/syslog.h> 95 #include <sys/systm.h> 96 #include <sys/time.h> 97 #include <sys/vimage.h> 98 99 #include <net/if.h> 100 #include <net/netisr.h> 101 #include <net/route.h> 102 103 #include <netinet/in.h> 104 #include <netinet/igmp.h> 105 #include <netinet/in_systm.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip.h> 108 #include <netinet/ip_encap.h> 109 #include <netinet/ip_mroute.h> 110 #include <netinet/ip_var.h> 111 #include <netinet/ip_options.h> 112 #include <netinet/pim.h> 113 #include <netinet/pim_var.h> 114 #include <netinet/udp.h> 115 #include <netinet/vinet.h> 116 117 #include <machine/in_cksum.h> 118 119 #include <security/mac/mac_framework.h> 120 121 #ifndef KTR_IPMF 122 #define KTR_IPMF KTR_INET 123 #endif 124 125 #define VIFI_INVALID ((vifi_t) -1) 126 #define M_HASCL(m) ((m)->m_flags & M_EXT) 127 128 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 129 130 /* 131 * Locking. We use two locks: one for the virtual interface table and 132 * one for the forwarding table. These locks may be nested in which case 133 * the VIF lock must always be taken first. Note that each lock is used 134 * to cover not only the specific data structure but also related data 135 * structures. 136 */ 137 138 static struct mtx mrouter_mtx; 139 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 140 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 141 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 142 #define MROUTER_LOCK_INIT() \ 143 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 144 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 145 146 static struct mrtstat mrtstat; 147 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 148 &mrtstat, mrtstat, 149 "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 150 "netinet/ip_mroute.h)"); 151 152 static u_long mfchash; 153 #define MFCHASH(a, g) \ 154 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 155 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 156 #define MFCHASHSIZE 256 157 158 static u_char *nexpire; /* 0..mfchashsize-1 */ 159 static u_long mfchashsize; /* Hash size */ 160 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 161 162 static struct mtx mfc_mtx; 163 #define MFC_LOCK() mtx_lock(&mfc_mtx) 164 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 165 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 166 #define MFC_LOCK_INIT() \ 167 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 168 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 169 170 static vifi_t numvifs; 171 static struct vif viftable[MAXVIFS]; 172 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 173 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 174 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 175 176 static struct mtx vif_mtx; 177 #define VIF_LOCK() mtx_lock(&vif_mtx) 178 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 179 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 180 #define VIF_LOCK_INIT() \ 181 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 182 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 183 184 static eventhandler_tag if_detach_event_tag = NULL; 185 186 static struct callout expire_upcalls_ch; 187 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 188 #define UPCALL_EXPIRE 6 /* number of timeouts */ 189 190 /* 191 * Bandwidth meter variables and constants 192 */ 193 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 194 /* 195 * Pending timeouts are stored in a hash table, the key being the 196 * expiration time. Periodically, the entries are analysed and processed. 197 */ 198 #define BW_METER_BUCKETS 1024 199 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 200 static struct callout bw_meter_ch; 201 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 202 203 /* 204 * Pending upcalls are stored in a vector which is flushed when 205 * full, or periodically 206 */ 207 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 208 static u_int bw_upcalls_n; /* # of pending upcalls */ 209 static struct callout bw_upcalls_ch; 210 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 211 212 static struct pimstat pimstat; 213 214 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 215 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 216 &pimstat, pimstat, 217 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 218 219 static u_long pim_squelch_wholepkt = 0; 220 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 221 &pim_squelch_wholepkt, 0, 222 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 223 224 extern struct domain inetdomain; 225 static const struct protosw in_pim_protosw = { 226 .pr_type = SOCK_RAW, 227 .pr_domain = &inetdomain, 228 .pr_protocol = IPPROTO_PIM, 229 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 230 .pr_input = pim_input, 231 .pr_output = (pr_output_t*)rip_output, 232 .pr_ctloutput = rip_ctloutput, 233 .pr_usrreqs = &rip_usrreqs 234 }; 235 static const struct encaptab *pim_encap_cookie; 236 237 static int pim_encapcheck(const struct mbuf *, int, int, void *); 238 239 /* 240 * Note: the PIM Register encapsulation adds the following in front of a 241 * data packet: 242 * 243 * struct pim_encap_hdr { 244 * struct ip ip; 245 * struct pim_encap_pimhdr pim; 246 * } 247 * 248 */ 249 250 struct pim_encap_pimhdr { 251 struct pim pim; 252 uint32_t flags; 253 }; 254 #define PIM_ENCAP_TTL 64 255 256 static struct ip pim_encap_iphdr = { 257 #if BYTE_ORDER == LITTLE_ENDIAN 258 sizeof(struct ip) >> 2, 259 IPVERSION, 260 #else 261 IPVERSION, 262 sizeof(struct ip) >> 2, 263 #endif 264 0, /* tos */ 265 sizeof(struct ip), /* total length */ 266 0, /* id */ 267 0, /* frag offset */ 268 PIM_ENCAP_TTL, 269 IPPROTO_PIM, 270 0, /* checksum */ 271 }; 272 273 static struct pim_encap_pimhdr pim_encap_pimhdr = { 274 { 275 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 276 0, /* reserved */ 277 0, /* checksum */ 278 }, 279 0 /* flags */ 280 }; 281 282 static struct ifnet multicast_register_if; 283 static vifi_t reg_vif_num = VIFI_INVALID; 284 285 /* 286 * Private variables. 287 */ 288 289 static u_long X_ip_mcast_src(int); 290 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 291 struct ip_moptions *); 292 static int X_ip_mrouter_done(void); 293 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 294 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 295 static int X_legal_vif_num(int); 296 static int X_mrt_ioctl(int, caddr_t, int); 297 298 static int add_bw_upcall(struct bw_upcall *); 299 static int add_mfc(struct mfcctl2 *); 300 static int add_vif(struct vifctl *); 301 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 302 static void bw_meter_process(void); 303 static void bw_meter_receive_packet(struct bw_meter *, int, 304 struct timeval *); 305 static void bw_upcalls_send(void); 306 static int del_bw_upcall(struct bw_upcall *); 307 static int del_mfc(struct mfcctl2 *); 308 static int del_vif(vifi_t); 309 static int del_vif_locked(vifi_t); 310 static void expire_bw_meter_process(void *); 311 static void expire_bw_upcalls_send(void *); 312 static void expire_mfc(struct mfc *); 313 static void expire_upcalls(void *); 314 static void free_bw_list(struct bw_meter *); 315 static int get_sg_cnt(struct sioc_sg_req *); 316 static int get_vif_cnt(struct sioc_vif_req *); 317 static void if_detached_event(void *, struct ifnet *); 318 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 319 static int ip_mrouter_init(struct socket *, int); 320 static __inline struct mfc * 321 mfc_find(struct in_addr *, struct in_addr *); 322 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 323 static struct mbuf * 324 pim_register_prepare(struct ip *, struct mbuf *); 325 static int pim_register_send(struct ip *, struct vif *, 326 struct mbuf *, struct mfc *); 327 static int pim_register_send_rp(struct ip *, struct vif *, 328 struct mbuf *, struct mfc *); 329 static int pim_register_send_upcall(struct ip *, struct vif *, 330 struct mbuf *, struct mfc *); 331 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 332 static void send_packet(struct vif *, struct mbuf *); 333 static int set_api_config(uint32_t *); 334 static int set_assert(int); 335 static int socket_send(struct socket *, struct mbuf *, 336 struct sockaddr_in *); 337 static void unschedule_bw_meter(struct bw_meter *); 338 339 /* 340 * Kernel multicast forwarding API capabilities and setup. 341 * If more API capabilities are added to the kernel, they should be 342 * recorded in `mrt_api_support'. 343 */ 344 #define MRT_API_VERSION 0x0305 345 346 static const int mrt_api_version = MRT_API_VERSION; 347 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 348 MRT_MFC_FLAGS_BORDER_VIF | 349 MRT_MFC_RP | 350 MRT_MFC_BW_UPCALL); 351 static uint32_t mrt_api_config = 0; 352 353 static int pim_assert_enabled; 354 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 355 356 /* 357 * Find a route for a given origin IP address and multicast group address. 358 * Statistics must be updated by the caller. 359 */ 360 static __inline struct mfc * 361 mfc_find(struct in_addr *o, struct in_addr *g) 362 { 363 struct mfc *rt; 364 365 MFC_LOCK_ASSERT(); 366 367 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 368 if (in_hosteq(rt->mfc_origin, *o) && 369 in_hosteq(rt->mfc_mcastgrp, *g) && 370 TAILQ_EMPTY(&rt->mfc_stall)) 371 break; 372 } 373 374 return (rt); 375 } 376 377 /* 378 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 379 */ 380 static int 381 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 382 { 383 INIT_VNET_INET(curvnet); 384 int error, optval; 385 vifi_t vifi; 386 struct vifctl vifc; 387 struct mfcctl2 mfc; 388 struct bw_upcall bw_upcall; 389 uint32_t i; 390 391 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 392 return EPERM; 393 394 error = 0; 395 switch (sopt->sopt_name) { 396 case MRT_INIT: 397 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 398 if (error) 399 break; 400 error = ip_mrouter_init(so, optval); 401 break; 402 403 case MRT_DONE: 404 error = ip_mrouter_done(); 405 break; 406 407 case MRT_ADD_VIF: 408 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 409 if (error) 410 break; 411 error = add_vif(&vifc); 412 break; 413 414 case MRT_DEL_VIF: 415 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 416 if (error) 417 break; 418 error = del_vif(vifi); 419 break; 420 421 case MRT_ADD_MFC: 422 case MRT_DEL_MFC: 423 /* 424 * select data size depending on API version. 425 */ 426 if (sopt->sopt_name == MRT_ADD_MFC && 427 mrt_api_config & MRT_API_FLAGS_ALL) { 428 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 429 sizeof(struct mfcctl2)); 430 } else { 431 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 432 sizeof(struct mfcctl)); 433 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 434 sizeof(mfc) - sizeof(struct mfcctl)); 435 } 436 if (error) 437 break; 438 if (sopt->sopt_name == MRT_ADD_MFC) 439 error = add_mfc(&mfc); 440 else 441 error = del_mfc(&mfc); 442 break; 443 444 case MRT_ASSERT: 445 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 446 if (error) 447 break; 448 set_assert(optval); 449 break; 450 451 case MRT_API_CONFIG: 452 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 453 if (!error) 454 error = set_api_config(&i); 455 if (!error) 456 error = sooptcopyout(sopt, &i, sizeof i); 457 break; 458 459 case MRT_ADD_BW_UPCALL: 460 case MRT_DEL_BW_UPCALL: 461 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 462 sizeof bw_upcall); 463 if (error) 464 break; 465 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 466 error = add_bw_upcall(&bw_upcall); 467 else 468 error = del_bw_upcall(&bw_upcall); 469 break; 470 471 default: 472 error = EOPNOTSUPP; 473 break; 474 } 475 return error; 476 } 477 478 /* 479 * Handle MRT getsockopt commands 480 */ 481 static int 482 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 483 { 484 int error; 485 486 switch (sopt->sopt_name) { 487 case MRT_VERSION: 488 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 489 break; 490 491 case MRT_ASSERT: 492 error = sooptcopyout(sopt, &pim_assert_enabled, 493 sizeof pim_assert_enabled); 494 break; 495 496 case MRT_API_SUPPORT: 497 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 498 break; 499 500 case MRT_API_CONFIG: 501 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 502 break; 503 504 default: 505 error = EOPNOTSUPP; 506 break; 507 } 508 return error; 509 } 510 511 /* 512 * Handle ioctl commands to obtain information from the cache 513 */ 514 static int 515 X_mrt_ioctl(int cmd, caddr_t data, int fibnum __unused) 516 { 517 int error = 0; 518 519 /* 520 * Currently the only function calling this ioctl routine is rtioctl(). 521 * Typically, only root can create the raw socket in order to execute 522 * this ioctl method, however the request might be coming from a prison 523 */ 524 error = priv_check(curthread, PRIV_NETINET_MROUTE); 525 if (error) 526 return (error); 527 switch (cmd) { 528 case (SIOCGETVIFCNT): 529 error = get_vif_cnt((struct sioc_vif_req *)data); 530 break; 531 532 case (SIOCGETSGCNT): 533 error = get_sg_cnt((struct sioc_sg_req *)data); 534 break; 535 536 default: 537 error = EINVAL; 538 break; 539 } 540 return error; 541 } 542 543 /* 544 * returns the packet, byte, rpf-failure count for the source group provided 545 */ 546 static int 547 get_sg_cnt(struct sioc_sg_req *req) 548 { 549 struct mfc *rt; 550 551 MFC_LOCK(); 552 rt = mfc_find(&req->src, &req->grp); 553 if (rt == NULL) { 554 MFC_UNLOCK(); 555 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 556 return EADDRNOTAVAIL; 557 } 558 req->pktcnt = rt->mfc_pkt_cnt; 559 req->bytecnt = rt->mfc_byte_cnt; 560 req->wrong_if = rt->mfc_wrong_if; 561 MFC_UNLOCK(); 562 return 0; 563 } 564 565 /* 566 * returns the input and output packet and byte counts on the vif provided 567 */ 568 static int 569 get_vif_cnt(struct sioc_vif_req *req) 570 { 571 vifi_t vifi = req->vifi; 572 573 VIF_LOCK(); 574 if (vifi >= numvifs) { 575 VIF_UNLOCK(); 576 return EINVAL; 577 } 578 579 req->icount = viftable[vifi].v_pkt_in; 580 req->ocount = viftable[vifi].v_pkt_out; 581 req->ibytes = viftable[vifi].v_bytes_in; 582 req->obytes = viftable[vifi].v_bytes_out; 583 VIF_UNLOCK(); 584 585 return 0; 586 } 587 588 static void 589 ip_mrouter_reset(void) 590 { 591 592 pim_assert_enabled = 0; 593 mrt_api_config = 0; 594 595 callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); 596 597 bw_upcalls_n = 0; 598 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 599 callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); 600 callout_init(&bw_meter_ch, CALLOUT_MPSAFE); 601 } 602 603 static void 604 if_detached_event(void *arg __unused, struct ifnet *ifp) 605 { 606 INIT_VNET_INET(curvnet); 607 vifi_t vifi; 608 int i; 609 610 MROUTER_LOCK(); 611 612 if (V_ip_mrouter == NULL) { 613 MROUTER_UNLOCK(); 614 return; 615 } 616 617 VIF_LOCK(); 618 MFC_LOCK(); 619 620 /* 621 * Tear down multicast forwarder state associated with this ifnet. 622 * 1. Walk the vif list, matching vifs against this ifnet. 623 * 2. Walk the multicast forwarding cache (mfc) looking for 624 * inner matches with this vif's index. 625 * 3. Expire any matching multicast forwarding cache entries. 626 * 4. Free vif state. This should disable ALLMULTI on the interface. 627 */ 628 for (vifi = 0; vifi < numvifs; vifi++) { 629 if (viftable[vifi].v_ifp != ifp) 630 continue; 631 for (i = 0; i < mfchashsize; i++) { 632 struct mfc *rt, *nrt; 633 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 634 nrt = LIST_NEXT(rt, mfc_hash); 635 if (rt->mfc_parent == vifi) { 636 expire_mfc(rt); 637 } 638 } 639 } 640 del_vif_locked(vifi); 641 } 642 643 MFC_UNLOCK(); 644 VIF_UNLOCK(); 645 646 MROUTER_UNLOCK(); 647 } 648 649 /* 650 * Enable multicast forwarding. 651 */ 652 static int 653 ip_mrouter_init(struct socket *so, int version) 654 { 655 INIT_VNET_INET(curvnet); 656 657 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 658 so->so_type, so->so_proto->pr_protocol); 659 660 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 661 return EOPNOTSUPP; 662 663 if (version != 1) 664 return ENOPROTOOPT; 665 666 MROUTER_LOCK(); 667 668 if (V_ip_mrouter != NULL) { 669 MROUTER_UNLOCK(); 670 return EADDRINUSE; 671 } 672 673 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 674 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 675 if (if_detach_event_tag == NULL) { 676 MROUTER_UNLOCK(); 677 return (ENOMEM); 678 } 679 680 mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT); 681 682 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 683 684 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 685 expire_bw_upcalls_send, NULL); 686 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 687 688 V_ip_mrouter = so; 689 690 MROUTER_UNLOCK(); 691 692 CTR1(KTR_IPMF, "%s: done", __func__); 693 694 return 0; 695 } 696 697 /* 698 * Disable multicast forwarding. 699 */ 700 static int 701 X_ip_mrouter_done(void) 702 { 703 INIT_VNET_INET(curvnet); 704 vifi_t vifi; 705 int i; 706 struct ifnet *ifp; 707 struct ifreq ifr; 708 709 MROUTER_LOCK(); 710 711 if (V_ip_mrouter == NULL) { 712 MROUTER_UNLOCK(); 713 return EINVAL; 714 } 715 716 /* 717 * Detach/disable hooks to the reset of the system. 718 */ 719 V_ip_mrouter = NULL; 720 mrt_api_config = 0; 721 722 VIF_LOCK(); 723 724 /* 725 * For each phyint in use, disable promiscuous reception of all IP 726 * multicasts. 727 */ 728 for (vifi = 0; vifi < numvifs; vifi++) { 729 if (!in_nullhost(viftable[vifi].v_lcl_addr) && 730 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 731 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 732 733 so->sin_len = sizeof(struct sockaddr_in); 734 so->sin_family = AF_INET; 735 so->sin_addr.s_addr = INADDR_ANY; 736 ifp = viftable[vifi].v_ifp; 737 if_allmulti(ifp, 0); 738 } 739 } 740 bzero((caddr_t)viftable, sizeof(viftable)); 741 numvifs = 0; 742 pim_assert_enabled = 0; 743 744 VIF_UNLOCK(); 745 746 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 747 748 callout_stop(&expire_upcalls_ch); 749 callout_stop(&bw_upcalls_ch); 750 callout_stop(&bw_meter_ch); 751 752 MFC_LOCK(); 753 754 /* 755 * Free all multicast forwarding cache entries. 756 * Do not use hashdestroy(), as we must perform other cleanup. 757 */ 758 for (i = 0; i < mfchashsize; i++) { 759 struct mfc *rt, *nrt; 760 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 761 nrt = LIST_NEXT(rt, mfc_hash); 762 expire_mfc(rt); 763 } 764 } 765 free(mfchashtbl, M_MRTABLE); 766 mfchashtbl = NULL; 767 768 bzero(nexpire, sizeof(nexpire[0]) * mfchashsize); 769 770 bw_upcalls_n = 0; 771 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 772 773 MFC_UNLOCK(); 774 775 reg_vif_num = VIFI_INVALID; 776 777 MROUTER_UNLOCK(); 778 779 CTR1(KTR_IPMF, "%s: done", __func__); 780 781 return 0; 782 } 783 784 /* 785 * Set PIM assert processing global 786 */ 787 static int 788 set_assert(int i) 789 { 790 if ((i != 1) && (i != 0)) 791 return EINVAL; 792 793 pim_assert_enabled = i; 794 795 return 0; 796 } 797 798 /* 799 * Configure API capabilities 800 */ 801 int 802 set_api_config(uint32_t *apival) 803 { 804 int i; 805 806 /* 807 * We can set the API capabilities only if it is the first operation 808 * after MRT_INIT. I.e.: 809 * - there are no vifs installed 810 * - pim_assert is not enabled 811 * - the MFC table is empty 812 */ 813 if (numvifs > 0) { 814 *apival = 0; 815 return EPERM; 816 } 817 if (pim_assert_enabled) { 818 *apival = 0; 819 return EPERM; 820 } 821 822 MFC_LOCK(); 823 824 for (i = 0; i < mfchashsize; i++) { 825 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 826 *apival = 0; 827 return EPERM; 828 } 829 } 830 831 MFC_UNLOCK(); 832 833 mrt_api_config = *apival & mrt_api_support; 834 *apival = mrt_api_config; 835 836 return 0; 837 } 838 839 /* 840 * Add a vif to the vif table 841 */ 842 static int 843 add_vif(struct vifctl *vifcp) 844 { 845 struct vif *vifp = viftable + vifcp->vifc_vifi; 846 struct sockaddr_in sin = {sizeof sin, AF_INET}; 847 struct ifaddr *ifa; 848 struct ifnet *ifp; 849 int error; 850 851 VIF_LOCK(); 852 if (vifcp->vifc_vifi >= MAXVIFS) { 853 VIF_UNLOCK(); 854 return EINVAL; 855 } 856 /* rate limiting is no longer supported by this code */ 857 if (vifcp->vifc_rate_limit != 0) { 858 log(LOG_ERR, "rate limiting is no longer supported\n"); 859 VIF_UNLOCK(); 860 return EINVAL; 861 } 862 if (!in_nullhost(vifp->v_lcl_addr)) { 863 VIF_UNLOCK(); 864 return EADDRINUSE; 865 } 866 if (in_nullhost(vifcp->vifc_lcl_addr)) { 867 VIF_UNLOCK(); 868 return EADDRNOTAVAIL; 869 } 870 871 /* Find the interface with an address in AF_INET family */ 872 if (vifcp->vifc_flags & VIFF_REGISTER) { 873 /* 874 * XXX: Because VIFF_REGISTER does not really need a valid 875 * local interface (e.g. it could be 127.0.0.2), we don't 876 * check its address. 877 */ 878 ifp = NULL; 879 } else { 880 sin.sin_addr = vifcp->vifc_lcl_addr; 881 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 882 if (ifa == NULL) { 883 VIF_UNLOCK(); 884 return EADDRNOTAVAIL; 885 } 886 ifp = ifa->ifa_ifp; 887 } 888 889 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 890 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 891 VIF_UNLOCK(); 892 return EOPNOTSUPP; 893 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 894 ifp = &multicast_register_if; 895 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 896 if (reg_vif_num == VIFI_INVALID) { 897 if_initname(&multicast_register_if, "register_vif", 0); 898 multicast_register_if.if_flags = IFF_LOOPBACK; 899 reg_vif_num = vifcp->vifc_vifi; 900 } 901 } else { /* Make sure the interface supports multicast */ 902 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 903 VIF_UNLOCK(); 904 return EOPNOTSUPP; 905 } 906 907 /* Enable promiscuous reception of all IP multicasts from the if */ 908 error = if_allmulti(ifp, 1); 909 if (error) { 910 VIF_UNLOCK(); 911 return error; 912 } 913 } 914 915 vifp->v_flags = vifcp->vifc_flags; 916 vifp->v_threshold = vifcp->vifc_threshold; 917 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 918 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 919 vifp->v_ifp = ifp; 920 /* initialize per vif pkt counters */ 921 vifp->v_pkt_in = 0; 922 vifp->v_pkt_out = 0; 923 vifp->v_bytes_in = 0; 924 vifp->v_bytes_out = 0; 925 bzero(&vifp->v_route, sizeof(vifp->v_route)); 926 927 /* Adjust numvifs up if the vifi is higher than numvifs */ 928 if (numvifs <= vifcp->vifc_vifi) 929 numvifs = vifcp->vifc_vifi + 1; 930 931 VIF_UNLOCK(); 932 933 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 934 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 935 (int)vifcp->vifc_threshold); 936 937 return 0; 938 } 939 940 /* 941 * Delete a vif from the vif table 942 */ 943 static int 944 del_vif_locked(vifi_t vifi) 945 { 946 struct vif *vifp; 947 948 VIF_LOCK_ASSERT(); 949 950 if (vifi >= numvifs) { 951 return EINVAL; 952 } 953 vifp = &viftable[vifi]; 954 if (in_nullhost(vifp->v_lcl_addr)) { 955 return EADDRNOTAVAIL; 956 } 957 958 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 959 if_allmulti(vifp->v_ifp, 0); 960 961 if (vifp->v_flags & VIFF_REGISTER) 962 reg_vif_num = VIFI_INVALID; 963 964 bzero((caddr_t)vifp, sizeof (*vifp)); 965 966 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 967 968 /* Adjust numvifs down */ 969 for (vifi = numvifs; vifi > 0; vifi--) 970 if (!in_nullhost(viftable[vifi-1].v_lcl_addr)) 971 break; 972 numvifs = vifi; 973 974 return 0; 975 } 976 977 static int 978 del_vif(vifi_t vifi) 979 { 980 int cc; 981 982 VIF_LOCK(); 983 cc = del_vif_locked(vifi); 984 VIF_UNLOCK(); 985 986 return cc; 987 } 988 989 /* 990 * update an mfc entry without resetting counters and S,G addresses. 991 */ 992 static void 993 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 994 { 995 int i; 996 997 rt->mfc_parent = mfccp->mfcc_parent; 998 for (i = 0; i < numvifs; i++) { 999 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1000 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1001 MRT_MFC_FLAGS_ALL; 1002 } 1003 /* set the RP address */ 1004 if (mrt_api_config & MRT_MFC_RP) 1005 rt->mfc_rp = mfccp->mfcc_rp; 1006 else 1007 rt->mfc_rp.s_addr = INADDR_ANY; 1008 } 1009 1010 /* 1011 * fully initialize an mfc entry from the parameter. 1012 */ 1013 static void 1014 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1015 { 1016 rt->mfc_origin = mfccp->mfcc_origin; 1017 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1018 1019 update_mfc_params(rt, mfccp); 1020 1021 /* initialize pkt counters per src-grp */ 1022 rt->mfc_pkt_cnt = 0; 1023 rt->mfc_byte_cnt = 0; 1024 rt->mfc_wrong_if = 0; 1025 timevalclear(&rt->mfc_last_assert); 1026 } 1027 1028 static void 1029 expire_mfc(struct mfc *rt) 1030 { 1031 struct rtdetq *rte, *nrte; 1032 1033 free_bw_list(rt->mfc_bw_meter); 1034 1035 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1036 m_freem(rte->m); 1037 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1038 free(rte, M_MRTABLE); 1039 } 1040 1041 LIST_REMOVE(rt, mfc_hash); 1042 free(rt, M_MRTABLE); 1043 } 1044 1045 /* 1046 * Add an mfc entry 1047 */ 1048 static int 1049 add_mfc(struct mfcctl2 *mfccp) 1050 { 1051 struct mfc *rt; 1052 struct rtdetq *rte, *nrte; 1053 u_long hash = 0; 1054 u_short nstl; 1055 1056 VIF_LOCK(); 1057 MFC_LOCK(); 1058 1059 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1060 1061 /* If an entry already exists, just update the fields */ 1062 if (rt) { 1063 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1064 __func__, inet_ntoa(mfccp->mfcc_origin), 1065 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1066 mfccp->mfcc_parent); 1067 update_mfc_params(rt, mfccp); 1068 MFC_UNLOCK(); 1069 VIF_UNLOCK(); 1070 return (0); 1071 } 1072 1073 /* 1074 * Find the entry for which the upcall was made and update 1075 */ 1076 nstl = 0; 1077 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1078 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1079 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1080 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1081 !TAILQ_EMPTY(&rt->mfc_stall)) { 1082 CTR5(KTR_IPMF, 1083 "%s: add mfc orig %s group %lx parent %x qh %p", 1084 __func__, inet_ntoa(mfccp->mfcc_origin), 1085 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1086 mfccp->mfcc_parent, 1087 TAILQ_FIRST(&rt->mfc_stall)); 1088 if (nstl++) 1089 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1090 1091 init_mfc_params(rt, mfccp); 1092 rt->mfc_expire = 0; /* Don't clean this guy up */ 1093 nexpire[hash]--; 1094 1095 /* Free queued packets, but attempt to forward them first. */ 1096 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1097 if (rte->ifp != NULL) 1098 ip_mdq(rte->m, rte->ifp, rt, -1); 1099 m_freem(rte->m); 1100 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1101 rt->mfc_nstall--; 1102 free(rte, M_MRTABLE); 1103 } 1104 } 1105 } 1106 1107 /* 1108 * It is possible that an entry is being inserted without an upcall 1109 */ 1110 if (nstl == 0) { 1111 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1112 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1113 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1114 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1115 init_mfc_params(rt, mfccp); 1116 if (rt->mfc_expire) 1117 nexpire[hash]--; 1118 rt->mfc_expire = 0; 1119 break; /* XXX */ 1120 } 1121 } 1122 1123 if (rt == NULL) { /* no upcall, so make a new entry */ 1124 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1125 if (rt == NULL) { 1126 MFC_UNLOCK(); 1127 VIF_UNLOCK(); 1128 return (ENOBUFS); 1129 } 1130 1131 init_mfc_params(rt, mfccp); 1132 TAILQ_INIT(&rt->mfc_stall); 1133 rt->mfc_nstall = 0; 1134 1135 rt->mfc_expire = 0; 1136 rt->mfc_bw_meter = NULL; 1137 1138 /* insert new entry at head of hash chain */ 1139 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1140 } 1141 } 1142 1143 MFC_UNLOCK(); 1144 VIF_UNLOCK(); 1145 1146 return (0); 1147 } 1148 1149 /* 1150 * Delete an mfc entry 1151 */ 1152 static int 1153 del_mfc(struct mfcctl2 *mfccp) 1154 { 1155 struct in_addr origin; 1156 struct in_addr mcastgrp; 1157 struct mfc *rt; 1158 1159 origin = mfccp->mfcc_origin; 1160 mcastgrp = mfccp->mfcc_mcastgrp; 1161 1162 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1163 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1164 1165 MFC_LOCK(); 1166 1167 rt = mfc_find(&origin, &mcastgrp); 1168 if (rt == NULL) { 1169 MFC_UNLOCK(); 1170 return EADDRNOTAVAIL; 1171 } 1172 1173 /* 1174 * free the bw_meter entries 1175 */ 1176 free_bw_list(rt->mfc_bw_meter); 1177 rt->mfc_bw_meter = NULL; 1178 1179 LIST_REMOVE(rt, mfc_hash); 1180 free(rt, M_MRTABLE); 1181 1182 MFC_UNLOCK(); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Send a message to the routing daemon on the multicast routing socket. 1189 */ 1190 static int 1191 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1192 { 1193 if (s) { 1194 SOCKBUF_LOCK(&s->so_rcv); 1195 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1196 NULL) != 0) { 1197 sorwakeup_locked(s); 1198 return 0; 1199 } 1200 SOCKBUF_UNLOCK(&s->so_rcv); 1201 } 1202 m_freem(mm); 1203 return -1; 1204 } 1205 1206 /* 1207 * IP multicast forwarding function. This function assumes that the packet 1208 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1209 * pointed to by "ifp", and the packet is to be relayed to other networks 1210 * that have members of the packet's destination IP multicast group. 1211 * 1212 * The packet is returned unscathed to the caller, unless it is 1213 * erroneous, in which case a non-zero return value tells the caller to 1214 * discard it. 1215 */ 1216 1217 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1218 1219 static int 1220 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1221 struct ip_moptions *imo) 1222 { 1223 INIT_VNET_INET(curvnet); 1224 struct mfc *rt; 1225 int error; 1226 vifi_t vifi; 1227 1228 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1229 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1230 1231 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1232 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1233 /* 1234 * Packet arrived via a physical interface or 1235 * an encapsulated tunnel or a register_vif. 1236 */ 1237 } else { 1238 /* 1239 * Packet arrived through a source-route tunnel. 1240 * Source-route tunnels are no longer supported. 1241 */ 1242 return (1); 1243 } 1244 1245 VIF_LOCK(); 1246 MFC_LOCK(); 1247 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1248 if (ip->ip_ttl < MAXTTL) 1249 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1250 error = ip_mdq(m, ifp, NULL, vifi); 1251 MFC_UNLOCK(); 1252 VIF_UNLOCK(); 1253 return error; 1254 } 1255 1256 /* 1257 * Don't forward a packet with time-to-live of zero or one, 1258 * or a packet destined to a local-only group. 1259 */ 1260 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1261 MFC_UNLOCK(); 1262 VIF_UNLOCK(); 1263 return 0; 1264 } 1265 1266 /* 1267 * Determine forwarding vifs from the forwarding cache table 1268 */ 1269 MRTSTAT_INC(mrts_mfc_lookups); 1270 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1271 1272 /* Entry exists, so forward if necessary */ 1273 if (rt != NULL) { 1274 error = ip_mdq(m, ifp, rt, -1); 1275 MFC_UNLOCK(); 1276 VIF_UNLOCK(); 1277 return error; 1278 } else { 1279 /* 1280 * If we don't have a route for packet's origin, 1281 * Make a copy of the packet & send message to routing daemon 1282 */ 1283 1284 struct mbuf *mb0; 1285 struct rtdetq *rte; 1286 u_long hash; 1287 int hlen = ip->ip_hl << 2; 1288 1289 MRTSTAT_INC(mrts_mfc_misses); 1290 MRTSTAT_INC(mrts_no_route); 1291 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1292 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1293 1294 /* 1295 * Allocate mbufs early so that we don't do extra work if we are 1296 * just going to fail anyway. Make sure to pullup the header so 1297 * that other people can't step on it. 1298 */ 1299 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1300 M_NOWAIT|M_ZERO); 1301 if (rte == NULL) { 1302 MFC_UNLOCK(); 1303 VIF_UNLOCK(); 1304 return ENOBUFS; 1305 } 1306 1307 mb0 = m_copypacket(m, M_DONTWAIT); 1308 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1309 mb0 = m_pullup(mb0, hlen); 1310 if (mb0 == NULL) { 1311 free(rte, M_MRTABLE); 1312 MFC_UNLOCK(); 1313 VIF_UNLOCK(); 1314 return ENOBUFS; 1315 } 1316 1317 /* is there an upcall waiting for this flow ? */ 1318 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1319 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1320 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1321 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1322 !TAILQ_EMPTY(&rt->mfc_stall)) 1323 break; 1324 } 1325 1326 if (rt == NULL) { 1327 int i; 1328 struct igmpmsg *im; 1329 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1330 struct mbuf *mm; 1331 1332 /* 1333 * Locate the vifi for the incoming interface for this packet. 1334 * If none found, drop packet. 1335 */ 1336 for (vifi = 0; vifi < numvifs && 1337 viftable[vifi].v_ifp != ifp; vifi++) 1338 ; 1339 if (vifi >= numvifs) /* vif not found, drop packet */ 1340 goto non_fatal; 1341 1342 /* no upcall, so make a new entry */ 1343 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1344 if (rt == NULL) 1345 goto fail; 1346 1347 /* Make a copy of the header to send to the user level process */ 1348 mm = m_copy(mb0, 0, hlen); 1349 if (mm == NULL) 1350 goto fail1; 1351 1352 /* 1353 * Send message to routing daemon to install 1354 * a route into the kernel table 1355 */ 1356 1357 im = mtod(mm, struct igmpmsg *); 1358 im->im_msgtype = IGMPMSG_NOCACHE; 1359 im->im_mbz = 0; 1360 im->im_vif = vifi; 1361 1362 MRTSTAT_INC(mrts_upcalls); 1363 1364 k_igmpsrc.sin_addr = ip->ip_src; 1365 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1366 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1367 MRTSTAT_INC(mrts_upq_sockfull); 1368 fail1: 1369 free(rt, M_MRTABLE); 1370 fail: 1371 free(rte, M_MRTABLE); 1372 m_freem(mb0); 1373 MFC_UNLOCK(); 1374 VIF_UNLOCK(); 1375 return ENOBUFS; 1376 } 1377 1378 /* insert new entry at head of hash chain */ 1379 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1380 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1381 rt->mfc_expire = UPCALL_EXPIRE; 1382 nexpire[hash]++; 1383 for (i = 0; i < numvifs; i++) { 1384 rt->mfc_ttls[i] = 0; 1385 rt->mfc_flags[i] = 0; 1386 } 1387 rt->mfc_parent = -1; 1388 1389 /* clear the RP address */ 1390 rt->mfc_rp.s_addr = INADDR_ANY; 1391 rt->mfc_bw_meter = NULL; 1392 1393 /* link into table */ 1394 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1395 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1396 rt->mfc_nstall++; 1397 1398 } else { 1399 /* determine if queue has overflowed */ 1400 if (rt->mfc_nstall > MAX_UPQ) { 1401 MRTSTAT_INC(mrts_upq_ovflw); 1402 non_fatal: 1403 free(rte, M_MRTABLE); 1404 m_freem(mb0); 1405 MFC_UNLOCK(); 1406 VIF_UNLOCK(); 1407 return (0); 1408 } 1409 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1410 rt->mfc_nstall++; 1411 } 1412 1413 rte->m = mb0; 1414 rte->ifp = ifp; 1415 1416 MFC_UNLOCK(); 1417 VIF_UNLOCK(); 1418 1419 return 0; 1420 } 1421 } 1422 1423 /* 1424 * Clean up the cache entry if upcall is not serviced 1425 */ 1426 static void 1427 expire_upcalls(void *unused) 1428 { 1429 int i; 1430 1431 MFC_LOCK(); 1432 1433 for (i = 0; i < mfchashsize; i++) { 1434 struct mfc *rt, *nrt; 1435 1436 if (nexpire[i] == 0) 1437 continue; 1438 1439 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1440 nrt = LIST_NEXT(rt, mfc_hash); 1441 1442 if (TAILQ_EMPTY(&rt->mfc_stall)) 1443 continue; 1444 1445 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1446 continue; 1447 1448 /* 1449 * free the bw_meter entries 1450 */ 1451 while (rt->mfc_bw_meter != NULL) { 1452 struct bw_meter *x = rt->mfc_bw_meter; 1453 1454 rt->mfc_bw_meter = x->bm_mfc_next; 1455 free(x, M_BWMETER); 1456 } 1457 1458 MRTSTAT_INC(mrts_cache_cleanups); 1459 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1460 (u_long)ntohl(rt->mfc_origin.s_addr), 1461 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1462 1463 expire_mfc(rt); 1464 } 1465 } 1466 1467 MFC_UNLOCK(); 1468 1469 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1470 } 1471 1472 /* 1473 * Packet forwarding routine once entry in the cache is made 1474 */ 1475 static int 1476 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1477 { 1478 INIT_VNET_INET(curvnet); 1479 struct ip *ip = mtod(m, struct ip *); 1480 vifi_t vifi; 1481 int plen = ip->ip_len; 1482 1483 VIF_LOCK_ASSERT(); 1484 1485 /* 1486 * If xmt_vif is not -1, send on only the requested vif. 1487 * 1488 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1489 */ 1490 if (xmt_vif < numvifs) { 1491 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1492 pim_register_send(ip, viftable + xmt_vif, m, rt); 1493 else 1494 phyint_send(ip, viftable + xmt_vif, m); 1495 return 1; 1496 } 1497 1498 /* 1499 * Don't forward if it didn't arrive from the parent vif for its origin. 1500 */ 1501 vifi = rt->mfc_parent; 1502 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1503 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1504 __func__, ifp, (int)vifi, viftable[vifi].v_ifp); 1505 MRTSTAT_INC(mrts_wrong_if); 1506 ++rt->mfc_wrong_if; 1507 /* 1508 * If we are doing PIM assert processing, send a message 1509 * to the routing daemon. 1510 * 1511 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1512 * can complete the SPT switch, regardless of the type 1513 * of the iif (broadcast media, GRE tunnel, etc). 1514 */ 1515 if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) { 1516 1517 if (ifp == &multicast_register_if) 1518 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1519 1520 /* Get vifi for the incoming packet */ 1521 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1522 ; 1523 if (vifi >= numvifs) 1524 return 0; /* The iif is not found: ignore the packet. */ 1525 1526 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1527 return 0; /* WRONGVIF disabled: ignore the packet */ 1528 1529 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1530 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1531 struct igmpmsg *im; 1532 int hlen = ip->ip_hl << 2; 1533 struct mbuf *mm = m_copy(m, 0, hlen); 1534 1535 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1536 mm = m_pullup(mm, hlen); 1537 if (mm == NULL) 1538 return ENOBUFS; 1539 1540 im = mtod(mm, struct igmpmsg *); 1541 im->im_msgtype = IGMPMSG_WRONGVIF; 1542 im->im_mbz = 0; 1543 im->im_vif = vifi; 1544 1545 MRTSTAT_INC(mrts_upcalls); 1546 1547 k_igmpsrc.sin_addr = im->im_src; 1548 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1549 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1550 MRTSTAT_INC(mrts_upq_sockfull); 1551 return ENOBUFS; 1552 } 1553 } 1554 } 1555 return 0; 1556 } 1557 1558 1559 /* If I sourced this packet, it counts as output, else it was input. */ 1560 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1561 viftable[vifi].v_pkt_out++; 1562 viftable[vifi].v_bytes_out += plen; 1563 } else { 1564 viftable[vifi].v_pkt_in++; 1565 viftable[vifi].v_bytes_in += plen; 1566 } 1567 rt->mfc_pkt_cnt++; 1568 rt->mfc_byte_cnt += plen; 1569 1570 /* 1571 * For each vif, decide if a copy of the packet should be forwarded. 1572 * Forward if: 1573 * - the ttl exceeds the vif's threshold 1574 * - there are group members downstream on interface 1575 */ 1576 for (vifi = 0; vifi < numvifs; vifi++) 1577 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1578 viftable[vifi].v_pkt_out++; 1579 viftable[vifi].v_bytes_out += plen; 1580 if (viftable[vifi].v_flags & VIFF_REGISTER) 1581 pim_register_send(ip, viftable + vifi, m, rt); 1582 else 1583 phyint_send(ip, viftable + vifi, m); 1584 } 1585 1586 /* 1587 * Perform upcall-related bw measuring. 1588 */ 1589 if (rt->mfc_bw_meter != NULL) { 1590 struct bw_meter *x; 1591 struct timeval now; 1592 1593 microtime(&now); 1594 MFC_LOCK_ASSERT(); 1595 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1596 bw_meter_receive_packet(x, plen, &now); 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1604 */ 1605 static int 1606 X_legal_vif_num(int vif) 1607 { 1608 int ret; 1609 1610 ret = 0; 1611 if (vif < 0) 1612 return (ret); 1613 1614 VIF_LOCK(); 1615 if (vif < numvifs) 1616 ret = 1; 1617 VIF_UNLOCK(); 1618 1619 return (ret); 1620 } 1621 1622 /* 1623 * Return the local address used by this vif 1624 */ 1625 static u_long 1626 X_ip_mcast_src(int vifi) 1627 { 1628 in_addr_t addr; 1629 1630 addr = INADDR_ANY; 1631 if (vifi < 0) 1632 return (addr); 1633 1634 VIF_LOCK(); 1635 if (vifi < numvifs) 1636 addr = viftable[vifi].v_lcl_addr.s_addr; 1637 VIF_UNLOCK(); 1638 1639 return (addr); 1640 } 1641 1642 static void 1643 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1644 { 1645 struct mbuf *mb_copy; 1646 int hlen = ip->ip_hl << 2; 1647 1648 VIF_LOCK_ASSERT(); 1649 1650 /* 1651 * Make a new reference to the packet; make sure that 1652 * the IP header is actually copied, not just referenced, 1653 * so that ip_output() only scribbles on the copy. 1654 */ 1655 mb_copy = m_copypacket(m, M_DONTWAIT); 1656 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1657 mb_copy = m_pullup(mb_copy, hlen); 1658 if (mb_copy == NULL) 1659 return; 1660 1661 send_packet(vifp, mb_copy); 1662 } 1663 1664 static void 1665 send_packet(struct vif *vifp, struct mbuf *m) 1666 { 1667 struct ip_moptions imo; 1668 struct in_multi *imm[2]; 1669 int error; 1670 1671 VIF_LOCK_ASSERT(); 1672 1673 imo.imo_multicast_ifp = vifp->v_ifp; 1674 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1675 imo.imo_multicast_loop = 1; 1676 imo.imo_multicast_vif = -1; 1677 imo.imo_num_memberships = 0; 1678 imo.imo_max_memberships = 2; 1679 imo.imo_membership = &imm[0]; 1680 1681 /* 1682 * Re-entrancy should not be a problem here, because 1683 * the packets that we send out and are looped back at us 1684 * should get rejected because they appear to come from 1685 * the loopback interface, thus preventing looping. 1686 */ 1687 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1688 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1689 (ptrdiff_t)(vifp - viftable), error); 1690 } 1691 1692 /* 1693 * Stubs for old RSVP socket shim implementation. 1694 */ 1695 1696 static int 1697 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1698 { 1699 1700 return (EOPNOTSUPP); 1701 } 1702 1703 static void 1704 X_ip_rsvp_force_done(struct socket *so __unused) 1705 { 1706 1707 } 1708 1709 static void 1710 X_rsvp_input(struct mbuf *m, int off __unused) 1711 { 1712 INIT_VNET_INET(curvnet); 1713 1714 if (!V_rsvp_on) 1715 m_freem(m); 1716 } 1717 1718 /* 1719 * Code for bandwidth monitors 1720 */ 1721 1722 /* 1723 * Define common interface for timeval-related methods 1724 */ 1725 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1726 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1727 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1728 1729 static uint32_t 1730 compute_bw_meter_flags(struct bw_upcall *req) 1731 { 1732 uint32_t flags = 0; 1733 1734 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1735 flags |= BW_METER_UNIT_PACKETS; 1736 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1737 flags |= BW_METER_UNIT_BYTES; 1738 if (req->bu_flags & BW_UPCALL_GEQ) 1739 flags |= BW_METER_GEQ; 1740 if (req->bu_flags & BW_UPCALL_LEQ) 1741 flags |= BW_METER_LEQ; 1742 1743 return flags; 1744 } 1745 1746 /* 1747 * Add a bw_meter entry 1748 */ 1749 static int 1750 add_bw_upcall(struct bw_upcall *req) 1751 { 1752 struct mfc *mfc; 1753 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1754 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1755 struct timeval now; 1756 struct bw_meter *x; 1757 uint32_t flags; 1758 1759 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 1760 return EOPNOTSUPP; 1761 1762 /* Test if the flags are valid */ 1763 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1764 return EINVAL; 1765 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1766 return EINVAL; 1767 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1768 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1769 return EINVAL; 1770 1771 /* Test if the threshold time interval is valid */ 1772 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1773 return EINVAL; 1774 1775 flags = compute_bw_meter_flags(req); 1776 1777 /* 1778 * Find if we have already same bw_meter entry 1779 */ 1780 MFC_LOCK(); 1781 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1782 if (mfc == NULL) { 1783 MFC_UNLOCK(); 1784 return EADDRNOTAVAIL; 1785 } 1786 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1787 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1788 &req->bu_threshold.b_time, ==)) && 1789 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1790 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1791 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1792 MFC_UNLOCK(); 1793 return 0; /* XXX Already installed */ 1794 } 1795 } 1796 1797 /* Allocate the new bw_meter entry */ 1798 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1799 if (x == NULL) { 1800 MFC_UNLOCK(); 1801 return ENOBUFS; 1802 } 1803 1804 /* Set the new bw_meter entry */ 1805 x->bm_threshold.b_time = req->bu_threshold.b_time; 1806 microtime(&now); 1807 x->bm_start_time = now; 1808 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1809 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1810 x->bm_measured.b_packets = 0; 1811 x->bm_measured.b_bytes = 0; 1812 x->bm_flags = flags; 1813 x->bm_time_next = NULL; 1814 x->bm_time_hash = BW_METER_BUCKETS; 1815 1816 /* Add the new bw_meter entry to the front of entries for this MFC */ 1817 x->bm_mfc = mfc; 1818 x->bm_mfc_next = mfc->mfc_bw_meter; 1819 mfc->mfc_bw_meter = x; 1820 schedule_bw_meter(x, &now); 1821 MFC_UNLOCK(); 1822 1823 return 0; 1824 } 1825 1826 static void 1827 free_bw_list(struct bw_meter *list) 1828 { 1829 while (list != NULL) { 1830 struct bw_meter *x = list; 1831 1832 list = list->bm_mfc_next; 1833 unschedule_bw_meter(x); 1834 free(x, M_BWMETER); 1835 } 1836 } 1837 1838 /* 1839 * Delete one or multiple bw_meter entries 1840 */ 1841 static int 1842 del_bw_upcall(struct bw_upcall *req) 1843 { 1844 struct mfc *mfc; 1845 struct bw_meter *x; 1846 1847 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 1848 return EOPNOTSUPP; 1849 1850 MFC_LOCK(); 1851 1852 /* Find the corresponding MFC entry */ 1853 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1854 if (mfc == NULL) { 1855 MFC_UNLOCK(); 1856 return EADDRNOTAVAIL; 1857 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1858 /* 1859 * Delete all bw_meter entries for this mfc 1860 */ 1861 struct bw_meter *list; 1862 1863 list = mfc->mfc_bw_meter; 1864 mfc->mfc_bw_meter = NULL; 1865 free_bw_list(list); 1866 MFC_UNLOCK(); 1867 return 0; 1868 } else { /* Delete a single bw_meter entry */ 1869 struct bw_meter *prev; 1870 uint32_t flags = 0; 1871 1872 flags = compute_bw_meter_flags(req); 1873 1874 /* Find the bw_meter entry to delete */ 1875 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1876 prev = x, x = x->bm_mfc_next) { 1877 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1878 &req->bu_threshold.b_time, ==)) && 1879 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1880 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1881 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1882 break; 1883 } 1884 if (x != NULL) { /* Delete entry from the list for this MFC */ 1885 if (prev != NULL) 1886 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1887 else 1888 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1889 1890 unschedule_bw_meter(x); 1891 MFC_UNLOCK(); 1892 /* Free the bw_meter entry */ 1893 free(x, M_BWMETER); 1894 return 0; 1895 } else { 1896 MFC_UNLOCK(); 1897 return EINVAL; 1898 } 1899 } 1900 /* NOTREACHED */ 1901 } 1902 1903 /* 1904 * Perform bandwidth measurement processing that may result in an upcall 1905 */ 1906 static void 1907 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1908 { 1909 struct timeval delta; 1910 1911 MFC_LOCK_ASSERT(); 1912 1913 delta = *nowp; 1914 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1915 1916 if (x->bm_flags & BW_METER_GEQ) { 1917 /* 1918 * Processing for ">=" type of bw_meter entry 1919 */ 1920 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1921 /* Reset the bw_meter entry */ 1922 x->bm_start_time = *nowp; 1923 x->bm_measured.b_packets = 0; 1924 x->bm_measured.b_bytes = 0; 1925 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1926 } 1927 1928 /* Record that a packet is received */ 1929 x->bm_measured.b_packets++; 1930 x->bm_measured.b_bytes += plen; 1931 1932 /* 1933 * Test if we should deliver an upcall 1934 */ 1935 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1936 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1937 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1938 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1939 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1940 /* Prepare an upcall for delivery */ 1941 bw_meter_prepare_upcall(x, nowp); 1942 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1943 } 1944 } 1945 } else if (x->bm_flags & BW_METER_LEQ) { 1946 /* 1947 * Processing for "<=" type of bw_meter entry 1948 */ 1949 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1950 /* 1951 * We are behind time with the multicast forwarding table 1952 * scanning for "<=" type of bw_meter entries, so test now 1953 * if we should deliver an upcall. 1954 */ 1955 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1956 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1957 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1958 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1959 /* Prepare an upcall for delivery */ 1960 bw_meter_prepare_upcall(x, nowp); 1961 } 1962 /* Reschedule the bw_meter entry */ 1963 unschedule_bw_meter(x); 1964 schedule_bw_meter(x, nowp); 1965 } 1966 1967 /* Record that a packet is received */ 1968 x->bm_measured.b_packets++; 1969 x->bm_measured.b_bytes += plen; 1970 1971 /* 1972 * Test if we should restart the measuring interval 1973 */ 1974 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1975 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1976 (x->bm_flags & BW_METER_UNIT_BYTES && 1977 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1978 /* Don't restart the measuring interval */ 1979 } else { 1980 /* Do restart the measuring interval */ 1981 /* 1982 * XXX: note that we don't unschedule and schedule, because this 1983 * might be too much overhead per packet. Instead, when we process 1984 * all entries for a given timer hash bin, we check whether it is 1985 * really a timeout. If not, we reschedule at that time. 1986 */ 1987 x->bm_start_time = *nowp; 1988 x->bm_measured.b_packets = 0; 1989 x->bm_measured.b_bytes = 0; 1990 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1991 } 1992 } 1993 } 1994 1995 /* 1996 * Prepare a bandwidth-related upcall 1997 */ 1998 static void 1999 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2000 { 2001 struct timeval delta; 2002 struct bw_upcall *u; 2003 2004 MFC_LOCK_ASSERT(); 2005 2006 /* 2007 * Compute the measured time interval 2008 */ 2009 delta = *nowp; 2010 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2011 2012 /* 2013 * If there are too many pending upcalls, deliver them now 2014 */ 2015 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2016 bw_upcalls_send(); 2017 2018 /* 2019 * Set the bw_upcall entry 2020 */ 2021 u = &bw_upcalls[bw_upcalls_n++]; 2022 u->bu_src = x->bm_mfc->mfc_origin; 2023 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2024 u->bu_threshold.b_time = x->bm_threshold.b_time; 2025 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2026 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2027 u->bu_measured.b_time = delta; 2028 u->bu_measured.b_packets = x->bm_measured.b_packets; 2029 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2030 u->bu_flags = 0; 2031 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2032 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2033 if (x->bm_flags & BW_METER_UNIT_BYTES) 2034 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2035 if (x->bm_flags & BW_METER_GEQ) 2036 u->bu_flags |= BW_UPCALL_GEQ; 2037 if (x->bm_flags & BW_METER_LEQ) 2038 u->bu_flags |= BW_UPCALL_LEQ; 2039 } 2040 2041 /* 2042 * Send the pending bandwidth-related upcalls 2043 */ 2044 static void 2045 bw_upcalls_send(void) 2046 { 2047 INIT_VNET_INET(curvnet); 2048 struct mbuf *m; 2049 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2050 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2051 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2052 0, /* unused2 */ 2053 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2054 0, /* im_mbz */ 2055 0, /* im_vif */ 2056 0, /* unused3 */ 2057 { 0 }, /* im_src */ 2058 { 0 } }; /* im_dst */ 2059 2060 MFC_LOCK_ASSERT(); 2061 2062 if (bw_upcalls_n == 0) 2063 return; /* No pending upcalls */ 2064 2065 bw_upcalls_n = 0; 2066 2067 /* 2068 * Allocate a new mbuf, initialize it with the header and 2069 * the payload for the pending calls. 2070 */ 2071 MGETHDR(m, M_DONTWAIT, MT_DATA); 2072 if (m == NULL) { 2073 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2074 return; 2075 } 2076 2077 m->m_len = m->m_pkthdr.len = 0; 2078 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2079 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2080 2081 /* 2082 * Send the upcalls 2083 * XXX do we need to set the address in k_igmpsrc ? 2084 */ 2085 MRTSTAT_INC(mrts_upcalls); 2086 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2087 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2088 MRTSTAT_INC(mrts_upq_sockfull); 2089 } 2090 } 2091 2092 /* 2093 * Compute the timeout hash value for the bw_meter entries 2094 */ 2095 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2096 do { \ 2097 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2098 \ 2099 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2100 (hash) = next_timeval.tv_sec; \ 2101 if (next_timeval.tv_usec) \ 2102 (hash)++; /* XXX: make sure we don't timeout early */ \ 2103 (hash) %= BW_METER_BUCKETS; \ 2104 } while (0) 2105 2106 /* 2107 * Schedule a timer to process periodically bw_meter entry of type "<=" 2108 * by linking the entry in the proper hash bucket. 2109 */ 2110 static void 2111 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2112 { 2113 int time_hash; 2114 2115 MFC_LOCK_ASSERT(); 2116 2117 if (!(x->bm_flags & BW_METER_LEQ)) 2118 return; /* XXX: we schedule timers only for "<=" entries */ 2119 2120 /* 2121 * Reset the bw_meter entry 2122 */ 2123 x->bm_start_time = *nowp; 2124 x->bm_measured.b_packets = 0; 2125 x->bm_measured.b_bytes = 0; 2126 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2127 2128 /* 2129 * Compute the timeout hash value and insert the entry 2130 */ 2131 BW_METER_TIMEHASH(x, time_hash); 2132 x->bm_time_next = bw_meter_timers[time_hash]; 2133 bw_meter_timers[time_hash] = x; 2134 x->bm_time_hash = time_hash; 2135 } 2136 2137 /* 2138 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2139 * by removing the entry from the proper hash bucket. 2140 */ 2141 static void 2142 unschedule_bw_meter(struct bw_meter *x) 2143 { 2144 int time_hash; 2145 struct bw_meter *prev, *tmp; 2146 2147 MFC_LOCK_ASSERT(); 2148 2149 if (!(x->bm_flags & BW_METER_LEQ)) 2150 return; /* XXX: we schedule timers only for "<=" entries */ 2151 2152 /* 2153 * Compute the timeout hash value and delete the entry 2154 */ 2155 time_hash = x->bm_time_hash; 2156 if (time_hash >= BW_METER_BUCKETS) 2157 return; /* Entry was not scheduled */ 2158 2159 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2160 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2161 if (tmp == x) 2162 break; 2163 2164 if (tmp == NULL) 2165 panic("unschedule_bw_meter: bw_meter entry not found"); 2166 2167 if (prev != NULL) 2168 prev->bm_time_next = x->bm_time_next; 2169 else 2170 bw_meter_timers[time_hash] = x->bm_time_next; 2171 2172 x->bm_time_next = NULL; 2173 x->bm_time_hash = BW_METER_BUCKETS; 2174 } 2175 2176 2177 /* 2178 * Process all "<=" type of bw_meter that should be processed now, 2179 * and for each entry prepare an upcall if necessary. Each processed 2180 * entry is rescheduled again for the (periodic) processing. 2181 * 2182 * This is run periodically (once per second normally). On each round, 2183 * all the potentially matching entries are in the hash slot that we are 2184 * looking at. 2185 */ 2186 static void 2187 bw_meter_process() 2188 { 2189 static uint32_t last_tv_sec; /* last time we processed this */ 2190 2191 uint32_t loops; 2192 int i; 2193 struct timeval now, process_endtime; 2194 2195 microtime(&now); 2196 if (last_tv_sec == now.tv_sec) 2197 return; /* nothing to do */ 2198 2199 loops = now.tv_sec - last_tv_sec; 2200 last_tv_sec = now.tv_sec; 2201 if (loops > BW_METER_BUCKETS) 2202 loops = BW_METER_BUCKETS; 2203 2204 MFC_LOCK(); 2205 /* 2206 * Process all bins of bw_meter entries from the one after the last 2207 * processed to the current one. On entry, i points to the last bucket 2208 * visited, so we need to increment i at the beginning of the loop. 2209 */ 2210 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2211 struct bw_meter *x, *tmp_list; 2212 2213 if (++i >= BW_METER_BUCKETS) 2214 i = 0; 2215 2216 /* Disconnect the list of bw_meter entries from the bin */ 2217 tmp_list = bw_meter_timers[i]; 2218 bw_meter_timers[i] = NULL; 2219 2220 /* Process the list of bw_meter entries */ 2221 while (tmp_list != NULL) { 2222 x = tmp_list; 2223 tmp_list = tmp_list->bm_time_next; 2224 2225 /* Test if the time interval is over */ 2226 process_endtime = x->bm_start_time; 2227 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2228 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2229 /* Not yet: reschedule, but don't reset */ 2230 int time_hash; 2231 2232 BW_METER_TIMEHASH(x, time_hash); 2233 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2234 /* 2235 * XXX: somehow the bin processing is a bit ahead of time. 2236 * Put the entry in the next bin. 2237 */ 2238 if (++time_hash >= BW_METER_BUCKETS) 2239 time_hash = 0; 2240 } 2241 x->bm_time_next = bw_meter_timers[time_hash]; 2242 bw_meter_timers[time_hash] = x; 2243 x->bm_time_hash = time_hash; 2244 2245 continue; 2246 } 2247 2248 /* 2249 * Test if we should deliver an upcall 2250 */ 2251 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2252 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2253 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2254 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2255 /* Prepare an upcall for delivery */ 2256 bw_meter_prepare_upcall(x, &now); 2257 } 2258 2259 /* 2260 * Reschedule for next processing 2261 */ 2262 schedule_bw_meter(x, &now); 2263 } 2264 } 2265 2266 /* Send all upcalls that are pending delivery */ 2267 bw_upcalls_send(); 2268 2269 MFC_UNLOCK(); 2270 } 2271 2272 /* 2273 * A periodic function for sending all upcalls that are pending delivery 2274 */ 2275 static void 2276 expire_bw_upcalls_send(void *unused) 2277 { 2278 MFC_LOCK(); 2279 bw_upcalls_send(); 2280 MFC_UNLOCK(); 2281 2282 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2283 expire_bw_upcalls_send, NULL); 2284 } 2285 2286 /* 2287 * A periodic function for periodic scanning of the multicast forwarding 2288 * table for processing all "<=" bw_meter entries. 2289 */ 2290 static void 2291 expire_bw_meter_process(void *unused) 2292 { 2293 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2294 bw_meter_process(); 2295 2296 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2297 } 2298 2299 /* 2300 * End of bandwidth monitoring code 2301 */ 2302 2303 /* 2304 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2305 * 2306 */ 2307 static int 2308 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2309 struct mfc *rt) 2310 { 2311 struct mbuf *mb_copy, *mm; 2312 2313 /* 2314 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2315 * rendezvous point was unspecified, and we were told not to. 2316 */ 2317 if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) && 2318 in_nullhost(rt->mfc_rp)) 2319 return 0; 2320 2321 mb_copy = pim_register_prepare(ip, m); 2322 if (mb_copy == NULL) 2323 return ENOBUFS; 2324 2325 /* 2326 * Send all the fragments. Note that the mbuf for each fragment 2327 * is freed by the sending machinery. 2328 */ 2329 for (mm = mb_copy; mm; mm = mb_copy) { 2330 mb_copy = mm->m_nextpkt; 2331 mm->m_nextpkt = 0; 2332 mm = m_pullup(mm, sizeof(struct ip)); 2333 if (mm != NULL) { 2334 ip = mtod(mm, struct ip *); 2335 if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2336 pim_register_send_rp(ip, vifp, mm, rt); 2337 } else { 2338 pim_register_send_upcall(ip, vifp, mm, rt); 2339 } 2340 } 2341 } 2342 2343 return 0; 2344 } 2345 2346 /* 2347 * Return a copy of the data packet that is ready for PIM Register 2348 * encapsulation. 2349 * XXX: Note that in the returned copy the IP header is a valid one. 2350 */ 2351 static struct mbuf * 2352 pim_register_prepare(struct ip *ip, struct mbuf *m) 2353 { 2354 struct mbuf *mb_copy = NULL; 2355 int mtu; 2356 2357 /* Take care of delayed checksums */ 2358 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2359 in_delayed_cksum(m); 2360 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2361 } 2362 2363 /* 2364 * Copy the old packet & pullup its IP header into the 2365 * new mbuf so we can modify it. 2366 */ 2367 mb_copy = m_copypacket(m, M_DONTWAIT); 2368 if (mb_copy == NULL) 2369 return NULL; 2370 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2371 if (mb_copy == NULL) 2372 return NULL; 2373 2374 /* take care of the TTL */ 2375 ip = mtod(mb_copy, struct ip *); 2376 --ip->ip_ttl; 2377 2378 /* Compute the MTU after the PIM Register encapsulation */ 2379 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2380 2381 if (ip->ip_len <= mtu) { 2382 /* Turn the IP header into a valid one */ 2383 ip->ip_len = htons(ip->ip_len); 2384 ip->ip_off = htons(ip->ip_off); 2385 ip->ip_sum = 0; 2386 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2387 } else { 2388 /* Fragment the packet */ 2389 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2390 m_freem(mb_copy); 2391 return NULL; 2392 } 2393 } 2394 return mb_copy; 2395 } 2396 2397 /* 2398 * Send an upcall with the data packet to the user-level process. 2399 */ 2400 static int 2401 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2402 struct mbuf *mb_copy, struct mfc *rt) 2403 { 2404 INIT_VNET_INET(curvnet); 2405 struct mbuf *mb_first; 2406 int len = ntohs(ip->ip_len); 2407 struct igmpmsg *im; 2408 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2409 2410 VIF_LOCK_ASSERT(); 2411 2412 /* 2413 * Add a new mbuf with an upcall header 2414 */ 2415 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2416 if (mb_first == NULL) { 2417 m_freem(mb_copy); 2418 return ENOBUFS; 2419 } 2420 mb_first->m_data += max_linkhdr; 2421 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2422 mb_first->m_len = sizeof(struct igmpmsg); 2423 mb_first->m_next = mb_copy; 2424 2425 /* Send message to routing daemon */ 2426 im = mtod(mb_first, struct igmpmsg *); 2427 im->im_msgtype = IGMPMSG_WHOLEPKT; 2428 im->im_mbz = 0; 2429 im->im_vif = vifp - viftable; 2430 im->im_src = ip->ip_src; 2431 im->im_dst = ip->ip_dst; 2432 2433 k_igmpsrc.sin_addr = ip->ip_src; 2434 2435 MRTSTAT_INC(mrts_upcalls); 2436 2437 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2438 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2439 MRTSTAT_INC(mrts_upq_sockfull); 2440 return ENOBUFS; 2441 } 2442 2443 /* Keep statistics */ 2444 PIMSTAT_INC(pims_snd_registers_msgs); 2445 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2446 2447 return 0; 2448 } 2449 2450 /* 2451 * Encapsulate the data packet in PIM Register message and send it to the RP. 2452 */ 2453 static int 2454 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2455 struct mfc *rt) 2456 { 2457 INIT_VNET_INET(curvnet); 2458 struct mbuf *mb_first; 2459 struct ip *ip_outer; 2460 struct pim_encap_pimhdr *pimhdr; 2461 int len = ntohs(ip->ip_len); 2462 vifi_t vifi = rt->mfc_parent; 2463 2464 VIF_LOCK_ASSERT(); 2465 2466 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 2467 m_freem(mb_copy); 2468 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2469 } 2470 2471 /* 2472 * Add a new mbuf with the encapsulating header 2473 */ 2474 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2475 if (mb_first == NULL) { 2476 m_freem(mb_copy); 2477 return ENOBUFS; 2478 } 2479 mb_first->m_data += max_linkhdr; 2480 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2481 mb_first->m_next = mb_copy; 2482 2483 mb_first->m_pkthdr.len = len + mb_first->m_len; 2484 2485 /* 2486 * Fill in the encapsulating IP and PIM header 2487 */ 2488 ip_outer = mtod(mb_first, struct ip *); 2489 *ip_outer = pim_encap_iphdr; 2490 ip_outer->ip_id = ip_newid(); 2491 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2492 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 2493 ip_outer->ip_dst = rt->mfc_rp; 2494 /* 2495 * Copy the inner header TOS to the outer header, and take care of the 2496 * IP_DF bit. 2497 */ 2498 ip_outer->ip_tos = ip->ip_tos; 2499 if (ntohs(ip->ip_off) & IP_DF) 2500 ip_outer->ip_off |= IP_DF; 2501 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2502 + sizeof(pim_encap_iphdr)); 2503 *pimhdr = pim_encap_pimhdr; 2504 /* If the iif crosses a border, set the Border-bit */ 2505 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 2506 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2507 2508 mb_first->m_data += sizeof(pim_encap_iphdr); 2509 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2510 mb_first->m_data -= sizeof(pim_encap_iphdr); 2511 2512 send_packet(vifp, mb_first); 2513 2514 /* Keep statistics */ 2515 PIMSTAT_INC(pims_snd_registers_msgs); 2516 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2517 2518 return 0; 2519 } 2520 2521 /* 2522 * pim_encapcheck() is called by the encap4_input() path at runtime to 2523 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2524 * into the kernel. 2525 */ 2526 static int 2527 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2528 { 2529 2530 #ifdef DIAGNOSTIC 2531 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2532 #endif 2533 if (proto != IPPROTO_PIM) 2534 return 0; /* not for us; reject the datagram. */ 2535 2536 return 64; /* claim the datagram. */ 2537 } 2538 2539 /* 2540 * PIM-SMv2 and PIM-DM messages processing. 2541 * Receives and verifies the PIM control messages, and passes them 2542 * up to the listening socket, using rip_input(). 2543 * The only message with special processing is the PIM_REGISTER message 2544 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2545 * is passed to if_simloop(). 2546 */ 2547 void 2548 pim_input(struct mbuf *m, int off) 2549 { 2550 struct ip *ip = mtod(m, struct ip *); 2551 struct pim *pim; 2552 int minlen; 2553 int datalen = ip->ip_len; 2554 int ip_tos; 2555 int iphlen = off; 2556 2557 /* Keep statistics */ 2558 PIMSTAT_INC(pims_rcv_total_msgs); 2559 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2560 2561 /* 2562 * Validate lengths 2563 */ 2564 if (datalen < PIM_MINLEN) { 2565 PIMSTAT_INC(pims_rcv_tooshort); 2566 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2567 __func__, datalen, inet_ntoa(ip->ip_src)); 2568 m_freem(m); 2569 return; 2570 } 2571 2572 /* 2573 * If the packet is at least as big as a REGISTER, go agead 2574 * and grab the PIM REGISTER header size, to avoid another 2575 * possible m_pullup() later. 2576 * 2577 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2578 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2579 */ 2580 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2581 /* 2582 * Get the IP and PIM headers in contiguous memory, and 2583 * possibly the PIM REGISTER header. 2584 */ 2585 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2586 (m = m_pullup(m, minlen)) == 0) { 2587 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2588 return; 2589 } 2590 2591 /* m_pullup() may have given us a new mbuf so reset ip. */ 2592 ip = mtod(m, struct ip *); 2593 ip_tos = ip->ip_tos; 2594 2595 /* adjust mbuf to point to the PIM header */ 2596 m->m_data += iphlen; 2597 m->m_len -= iphlen; 2598 pim = mtod(m, struct pim *); 2599 2600 /* 2601 * Validate checksum. If PIM REGISTER, exclude the data packet. 2602 * 2603 * XXX: some older PIMv2 implementations don't make this distinction, 2604 * so for compatibility reason perform the checksum over part of the 2605 * message, and if error, then over the whole message. 2606 */ 2607 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2608 /* do nothing, checksum okay */ 2609 } else if (in_cksum(m, datalen)) { 2610 PIMSTAT_INC(pims_rcv_badsum); 2611 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2612 m_freem(m); 2613 return; 2614 } 2615 2616 /* PIM version check */ 2617 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2618 PIMSTAT_INC(pims_rcv_badversion); 2619 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2620 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2621 m_freem(m); 2622 return; 2623 } 2624 2625 /* restore mbuf back to the outer IP */ 2626 m->m_data -= iphlen; 2627 m->m_len += iphlen; 2628 2629 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2630 /* 2631 * Since this is a REGISTER, we'll make a copy of the register 2632 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2633 * routing daemon. 2634 */ 2635 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2636 struct mbuf *mcp; 2637 struct ip *encap_ip; 2638 u_int32_t *reghdr; 2639 struct ifnet *vifp; 2640 2641 VIF_LOCK(); 2642 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 2643 VIF_UNLOCK(); 2644 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2645 (int)reg_vif_num); 2646 m_freem(m); 2647 return; 2648 } 2649 /* XXX need refcnt? */ 2650 vifp = viftable[reg_vif_num].v_ifp; 2651 VIF_UNLOCK(); 2652 2653 /* 2654 * Validate length 2655 */ 2656 if (datalen < PIM_REG_MINLEN) { 2657 PIMSTAT_INC(pims_rcv_tooshort); 2658 PIMSTAT_INC(pims_rcv_badregisters); 2659 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2660 m_freem(m); 2661 return; 2662 } 2663 2664 reghdr = (u_int32_t *)(pim + 1); 2665 encap_ip = (struct ip *)(reghdr + 1); 2666 2667 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2668 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2669 2670 /* verify the version number of the inner packet */ 2671 if (encap_ip->ip_v != IPVERSION) { 2672 PIMSTAT_INC(pims_rcv_badregisters); 2673 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2674 m_freem(m); 2675 return; 2676 } 2677 2678 /* verify the inner packet is destined to a mcast group */ 2679 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2680 PIMSTAT_INC(pims_rcv_badregisters); 2681 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2682 inet_ntoa(encap_ip->ip_dst)); 2683 m_freem(m); 2684 return; 2685 } 2686 2687 /* If a NULL_REGISTER, pass it to the daemon */ 2688 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2689 goto pim_input_to_daemon; 2690 2691 /* 2692 * Copy the TOS from the outer IP header to the inner IP header. 2693 */ 2694 if (encap_ip->ip_tos != ip_tos) { 2695 /* Outer TOS -> inner TOS */ 2696 encap_ip->ip_tos = ip_tos; 2697 /* Recompute the inner header checksum. Sigh... */ 2698 2699 /* adjust mbuf to point to the inner IP header */ 2700 m->m_data += (iphlen + PIM_MINLEN); 2701 m->m_len -= (iphlen + PIM_MINLEN); 2702 2703 encap_ip->ip_sum = 0; 2704 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2705 2706 /* restore mbuf to point back to the outer IP header */ 2707 m->m_data -= (iphlen + PIM_MINLEN); 2708 m->m_len += (iphlen + PIM_MINLEN); 2709 } 2710 2711 /* 2712 * Decapsulate the inner IP packet and loopback to forward it 2713 * as a normal multicast packet. Also, make a copy of the 2714 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2715 * to pass to the daemon later, so it can take the appropriate 2716 * actions (e.g., send back PIM_REGISTER_STOP). 2717 * XXX: here m->m_data points to the outer IP header. 2718 */ 2719 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2720 if (mcp == NULL) { 2721 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2722 m_freem(m); 2723 return; 2724 } 2725 2726 /* Keep statistics */ 2727 /* XXX: registers_bytes include only the encap. mcast pkt */ 2728 PIMSTAT_INC(pims_rcv_registers_msgs); 2729 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2730 2731 /* 2732 * forward the inner ip packet; point m_data at the inner ip. 2733 */ 2734 m_adj(m, iphlen + PIM_MINLEN); 2735 2736 CTR4(KTR_IPMF, 2737 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2738 __func__, 2739 (u_long)ntohl(encap_ip->ip_src.s_addr), 2740 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2741 (int)reg_vif_num); 2742 2743 /* NB: vifp was collected above; can it change on us? */ 2744 if_simloop(vifp, m, dst.sin_family, 0); 2745 2746 /* prepare the register head to send to the mrouting daemon */ 2747 m = mcp; 2748 } 2749 2750 pim_input_to_daemon: 2751 /* 2752 * Pass the PIM message up to the daemon; if it is a Register message, 2753 * pass the 'head' only up to the daemon. This includes the 2754 * outer IP header, PIM header, PIM-Register header and the 2755 * inner IP header. 2756 * XXX: the outer IP header pkt size of a Register is not adjust to 2757 * reflect the fact that the inner multicast data is truncated. 2758 */ 2759 rip_input(m, iphlen); 2760 2761 return; 2762 } 2763 2764 static int 2765 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2766 { 2767 struct mfc *rt; 2768 int error, i; 2769 2770 if (req->newptr) 2771 return (EPERM); 2772 if (mfchashtbl == NULL) /* XXX unlocked */ 2773 return (0); 2774 error = sysctl_wire_old_buffer(req, 0); 2775 if (error) 2776 return (error); 2777 2778 MFC_LOCK(); 2779 for (i = 0; i < mfchashsize; i++) { 2780 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 2781 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2782 if (error) 2783 goto out_locked; 2784 } 2785 } 2786 out_locked: 2787 MFC_UNLOCK(); 2788 return (error); 2789 } 2790 2791 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable, 2792 "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], " 2793 "netinet/ip_mroute.h)"); 2794 2795 static int 2796 ip_mroute_modevent(module_t mod, int type, void *unused) 2797 { 2798 INIT_VNET_INET(curvnet); 2799 2800 switch (type) { 2801 case MOD_LOAD: 2802 MROUTER_LOCK_INIT(); 2803 MFC_LOCK_INIT(); 2804 VIF_LOCK_INIT(); 2805 2806 mfchashsize = MFCHASHSIZE; 2807 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2808 !powerof2(mfchashsize)) { 2809 printf("WARNING: %s not a power of 2; using default\n", 2810 "net.inet.ip.mfchashsize"); 2811 mfchashsize = MFCHASHSIZE; 2812 } 2813 MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2814 2815 pim_squelch_wholepkt = 0; 2816 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2817 &pim_squelch_wholepkt); 2818 ip_mrouter_reset(); 2819 2820 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2821 pim_encapcheck, &in_pim_protosw, NULL); 2822 if (pim_encap_cookie == NULL) { 2823 printf("ip_mroute: unable to attach pim encap\n"); 2824 VIF_LOCK_DESTROY(); 2825 MFC_LOCK_DESTROY(); 2826 MROUTER_LOCK_DESTROY(); 2827 return (EINVAL); 2828 } 2829 2830 ip_mcast_src = X_ip_mcast_src; 2831 ip_mforward = X_ip_mforward; 2832 ip_mrouter_done = X_ip_mrouter_done; 2833 ip_mrouter_get = X_ip_mrouter_get; 2834 ip_mrouter_set = X_ip_mrouter_set; 2835 2836 ip_rsvp_force_done = X_ip_rsvp_force_done; 2837 ip_rsvp_vif = X_ip_rsvp_vif; 2838 2839 legal_vif_num = X_legal_vif_num; 2840 mrt_ioctl = X_mrt_ioctl; 2841 rsvp_input_p = X_rsvp_input; 2842 break; 2843 2844 case MOD_UNLOAD: 2845 /* 2846 * Typically module unload happens after the user-level 2847 * process has shutdown the kernel services (the check 2848 * below insures someone can't just yank the module out 2849 * from under a running process). But if the module is 2850 * just loaded and then unloaded w/o starting up a user 2851 * process we still need to cleanup. 2852 */ 2853 if (V_ip_mrouter != NULL) 2854 return (EINVAL); 2855 2856 if (pim_encap_cookie) { 2857 encap_detach(pim_encap_cookie); 2858 pim_encap_cookie = NULL; 2859 } 2860 X_ip_mrouter_done(); 2861 2862 FREE(nexpire, M_MRTABLE); 2863 nexpire = NULL; 2864 2865 ip_mcast_src = NULL; 2866 ip_mforward = NULL; 2867 ip_mrouter_done = NULL; 2868 ip_mrouter_get = NULL; 2869 ip_mrouter_set = NULL; 2870 2871 ip_rsvp_force_done = NULL; 2872 ip_rsvp_vif = NULL; 2873 2874 legal_vif_num = NULL; 2875 mrt_ioctl = NULL; 2876 rsvp_input_p = NULL; 2877 2878 VIF_LOCK_DESTROY(); 2879 MFC_LOCK_DESTROY(); 2880 MROUTER_LOCK_DESTROY(); 2881 break; 2882 2883 default: 2884 return EOPNOTSUPP; 2885 } 2886 return 0; 2887 } 2888 2889 static moduledata_t ip_mroutemod = { 2890 "ip_mroute", 2891 ip_mroute_modevent, 2892 0 2893 }; 2894 2895 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 2896