1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 #include <sys/counter.h> 97 98 #include <net/if.h> 99 #include <net/if_var.h> 100 #include <net/netisr.h> 101 #include <net/route.h> 102 #include <net/vnet.h> 103 104 #include <netinet/in.h> 105 #include <netinet/igmp.h> 106 #include <netinet/in_systm.h> 107 #include <netinet/in_var.h> 108 #include <netinet/ip.h> 109 #include <netinet/ip_encap.h> 110 #include <netinet/ip_mroute.h> 111 #include <netinet/ip_var.h> 112 #include <netinet/ip_options.h> 113 #include <netinet/pim.h> 114 #include <netinet/pim_var.h> 115 #include <netinet/udp.h> 116 117 #include <machine/in_cksum.h> 118 119 #ifndef KTR_IPMF 120 #define KTR_IPMF KTR_INET 121 #endif 122 123 #define VIFI_INVALID ((vifi_t) -1) 124 125 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 126 #define V_last_tv_sec VNET(last_tv_sec) 127 128 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 129 130 /* 131 * Locking. We use two locks: one for the virtual interface table and 132 * one for the forwarding table. These locks may be nested in which case 133 * the VIF lock must always be taken first. Note that each lock is used 134 * to cover not only the specific data structure but also related data 135 * structures. 136 */ 137 138 static struct mtx mrouter_mtx; 139 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 140 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 141 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 142 #define MROUTER_LOCK_INIT() \ 143 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 144 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 145 146 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 147 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 148 149 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 150 VNET_PCPUSTAT_SYSINIT(mrtstat); 151 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 152 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 153 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 154 "netinet/ip_mroute.h)"); 155 156 static VNET_DEFINE(u_long, mfchash); 157 #define V_mfchash VNET(mfchash) 158 #define MFCHASH(a, g) \ 159 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 160 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 161 #define MFCHASHSIZE 256 162 163 static u_long mfchashsize; /* Hash size */ 164 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 165 #define V_nexpire VNET(nexpire) 166 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 167 #define V_mfchashtbl VNET(mfchashtbl) 168 169 static struct mtx mfc_mtx; 170 #define MFC_LOCK() mtx_lock(&mfc_mtx) 171 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 172 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 173 #define MFC_LOCK_INIT() \ 174 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 175 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 176 177 static VNET_DEFINE(vifi_t, numvifs); 178 #define V_numvifs VNET(numvifs) 179 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 180 #define V_viftable VNET(viftable) 181 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 182 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 183 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 184 185 static struct mtx vif_mtx; 186 #define VIF_LOCK() mtx_lock(&vif_mtx) 187 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 188 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 189 #define VIF_LOCK_INIT() \ 190 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 191 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 192 193 static eventhandler_tag if_detach_event_tag = NULL; 194 195 static VNET_DEFINE(struct callout, expire_upcalls_ch); 196 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Bandwidth meter variables and constants 203 */ 204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 205 /* 206 * Pending timeouts are stored in a hash table, the key being the 207 * expiration time. Periodically, the entries are analysed and processed. 208 */ 209 #define BW_METER_BUCKETS 1024 210 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 211 #define V_bw_meter_timers VNET(bw_meter_timers) 212 static VNET_DEFINE(struct callout, bw_meter_ch); 213 #define V_bw_meter_ch VNET(bw_meter_ch) 214 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 215 216 /* 217 * Pending upcalls are stored in a vector which is flushed when 218 * full, or periodically 219 */ 220 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 221 #define V_bw_upcalls VNET(bw_upcalls) 222 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 223 #define V_bw_upcalls_n VNET(bw_upcalls_n) 224 static VNET_DEFINE(struct callout, bw_upcalls_ch); 225 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 226 227 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 228 229 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 230 VNET_PCPUSTAT_SYSINIT(pimstat); 231 VNET_PCPUSTAT_SYSUNINIT(pimstat); 232 233 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 234 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 235 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 236 237 static u_long pim_squelch_wholepkt = 0; 238 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 239 &pim_squelch_wholepkt, 0, 240 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 241 242 extern struct domain inetdomain; 243 static const struct protosw in_pim_protosw = { 244 .pr_type = SOCK_RAW, 245 .pr_domain = &inetdomain, 246 .pr_protocol = IPPROTO_PIM, 247 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 248 .pr_input = pim_input, 249 .pr_output = rip_output, 250 .pr_ctloutput = rip_ctloutput, 251 .pr_usrreqs = &rip_usrreqs 252 }; 253 static const struct encaptab *pim_encap_cookie; 254 255 static int pim_encapcheck(const struct mbuf *, int, int, void *); 256 257 /* 258 * Note: the PIM Register encapsulation adds the following in front of a 259 * data packet: 260 * 261 * struct pim_encap_hdr { 262 * struct ip ip; 263 * struct pim_encap_pimhdr pim; 264 * } 265 * 266 */ 267 268 struct pim_encap_pimhdr { 269 struct pim pim; 270 uint32_t flags; 271 }; 272 #define PIM_ENCAP_TTL 64 273 274 static struct ip pim_encap_iphdr = { 275 #if BYTE_ORDER == LITTLE_ENDIAN 276 sizeof(struct ip) >> 2, 277 IPVERSION, 278 #else 279 IPVERSION, 280 sizeof(struct ip) >> 2, 281 #endif 282 0, /* tos */ 283 sizeof(struct ip), /* total length */ 284 0, /* id */ 285 0, /* frag offset */ 286 PIM_ENCAP_TTL, 287 IPPROTO_PIM, 288 0, /* checksum */ 289 }; 290 291 static struct pim_encap_pimhdr pim_encap_pimhdr = { 292 { 293 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 294 0, /* reserved */ 295 0, /* checksum */ 296 }, 297 0 /* flags */ 298 }; 299 300 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 301 #define V_reg_vif_num VNET(reg_vif_num) 302 static VNET_DEFINE(struct ifnet, multicast_register_if); 303 #define V_multicast_register_if VNET(multicast_register_if) 304 305 /* 306 * Private variables. 307 */ 308 309 static u_long X_ip_mcast_src(int); 310 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 311 struct ip_moptions *); 312 static int X_ip_mrouter_done(void); 313 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 314 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 315 static int X_legal_vif_num(int); 316 static int X_mrt_ioctl(u_long, caddr_t, int); 317 318 static int add_bw_upcall(struct bw_upcall *); 319 static int add_mfc(struct mfcctl2 *); 320 static int add_vif(struct vifctl *); 321 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 322 static void bw_meter_process(void); 323 static void bw_meter_receive_packet(struct bw_meter *, int, 324 struct timeval *); 325 static void bw_upcalls_send(void); 326 static int del_bw_upcall(struct bw_upcall *); 327 static int del_mfc(struct mfcctl2 *); 328 static int del_vif(vifi_t); 329 static int del_vif_locked(vifi_t); 330 static void expire_bw_meter_process(void *); 331 static void expire_bw_upcalls_send(void *); 332 static void expire_mfc(struct mfc *); 333 static void expire_upcalls(void *); 334 static void free_bw_list(struct bw_meter *); 335 static int get_sg_cnt(struct sioc_sg_req *); 336 static int get_vif_cnt(struct sioc_vif_req *); 337 static void if_detached_event(void *, struct ifnet *); 338 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 339 static int ip_mrouter_init(struct socket *, int); 340 static __inline struct mfc * 341 mfc_find(struct in_addr *, struct in_addr *); 342 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 343 static struct mbuf * 344 pim_register_prepare(struct ip *, struct mbuf *); 345 static int pim_register_send(struct ip *, struct vif *, 346 struct mbuf *, struct mfc *); 347 static int pim_register_send_rp(struct ip *, struct vif *, 348 struct mbuf *, struct mfc *); 349 static int pim_register_send_upcall(struct ip *, struct vif *, 350 struct mbuf *, struct mfc *); 351 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 352 static void send_packet(struct vif *, struct mbuf *); 353 static int set_api_config(uint32_t *); 354 static int set_assert(int); 355 static int socket_send(struct socket *, struct mbuf *, 356 struct sockaddr_in *); 357 static void unschedule_bw_meter(struct bw_meter *); 358 359 /* 360 * Kernel multicast forwarding API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 #define MRT_API_VERSION 0x0305 365 366 static const int mrt_api_version = MRT_API_VERSION; 367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 368 MRT_MFC_FLAGS_BORDER_VIF | 369 MRT_MFC_RP | 370 MRT_MFC_BW_UPCALL); 371 static VNET_DEFINE(uint32_t, mrt_api_config); 372 #define V_mrt_api_config VNET(mrt_api_config) 373 static VNET_DEFINE(int, pim_assert_enabled); 374 #define V_pim_assert_enabled VNET(pim_assert_enabled) 375 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 376 377 /* 378 * Find a route for a given origin IP address and multicast group address. 379 * Statistics must be updated by the caller. 380 */ 381 static __inline struct mfc * 382 mfc_find(struct in_addr *o, struct in_addr *g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 389 if (in_hosteq(rt->mfc_origin, *o) && 390 in_hosteq(rt->mfc_mcastgrp, *g) && 391 TAILQ_EMPTY(&rt->mfc_stall)) 392 break; 393 } 394 395 return (rt); 396 } 397 398 /* 399 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 400 */ 401 static int 402 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 403 { 404 int error, optval; 405 vifi_t vifi; 406 struct vifctl vifc; 407 struct mfcctl2 mfc; 408 struct bw_upcall bw_upcall; 409 uint32_t i; 410 411 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 412 return EPERM; 413 414 error = 0; 415 switch (sopt->sopt_name) { 416 case MRT_INIT: 417 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 418 if (error) 419 break; 420 error = ip_mrouter_init(so, optval); 421 break; 422 423 case MRT_DONE: 424 error = ip_mrouter_done(); 425 break; 426 427 case MRT_ADD_VIF: 428 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 429 if (error) 430 break; 431 error = add_vif(&vifc); 432 break; 433 434 case MRT_DEL_VIF: 435 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 436 if (error) 437 break; 438 error = del_vif(vifi); 439 break; 440 441 case MRT_ADD_MFC: 442 case MRT_DEL_MFC: 443 /* 444 * select data size depending on API version. 445 */ 446 if (sopt->sopt_name == MRT_ADD_MFC && 447 V_mrt_api_config & MRT_API_FLAGS_ALL) { 448 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 449 sizeof(struct mfcctl2)); 450 } else { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 452 sizeof(struct mfcctl)); 453 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 454 sizeof(mfc) - sizeof(struct mfcctl)); 455 } 456 if (error) 457 break; 458 if (sopt->sopt_name == MRT_ADD_MFC) 459 error = add_mfc(&mfc); 460 else 461 error = del_mfc(&mfc); 462 break; 463 464 case MRT_ASSERT: 465 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 466 if (error) 467 break; 468 set_assert(optval); 469 break; 470 471 case MRT_API_CONFIG: 472 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 473 if (!error) 474 error = set_api_config(&i); 475 if (!error) 476 error = sooptcopyout(sopt, &i, sizeof i); 477 break; 478 479 case MRT_ADD_BW_UPCALL: 480 case MRT_DEL_BW_UPCALL: 481 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 482 sizeof bw_upcall); 483 if (error) 484 break; 485 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 486 error = add_bw_upcall(&bw_upcall); 487 else 488 error = del_bw_upcall(&bw_upcall); 489 break; 490 491 default: 492 error = EOPNOTSUPP; 493 break; 494 } 495 return error; 496 } 497 498 /* 499 * Handle MRT getsockopt commands 500 */ 501 static int 502 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 503 { 504 int error; 505 506 switch (sopt->sopt_name) { 507 case MRT_VERSION: 508 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 509 break; 510 511 case MRT_ASSERT: 512 error = sooptcopyout(sopt, &V_pim_assert_enabled, 513 sizeof V_pim_assert_enabled); 514 break; 515 516 case MRT_API_SUPPORT: 517 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 518 break; 519 520 case MRT_API_CONFIG: 521 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 522 break; 523 524 default: 525 error = EOPNOTSUPP; 526 break; 527 } 528 return error; 529 } 530 531 /* 532 * Handle ioctl commands to obtain information from the cache 533 */ 534 static int 535 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 536 { 537 int error = 0; 538 539 /* 540 * Currently the only function calling this ioctl routine is rtioctl(). 541 * Typically, only root can create the raw socket in order to execute 542 * this ioctl method, however the request might be coming from a prison 543 */ 544 error = priv_check(curthread, PRIV_NETINET_MROUTE); 545 if (error) 546 return (error); 547 switch (cmd) { 548 case (SIOCGETVIFCNT): 549 error = get_vif_cnt((struct sioc_vif_req *)data); 550 break; 551 552 case (SIOCGETSGCNT): 553 error = get_sg_cnt((struct sioc_sg_req *)data); 554 break; 555 556 default: 557 error = EINVAL; 558 break; 559 } 560 return error; 561 } 562 563 /* 564 * returns the packet, byte, rpf-failure count for the source group provided 565 */ 566 static int 567 get_sg_cnt(struct sioc_sg_req *req) 568 { 569 struct mfc *rt; 570 571 MFC_LOCK(); 572 rt = mfc_find(&req->src, &req->grp); 573 if (rt == NULL) { 574 MFC_UNLOCK(); 575 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 576 return EADDRNOTAVAIL; 577 } 578 req->pktcnt = rt->mfc_pkt_cnt; 579 req->bytecnt = rt->mfc_byte_cnt; 580 req->wrong_if = rt->mfc_wrong_if; 581 MFC_UNLOCK(); 582 return 0; 583 } 584 585 /* 586 * returns the input and output packet and byte counts on the vif provided 587 */ 588 static int 589 get_vif_cnt(struct sioc_vif_req *req) 590 { 591 vifi_t vifi = req->vifi; 592 593 VIF_LOCK(); 594 if (vifi >= V_numvifs) { 595 VIF_UNLOCK(); 596 return EINVAL; 597 } 598 599 req->icount = V_viftable[vifi].v_pkt_in; 600 req->ocount = V_viftable[vifi].v_pkt_out; 601 req->ibytes = V_viftable[vifi].v_bytes_in; 602 req->obytes = V_viftable[vifi].v_bytes_out; 603 VIF_UNLOCK(); 604 605 return 0; 606 } 607 608 static void 609 if_detached_event(void *arg __unused, struct ifnet *ifp) 610 { 611 vifi_t vifi; 612 u_long i; 613 614 MROUTER_LOCK(); 615 616 if (V_ip_mrouter == NULL) { 617 MROUTER_UNLOCK(); 618 return; 619 } 620 621 VIF_LOCK(); 622 MFC_LOCK(); 623 624 /* 625 * Tear down multicast forwarder state associated with this ifnet. 626 * 1. Walk the vif list, matching vifs against this ifnet. 627 * 2. Walk the multicast forwarding cache (mfc) looking for 628 * inner matches with this vif's index. 629 * 3. Expire any matching multicast forwarding cache entries. 630 * 4. Free vif state. This should disable ALLMULTI on the interface. 631 */ 632 for (vifi = 0; vifi < V_numvifs; vifi++) { 633 if (V_viftable[vifi].v_ifp != ifp) 634 continue; 635 for (i = 0; i < mfchashsize; i++) { 636 struct mfc *rt, *nrt; 637 638 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 639 if (rt->mfc_parent == vifi) { 640 expire_mfc(rt); 641 } 642 } 643 } 644 del_vif_locked(vifi); 645 } 646 647 MFC_UNLOCK(); 648 VIF_UNLOCK(); 649 650 MROUTER_UNLOCK(); 651 } 652 653 /* 654 * Enable multicast forwarding. 655 */ 656 static int 657 ip_mrouter_init(struct socket *so, int version) 658 { 659 660 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 661 so->so_type, so->so_proto->pr_protocol); 662 663 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 664 return EOPNOTSUPP; 665 666 if (version != 1) 667 return ENOPROTOOPT; 668 669 MROUTER_LOCK(); 670 671 if (ip_mrouter_unloading) { 672 MROUTER_UNLOCK(); 673 return ENOPROTOOPT; 674 } 675 676 if (V_ip_mrouter != NULL) { 677 MROUTER_UNLOCK(); 678 return EADDRINUSE; 679 } 680 681 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 682 HASH_NOWAIT); 683 684 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 685 curvnet); 686 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 687 curvnet); 688 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 689 curvnet); 690 691 V_ip_mrouter = so; 692 ip_mrouter_cnt++; 693 694 MROUTER_UNLOCK(); 695 696 CTR1(KTR_IPMF, "%s: done", __func__); 697 698 return 0; 699 } 700 701 /* 702 * Disable multicast forwarding. 703 */ 704 static int 705 X_ip_mrouter_done(void) 706 { 707 struct ifnet *ifp; 708 u_long i; 709 vifi_t vifi; 710 711 MROUTER_LOCK(); 712 713 if (V_ip_mrouter == NULL) { 714 MROUTER_UNLOCK(); 715 return EINVAL; 716 } 717 718 /* 719 * Detach/disable hooks to the reset of the system. 720 */ 721 V_ip_mrouter = NULL; 722 ip_mrouter_cnt--; 723 V_mrt_api_config = 0; 724 725 VIF_LOCK(); 726 727 /* 728 * For each phyint in use, disable promiscuous reception of all IP 729 * multicasts. 730 */ 731 for (vifi = 0; vifi < V_numvifs; vifi++) { 732 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 733 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 734 ifp = V_viftable[vifi].v_ifp; 735 if_allmulti(ifp, 0); 736 } 737 } 738 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 739 V_numvifs = 0; 740 V_pim_assert_enabled = 0; 741 742 VIF_UNLOCK(); 743 744 callout_stop(&V_expire_upcalls_ch); 745 callout_stop(&V_bw_upcalls_ch); 746 callout_stop(&V_bw_meter_ch); 747 748 MFC_LOCK(); 749 750 /* 751 * Free all multicast forwarding cache entries. 752 * Do not use hashdestroy(), as we must perform other cleanup. 753 */ 754 for (i = 0; i < mfchashsize; i++) { 755 struct mfc *rt, *nrt; 756 757 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 758 expire_mfc(rt); 759 } 760 } 761 free(V_mfchashtbl, M_MRTABLE); 762 V_mfchashtbl = NULL; 763 764 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 765 766 V_bw_upcalls_n = 0; 767 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 768 769 MFC_UNLOCK(); 770 771 V_reg_vif_num = VIFI_INVALID; 772 773 MROUTER_UNLOCK(); 774 775 CTR1(KTR_IPMF, "%s: done", __func__); 776 777 return 0; 778 } 779 780 /* 781 * Set PIM assert processing global 782 */ 783 static int 784 set_assert(int i) 785 { 786 if ((i != 1) && (i != 0)) 787 return EINVAL; 788 789 V_pim_assert_enabled = i; 790 791 return 0; 792 } 793 794 /* 795 * Configure API capabilities 796 */ 797 int 798 set_api_config(uint32_t *apival) 799 { 800 u_long i; 801 802 /* 803 * We can set the API capabilities only if it is the first operation 804 * after MRT_INIT. I.e.: 805 * - there are no vifs installed 806 * - pim_assert is not enabled 807 * - the MFC table is empty 808 */ 809 if (V_numvifs > 0) { 810 *apival = 0; 811 return EPERM; 812 } 813 if (V_pim_assert_enabled) { 814 *apival = 0; 815 return EPERM; 816 } 817 818 MFC_LOCK(); 819 820 for (i = 0; i < mfchashsize; i++) { 821 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 822 MFC_UNLOCK(); 823 *apival = 0; 824 return EPERM; 825 } 826 } 827 828 MFC_UNLOCK(); 829 830 V_mrt_api_config = *apival & mrt_api_support; 831 *apival = V_mrt_api_config; 832 833 return 0; 834 } 835 836 /* 837 * Add a vif to the vif table 838 */ 839 static int 840 add_vif(struct vifctl *vifcp) 841 { 842 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 843 struct sockaddr_in sin = {sizeof sin, AF_INET}; 844 struct ifaddr *ifa; 845 struct ifnet *ifp; 846 int error; 847 848 VIF_LOCK(); 849 if (vifcp->vifc_vifi >= MAXVIFS) { 850 VIF_UNLOCK(); 851 return EINVAL; 852 } 853 /* rate limiting is no longer supported by this code */ 854 if (vifcp->vifc_rate_limit != 0) { 855 log(LOG_ERR, "rate limiting is no longer supported\n"); 856 VIF_UNLOCK(); 857 return EINVAL; 858 } 859 if (!in_nullhost(vifp->v_lcl_addr)) { 860 VIF_UNLOCK(); 861 return EADDRINUSE; 862 } 863 if (in_nullhost(vifcp->vifc_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRNOTAVAIL; 866 } 867 868 /* Find the interface with an address in AF_INET family */ 869 if (vifcp->vifc_flags & VIFF_REGISTER) { 870 /* 871 * XXX: Because VIFF_REGISTER does not really need a valid 872 * local interface (e.g. it could be 127.0.0.2), we don't 873 * check its address. 874 */ 875 ifp = NULL; 876 } else { 877 sin.sin_addr = vifcp->vifc_lcl_addr; 878 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 879 if (ifa == NULL) { 880 VIF_UNLOCK(); 881 return EADDRNOTAVAIL; 882 } 883 ifp = ifa->ifa_ifp; 884 ifa_free(ifa); 885 } 886 887 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 888 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 889 VIF_UNLOCK(); 890 return EOPNOTSUPP; 891 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 892 ifp = &V_multicast_register_if; 893 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 894 if (V_reg_vif_num == VIFI_INVALID) { 895 if_initname(&V_multicast_register_if, "register_vif", 0); 896 V_multicast_register_if.if_flags = IFF_LOOPBACK; 897 V_reg_vif_num = vifcp->vifc_vifi; 898 } 899 } else { /* Make sure the interface supports multicast */ 900 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 901 VIF_UNLOCK(); 902 return EOPNOTSUPP; 903 } 904 905 /* Enable promiscuous reception of all IP multicasts from the if */ 906 error = if_allmulti(ifp, 1); 907 if (error) { 908 VIF_UNLOCK(); 909 return error; 910 } 911 } 912 913 vifp->v_flags = vifcp->vifc_flags; 914 vifp->v_threshold = vifcp->vifc_threshold; 915 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 916 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 917 vifp->v_ifp = ifp; 918 /* initialize per vif pkt counters */ 919 vifp->v_pkt_in = 0; 920 vifp->v_pkt_out = 0; 921 vifp->v_bytes_in = 0; 922 vifp->v_bytes_out = 0; 923 924 /* Adjust numvifs up if the vifi is higher than numvifs */ 925 if (V_numvifs <= vifcp->vifc_vifi) 926 V_numvifs = vifcp->vifc_vifi + 1; 927 928 VIF_UNLOCK(); 929 930 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 931 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 932 (int)vifcp->vifc_threshold); 933 934 return 0; 935 } 936 937 /* 938 * Delete a vif from the vif table 939 */ 940 static int 941 del_vif_locked(vifi_t vifi) 942 { 943 struct vif *vifp; 944 945 VIF_LOCK_ASSERT(); 946 947 if (vifi >= V_numvifs) { 948 return EINVAL; 949 } 950 vifp = &V_viftable[vifi]; 951 if (in_nullhost(vifp->v_lcl_addr)) { 952 return EADDRNOTAVAIL; 953 } 954 955 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 956 if_allmulti(vifp->v_ifp, 0); 957 958 if (vifp->v_flags & VIFF_REGISTER) 959 V_reg_vif_num = VIFI_INVALID; 960 961 bzero((caddr_t)vifp, sizeof (*vifp)); 962 963 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 964 965 /* Adjust numvifs down */ 966 for (vifi = V_numvifs; vifi > 0; vifi--) 967 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 968 break; 969 V_numvifs = vifi; 970 971 return 0; 972 } 973 974 static int 975 del_vif(vifi_t vifi) 976 { 977 int cc; 978 979 VIF_LOCK(); 980 cc = del_vif_locked(vifi); 981 VIF_UNLOCK(); 982 983 return cc; 984 } 985 986 /* 987 * update an mfc entry without resetting counters and S,G addresses. 988 */ 989 static void 990 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 991 { 992 int i; 993 994 rt->mfc_parent = mfccp->mfcc_parent; 995 for (i = 0; i < V_numvifs; i++) { 996 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 997 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 998 MRT_MFC_FLAGS_ALL; 999 } 1000 /* set the RP address */ 1001 if (V_mrt_api_config & MRT_MFC_RP) 1002 rt->mfc_rp = mfccp->mfcc_rp; 1003 else 1004 rt->mfc_rp.s_addr = INADDR_ANY; 1005 } 1006 1007 /* 1008 * fully initialize an mfc entry from the parameter. 1009 */ 1010 static void 1011 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1012 { 1013 rt->mfc_origin = mfccp->mfcc_origin; 1014 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1015 1016 update_mfc_params(rt, mfccp); 1017 1018 /* initialize pkt counters per src-grp */ 1019 rt->mfc_pkt_cnt = 0; 1020 rt->mfc_byte_cnt = 0; 1021 rt->mfc_wrong_if = 0; 1022 timevalclear(&rt->mfc_last_assert); 1023 } 1024 1025 static void 1026 expire_mfc(struct mfc *rt) 1027 { 1028 struct rtdetq *rte, *nrte; 1029 1030 MFC_LOCK_ASSERT(); 1031 1032 free_bw_list(rt->mfc_bw_meter); 1033 1034 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1035 m_freem(rte->m); 1036 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1037 free(rte, M_MRTABLE); 1038 } 1039 1040 LIST_REMOVE(rt, mfc_hash); 1041 free(rt, M_MRTABLE); 1042 } 1043 1044 /* 1045 * Add an mfc entry 1046 */ 1047 static int 1048 add_mfc(struct mfcctl2 *mfccp) 1049 { 1050 struct mfc *rt; 1051 struct rtdetq *rte, *nrte; 1052 u_long hash = 0; 1053 u_short nstl; 1054 1055 VIF_LOCK(); 1056 MFC_LOCK(); 1057 1058 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1059 1060 /* If an entry already exists, just update the fields */ 1061 if (rt) { 1062 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1063 __func__, inet_ntoa(mfccp->mfcc_origin), 1064 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1065 mfccp->mfcc_parent); 1066 update_mfc_params(rt, mfccp); 1067 MFC_UNLOCK(); 1068 VIF_UNLOCK(); 1069 return (0); 1070 } 1071 1072 /* 1073 * Find the entry for which the upcall was made and update 1074 */ 1075 nstl = 0; 1076 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1077 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1078 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1079 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1080 !TAILQ_EMPTY(&rt->mfc_stall)) { 1081 CTR5(KTR_IPMF, 1082 "%s: add mfc orig %s group %lx parent %x qh %p", 1083 __func__, inet_ntoa(mfccp->mfcc_origin), 1084 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1085 mfccp->mfcc_parent, 1086 TAILQ_FIRST(&rt->mfc_stall)); 1087 if (nstl++) 1088 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1089 1090 init_mfc_params(rt, mfccp); 1091 rt->mfc_expire = 0; /* Don't clean this guy up */ 1092 V_nexpire[hash]--; 1093 1094 /* Free queued packets, but attempt to forward them first. */ 1095 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1096 if (rte->ifp != NULL) 1097 ip_mdq(rte->m, rte->ifp, rt, -1); 1098 m_freem(rte->m); 1099 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1100 rt->mfc_nstall--; 1101 free(rte, M_MRTABLE); 1102 } 1103 } 1104 } 1105 1106 /* 1107 * It is possible that an entry is being inserted without an upcall 1108 */ 1109 if (nstl == 0) { 1110 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1111 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1112 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1113 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1114 init_mfc_params(rt, mfccp); 1115 if (rt->mfc_expire) 1116 V_nexpire[hash]--; 1117 rt->mfc_expire = 0; 1118 break; /* XXX */ 1119 } 1120 } 1121 1122 if (rt == NULL) { /* no upcall, so make a new entry */ 1123 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1124 if (rt == NULL) { 1125 MFC_UNLOCK(); 1126 VIF_UNLOCK(); 1127 return (ENOBUFS); 1128 } 1129 1130 init_mfc_params(rt, mfccp); 1131 TAILQ_INIT(&rt->mfc_stall); 1132 rt->mfc_nstall = 0; 1133 1134 rt->mfc_expire = 0; 1135 rt->mfc_bw_meter = NULL; 1136 1137 /* insert new entry at head of hash chain */ 1138 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1139 } 1140 } 1141 1142 MFC_UNLOCK(); 1143 VIF_UNLOCK(); 1144 1145 return (0); 1146 } 1147 1148 /* 1149 * Delete an mfc entry 1150 */ 1151 static int 1152 del_mfc(struct mfcctl2 *mfccp) 1153 { 1154 struct in_addr origin; 1155 struct in_addr mcastgrp; 1156 struct mfc *rt; 1157 1158 origin = mfccp->mfcc_origin; 1159 mcastgrp = mfccp->mfcc_mcastgrp; 1160 1161 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1162 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1163 1164 MFC_LOCK(); 1165 1166 rt = mfc_find(&origin, &mcastgrp); 1167 if (rt == NULL) { 1168 MFC_UNLOCK(); 1169 return EADDRNOTAVAIL; 1170 } 1171 1172 /* 1173 * free the bw_meter entries 1174 */ 1175 free_bw_list(rt->mfc_bw_meter); 1176 rt->mfc_bw_meter = NULL; 1177 1178 LIST_REMOVE(rt, mfc_hash); 1179 free(rt, M_MRTABLE); 1180 1181 MFC_UNLOCK(); 1182 1183 return (0); 1184 } 1185 1186 /* 1187 * Send a message to the routing daemon on the multicast routing socket. 1188 */ 1189 static int 1190 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1191 { 1192 if (s) { 1193 SOCKBUF_LOCK(&s->so_rcv); 1194 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1195 NULL) != 0) { 1196 sorwakeup_locked(s); 1197 return 0; 1198 } 1199 SOCKBUF_UNLOCK(&s->so_rcv); 1200 } 1201 m_freem(mm); 1202 return -1; 1203 } 1204 1205 /* 1206 * IP multicast forwarding function. This function assumes that the packet 1207 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1208 * pointed to by "ifp", and the packet is to be relayed to other networks 1209 * that have members of the packet's destination IP multicast group. 1210 * 1211 * The packet is returned unscathed to the caller, unless it is 1212 * erroneous, in which case a non-zero return value tells the caller to 1213 * discard it. 1214 */ 1215 1216 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1217 1218 static int 1219 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1220 struct ip_moptions *imo) 1221 { 1222 struct mfc *rt; 1223 int error; 1224 vifi_t vifi; 1225 1226 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1227 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1228 1229 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1230 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1231 /* 1232 * Packet arrived via a physical interface or 1233 * an encapsulated tunnel or a register_vif. 1234 */ 1235 } else { 1236 /* 1237 * Packet arrived through a source-route tunnel. 1238 * Source-route tunnels are no longer supported. 1239 */ 1240 return (1); 1241 } 1242 1243 VIF_LOCK(); 1244 MFC_LOCK(); 1245 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1246 if (ip->ip_ttl < MAXTTL) 1247 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1248 error = ip_mdq(m, ifp, NULL, vifi); 1249 MFC_UNLOCK(); 1250 VIF_UNLOCK(); 1251 return error; 1252 } 1253 1254 /* 1255 * Don't forward a packet with time-to-live of zero or one, 1256 * or a packet destined to a local-only group. 1257 */ 1258 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1259 MFC_UNLOCK(); 1260 VIF_UNLOCK(); 1261 return 0; 1262 } 1263 1264 /* 1265 * Determine forwarding vifs from the forwarding cache table 1266 */ 1267 MRTSTAT_INC(mrts_mfc_lookups); 1268 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1269 1270 /* Entry exists, so forward if necessary */ 1271 if (rt != NULL) { 1272 error = ip_mdq(m, ifp, rt, -1); 1273 MFC_UNLOCK(); 1274 VIF_UNLOCK(); 1275 return error; 1276 } else { 1277 /* 1278 * If we don't have a route for packet's origin, 1279 * Make a copy of the packet & send message to routing daemon 1280 */ 1281 1282 struct mbuf *mb0; 1283 struct rtdetq *rte; 1284 u_long hash; 1285 int hlen = ip->ip_hl << 2; 1286 1287 MRTSTAT_INC(mrts_mfc_misses); 1288 MRTSTAT_INC(mrts_no_route); 1289 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1290 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1291 1292 /* 1293 * Allocate mbufs early so that we don't do extra work if we are 1294 * just going to fail anyway. Make sure to pullup the header so 1295 * that other people can't step on it. 1296 */ 1297 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1298 M_NOWAIT|M_ZERO); 1299 if (rte == NULL) { 1300 MFC_UNLOCK(); 1301 VIF_UNLOCK(); 1302 return ENOBUFS; 1303 } 1304 1305 mb0 = m_copypacket(m, M_NOWAIT); 1306 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1307 mb0 = m_pullup(mb0, hlen); 1308 if (mb0 == NULL) { 1309 free(rte, M_MRTABLE); 1310 MFC_UNLOCK(); 1311 VIF_UNLOCK(); 1312 return ENOBUFS; 1313 } 1314 1315 /* is there an upcall waiting for this flow ? */ 1316 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1317 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1318 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1319 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1320 !TAILQ_EMPTY(&rt->mfc_stall)) 1321 break; 1322 } 1323 1324 if (rt == NULL) { 1325 int i; 1326 struct igmpmsg *im; 1327 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1328 struct mbuf *mm; 1329 1330 /* 1331 * Locate the vifi for the incoming interface for this packet. 1332 * If none found, drop packet. 1333 */ 1334 for (vifi = 0; vifi < V_numvifs && 1335 V_viftable[vifi].v_ifp != ifp; vifi++) 1336 ; 1337 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1338 goto non_fatal; 1339 1340 /* no upcall, so make a new entry */ 1341 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1342 if (rt == NULL) 1343 goto fail; 1344 1345 /* Make a copy of the header to send to the user level process */ 1346 mm = m_copy(mb0, 0, hlen); 1347 if (mm == NULL) 1348 goto fail1; 1349 1350 /* 1351 * Send message to routing daemon to install 1352 * a route into the kernel table 1353 */ 1354 1355 im = mtod(mm, struct igmpmsg *); 1356 im->im_msgtype = IGMPMSG_NOCACHE; 1357 im->im_mbz = 0; 1358 im->im_vif = vifi; 1359 1360 MRTSTAT_INC(mrts_upcalls); 1361 1362 k_igmpsrc.sin_addr = ip->ip_src; 1363 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1364 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1365 MRTSTAT_INC(mrts_upq_sockfull); 1366 fail1: 1367 free(rt, M_MRTABLE); 1368 fail: 1369 free(rte, M_MRTABLE); 1370 m_freem(mb0); 1371 MFC_UNLOCK(); 1372 VIF_UNLOCK(); 1373 return ENOBUFS; 1374 } 1375 1376 /* insert new entry at head of hash chain */ 1377 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1378 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1379 rt->mfc_expire = UPCALL_EXPIRE; 1380 V_nexpire[hash]++; 1381 for (i = 0; i < V_numvifs; i++) { 1382 rt->mfc_ttls[i] = 0; 1383 rt->mfc_flags[i] = 0; 1384 } 1385 rt->mfc_parent = -1; 1386 1387 /* clear the RP address */ 1388 rt->mfc_rp.s_addr = INADDR_ANY; 1389 rt->mfc_bw_meter = NULL; 1390 1391 /* initialize pkt counters per src-grp */ 1392 rt->mfc_pkt_cnt = 0; 1393 rt->mfc_byte_cnt = 0; 1394 rt->mfc_wrong_if = 0; 1395 timevalclear(&rt->mfc_last_assert); 1396 1397 TAILQ_INIT(&rt->mfc_stall); 1398 rt->mfc_nstall = 0; 1399 1400 /* link into table */ 1401 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1402 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1403 rt->mfc_nstall++; 1404 1405 } else { 1406 /* determine if queue has overflowed */ 1407 if (rt->mfc_nstall > MAX_UPQ) { 1408 MRTSTAT_INC(mrts_upq_ovflw); 1409 non_fatal: 1410 free(rte, M_MRTABLE); 1411 m_freem(mb0); 1412 MFC_UNLOCK(); 1413 VIF_UNLOCK(); 1414 return (0); 1415 } 1416 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1417 rt->mfc_nstall++; 1418 } 1419 1420 rte->m = mb0; 1421 rte->ifp = ifp; 1422 1423 MFC_UNLOCK(); 1424 VIF_UNLOCK(); 1425 1426 return 0; 1427 } 1428 } 1429 1430 /* 1431 * Clean up the cache entry if upcall is not serviced 1432 */ 1433 static void 1434 expire_upcalls(void *arg) 1435 { 1436 u_long i; 1437 1438 CURVNET_SET((struct vnet *) arg); 1439 1440 MFC_LOCK(); 1441 1442 for (i = 0; i < mfchashsize; i++) { 1443 struct mfc *rt, *nrt; 1444 1445 if (V_nexpire[i] == 0) 1446 continue; 1447 1448 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1449 if (TAILQ_EMPTY(&rt->mfc_stall)) 1450 continue; 1451 1452 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1453 continue; 1454 1455 /* 1456 * free the bw_meter entries 1457 */ 1458 while (rt->mfc_bw_meter != NULL) { 1459 struct bw_meter *x = rt->mfc_bw_meter; 1460 1461 rt->mfc_bw_meter = x->bm_mfc_next; 1462 free(x, M_BWMETER); 1463 } 1464 1465 MRTSTAT_INC(mrts_cache_cleanups); 1466 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1467 (u_long)ntohl(rt->mfc_origin.s_addr), 1468 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1469 1470 expire_mfc(rt); 1471 } 1472 } 1473 1474 MFC_UNLOCK(); 1475 1476 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1477 curvnet); 1478 1479 CURVNET_RESTORE(); 1480 } 1481 1482 /* 1483 * Packet forwarding routine once entry in the cache is made 1484 */ 1485 static int 1486 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1487 { 1488 struct ip *ip = mtod(m, struct ip *); 1489 vifi_t vifi; 1490 int plen = ntohs(ip->ip_len); 1491 1492 VIF_LOCK_ASSERT(); 1493 1494 /* 1495 * If xmt_vif is not -1, send on only the requested vif. 1496 * 1497 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1498 */ 1499 if (xmt_vif < V_numvifs) { 1500 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1501 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1502 else 1503 phyint_send(ip, V_viftable + xmt_vif, m); 1504 return 1; 1505 } 1506 1507 /* 1508 * Don't forward if it didn't arrive from the parent vif for its origin. 1509 */ 1510 vifi = rt->mfc_parent; 1511 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1512 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1513 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1514 MRTSTAT_INC(mrts_wrong_if); 1515 ++rt->mfc_wrong_if; 1516 /* 1517 * If we are doing PIM assert processing, send a message 1518 * to the routing daemon. 1519 * 1520 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1521 * can complete the SPT switch, regardless of the type 1522 * of the iif (broadcast media, GRE tunnel, etc). 1523 */ 1524 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1525 V_viftable[vifi].v_ifp) { 1526 1527 if (ifp == &V_multicast_register_if) 1528 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1529 1530 /* Get vifi for the incoming packet */ 1531 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1532 vifi++) 1533 ; 1534 if (vifi >= V_numvifs) 1535 return 0; /* The iif is not found: ignore the packet. */ 1536 1537 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1538 return 0; /* WRONGVIF disabled: ignore the packet */ 1539 1540 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1541 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1542 struct igmpmsg *im; 1543 int hlen = ip->ip_hl << 2; 1544 struct mbuf *mm = m_copy(m, 0, hlen); 1545 1546 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1547 mm = m_pullup(mm, hlen); 1548 if (mm == NULL) 1549 return ENOBUFS; 1550 1551 im = mtod(mm, struct igmpmsg *); 1552 im->im_msgtype = IGMPMSG_WRONGVIF; 1553 im->im_mbz = 0; 1554 im->im_vif = vifi; 1555 1556 MRTSTAT_INC(mrts_upcalls); 1557 1558 k_igmpsrc.sin_addr = im->im_src; 1559 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1560 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1561 MRTSTAT_INC(mrts_upq_sockfull); 1562 return ENOBUFS; 1563 } 1564 } 1565 } 1566 return 0; 1567 } 1568 1569 1570 /* If I sourced this packet, it counts as output, else it was input. */ 1571 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1572 V_viftable[vifi].v_pkt_out++; 1573 V_viftable[vifi].v_bytes_out += plen; 1574 } else { 1575 V_viftable[vifi].v_pkt_in++; 1576 V_viftable[vifi].v_bytes_in += plen; 1577 } 1578 rt->mfc_pkt_cnt++; 1579 rt->mfc_byte_cnt += plen; 1580 1581 /* 1582 * For each vif, decide if a copy of the packet should be forwarded. 1583 * Forward if: 1584 * - the ttl exceeds the vif's threshold 1585 * - there are group members downstream on interface 1586 */ 1587 for (vifi = 0; vifi < V_numvifs; vifi++) 1588 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1589 V_viftable[vifi].v_pkt_out++; 1590 V_viftable[vifi].v_bytes_out += plen; 1591 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1592 pim_register_send(ip, V_viftable + vifi, m, rt); 1593 else 1594 phyint_send(ip, V_viftable + vifi, m); 1595 } 1596 1597 /* 1598 * Perform upcall-related bw measuring. 1599 */ 1600 if (rt->mfc_bw_meter != NULL) { 1601 struct bw_meter *x; 1602 struct timeval now; 1603 1604 microtime(&now); 1605 MFC_LOCK_ASSERT(); 1606 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1607 bw_meter_receive_packet(x, plen, &now); 1608 } 1609 1610 return 0; 1611 } 1612 1613 /* 1614 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1615 */ 1616 static int 1617 X_legal_vif_num(int vif) 1618 { 1619 int ret; 1620 1621 ret = 0; 1622 if (vif < 0) 1623 return (ret); 1624 1625 VIF_LOCK(); 1626 if (vif < V_numvifs) 1627 ret = 1; 1628 VIF_UNLOCK(); 1629 1630 return (ret); 1631 } 1632 1633 /* 1634 * Return the local address used by this vif 1635 */ 1636 static u_long 1637 X_ip_mcast_src(int vifi) 1638 { 1639 in_addr_t addr; 1640 1641 addr = INADDR_ANY; 1642 if (vifi < 0) 1643 return (addr); 1644 1645 VIF_LOCK(); 1646 if (vifi < V_numvifs) 1647 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1648 VIF_UNLOCK(); 1649 1650 return (addr); 1651 } 1652 1653 static void 1654 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1655 { 1656 struct mbuf *mb_copy; 1657 int hlen = ip->ip_hl << 2; 1658 1659 VIF_LOCK_ASSERT(); 1660 1661 /* 1662 * Make a new reference to the packet; make sure that 1663 * the IP header is actually copied, not just referenced, 1664 * so that ip_output() only scribbles on the copy. 1665 */ 1666 mb_copy = m_copypacket(m, M_NOWAIT); 1667 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1668 mb_copy = m_pullup(mb_copy, hlen); 1669 if (mb_copy == NULL) 1670 return; 1671 1672 send_packet(vifp, mb_copy); 1673 } 1674 1675 static void 1676 send_packet(struct vif *vifp, struct mbuf *m) 1677 { 1678 struct ip_moptions imo; 1679 struct in_multi *imm[2]; 1680 int error; 1681 1682 VIF_LOCK_ASSERT(); 1683 1684 imo.imo_multicast_ifp = vifp->v_ifp; 1685 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1686 imo.imo_multicast_loop = 1; 1687 imo.imo_multicast_vif = -1; 1688 imo.imo_num_memberships = 0; 1689 imo.imo_max_memberships = 2; 1690 imo.imo_membership = &imm[0]; 1691 1692 /* 1693 * Re-entrancy should not be a problem here, because 1694 * the packets that we send out and are looped back at us 1695 * should get rejected because they appear to come from 1696 * the loopback interface, thus preventing looping. 1697 */ 1698 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1699 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1700 (ptrdiff_t)(vifp - V_viftable), error); 1701 } 1702 1703 /* 1704 * Stubs for old RSVP socket shim implementation. 1705 */ 1706 1707 static int 1708 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1709 { 1710 1711 return (EOPNOTSUPP); 1712 } 1713 1714 static void 1715 X_ip_rsvp_force_done(struct socket *so __unused) 1716 { 1717 1718 } 1719 1720 static int 1721 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1722 { 1723 struct mbuf *m; 1724 1725 m = *mp; 1726 *mp = NULL; 1727 if (!V_rsvp_on) 1728 m_freem(m); 1729 return (IPPROTO_DONE); 1730 } 1731 1732 /* 1733 * Code for bandwidth monitors 1734 */ 1735 1736 /* 1737 * Define common interface for timeval-related methods 1738 */ 1739 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1740 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1741 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1742 1743 static uint32_t 1744 compute_bw_meter_flags(struct bw_upcall *req) 1745 { 1746 uint32_t flags = 0; 1747 1748 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1749 flags |= BW_METER_UNIT_PACKETS; 1750 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1751 flags |= BW_METER_UNIT_BYTES; 1752 if (req->bu_flags & BW_UPCALL_GEQ) 1753 flags |= BW_METER_GEQ; 1754 if (req->bu_flags & BW_UPCALL_LEQ) 1755 flags |= BW_METER_LEQ; 1756 1757 return flags; 1758 } 1759 1760 /* 1761 * Add a bw_meter entry 1762 */ 1763 static int 1764 add_bw_upcall(struct bw_upcall *req) 1765 { 1766 struct mfc *mfc; 1767 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1768 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1769 struct timeval now; 1770 struct bw_meter *x; 1771 uint32_t flags; 1772 1773 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1774 return EOPNOTSUPP; 1775 1776 /* Test if the flags are valid */ 1777 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1778 return EINVAL; 1779 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1780 return EINVAL; 1781 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1782 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1783 return EINVAL; 1784 1785 /* Test if the threshold time interval is valid */ 1786 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1787 return EINVAL; 1788 1789 flags = compute_bw_meter_flags(req); 1790 1791 /* 1792 * Find if we have already same bw_meter entry 1793 */ 1794 MFC_LOCK(); 1795 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1796 if (mfc == NULL) { 1797 MFC_UNLOCK(); 1798 return EADDRNOTAVAIL; 1799 } 1800 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1801 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1802 &req->bu_threshold.b_time, ==)) && 1803 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1804 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1805 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1806 MFC_UNLOCK(); 1807 return 0; /* XXX Already installed */ 1808 } 1809 } 1810 1811 /* Allocate the new bw_meter entry */ 1812 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1813 if (x == NULL) { 1814 MFC_UNLOCK(); 1815 return ENOBUFS; 1816 } 1817 1818 /* Set the new bw_meter entry */ 1819 x->bm_threshold.b_time = req->bu_threshold.b_time; 1820 microtime(&now); 1821 x->bm_start_time = now; 1822 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1823 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1824 x->bm_measured.b_packets = 0; 1825 x->bm_measured.b_bytes = 0; 1826 x->bm_flags = flags; 1827 x->bm_time_next = NULL; 1828 x->bm_time_hash = BW_METER_BUCKETS; 1829 1830 /* Add the new bw_meter entry to the front of entries for this MFC */ 1831 x->bm_mfc = mfc; 1832 x->bm_mfc_next = mfc->mfc_bw_meter; 1833 mfc->mfc_bw_meter = x; 1834 schedule_bw_meter(x, &now); 1835 MFC_UNLOCK(); 1836 1837 return 0; 1838 } 1839 1840 static void 1841 free_bw_list(struct bw_meter *list) 1842 { 1843 while (list != NULL) { 1844 struct bw_meter *x = list; 1845 1846 list = list->bm_mfc_next; 1847 unschedule_bw_meter(x); 1848 free(x, M_BWMETER); 1849 } 1850 } 1851 1852 /* 1853 * Delete one or multiple bw_meter entries 1854 */ 1855 static int 1856 del_bw_upcall(struct bw_upcall *req) 1857 { 1858 struct mfc *mfc; 1859 struct bw_meter *x; 1860 1861 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1862 return EOPNOTSUPP; 1863 1864 MFC_LOCK(); 1865 1866 /* Find the corresponding MFC entry */ 1867 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1868 if (mfc == NULL) { 1869 MFC_UNLOCK(); 1870 return EADDRNOTAVAIL; 1871 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1872 /* 1873 * Delete all bw_meter entries for this mfc 1874 */ 1875 struct bw_meter *list; 1876 1877 list = mfc->mfc_bw_meter; 1878 mfc->mfc_bw_meter = NULL; 1879 free_bw_list(list); 1880 MFC_UNLOCK(); 1881 return 0; 1882 } else { /* Delete a single bw_meter entry */ 1883 struct bw_meter *prev; 1884 uint32_t flags = 0; 1885 1886 flags = compute_bw_meter_flags(req); 1887 1888 /* Find the bw_meter entry to delete */ 1889 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1890 prev = x, x = x->bm_mfc_next) { 1891 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1892 &req->bu_threshold.b_time, ==)) && 1893 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1894 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1895 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1896 break; 1897 } 1898 if (x != NULL) { /* Delete entry from the list for this MFC */ 1899 if (prev != NULL) 1900 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1901 else 1902 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1903 1904 unschedule_bw_meter(x); 1905 MFC_UNLOCK(); 1906 /* Free the bw_meter entry */ 1907 free(x, M_BWMETER); 1908 return 0; 1909 } else { 1910 MFC_UNLOCK(); 1911 return EINVAL; 1912 } 1913 } 1914 /* NOTREACHED */ 1915 } 1916 1917 /* 1918 * Perform bandwidth measurement processing that may result in an upcall 1919 */ 1920 static void 1921 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1922 { 1923 struct timeval delta; 1924 1925 MFC_LOCK_ASSERT(); 1926 1927 delta = *nowp; 1928 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1929 1930 if (x->bm_flags & BW_METER_GEQ) { 1931 /* 1932 * Processing for ">=" type of bw_meter entry 1933 */ 1934 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1935 /* Reset the bw_meter entry */ 1936 x->bm_start_time = *nowp; 1937 x->bm_measured.b_packets = 0; 1938 x->bm_measured.b_bytes = 0; 1939 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1940 } 1941 1942 /* Record that a packet is received */ 1943 x->bm_measured.b_packets++; 1944 x->bm_measured.b_bytes += plen; 1945 1946 /* 1947 * Test if we should deliver an upcall 1948 */ 1949 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1950 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1951 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1952 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1953 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1954 /* Prepare an upcall for delivery */ 1955 bw_meter_prepare_upcall(x, nowp); 1956 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1957 } 1958 } 1959 } else if (x->bm_flags & BW_METER_LEQ) { 1960 /* 1961 * Processing for "<=" type of bw_meter entry 1962 */ 1963 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1964 /* 1965 * We are behind time with the multicast forwarding table 1966 * scanning for "<=" type of bw_meter entries, so test now 1967 * if we should deliver an upcall. 1968 */ 1969 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1970 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1971 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1972 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1973 /* Prepare an upcall for delivery */ 1974 bw_meter_prepare_upcall(x, nowp); 1975 } 1976 /* Reschedule the bw_meter entry */ 1977 unschedule_bw_meter(x); 1978 schedule_bw_meter(x, nowp); 1979 } 1980 1981 /* Record that a packet is received */ 1982 x->bm_measured.b_packets++; 1983 x->bm_measured.b_bytes += plen; 1984 1985 /* 1986 * Test if we should restart the measuring interval 1987 */ 1988 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1989 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1990 (x->bm_flags & BW_METER_UNIT_BYTES && 1991 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1992 /* Don't restart the measuring interval */ 1993 } else { 1994 /* Do restart the measuring interval */ 1995 /* 1996 * XXX: note that we don't unschedule and schedule, because this 1997 * might be too much overhead per packet. Instead, when we process 1998 * all entries for a given timer hash bin, we check whether it is 1999 * really a timeout. If not, we reschedule at that time. 2000 */ 2001 x->bm_start_time = *nowp; 2002 x->bm_measured.b_packets = 0; 2003 x->bm_measured.b_bytes = 0; 2004 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2005 } 2006 } 2007 } 2008 2009 /* 2010 * Prepare a bandwidth-related upcall 2011 */ 2012 static void 2013 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2014 { 2015 struct timeval delta; 2016 struct bw_upcall *u; 2017 2018 MFC_LOCK_ASSERT(); 2019 2020 /* 2021 * Compute the measured time interval 2022 */ 2023 delta = *nowp; 2024 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2025 2026 /* 2027 * If there are too many pending upcalls, deliver them now 2028 */ 2029 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2030 bw_upcalls_send(); 2031 2032 /* 2033 * Set the bw_upcall entry 2034 */ 2035 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2036 u->bu_src = x->bm_mfc->mfc_origin; 2037 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2038 u->bu_threshold.b_time = x->bm_threshold.b_time; 2039 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2040 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2041 u->bu_measured.b_time = delta; 2042 u->bu_measured.b_packets = x->bm_measured.b_packets; 2043 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2044 u->bu_flags = 0; 2045 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2046 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2047 if (x->bm_flags & BW_METER_UNIT_BYTES) 2048 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2049 if (x->bm_flags & BW_METER_GEQ) 2050 u->bu_flags |= BW_UPCALL_GEQ; 2051 if (x->bm_flags & BW_METER_LEQ) 2052 u->bu_flags |= BW_UPCALL_LEQ; 2053 } 2054 2055 /* 2056 * Send the pending bandwidth-related upcalls 2057 */ 2058 static void 2059 bw_upcalls_send(void) 2060 { 2061 struct mbuf *m; 2062 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2063 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2064 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2065 0, /* unused2 */ 2066 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2067 0, /* im_mbz */ 2068 0, /* im_vif */ 2069 0, /* unused3 */ 2070 { 0 }, /* im_src */ 2071 { 0 } }; /* im_dst */ 2072 2073 MFC_LOCK_ASSERT(); 2074 2075 if (V_bw_upcalls_n == 0) 2076 return; /* No pending upcalls */ 2077 2078 V_bw_upcalls_n = 0; 2079 2080 /* 2081 * Allocate a new mbuf, initialize it with the header and 2082 * the payload for the pending calls. 2083 */ 2084 m = m_gethdr(M_NOWAIT, MT_DATA); 2085 if (m == NULL) { 2086 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2087 return; 2088 } 2089 2090 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2091 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2092 2093 /* 2094 * Send the upcalls 2095 * XXX do we need to set the address in k_igmpsrc ? 2096 */ 2097 MRTSTAT_INC(mrts_upcalls); 2098 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2099 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2100 MRTSTAT_INC(mrts_upq_sockfull); 2101 } 2102 } 2103 2104 /* 2105 * Compute the timeout hash value for the bw_meter entries 2106 */ 2107 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2108 do { \ 2109 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2110 \ 2111 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2112 (hash) = next_timeval.tv_sec; \ 2113 if (next_timeval.tv_usec) \ 2114 (hash)++; /* XXX: make sure we don't timeout early */ \ 2115 (hash) %= BW_METER_BUCKETS; \ 2116 } while (0) 2117 2118 /* 2119 * Schedule a timer to process periodically bw_meter entry of type "<=" 2120 * by linking the entry in the proper hash bucket. 2121 */ 2122 static void 2123 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2124 { 2125 int time_hash; 2126 2127 MFC_LOCK_ASSERT(); 2128 2129 if (!(x->bm_flags & BW_METER_LEQ)) 2130 return; /* XXX: we schedule timers only for "<=" entries */ 2131 2132 /* 2133 * Reset the bw_meter entry 2134 */ 2135 x->bm_start_time = *nowp; 2136 x->bm_measured.b_packets = 0; 2137 x->bm_measured.b_bytes = 0; 2138 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2139 2140 /* 2141 * Compute the timeout hash value and insert the entry 2142 */ 2143 BW_METER_TIMEHASH(x, time_hash); 2144 x->bm_time_next = V_bw_meter_timers[time_hash]; 2145 V_bw_meter_timers[time_hash] = x; 2146 x->bm_time_hash = time_hash; 2147 } 2148 2149 /* 2150 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2151 * by removing the entry from the proper hash bucket. 2152 */ 2153 static void 2154 unschedule_bw_meter(struct bw_meter *x) 2155 { 2156 int time_hash; 2157 struct bw_meter *prev, *tmp; 2158 2159 MFC_LOCK_ASSERT(); 2160 2161 if (!(x->bm_flags & BW_METER_LEQ)) 2162 return; /* XXX: we schedule timers only for "<=" entries */ 2163 2164 /* 2165 * Compute the timeout hash value and delete the entry 2166 */ 2167 time_hash = x->bm_time_hash; 2168 if (time_hash >= BW_METER_BUCKETS) 2169 return; /* Entry was not scheduled */ 2170 2171 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2172 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2173 if (tmp == x) 2174 break; 2175 2176 if (tmp == NULL) 2177 panic("unschedule_bw_meter: bw_meter entry not found"); 2178 2179 if (prev != NULL) 2180 prev->bm_time_next = x->bm_time_next; 2181 else 2182 V_bw_meter_timers[time_hash] = x->bm_time_next; 2183 2184 x->bm_time_next = NULL; 2185 x->bm_time_hash = BW_METER_BUCKETS; 2186 } 2187 2188 2189 /* 2190 * Process all "<=" type of bw_meter that should be processed now, 2191 * and for each entry prepare an upcall if necessary. Each processed 2192 * entry is rescheduled again for the (periodic) processing. 2193 * 2194 * This is run periodically (once per second normally). On each round, 2195 * all the potentially matching entries are in the hash slot that we are 2196 * looking at. 2197 */ 2198 static void 2199 bw_meter_process() 2200 { 2201 uint32_t loops; 2202 int i; 2203 struct timeval now, process_endtime; 2204 2205 microtime(&now); 2206 if (V_last_tv_sec == now.tv_sec) 2207 return; /* nothing to do */ 2208 2209 loops = now.tv_sec - V_last_tv_sec; 2210 V_last_tv_sec = now.tv_sec; 2211 if (loops > BW_METER_BUCKETS) 2212 loops = BW_METER_BUCKETS; 2213 2214 MFC_LOCK(); 2215 /* 2216 * Process all bins of bw_meter entries from the one after the last 2217 * processed to the current one. On entry, i points to the last bucket 2218 * visited, so we need to increment i at the beginning of the loop. 2219 */ 2220 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2221 struct bw_meter *x, *tmp_list; 2222 2223 if (++i >= BW_METER_BUCKETS) 2224 i = 0; 2225 2226 /* Disconnect the list of bw_meter entries from the bin */ 2227 tmp_list = V_bw_meter_timers[i]; 2228 V_bw_meter_timers[i] = NULL; 2229 2230 /* Process the list of bw_meter entries */ 2231 while (tmp_list != NULL) { 2232 x = tmp_list; 2233 tmp_list = tmp_list->bm_time_next; 2234 2235 /* Test if the time interval is over */ 2236 process_endtime = x->bm_start_time; 2237 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2238 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2239 /* Not yet: reschedule, but don't reset */ 2240 int time_hash; 2241 2242 BW_METER_TIMEHASH(x, time_hash); 2243 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2244 /* 2245 * XXX: somehow the bin processing is a bit ahead of time. 2246 * Put the entry in the next bin. 2247 */ 2248 if (++time_hash >= BW_METER_BUCKETS) 2249 time_hash = 0; 2250 } 2251 x->bm_time_next = V_bw_meter_timers[time_hash]; 2252 V_bw_meter_timers[time_hash] = x; 2253 x->bm_time_hash = time_hash; 2254 2255 continue; 2256 } 2257 2258 /* 2259 * Test if we should deliver an upcall 2260 */ 2261 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2262 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2263 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2264 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2265 /* Prepare an upcall for delivery */ 2266 bw_meter_prepare_upcall(x, &now); 2267 } 2268 2269 /* 2270 * Reschedule for next processing 2271 */ 2272 schedule_bw_meter(x, &now); 2273 } 2274 } 2275 2276 /* Send all upcalls that are pending delivery */ 2277 bw_upcalls_send(); 2278 2279 MFC_UNLOCK(); 2280 } 2281 2282 /* 2283 * A periodic function for sending all upcalls that are pending delivery 2284 */ 2285 static void 2286 expire_bw_upcalls_send(void *arg) 2287 { 2288 CURVNET_SET((struct vnet *) arg); 2289 2290 MFC_LOCK(); 2291 bw_upcalls_send(); 2292 MFC_UNLOCK(); 2293 2294 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2295 curvnet); 2296 CURVNET_RESTORE(); 2297 } 2298 2299 /* 2300 * A periodic function for periodic scanning of the multicast forwarding 2301 * table for processing all "<=" bw_meter entries. 2302 */ 2303 static void 2304 expire_bw_meter_process(void *arg) 2305 { 2306 CURVNET_SET((struct vnet *) arg); 2307 2308 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2309 bw_meter_process(); 2310 2311 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2312 curvnet); 2313 CURVNET_RESTORE(); 2314 } 2315 2316 /* 2317 * End of bandwidth monitoring code 2318 */ 2319 2320 /* 2321 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2322 * 2323 */ 2324 static int 2325 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2326 struct mfc *rt) 2327 { 2328 struct mbuf *mb_copy, *mm; 2329 2330 /* 2331 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2332 * rendezvous point was unspecified, and we were told not to. 2333 */ 2334 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2335 in_nullhost(rt->mfc_rp)) 2336 return 0; 2337 2338 mb_copy = pim_register_prepare(ip, m); 2339 if (mb_copy == NULL) 2340 return ENOBUFS; 2341 2342 /* 2343 * Send all the fragments. Note that the mbuf for each fragment 2344 * is freed by the sending machinery. 2345 */ 2346 for (mm = mb_copy; mm; mm = mb_copy) { 2347 mb_copy = mm->m_nextpkt; 2348 mm->m_nextpkt = 0; 2349 mm = m_pullup(mm, sizeof(struct ip)); 2350 if (mm != NULL) { 2351 ip = mtod(mm, struct ip *); 2352 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2353 pim_register_send_rp(ip, vifp, mm, rt); 2354 } else { 2355 pim_register_send_upcall(ip, vifp, mm, rt); 2356 } 2357 } 2358 } 2359 2360 return 0; 2361 } 2362 2363 /* 2364 * Return a copy of the data packet that is ready for PIM Register 2365 * encapsulation. 2366 * XXX: Note that in the returned copy the IP header is a valid one. 2367 */ 2368 static struct mbuf * 2369 pim_register_prepare(struct ip *ip, struct mbuf *m) 2370 { 2371 struct mbuf *mb_copy = NULL; 2372 int mtu; 2373 2374 /* Take care of delayed checksums */ 2375 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2376 in_delayed_cksum(m); 2377 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2378 } 2379 2380 /* 2381 * Copy the old packet & pullup its IP header into the 2382 * new mbuf so we can modify it. 2383 */ 2384 mb_copy = m_copypacket(m, M_NOWAIT); 2385 if (mb_copy == NULL) 2386 return NULL; 2387 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2388 if (mb_copy == NULL) 2389 return NULL; 2390 2391 /* take care of the TTL */ 2392 ip = mtod(mb_copy, struct ip *); 2393 --ip->ip_ttl; 2394 2395 /* Compute the MTU after the PIM Register encapsulation */ 2396 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2397 2398 if (ntohs(ip->ip_len) <= mtu) { 2399 /* Turn the IP header into a valid one */ 2400 ip->ip_sum = 0; 2401 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2402 } else { 2403 /* Fragment the packet */ 2404 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2405 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2406 m_freem(mb_copy); 2407 return NULL; 2408 } 2409 } 2410 return mb_copy; 2411 } 2412 2413 /* 2414 * Send an upcall with the data packet to the user-level process. 2415 */ 2416 static int 2417 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2418 struct mbuf *mb_copy, struct mfc *rt) 2419 { 2420 struct mbuf *mb_first; 2421 int len = ntohs(ip->ip_len); 2422 struct igmpmsg *im; 2423 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2424 2425 VIF_LOCK_ASSERT(); 2426 2427 /* 2428 * Add a new mbuf with an upcall header 2429 */ 2430 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2431 if (mb_first == NULL) { 2432 m_freem(mb_copy); 2433 return ENOBUFS; 2434 } 2435 mb_first->m_data += max_linkhdr; 2436 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2437 mb_first->m_len = sizeof(struct igmpmsg); 2438 mb_first->m_next = mb_copy; 2439 2440 /* Send message to routing daemon */ 2441 im = mtod(mb_first, struct igmpmsg *); 2442 im->im_msgtype = IGMPMSG_WHOLEPKT; 2443 im->im_mbz = 0; 2444 im->im_vif = vifp - V_viftable; 2445 im->im_src = ip->ip_src; 2446 im->im_dst = ip->ip_dst; 2447 2448 k_igmpsrc.sin_addr = ip->ip_src; 2449 2450 MRTSTAT_INC(mrts_upcalls); 2451 2452 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2453 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2454 MRTSTAT_INC(mrts_upq_sockfull); 2455 return ENOBUFS; 2456 } 2457 2458 /* Keep statistics */ 2459 PIMSTAT_INC(pims_snd_registers_msgs); 2460 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2461 2462 return 0; 2463 } 2464 2465 /* 2466 * Encapsulate the data packet in PIM Register message and send it to the RP. 2467 */ 2468 static int 2469 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2470 struct mfc *rt) 2471 { 2472 struct mbuf *mb_first; 2473 struct ip *ip_outer; 2474 struct pim_encap_pimhdr *pimhdr; 2475 int len = ntohs(ip->ip_len); 2476 vifi_t vifi = rt->mfc_parent; 2477 2478 VIF_LOCK_ASSERT(); 2479 2480 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2481 m_freem(mb_copy); 2482 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2483 } 2484 2485 /* 2486 * Add a new mbuf with the encapsulating header 2487 */ 2488 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2489 if (mb_first == NULL) { 2490 m_freem(mb_copy); 2491 return ENOBUFS; 2492 } 2493 mb_first->m_data += max_linkhdr; 2494 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2495 mb_first->m_next = mb_copy; 2496 2497 mb_first->m_pkthdr.len = len + mb_first->m_len; 2498 2499 /* 2500 * Fill in the encapsulating IP and PIM header 2501 */ 2502 ip_outer = mtod(mb_first, struct ip *); 2503 *ip_outer = pim_encap_iphdr; 2504 ip_outer->ip_id = ip_newid(); 2505 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2506 sizeof(pim_encap_pimhdr)); 2507 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2508 ip_outer->ip_dst = rt->mfc_rp; 2509 /* 2510 * Copy the inner header TOS to the outer header, and take care of the 2511 * IP_DF bit. 2512 */ 2513 ip_outer->ip_tos = ip->ip_tos; 2514 if (ip->ip_off & htons(IP_DF)) 2515 ip_outer->ip_off |= htons(IP_DF); 2516 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2517 + sizeof(pim_encap_iphdr)); 2518 *pimhdr = pim_encap_pimhdr; 2519 /* If the iif crosses a border, set the Border-bit */ 2520 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2521 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2522 2523 mb_first->m_data += sizeof(pim_encap_iphdr); 2524 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2525 mb_first->m_data -= sizeof(pim_encap_iphdr); 2526 2527 send_packet(vifp, mb_first); 2528 2529 /* Keep statistics */ 2530 PIMSTAT_INC(pims_snd_registers_msgs); 2531 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2532 2533 return 0; 2534 } 2535 2536 /* 2537 * pim_encapcheck() is called by the encap4_input() path at runtime to 2538 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2539 * into the kernel. 2540 */ 2541 static int 2542 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2543 { 2544 2545 #ifdef DIAGNOSTIC 2546 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2547 #endif 2548 if (proto != IPPROTO_PIM) 2549 return 0; /* not for us; reject the datagram. */ 2550 2551 return 64; /* claim the datagram. */ 2552 } 2553 2554 /* 2555 * PIM-SMv2 and PIM-DM messages processing. 2556 * Receives and verifies the PIM control messages, and passes them 2557 * up to the listening socket, using rip_input(). 2558 * The only message with special processing is the PIM_REGISTER message 2559 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2560 * is passed to if_simloop(). 2561 */ 2562 int 2563 pim_input(struct mbuf **mp, int *offp, int proto) 2564 { 2565 struct mbuf *m = *mp; 2566 struct ip *ip = mtod(m, struct ip *); 2567 struct pim *pim; 2568 int iphlen = *offp; 2569 int minlen; 2570 int datalen = ntohs(ip->ip_len) - iphlen; 2571 int ip_tos; 2572 2573 *mp = NULL; 2574 2575 /* Keep statistics */ 2576 PIMSTAT_INC(pims_rcv_total_msgs); 2577 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2578 2579 /* 2580 * Validate lengths 2581 */ 2582 if (datalen < PIM_MINLEN) { 2583 PIMSTAT_INC(pims_rcv_tooshort); 2584 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2585 __func__, datalen, inet_ntoa(ip->ip_src)); 2586 m_freem(m); 2587 return (IPPROTO_DONE); 2588 } 2589 2590 /* 2591 * If the packet is at least as big as a REGISTER, go agead 2592 * and grab the PIM REGISTER header size, to avoid another 2593 * possible m_pullup() later. 2594 * 2595 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2596 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2597 */ 2598 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2599 /* 2600 * Get the IP and PIM headers in contiguous memory, and 2601 * possibly the PIM REGISTER header. 2602 */ 2603 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) { 2604 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2605 return (IPPROTO_DONE); 2606 } 2607 2608 /* m_pullup() may have given us a new mbuf so reset ip. */ 2609 ip = mtod(m, struct ip *); 2610 ip_tos = ip->ip_tos; 2611 2612 /* adjust mbuf to point to the PIM header */ 2613 m->m_data += iphlen; 2614 m->m_len -= iphlen; 2615 pim = mtod(m, struct pim *); 2616 2617 /* 2618 * Validate checksum. If PIM REGISTER, exclude the data packet. 2619 * 2620 * XXX: some older PIMv2 implementations don't make this distinction, 2621 * so for compatibility reason perform the checksum over part of the 2622 * message, and if error, then over the whole message. 2623 */ 2624 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2625 /* do nothing, checksum okay */ 2626 } else if (in_cksum(m, datalen)) { 2627 PIMSTAT_INC(pims_rcv_badsum); 2628 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2629 m_freem(m); 2630 return (IPPROTO_DONE); 2631 } 2632 2633 /* PIM version check */ 2634 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2635 PIMSTAT_INC(pims_rcv_badversion); 2636 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2637 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2638 m_freem(m); 2639 return (IPPROTO_DONE); 2640 } 2641 2642 /* restore mbuf back to the outer IP */ 2643 m->m_data -= iphlen; 2644 m->m_len += iphlen; 2645 2646 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2647 /* 2648 * Since this is a REGISTER, we'll make a copy of the register 2649 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2650 * routing daemon. 2651 */ 2652 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2653 struct mbuf *mcp; 2654 struct ip *encap_ip; 2655 u_int32_t *reghdr; 2656 struct ifnet *vifp; 2657 2658 VIF_LOCK(); 2659 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2660 VIF_UNLOCK(); 2661 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2662 (int)V_reg_vif_num); 2663 m_freem(m); 2664 return (IPPROTO_DONE); 2665 } 2666 /* XXX need refcnt? */ 2667 vifp = V_viftable[V_reg_vif_num].v_ifp; 2668 VIF_UNLOCK(); 2669 2670 /* 2671 * Validate length 2672 */ 2673 if (datalen < PIM_REG_MINLEN) { 2674 PIMSTAT_INC(pims_rcv_tooshort); 2675 PIMSTAT_INC(pims_rcv_badregisters); 2676 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2677 m_freem(m); 2678 return (IPPROTO_DONE); 2679 } 2680 2681 reghdr = (u_int32_t *)(pim + 1); 2682 encap_ip = (struct ip *)(reghdr + 1); 2683 2684 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2685 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2686 2687 /* verify the version number of the inner packet */ 2688 if (encap_ip->ip_v != IPVERSION) { 2689 PIMSTAT_INC(pims_rcv_badregisters); 2690 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2691 m_freem(m); 2692 return (IPPROTO_DONE); 2693 } 2694 2695 /* verify the inner packet is destined to a mcast group */ 2696 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2697 PIMSTAT_INC(pims_rcv_badregisters); 2698 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2699 inet_ntoa(encap_ip->ip_dst)); 2700 m_freem(m); 2701 return (IPPROTO_DONE); 2702 } 2703 2704 /* If a NULL_REGISTER, pass it to the daemon */ 2705 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2706 goto pim_input_to_daemon; 2707 2708 /* 2709 * Copy the TOS from the outer IP header to the inner IP header. 2710 */ 2711 if (encap_ip->ip_tos != ip_tos) { 2712 /* Outer TOS -> inner TOS */ 2713 encap_ip->ip_tos = ip_tos; 2714 /* Recompute the inner header checksum. Sigh... */ 2715 2716 /* adjust mbuf to point to the inner IP header */ 2717 m->m_data += (iphlen + PIM_MINLEN); 2718 m->m_len -= (iphlen + PIM_MINLEN); 2719 2720 encap_ip->ip_sum = 0; 2721 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2722 2723 /* restore mbuf to point back to the outer IP header */ 2724 m->m_data -= (iphlen + PIM_MINLEN); 2725 m->m_len += (iphlen + PIM_MINLEN); 2726 } 2727 2728 /* 2729 * Decapsulate the inner IP packet and loopback to forward it 2730 * as a normal multicast packet. Also, make a copy of the 2731 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2732 * to pass to the daemon later, so it can take the appropriate 2733 * actions (e.g., send back PIM_REGISTER_STOP). 2734 * XXX: here m->m_data points to the outer IP header. 2735 */ 2736 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2737 if (mcp == NULL) { 2738 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2739 m_freem(m); 2740 return (IPPROTO_DONE); 2741 } 2742 2743 /* Keep statistics */ 2744 /* XXX: registers_bytes include only the encap. mcast pkt */ 2745 PIMSTAT_INC(pims_rcv_registers_msgs); 2746 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2747 2748 /* 2749 * forward the inner ip packet; point m_data at the inner ip. 2750 */ 2751 m_adj(m, iphlen + PIM_MINLEN); 2752 2753 CTR4(KTR_IPMF, 2754 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2755 __func__, 2756 (u_long)ntohl(encap_ip->ip_src.s_addr), 2757 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2758 (int)V_reg_vif_num); 2759 2760 /* NB: vifp was collected above; can it change on us? */ 2761 if_simloop(vifp, m, dst.sin_family, 0); 2762 2763 /* prepare the register head to send to the mrouting daemon */ 2764 m = mcp; 2765 } 2766 2767 pim_input_to_daemon: 2768 /* 2769 * Pass the PIM message up to the daemon; if it is a Register message, 2770 * pass the 'head' only up to the daemon. This includes the 2771 * outer IP header, PIM header, PIM-Register header and the 2772 * inner IP header. 2773 * XXX: the outer IP header pkt size of a Register is not adjust to 2774 * reflect the fact that the inner multicast data is truncated. 2775 */ 2776 *mp = m; 2777 rip_input(mp, offp, proto); 2778 2779 return (IPPROTO_DONE); 2780 } 2781 2782 static int 2783 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2784 { 2785 struct mfc *rt; 2786 int error, i; 2787 2788 if (req->newptr) 2789 return (EPERM); 2790 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2791 return (0); 2792 error = sysctl_wire_old_buffer(req, 0); 2793 if (error) 2794 return (error); 2795 2796 MFC_LOCK(); 2797 for (i = 0; i < mfchashsize; i++) { 2798 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2799 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2800 if (error) 2801 goto out_locked; 2802 } 2803 } 2804 out_locked: 2805 MFC_UNLOCK(); 2806 return (error); 2807 } 2808 2809 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2810 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2811 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2812 2813 static void 2814 vnet_mroute_init(const void *unused __unused) 2815 { 2816 2817 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2818 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2819 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE); 2820 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE); 2821 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE); 2822 } 2823 2824 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init, 2825 NULL); 2826 2827 static void 2828 vnet_mroute_uninit(const void *unused __unused) 2829 { 2830 2831 FREE(V_nexpire, M_MRTABLE); 2832 V_nexpire = NULL; 2833 } 2834 2835 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 2836 vnet_mroute_uninit, NULL); 2837 2838 static int 2839 ip_mroute_modevent(module_t mod, int type, void *unused) 2840 { 2841 2842 switch (type) { 2843 case MOD_LOAD: 2844 MROUTER_LOCK_INIT(); 2845 2846 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2847 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2848 if (if_detach_event_tag == NULL) { 2849 printf("ip_mroute: unable to register " 2850 "ifnet_departure_event handler\n"); 2851 MROUTER_LOCK_DESTROY(); 2852 return (EINVAL); 2853 } 2854 2855 MFC_LOCK_INIT(); 2856 VIF_LOCK_INIT(); 2857 2858 mfchashsize = MFCHASHSIZE; 2859 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2860 !powerof2(mfchashsize)) { 2861 printf("WARNING: %s not a power of 2; using default\n", 2862 "net.inet.ip.mfchashsize"); 2863 mfchashsize = MFCHASHSIZE; 2864 } 2865 2866 pim_squelch_wholepkt = 0; 2867 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2868 &pim_squelch_wholepkt); 2869 2870 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2871 pim_encapcheck, &in_pim_protosw, NULL); 2872 if (pim_encap_cookie == NULL) { 2873 printf("ip_mroute: unable to attach pim encap\n"); 2874 VIF_LOCK_DESTROY(); 2875 MFC_LOCK_DESTROY(); 2876 MROUTER_LOCK_DESTROY(); 2877 return (EINVAL); 2878 } 2879 2880 ip_mcast_src = X_ip_mcast_src; 2881 ip_mforward = X_ip_mforward; 2882 ip_mrouter_done = X_ip_mrouter_done; 2883 ip_mrouter_get = X_ip_mrouter_get; 2884 ip_mrouter_set = X_ip_mrouter_set; 2885 2886 ip_rsvp_force_done = X_ip_rsvp_force_done; 2887 ip_rsvp_vif = X_ip_rsvp_vif; 2888 2889 legal_vif_num = X_legal_vif_num; 2890 mrt_ioctl = X_mrt_ioctl; 2891 rsvp_input_p = X_rsvp_input; 2892 break; 2893 2894 case MOD_UNLOAD: 2895 /* 2896 * Typically module unload happens after the user-level 2897 * process has shutdown the kernel services (the check 2898 * below insures someone can't just yank the module out 2899 * from under a running process). But if the module is 2900 * just loaded and then unloaded w/o starting up a user 2901 * process we still need to cleanup. 2902 */ 2903 MROUTER_LOCK(); 2904 if (ip_mrouter_cnt != 0) { 2905 MROUTER_UNLOCK(); 2906 return (EINVAL); 2907 } 2908 ip_mrouter_unloading = 1; 2909 MROUTER_UNLOCK(); 2910 2911 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2912 2913 if (pim_encap_cookie) { 2914 encap_detach(pim_encap_cookie); 2915 pim_encap_cookie = NULL; 2916 } 2917 2918 ip_mcast_src = NULL; 2919 ip_mforward = NULL; 2920 ip_mrouter_done = NULL; 2921 ip_mrouter_get = NULL; 2922 ip_mrouter_set = NULL; 2923 2924 ip_rsvp_force_done = NULL; 2925 ip_rsvp_vif = NULL; 2926 2927 legal_vif_num = NULL; 2928 mrt_ioctl = NULL; 2929 rsvp_input_p = NULL; 2930 2931 VIF_LOCK_DESTROY(); 2932 MFC_LOCK_DESTROY(); 2933 MROUTER_LOCK_DESTROY(); 2934 break; 2935 2936 default: 2937 return EOPNOTSUPP; 2938 } 2939 return 0; 2940 } 2941 2942 static moduledata_t ip_mroutemod = { 2943 "ip_mroute", 2944 ip_mroute_modevent, 2945 0 2946 }; 2947 2948 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE); 2949