xref: /freebsd/sys/netinet/ip_mroute.c (revision 0de89efe5c443f213c7ea28773ef2dc6cf3af2ed)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $Id: ip_mroute.c,v 1.40 1997/07/19 20:07:07 fenner Exp $
13  */
14 
15 #include "opt_mrouting.h"
16 
17 #include <sys/param.h>
18 #include <sys/queue.h>
19 #include <sys/systm.h>
20 #include <sys/mbuf.h>
21 #include <sys/socket.h>
22 #include <sys/socketvar.h>
23 #include <sys/protosw.h>
24 #include <sys/errno.h>
25 #include <sys/time.h>
26 #include <sys/kernel.h>
27 #include <sys/sockio.h>
28 #include <sys/syslog.h>
29 #include <net/if.h>
30 #include <net/route.h>
31 #include <netinet/in.h>
32 #include <netinet/in_systm.h>
33 #include <netinet/ip.h>
34 #include <netinet/ip_var.h>
35 #include <netinet/in_pcb.h>
36 #include <netinet/in_var.h>
37 #include <netinet/igmp.h>
38 #include <netinet/igmp_var.h>
39 #include <netinet/ip_mroute.h>
40 #include <netinet/udp.h>
41 
42 #ifndef NTOHL
43 #if BYTE_ORDER != BIG_ENDIAN
44 #define NTOHL(d) ((d) = ntohl((d)))
45 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
46 #define HTONL(d) ((d) = htonl((d)))
47 #define HTONS(d) ((d) = htons((u_short)(d)))
48 #else
49 #define NTOHL(d)
50 #define NTOHS(d)
51 #define HTONL(d)
52 #define HTONS(d)
53 #endif
54 #endif
55 
56 #ifndef MROUTING
57 extern u_long	_ip_mcast_src __P((int vifi));
58 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
59 				  struct mbuf *m, struct ip_moptions *imo));
60 extern int	_ip_mrouter_done __P((void));
61 extern int	_ip_mrouter_get __P((int cmd, struct socket *so,
62 				     struct mbuf **m));
63 extern int	_ip_mrouter_set __P((int cmd, struct socket *so,
64 				     struct mbuf *m));
65 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
66 
67 /*
68  * Dummy routines and globals used when multicast routing is not compiled in.
69  */
70 
71 struct socket  *ip_mrouter  = NULL;
72 static u_int		ip_mrtproto = 0;
73 static struct mrtstat	mrtstat;
74 u_int		rsvpdebug = 0;
75 
76 int
77 _ip_mrouter_set(cmd, so, m)
78 	int cmd;
79 	struct socket *so;
80 	struct mbuf *m;
81 {
82 	return(EOPNOTSUPP);
83 }
84 
85 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
86 
87 
88 int
89 _ip_mrouter_get(cmd, so, m)
90 	int cmd;
91 	struct socket *so;
92 	struct mbuf **m;
93 {
94 	return(EOPNOTSUPP);
95 }
96 
97 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
98 
99 int
100 _ip_mrouter_done()
101 {
102 	return(0);
103 }
104 
105 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
106 
107 int
108 _ip_mforward(ip, ifp, m, imo)
109 	struct ip *ip;
110 	struct ifnet *ifp;
111 	struct mbuf *m;
112 	struct ip_moptions *imo;
113 {
114 	return(0);
115 }
116 
117 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
118 		   struct ip_moptions *) = _ip_mforward;
119 
120 int
121 _mrt_ioctl(int req, caddr_t data, struct proc *p)
122 {
123 	return EOPNOTSUPP;
124 }
125 
126 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
127 
128 void
129 rsvp_input(m, iphlen)		/* XXX must fixup manually */
130 	struct mbuf *m;
131 	int iphlen;
132 {
133     /* Can still get packets with rsvp_on = 0 if there is a local member
134      * of the group to which the RSVP packet is addressed.  But in this
135      * case we want to throw the packet away.
136      */
137     if (!rsvp_on) {
138 	m_freem(m);
139 	return;
140     }
141 
142     if (ip_rsvpd != NULL) {
143 	if (rsvpdebug)
144 	    printf("rsvp_input: Sending packet up old-style socket\n");
145 	rip_input(m, iphlen);
146 	return;
147     }
148     /* Drop the packet */
149     m_freem(m);
150 }
151 
152 void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
153 	rip_input(m, iphlen);
154 }
155 
156 int (*legal_vif_num)(int) = 0;
157 
158 /*
159  * This should never be called, since IP_MULTICAST_VIF should fail, but
160  * just in case it does get called, the code a little lower in ip_output
161  * will assign the packet a local address.
162  */
163 u_long
164 _ip_mcast_src(int vifi) { return INADDR_ANY; }
165 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
166 
167 int
168 ip_rsvp_vif_init(so, m)
169     struct socket *so;
170     struct mbuf *m;
171 {
172     return(EINVAL);
173 }
174 
175 int
176 ip_rsvp_vif_done(so, m)
177     struct socket *so;
178     struct mbuf *m;
179 {
180     return(EINVAL);
181 }
182 
183 void
184 ip_rsvp_force_done(so)
185     struct socket *so;
186 {
187     return;
188 }
189 
190 #else /* MROUTING */
191 
192 #define M_HASCL(m)	((m)->m_flags & M_EXT)
193 
194 #define INSIZ		sizeof(struct in_addr)
195 #define	same(a1, a2) \
196 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
197 
198 #define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
199 
200 /*
201  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
202  * except for netstat or debugging purposes.
203  */
204 #ifndef MROUTE_LKM
205 struct socket  *ip_mrouter  = NULL;
206 struct mrtstat	mrtstat;
207 
208 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
209 #else /* MROUTE_LKM */
210 extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
211 extern struct mrtstat mrtstat;
212 static int ip_mrtproto;
213 #endif
214 
215 #define NO_RTE_FOUND 	0x1
216 #define RTE_FOUND	0x2
217 
218 static struct mbuf    *mfctable[MFCTBLSIZ];
219 static u_char		nexpire[MFCTBLSIZ];
220 static struct vif	viftable[MAXVIFS];
221 static u_int	mrtdebug = 0;	  /* debug level 	*/
222 #define		DEBUG_MFC	0x02
223 #define		DEBUG_FORWARD	0x04
224 #define		DEBUG_EXPIRE	0x08
225 #define		DEBUG_XMIT	0x10
226 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
227 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
228 
229 static struct callout_handle expire_upcalls_ch;
230 
231 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
232 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
233 
234 /*
235  * Define the token bucket filter structures
236  * tbftable -> each vif has one of these for storing info
237  */
238 
239 static struct tbf tbftable[MAXVIFS];
240 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
241 
242 /*
243  * 'Interfaces' associated with decapsulator (so we can tell
244  * packets that went through it from ones that get reflected
245  * by a broken gateway).  These interfaces are never linked into
246  * the system ifnet list & no routes point to them.  I.e., packets
247  * can't be sent this way.  They only exist as a placeholder for
248  * multicast source verification.
249  */
250 static struct ifnet multicast_decap_if[MAXVIFS];
251 
252 #define ENCAP_TTL 64
253 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
254 
255 /* prototype IP hdr for encapsulated packets */
256 static struct ip multicast_encap_iphdr = {
257 #if BYTE_ORDER == LITTLE_ENDIAN
258 	sizeof(struct ip) >> 2, IPVERSION,
259 #else
260 	IPVERSION, sizeof(struct ip) >> 2,
261 #endif
262 	0,				/* tos */
263 	sizeof(struct ip),		/* total length */
264 	0,				/* id */
265 	0,				/* frag offset */
266 	ENCAP_TTL, ENCAP_PROTO,
267 	0,				/* checksum */
268 };
269 
270 /*
271  * Private variables.
272  */
273 static vifi_t	   numvifs = 0;
274 static int have_encap_tunnel = 0;
275 
276 /*
277  * one-back cache used by ipip_input to locate a tunnel's vif
278  * given a datagram's src ip address.
279  */
280 static u_long last_encap_src;
281 static struct vif *last_encap_vif;
282 
283 static u_long	X_ip_mcast_src __P((int vifi));
284 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
285 static int	X_ip_mrouter_done __P((void));
286 static int	X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
287 static int	X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
288 static int	X_legal_vif_num __P((int vif));
289 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
290 
291 static int get_sg_cnt(struct sioc_sg_req *);
292 static int get_vif_cnt(struct sioc_vif_req *);
293 static int ip_mrouter_init(struct socket *, struct mbuf *);
294 static int add_vif(struct vifctl *);
295 static int del_vif(vifi_t *);
296 static int add_mfc(struct mfcctl *);
297 static int del_mfc(struct mfcctl *);
298 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
299 static int get_version(struct mbuf *);
300 static int get_assert(struct mbuf *);
301 static int set_assert(int *);
302 static void expire_upcalls(void *);
303 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
304 		  vifi_t);
305 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
306 static void encap_send(struct ip *, struct vif *, struct mbuf *);
307 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
308 static void tbf_queue(struct vif *, struct mbuf *);
309 static void tbf_process_q(struct vif *);
310 static void tbf_reprocess_q(void *);
311 static int tbf_dq_sel(struct vif *, struct ip *);
312 static void tbf_send_packet(struct vif *, struct mbuf *);
313 static void tbf_update_tokens(struct vif *);
314 static int priority(struct vif *, struct ip *);
315 void multiencap_decap(struct mbuf *);
316 
317 /*
318  * whether or not special PIM assert processing is enabled.
319  */
320 static int pim_assert;
321 /*
322  * Rate limit for assert notification messages, in usec
323  */
324 #define ASSERT_MSG_TIME		3000000
325 
326 /*
327  * Hash function for a source, group entry
328  */
329 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
330 			((g) >> 20) ^ ((g) >> 10) ^ (g))
331 
332 /*
333  * Find a route for a given origin IP address and Multicast group address
334  * Type of service parameter to be added in the future!!!
335  */
336 
337 #define MFCFIND(o, g, rt) { \
338 	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
339 	register struct mfc *_rt = NULL; \
340 	rt = NULL; \
341 	++mrtstat.mrts_mfc_lookups; \
342 	while (_mb_rt) { \
343 		_rt = mtod(_mb_rt, struct mfc *); \
344 		if ((_rt->mfc_origin.s_addr == o) && \
345 		    (_rt->mfc_mcastgrp.s_addr == g) && \
346 		    (_mb_rt->m_act == NULL)) { \
347 			rt = _rt; \
348 			break; \
349 		} \
350 		_mb_rt = _mb_rt->m_next; \
351 	} \
352 	if (rt == NULL) { \
353 		++mrtstat.mrts_mfc_misses; \
354 	} \
355 }
356 
357 
358 /*
359  * Macros to compute elapsed time efficiently
360  * Borrowed from Van Jacobson's scheduling code
361  */
362 #define TV_DELTA(a, b, delta) { \
363 	    register int xxs; \
364 		\
365 	    delta = (a).tv_usec - (b).tv_usec; \
366 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
367 	       switch (xxs) { \
368 		      case 2: \
369 			  delta += 1000000; \
370 			      /* fall through */ \
371 		      case 1: \
372 			  delta += 1000000; \
373 			  break; \
374 		      default: \
375 			  delta += (1000000 * xxs); \
376 	       } \
377 	    } \
378 }
379 
380 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
381 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
382 
383 #ifdef UPCALL_TIMING
384 u_long upcall_data[51];
385 static void collate(struct timeval *);
386 #endif /* UPCALL_TIMING */
387 
388 
389 /*
390  * Handle MRT setsockopt commands to modify the multicast routing tables.
391  */
392 static int
393 X_ip_mrouter_set(cmd, so, m)
394     int cmd;
395     struct socket *so;
396     struct mbuf *m;
397 {
398    if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
399 
400     switch (cmd) {
401 	case MRT_INIT:     return ip_mrouter_init(so, m);
402 	case MRT_DONE:     return ip_mrouter_done();
403 	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
404 	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
405 	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
406 	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
407 	case MRT_ASSERT:   return set_assert(mtod(m, int *));
408 	default:             return EOPNOTSUPP;
409     }
410 }
411 
412 #ifndef MROUTE_LKM
413 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
414 #endif
415 
416 /*
417  * Handle MRT getsockopt commands
418  */
419 static int
420 X_ip_mrouter_get(cmd, so, m)
421     int cmd;
422     struct socket *so;
423     struct mbuf **m;
424 {
425     struct mbuf *mb;
426 
427     if (so != ip_mrouter) return EACCES;
428 
429     *m = mb = m_get(M_WAIT, MT_SOOPTS);
430 
431     switch (cmd) {
432 	case MRT_VERSION:   return get_version(mb);
433 	case MRT_ASSERT:    return get_assert(mb);
434 	default:            return EOPNOTSUPP;
435     }
436 }
437 
438 #ifndef MROUTE_LKM
439 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
440 #endif
441 
442 /*
443  * Handle ioctl commands to obtain information from the cache
444  */
445 static int
446 X_mrt_ioctl(cmd, data)
447     int cmd;
448     caddr_t data;
449 {
450     int error = 0;
451 
452     switch (cmd) {
453 	case (SIOCGETVIFCNT):
454 	    return (get_vif_cnt((struct sioc_vif_req *)data));
455 	    break;
456 	case (SIOCGETSGCNT):
457 	    return (get_sg_cnt((struct sioc_sg_req *)data));
458 	    break;
459 	default:
460 	    return (EINVAL);
461 	    break;
462     }
463     return error;
464 }
465 
466 #ifndef MROUTE_LKM
467 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
468 #endif
469 
470 /*
471  * returns the packet, byte, rpf-failure count for the source group provided
472  */
473 static int
474 get_sg_cnt(req)
475     register struct sioc_sg_req *req;
476 {
477     register struct mfc *rt;
478     int s;
479 
480     s = splnet();
481     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
482     splx(s);
483     if (rt != NULL) {
484 	req->pktcnt = rt->mfc_pkt_cnt;
485 	req->bytecnt = rt->mfc_byte_cnt;
486 	req->wrong_if = rt->mfc_wrong_if;
487     } else
488 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
489 
490     return 0;
491 }
492 
493 /*
494  * returns the input and output packet and byte counts on the vif provided
495  */
496 static int
497 get_vif_cnt(req)
498     register struct sioc_vif_req *req;
499 {
500     register vifi_t vifi = req->vifi;
501 
502     if (vifi >= numvifs) return EINVAL;
503 
504     req->icount = viftable[vifi].v_pkt_in;
505     req->ocount = viftable[vifi].v_pkt_out;
506     req->ibytes = viftable[vifi].v_bytes_in;
507     req->obytes = viftable[vifi].v_bytes_out;
508 
509     return 0;
510 }
511 
512 /*
513  * Enable multicast routing
514  */
515 static int
516 ip_mrouter_init(so, m)
517 	struct socket *so;
518 	struct mbuf *m;
519 {
520     int *v;
521 
522     if (mrtdebug)
523 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
524 		so->so_type, so->so_proto->pr_protocol);
525 
526     if (so->so_type != SOCK_RAW ||
527 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
528 
529     if (!m || (m->m_len != sizeof(int *)))
530 	return ENOPROTOOPT;
531 
532     v = mtod(m, int *);
533     if (*v != 1)
534 	return ENOPROTOOPT;
535 
536     if (ip_mrouter != NULL) return EADDRINUSE;
537 
538     ip_mrouter = so;
539 
540     bzero((caddr_t)mfctable, sizeof(mfctable));
541     bzero((caddr_t)nexpire, sizeof(nexpire));
542 
543     pim_assert = 0;
544 
545     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
546 
547     if (mrtdebug)
548 	log(LOG_DEBUG, "ip_mrouter_init\n");
549 
550     return 0;
551 }
552 
553 /*
554  * Disable multicast routing
555  */
556 static int
557 X_ip_mrouter_done()
558 {
559     vifi_t vifi;
560     int i;
561     struct ifnet *ifp;
562     struct ifreq ifr;
563     struct mbuf *mb_rt;
564     struct mbuf *m;
565     struct rtdetq *rte;
566     int s;
567 
568     s = splnet();
569 
570     /*
571      * For each phyint in use, disable promiscuous reception of all IP
572      * multicasts.
573      */
574     for (vifi = 0; vifi < numvifs; vifi++) {
575 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
576 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
577 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
578 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
579 								= INADDR_ANY;
580 	    ifp = viftable[vifi].v_ifp;
581 	    if_allmulti(ifp, 0);
582 	}
583     }
584     bzero((caddr_t)tbftable, sizeof(tbftable));
585     bzero((caddr_t)viftable, sizeof(viftable));
586     numvifs = 0;
587     pim_assert = 0;
588 
589     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
590 
591     /*
592      * Free all multicast forwarding cache entries.
593      */
594     for (i = 0; i < MFCTBLSIZ; i++) {
595 	mb_rt = mfctable[i];
596 	while (mb_rt) {
597 	    if (mb_rt->m_act != NULL) {
598 		while (mb_rt->m_act) {
599 		    m = mb_rt->m_act;
600 		    mb_rt->m_act = m->m_act;
601 		    rte = mtod(m, struct rtdetq *);
602 		    m_freem(rte->m);
603 		    m_free(m);
604 		}
605 	    }
606 	    mb_rt = m_free(mb_rt);
607 	}
608     }
609 
610     bzero((caddr_t)mfctable, sizeof(mfctable));
611 
612     /*
613      * Reset de-encapsulation cache
614      */
615     last_encap_src = 0;
616     last_encap_vif = NULL;
617     have_encap_tunnel = 0;
618 
619     ip_mrouter = NULL;
620 
621     splx(s);
622 
623     if (mrtdebug)
624 	log(LOG_DEBUG, "ip_mrouter_done\n");
625 
626     return 0;
627 }
628 
629 #ifndef MROUTE_LKM
630 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
631 #endif
632 
633 static int
634 get_version(mb)
635     struct mbuf *mb;
636 {
637     int *v;
638 
639     v = mtod(mb, int *);
640 
641     *v = 0x0305;	/* XXX !!!! */
642     mb->m_len = sizeof(int);
643 
644     return 0;
645 }
646 
647 /*
648  * Set PIM assert processing global
649  */
650 static int
651 set_assert(i)
652     int *i;
653 {
654     if ((*i != 1) && (*i != 0))
655 	return EINVAL;
656 
657     pim_assert = *i;
658 
659     return 0;
660 }
661 
662 /*
663  * Get PIM assert processing global
664  */
665 static int
666 get_assert(m)
667     struct mbuf *m;
668 {
669     int *i;
670 
671     i = mtod(m, int *);
672 
673     *i = pim_assert;
674 
675     return 0;
676 }
677 
678 /*
679  * Add a vif to the vif table
680  */
681 static int
682 add_vif(vifcp)
683     register struct vifctl *vifcp;
684 {
685     register struct vif *vifp = viftable + vifcp->vifc_vifi;
686     static struct sockaddr_in sin = {sizeof sin, AF_INET};
687     struct ifaddr *ifa;
688     struct ifnet *ifp;
689     struct ifreq ifr;
690     int error, s;
691     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
692 
693     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
694     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
695 
696     /* Find the interface with an address in AF_INET family */
697     sin.sin_addr = vifcp->vifc_lcl_addr;
698     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
699     if (ifa == 0) return EADDRNOTAVAIL;
700     ifp = ifa->ifa_ifp;
701 
702     if (vifcp->vifc_flags & VIFF_TUNNEL) {
703 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
704 		/*
705 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
706 		 * start paying attention to encapsulated packets.
707 		 */
708 		if (have_encap_tunnel == 0) {
709 			have_encap_tunnel = 1;
710 			for (s = 0; s < MAXVIFS; ++s) {
711 				multicast_decap_if[s].if_name = "mdecap";
712 				multicast_decap_if[s].if_unit = s;
713 			}
714 		}
715 		/*
716 		 * Set interface to fake encapsulator interface
717 		 */
718 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
719 		/*
720 		 * Prepare cached route entry
721 		 */
722 		bzero(&vifp->v_route, sizeof(vifp->v_route));
723 	} else {
724 	    log(LOG_ERR, "source routed tunnels not supported\n");
725 	    return EOPNOTSUPP;
726 	}
727     } else {
728 	/* Make sure the interface supports multicast */
729 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
730 	    return EOPNOTSUPP;
731 
732 	/* Enable promiscuous reception of all IP multicasts from the if */
733 	s = splnet();
734 	error = if_allmulti(ifp, 1);
735 	splx(s);
736 	if (error)
737 	    return error;
738     }
739 
740     s = splnet();
741     /* define parameters for the tbf structure */
742     vifp->v_tbf = v_tbf;
743     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
744     vifp->v_tbf->tbf_n_tok = 0;
745     vifp->v_tbf->tbf_q_len = 0;
746     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
747     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
748 
749     vifp->v_flags     = vifcp->vifc_flags;
750     vifp->v_threshold = vifcp->vifc_threshold;
751     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
752     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
753     vifp->v_ifp       = ifp;
754     /* scaling up here allows division by 1024 in critical code */
755     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
756     vifp->v_rsvp_on   = 0;
757     vifp->v_rsvpd     = NULL;
758     /* initialize per vif pkt counters */
759     vifp->v_pkt_in    = 0;
760     vifp->v_pkt_out   = 0;
761     vifp->v_bytes_in  = 0;
762     vifp->v_bytes_out = 0;
763     splx(s);
764 
765     /* Adjust numvifs up if the vifi is higher than numvifs */
766     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
767 
768     if (mrtdebug)
769 	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
770 	    vifcp->vifc_vifi,
771 	    ntohl(vifcp->vifc_lcl_addr.s_addr),
772 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
773 	    ntohl(vifcp->vifc_rmt_addr.s_addr),
774 	    vifcp->vifc_threshold,
775 	    vifcp->vifc_rate_limit);
776 
777     return 0;
778 }
779 
780 /*
781  * Delete a vif from the vif table
782  */
783 static int
784 del_vif(vifip)
785     vifi_t *vifip;
786 {
787     register struct vif *vifp = viftable + *vifip;
788     register vifi_t vifi;
789     register struct mbuf *m;
790     struct ifnet *ifp;
791     struct ifreq ifr;
792     int s;
793 
794     if (*vifip >= numvifs) return EINVAL;
795     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
796 
797     s = splnet();
798 
799     if (!(vifp->v_flags & VIFF_TUNNEL)) {
800 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
801 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
802 	ifp = vifp->v_ifp;
803 	if_allmulti(ifp, 0);
804     }
805 
806     if (vifp == last_encap_vif) {
807 	last_encap_vif = 0;
808 	last_encap_src = 0;
809     }
810 
811     /*
812      * Free packets queued at the interface
813      */
814     while (vifp->v_tbf->tbf_q) {
815 	m = vifp->v_tbf->tbf_q;
816 	vifp->v_tbf->tbf_q = m->m_act;
817 	m_freem(m);
818     }
819 
820     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
821     bzero((caddr_t)vifp, sizeof (*vifp));
822 
823     /* Adjust numvifs down */
824     for (vifi = numvifs; vifi > 0; vifi--)
825 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
826     numvifs = vifi;
827 
828     splx(s);
829 
830     if (mrtdebug)
831       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
832 
833     return 0;
834 }
835 
836 /*
837  * Add an mfc entry
838  */
839 static int
840 add_mfc(mfccp)
841     struct mfcctl *mfccp;
842 {
843     struct mfc *rt;
844     register struct mbuf *mb_rt;
845     u_long hash;
846     struct mbuf *mb_ntry;
847     struct rtdetq *rte;
848     register u_short nstl;
849     int s;
850     int i;
851 
852     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
853 
854     /* If an entry already exists, just update the fields */
855     if (rt) {
856 	if (mrtdebug & DEBUG_MFC)
857 	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
858 		ntohl(mfccp->mfcc_origin.s_addr),
859 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
860 		mfccp->mfcc_parent);
861 
862 	s = splnet();
863 	rt->mfc_parent = mfccp->mfcc_parent;
864 	for (i = 0; i < numvifs; i++)
865 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
866 	splx(s);
867 	return 0;
868     }
869 
870     /*
871      * Find the entry for which the upcall was made and update
872      */
873     s = splnet();
874     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
875     for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
876 
877 	rt = mtod(mb_rt, struct mfc *);
878 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
879 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
880 	    (mb_rt->m_act != NULL)) {
881 
882 	    if (nstl++)
883 		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
884 		    "multiple kernel entries",
885 		    ntohl(mfccp->mfcc_origin.s_addr),
886 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
887 		    mfccp->mfcc_parent, mb_rt->m_act);
888 
889 	    if (mrtdebug & DEBUG_MFC)
890 		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
891 		    ntohl(mfccp->mfcc_origin.s_addr),
892 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
893 		    mfccp->mfcc_parent, mb_rt->m_act);
894 
895 	    rt->mfc_origin     = mfccp->mfcc_origin;
896 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
897 	    rt->mfc_parent     = mfccp->mfcc_parent;
898 	    for (i = 0; i < numvifs; i++)
899 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
900 	    /* initialize pkt counters per src-grp */
901 	    rt->mfc_pkt_cnt    = 0;
902 	    rt->mfc_byte_cnt   = 0;
903 	    rt->mfc_wrong_if   = 0;
904 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
905 
906 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
907 	    nexpire[hash]--;
908 
909 	    /* free packets Qed at the end of this entry */
910 	    while (mb_rt->m_act) {
911 		mb_ntry = mb_rt->m_act;
912 		rte = mtod(mb_ntry, struct rtdetq *);
913 /* #ifdef RSVP_ISI */
914 		ip_mdq(rte->m, rte->ifp, rt, -1);
915 /* #endif */
916 		mb_rt->m_act = mb_ntry->m_act;
917 		m_freem(rte->m);
918 #ifdef UPCALL_TIMING
919 		collate(&(rte->t));
920 #endif /* UPCALL_TIMING */
921 		m_free(mb_ntry);
922 	    }
923 	}
924     }
925 
926     /*
927      * It is possible that an entry is being inserted without an upcall
928      */
929     if (nstl == 0) {
930 	if (mrtdebug & DEBUG_MFC)
931 	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
932 		hash, ntohl(mfccp->mfcc_origin.s_addr),
933 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
934 		mfccp->mfcc_parent);
935 
936 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
937 
938 	    rt = mtod(mb_rt, struct mfc *);
939 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
940 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
941 
942 		rt->mfc_origin     = mfccp->mfcc_origin;
943 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
944 		rt->mfc_parent     = mfccp->mfcc_parent;
945 		for (i = 0; i < numvifs; i++)
946 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
947 		/* initialize pkt counters per src-grp */
948 		rt->mfc_pkt_cnt    = 0;
949 		rt->mfc_byte_cnt   = 0;
950 		rt->mfc_wrong_if   = 0;
951 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
952 		if (rt->mfc_expire)
953 		    nexpire[hash]--;
954 		rt->mfc_expire	   = 0;
955 	    }
956 	}
957 	if (mb_rt == NULL) {
958 	    /* no upcall, so make a new entry */
959 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
960 	    if (mb_rt == NULL) {
961 		splx(s);
962 		return ENOBUFS;
963 	    }
964 
965 	    rt = mtod(mb_rt, struct mfc *);
966 
967 	    /* insert new entry at head of hash chain */
968 	    rt->mfc_origin     = mfccp->mfcc_origin;
969 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
970 	    rt->mfc_parent     = mfccp->mfcc_parent;
971 	    for (i = 0; i < numvifs; i++)
972 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
973 	    /* initialize pkt counters per src-grp */
974 	    rt->mfc_pkt_cnt    = 0;
975 	    rt->mfc_byte_cnt   = 0;
976 	    rt->mfc_wrong_if   = 0;
977 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
978 	    rt->mfc_expire     = 0;
979 
980 	    /* link into table */
981 	    mb_rt->m_next  = mfctable[hash];
982 	    mfctable[hash] = mb_rt;
983 	    mb_rt->m_act = NULL;
984 	}
985     }
986     splx(s);
987     return 0;
988 }
989 
990 #ifdef UPCALL_TIMING
991 /*
992  * collect delay statistics on the upcalls
993  */
994 static void collate(t)
995 register struct timeval *t;
996 {
997     register u_long d;
998     register struct timeval tp;
999     register u_long delta;
1000 
1001     GET_TIME(tp);
1002 
1003     if (TV_LT(*t, tp))
1004     {
1005 	TV_DELTA(tp, *t, delta);
1006 
1007 	d = delta >> 10;
1008 	if (d > 50)
1009 	    d = 50;
1010 
1011 	++upcall_data[d];
1012     }
1013 }
1014 #endif /* UPCALL_TIMING */
1015 
1016 /*
1017  * Delete an mfc entry
1018  */
1019 static int
1020 del_mfc(mfccp)
1021     struct mfcctl *mfccp;
1022 {
1023     struct in_addr 	origin;
1024     struct in_addr 	mcastgrp;
1025     struct mfc 		*rt;
1026     struct mbuf 	*mb_rt;
1027     struct mbuf 	**nptr;
1028     u_long 		hash;
1029     int s;
1030 
1031     origin = mfccp->mfcc_origin;
1032     mcastgrp = mfccp->mfcc_mcastgrp;
1033     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1034 
1035     if (mrtdebug & DEBUG_MFC)
1036 	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1037 	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1038 
1039     s = splnet();
1040 
1041     nptr = &mfctable[hash];
1042     while ((mb_rt = *nptr) != NULL) {
1043         rt = mtod(mb_rt, struct mfc *);
1044 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1045 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1046 	    mb_rt->m_act == NULL)
1047 	    break;
1048 
1049 	nptr = &mb_rt->m_next;
1050     }
1051     if (mb_rt == NULL) {
1052 	splx(s);
1053 	return EADDRNOTAVAIL;
1054     }
1055 
1056     MFREE(mb_rt, *nptr);
1057 
1058     splx(s);
1059 
1060     return 0;
1061 }
1062 
1063 /*
1064  * Send a message to mrouted on the multicast routing socket
1065  */
1066 static int
1067 socket_send(s, mm, src)
1068 	struct socket *s;
1069 	struct mbuf *mm;
1070 	struct sockaddr_in *src;
1071 {
1072 	if (s) {
1073 		if (sbappendaddr(&s->so_rcv,
1074 				 (struct sockaddr *)src,
1075 				 mm, (struct mbuf *)0) != 0) {
1076 			sorwakeup(s);
1077 			return 0;
1078 		}
1079 	}
1080 	m_freem(mm);
1081 	return -1;
1082 }
1083 
1084 /*
1085  * IP multicast forwarding function. This function assumes that the packet
1086  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1087  * pointed to by "ifp", and the packet is to be relayed to other networks
1088  * that have members of the packet's destination IP multicast group.
1089  *
1090  * The packet is returned unscathed to the caller, unless it is
1091  * erroneous, in which case a non-zero return value tells the caller to
1092  * discard it.
1093  */
1094 
1095 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1096 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1097 
1098 static int
1099 X_ip_mforward(ip, ifp, m, imo)
1100     register struct ip *ip;
1101     struct ifnet *ifp;
1102     struct mbuf *m;
1103     struct ip_moptions *imo;
1104 {
1105     register struct mfc *rt;
1106     register u_char *ipoptions;
1107     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1108     static int srctun = 0;
1109     register struct mbuf *mm;
1110     int s;
1111     vifi_t vifi;
1112     struct vif *vifp;
1113 
1114     if (mrtdebug & DEBUG_FORWARD)
1115 	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1116 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1117 
1118     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1119 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1120 	/*
1121 	 * Packet arrived via a physical interface or
1122 	 * an encapsulated tunnel.
1123 	 */
1124     } else {
1125 	/*
1126 	 * Packet arrived through a source-route tunnel.
1127 	 * Source-route tunnels are no longer supported.
1128 	 */
1129 	if ((srctun++ % 1000) == 0)
1130 	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1131 		ntohl(ip->ip_src.s_addr));
1132 
1133 	return 1;
1134     }
1135 
1136     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1137 	if (ip->ip_ttl < 255)
1138 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1139 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1140 	    vifp = viftable + vifi;
1141 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1142 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1143 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1144 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1145 	}
1146 	return (ip_mdq(m, ifp, NULL, vifi));
1147     }
1148     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1149 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1150 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1151 	if(!imo)
1152 		printf("In fact, no options were specified at all\n");
1153     }
1154 
1155     /*
1156      * Don't forward a packet with time-to-live of zero or one,
1157      * or a packet destined to a local-only group.
1158      */
1159     if (ip->ip_ttl <= 1 ||
1160 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1161 	return 0;
1162 
1163     /*
1164      * Determine forwarding vifs from the forwarding cache table
1165      */
1166     s = splnet();
1167     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1168 
1169     /* Entry exists, so forward if necessary */
1170     if (rt != NULL) {
1171 	splx(s);
1172 	return (ip_mdq(m, ifp, rt, -1));
1173     } else {
1174 	/*
1175 	 * If we don't have a route for packet's origin,
1176 	 * Make a copy of the packet &
1177 	 * send message to routing daemon
1178 	 */
1179 
1180 	register struct mbuf *mb_rt;
1181 	register struct mbuf *mb_ntry;
1182 	register struct mbuf *mb0;
1183 	register struct rtdetq *rte;
1184 	register struct mbuf *rte_m;
1185 	register u_long hash;
1186 	register int npkts;
1187 	int hlen = ip->ip_hl << 2;
1188 #ifdef UPCALL_TIMING
1189 	struct timeval tp;
1190 
1191 	GET_TIME(tp);
1192 #endif
1193 
1194 	mrtstat.mrts_no_route++;
1195 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1196 	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1197 		ntohl(ip->ip_src.s_addr),
1198 		ntohl(ip->ip_dst.s_addr));
1199 
1200 	/*
1201 	 * Allocate mbufs early so that we don't do extra work if we are
1202 	 * just going to fail anyway.  Make sure to pullup the header so
1203 	 * that other people can't step on it.
1204 	 */
1205 	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1206 	if (mb_ntry == NULL) {
1207 	    splx(s);
1208 	    return ENOBUFS;
1209 	}
1210 	mb0 = m_copy(m, 0, M_COPYALL);
1211 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1212 	    mb0 = m_pullup(mb0, hlen);
1213 	if (mb0 == NULL) {
1214 	    m_free(mb_ntry);
1215 	    splx(s);
1216 	    return ENOBUFS;
1217 	}
1218 
1219 	/* is there an upcall waiting for this packet? */
1220 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1222 	    rt = mtod(mb_rt, struct mfc *);
1223 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1224 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1225 		(mb_rt->m_act != NULL))
1226 		break;
1227 	}
1228 
1229 	if (mb_rt == NULL) {
1230 	    int i;
1231 	    struct igmpmsg *im;
1232 
1233 	    /* no upcall, so make a new entry */
1234 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1235 	    if (mb_rt == NULL) {
1236 		m_free(mb_ntry);
1237 		m_freem(mb0);
1238 		splx(s);
1239 		return ENOBUFS;
1240 	    }
1241 	    /* Make a copy of the header to send to the user level process */
1242 	    mm = m_copy(mb0, 0, hlen);
1243 	    if (mm == NULL) {
1244 		m_free(mb_ntry);
1245 		m_freem(mb0);
1246 		m_free(mb_rt);
1247 		splx(s);
1248 		return ENOBUFS;
1249 	    }
1250 
1251 	    /*
1252 	     * Send message to routing daemon to install
1253 	     * a route into the kernel table
1254 	     */
1255 	    k_igmpsrc.sin_addr = ip->ip_src;
1256 
1257 	    im = mtod(mm, struct igmpmsg *);
1258 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1259 	    im->im_mbz		= 0;
1260 
1261 	    mrtstat.mrts_upcalls++;
1262 
1263 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1264 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1265 		++mrtstat.mrts_upq_sockfull;
1266 		m_free(mb_ntry);
1267 		m_freem(mb0);
1268 		m_free(mb_rt);
1269 		splx(s);
1270 		return ENOBUFS;
1271 	    }
1272 
1273 	    rt = mtod(mb_rt, struct mfc *);
1274 
1275 	    /* insert new entry at head of hash chain */
1276 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1277 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1278 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1279 	    nexpire[hash]++;
1280 	    for (i = 0; i < numvifs; i++)
1281 		rt->mfc_ttls[i] = 0;
1282 	    rt->mfc_parent = -1;
1283 
1284 	    /* link into table */
1285 	    mb_rt->m_next  = mfctable[hash];
1286 	    mfctable[hash] = mb_rt;
1287 	    mb_rt->m_act = NULL;
1288 
1289 	    rte_m = mb_rt;
1290 	} else {
1291 	    /* determine if q has overflowed */
1292 	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1293 		npkts++;
1294 
1295 	    if (npkts > MAX_UPQ) {
1296 		mrtstat.mrts_upq_ovflw++;
1297 		m_free(mb_ntry);
1298 		m_freem(mb0);
1299 		splx(s);
1300 		return 0;
1301 	    }
1302 	}
1303 
1304 	mb_ntry->m_act = NULL;
1305 	rte = mtod(mb_ntry, struct rtdetq *);
1306 
1307 	rte->m 			= mb0;
1308 	rte->ifp 		= ifp;
1309 #ifdef UPCALL_TIMING
1310 	rte->t			= tp;
1311 #endif
1312 
1313 	/* Add this entry to the end of the queue */
1314 	rte_m->m_act		= mb_ntry;
1315 
1316 	splx(s);
1317 
1318 	return 0;
1319     }
1320 }
1321 
1322 #ifndef MROUTE_LKM
1323 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1324 		   struct ip_moptions *) = X_ip_mforward;
1325 #endif
1326 
1327 /*
1328  * Clean up the cache entry if upcall is not serviced
1329  */
1330 static void
1331 expire_upcalls(void *unused)
1332 {
1333     struct mbuf *mb_rt, *m, **nptr;
1334     struct rtdetq *rte;
1335     struct mfc *mfc;
1336     int i;
1337     int s;
1338 
1339     s = splnet();
1340     for (i = 0; i < MFCTBLSIZ; i++) {
1341 	if (nexpire[i] == 0)
1342 	    continue;
1343 	nptr = &mfctable[i];
1344 	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1345 	    mfc = mtod(mb_rt, struct mfc *);
1346 
1347 	    /*
1348 	     * Skip real cache entries
1349 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1350 	     * If it expires now
1351 	     */
1352 	    if (mb_rt->m_act != NULL &&
1353 	        mfc->mfc_expire != 0 &&
1354 		--mfc->mfc_expire == 0) {
1355 		if (mrtdebug & DEBUG_EXPIRE)
1356 		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1357 			ntohl(mfc->mfc_origin.s_addr),
1358 			ntohl(mfc->mfc_mcastgrp.s_addr));
1359 		/*
1360 		 * drop all the packets
1361 		 * free the mbuf with the pkt, if, timing info
1362 		 */
1363 		while (mb_rt->m_act) {
1364 		    m = mb_rt->m_act;
1365 		    mb_rt->m_act = m->m_act;
1366 
1367 		    rte = mtod(m, struct rtdetq *);
1368 		    m_freem(rte->m);
1369 		    m_free(m);
1370 		}
1371 		++mrtstat.mrts_cache_cleanups;
1372 		nexpire[i]--;
1373 
1374 		MFREE(mb_rt, *nptr);
1375 	    } else {
1376 		nptr = &mb_rt->m_next;
1377 	    }
1378 	}
1379     }
1380     splx(s);
1381     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1382 }
1383 
1384 /*
1385  * Packet forwarding routine once entry in the cache is made
1386  */
1387 static int
1388 ip_mdq(m, ifp, rt, xmt_vif)
1389     register struct mbuf *m;
1390     register struct ifnet *ifp;
1391     register struct mfc *rt;
1392     register vifi_t xmt_vif;
1393 {
1394     register struct ip  *ip = mtod(m, struct ip *);
1395     register vifi_t vifi;
1396     register struct vif *vifp;
1397     register int plen = ntohs(ip->ip_len);
1398 
1399 /*
1400  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1401  * input, they shouldn't get counted on output, so statistics keeping is
1402  * seperate.
1403  */
1404 #define MC_SEND(ip,vifp,m) {                             \
1405                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1406                     encap_send((ip), (vifp), (m));       \
1407                 else                                     \
1408                     phyint_send((ip), (vifp), (m));      \
1409 }
1410 
1411     /*
1412      * If xmt_vif is not -1, send on only the requested vif.
1413      *
1414      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1415      */
1416     if (xmt_vif < numvifs) {
1417 	MC_SEND(ip, viftable + xmt_vif, m);
1418 	return 1;
1419     }
1420 
1421     /*
1422      * Don't forward if it didn't arrive from the parent vif for its origin.
1423      */
1424     vifi = rt->mfc_parent;
1425     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1426 	/* came in the wrong interface */
1427 	if (mrtdebug & DEBUG_FORWARD)
1428 	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1429 		ifp, vifi, viftable[vifi].v_ifp);
1430 	++mrtstat.mrts_wrong_if;
1431 	++rt->mfc_wrong_if;
1432 	/*
1433 	 * If we are doing PIM assert processing, and we are forwarding
1434 	 * packets on this interface, and it is a broadcast medium
1435 	 * interface (and not a tunnel), send a message to the routing daemon.
1436 	 */
1437 	if (pim_assert && rt->mfc_ttls[vifi] &&
1438 		(ifp->if_flags & IFF_BROADCAST) &&
1439 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1440 	    struct sockaddr_in k_igmpsrc;
1441 	    struct mbuf *mm;
1442 	    struct igmpmsg *im;
1443 	    int hlen = ip->ip_hl << 2;
1444 	    struct timeval now;
1445 	    register u_long delta;
1446 
1447 	    GET_TIME(now);
1448 
1449 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1450 
1451 	    if (delta > ASSERT_MSG_TIME) {
1452 		mm = m_copy(m, 0, hlen);
1453 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1454 		    mm = m_pullup(mm, hlen);
1455 		if (mm == NULL) {
1456 		    return ENOBUFS;
1457 		}
1458 
1459 		rt->mfc_last_assert = now;
1460 
1461 		im = mtod(mm, struct igmpmsg *);
1462 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1463 		im->im_mbz		= 0;
1464 		im->im_vif		= vifi;
1465 
1466 		k_igmpsrc.sin_addr = im->im_src;
1467 
1468 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1469 	    }
1470 	}
1471 	return 0;
1472     }
1473 
1474     /* If I sourced this packet, it counts as output, else it was input. */
1475     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1476 	viftable[vifi].v_pkt_out++;
1477 	viftable[vifi].v_bytes_out += plen;
1478     } else {
1479 	viftable[vifi].v_pkt_in++;
1480 	viftable[vifi].v_bytes_in += plen;
1481     }
1482     rt->mfc_pkt_cnt++;
1483     rt->mfc_byte_cnt += plen;
1484 
1485     /*
1486      * For each vif, decide if a copy of the packet should be forwarded.
1487      * Forward if:
1488      *		- the ttl exceeds the vif's threshold
1489      *		- there are group members downstream on interface
1490      */
1491     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1492 	if ((rt->mfc_ttls[vifi] > 0) &&
1493 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1494 	    vifp->v_pkt_out++;
1495 	    vifp->v_bytes_out += plen;
1496 	    MC_SEND(ip, vifp, m);
1497 	}
1498 
1499     return 0;
1500 }
1501 
1502 /*
1503  * check if a vif number is legal/ok. This is used by ip_output, to export
1504  * numvifs there,
1505  */
1506 static int
1507 X_legal_vif_num(vif)
1508     int vif;
1509 {
1510     if (vif >= 0 && vif < numvifs)
1511        return(1);
1512     else
1513        return(0);
1514 }
1515 
1516 #ifndef MROUTE_LKM
1517 int (*legal_vif_num)(int) = X_legal_vif_num;
1518 #endif
1519 
1520 /*
1521  * Return the local address used by this vif
1522  */
1523 static u_long
1524 X_ip_mcast_src(vifi)
1525     int vifi;
1526 {
1527     if (vifi >= 0 && vifi < numvifs)
1528 	return viftable[vifi].v_lcl_addr.s_addr;
1529     else
1530 	return INADDR_ANY;
1531 }
1532 
1533 #ifndef MROUTE_LKM
1534 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1535 #endif
1536 
1537 static void
1538 phyint_send(ip, vifp, m)
1539     struct ip *ip;
1540     struct vif *vifp;
1541     struct mbuf *m;
1542 {
1543     register struct mbuf *mb_copy;
1544     register int hlen = ip->ip_hl << 2;
1545 
1546     /*
1547      * Make a new reference to the packet; make sure that
1548      * the IP header is actually copied, not just referenced,
1549      * so that ip_output() only scribbles on the copy.
1550      */
1551     mb_copy = m_copy(m, 0, M_COPYALL);
1552     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1553 	mb_copy = m_pullup(mb_copy, hlen);
1554     if (mb_copy == NULL)
1555 	return;
1556 
1557     if (vifp->v_rate_limit <= 0)
1558 	tbf_send_packet(vifp, mb_copy);
1559     else
1560 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1561 }
1562 
1563 static void
1564 encap_send(ip, vifp, m)
1565     register struct ip *ip;
1566     register struct vif *vifp;
1567     register struct mbuf *m;
1568 {
1569     register struct mbuf *mb_copy;
1570     register struct ip *ip_copy;
1571     register int i, len = ip->ip_len;
1572 
1573     /*
1574      * copy the old packet & pullup it's IP header into the
1575      * new mbuf so we can modify it.  Try to fill the new
1576      * mbuf since if we don't the ethernet driver will.
1577      */
1578     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1579     if (mb_copy == NULL)
1580 	return;
1581     mb_copy->m_data += max_linkhdr;
1582     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1583 
1584     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1585 	m_freem(mb_copy);
1586 	return;
1587     }
1588     i = MHLEN - M_LEADINGSPACE(mb_copy);
1589     if (i > len)
1590 	i = len;
1591     mb_copy = m_pullup(mb_copy, i);
1592     if (mb_copy == NULL)
1593 	return;
1594     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1595 
1596     /*
1597      * fill in the encapsulating IP header.
1598      */
1599     ip_copy = mtod(mb_copy, struct ip *);
1600     *ip_copy = multicast_encap_iphdr;
1601     ip_copy->ip_id = htons(ip_id++);
1602     ip_copy->ip_len += len;
1603     ip_copy->ip_src = vifp->v_lcl_addr;
1604     ip_copy->ip_dst = vifp->v_rmt_addr;
1605 
1606     /*
1607      * turn the encapsulated IP header back into a valid one.
1608      */
1609     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1610     --ip->ip_ttl;
1611     HTONS(ip->ip_len);
1612     HTONS(ip->ip_off);
1613     ip->ip_sum = 0;
1614     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1615     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1616     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1617 
1618     if (vifp->v_rate_limit <= 0)
1619 	tbf_send_packet(vifp, mb_copy);
1620     else
1621 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1622 }
1623 
1624 /*
1625  * De-encapsulate a packet and feed it back through ip input (this
1626  * routine is called whenever IP gets a packet with proto type
1627  * ENCAP_PROTO and a local destination address).
1628  */
1629 void
1630 #ifdef MROUTE_LKM
1631 X_ipip_input(m, iphlen)
1632 #else
1633 ipip_input(m, iphlen)
1634 #endif
1635 	register struct mbuf *m;
1636 	int iphlen;
1637 {
1638     struct ifnet *ifp = m->m_pkthdr.rcvif;
1639     register struct ip *ip = mtod(m, struct ip *);
1640     register int hlen = ip->ip_hl << 2;
1641     register int s;
1642     register struct ifqueue *ifq;
1643     register struct vif *vifp;
1644 
1645     if (!have_encap_tunnel) {
1646 	    rip_input(m, iphlen);
1647 	    return;
1648     }
1649     /*
1650      * dump the packet if it's not to a multicast destination or if
1651      * we don't have an encapsulating tunnel with the source.
1652      * Note:  This code assumes that the remote site IP address
1653      * uniquely identifies the tunnel (i.e., that this site has
1654      * at most one tunnel with the remote site).
1655      */
1656     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1657 	++mrtstat.mrts_bad_tunnel;
1658 	m_freem(m);
1659 	return;
1660     }
1661     if (ip->ip_src.s_addr != last_encap_src) {
1662 	register struct vif *vife;
1663 
1664 	vifp = viftable;
1665 	vife = vifp + numvifs;
1666 	last_encap_src = ip->ip_src.s_addr;
1667 	last_encap_vif = 0;
1668 	for ( ; vifp < vife; ++vifp)
1669 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1670 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1671 		    == VIFF_TUNNEL)
1672 		    last_encap_vif = vifp;
1673 		break;
1674 	    }
1675     }
1676     if ((vifp = last_encap_vif) == 0) {
1677 	last_encap_src = 0;
1678 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1679 	m_freem(m);
1680 	if (mrtdebug)
1681           log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1682 		ntohl(ip->ip_src.s_addr));
1683 	return;
1684     }
1685     ifp = vifp->v_ifp;
1686 
1687     if (hlen > IP_HDR_LEN)
1688       ip_stripoptions(m, (struct mbuf *) 0);
1689     m->m_data += IP_HDR_LEN;
1690     m->m_len -= IP_HDR_LEN;
1691     m->m_pkthdr.len -= IP_HDR_LEN;
1692     m->m_pkthdr.rcvif = ifp;
1693 
1694     ifq = &ipintrq;
1695     s = splimp();
1696     if (IF_QFULL(ifq)) {
1697 	IF_DROP(ifq);
1698 	m_freem(m);
1699     } else {
1700 	IF_ENQUEUE(ifq, m);
1701 	/*
1702 	 * normally we would need a "schednetisr(NETISR_IP)"
1703 	 * here but we were called by ip_input and it is going
1704 	 * to loop back & try to dequeue the packet we just
1705 	 * queued as soon as we return so we avoid the
1706 	 * unnecessary software interrrupt.
1707 	 */
1708     }
1709     splx(s);
1710 }
1711 
1712 /*
1713  * Token bucket filter module
1714  */
1715 
1716 static void
1717 tbf_control(vifp, m, ip, p_len)
1718 	register struct vif *vifp;
1719 	register struct mbuf *m;
1720 	register struct ip *ip;
1721 	register u_long p_len;
1722 {
1723     register struct tbf *t = vifp->v_tbf;
1724 
1725     if (p_len > MAX_BKT_SIZE) {
1726 	/* drop if packet is too large */
1727 	mrtstat.mrts_pkt2large++;
1728 	m_freem(m);
1729 	return;
1730     }
1731 
1732     tbf_update_tokens(vifp);
1733 
1734     /* if there are enough tokens,
1735      * and the queue is empty,
1736      * send this packet out
1737      */
1738 
1739     if (t->tbf_q_len == 0) {
1740 	/* queue empty, send packet if enough tokens */
1741 	if (p_len <= t->tbf_n_tok) {
1742 	    t->tbf_n_tok -= p_len;
1743 	    tbf_send_packet(vifp, m);
1744 	} else {
1745 	    /* queue packet and timeout till later */
1746 	    tbf_queue(vifp, m);
1747 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1748 	}
1749     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1750 	/* finite queue length, so queue pkts and process queue */
1751 	tbf_queue(vifp, m);
1752 	tbf_process_q(vifp);
1753     } else {
1754 	/* queue length too much, try to dq and queue and process */
1755 	if (!tbf_dq_sel(vifp, ip)) {
1756 	    mrtstat.mrts_q_overflow++;
1757 	    m_freem(m);
1758 	    return;
1759 	} else {
1760 	    tbf_queue(vifp, m);
1761 	    tbf_process_q(vifp);
1762 	}
1763     }
1764     return;
1765 }
1766 
1767 /*
1768  * adds a packet to the queue at the interface
1769  */
1770 static void
1771 tbf_queue(vifp, m)
1772 	register struct vif *vifp;
1773 	register struct mbuf *m;
1774 {
1775     register int s = splnet();
1776     register struct tbf *t = vifp->v_tbf;
1777 
1778     if (t->tbf_t == NULL) {
1779 	/* Queue was empty */
1780 	t->tbf_q = m;
1781     } else {
1782 	/* Insert at tail */
1783 	t->tbf_t->m_act = m;
1784     }
1785 
1786     /* Set new tail pointer */
1787     t->tbf_t = m;
1788 
1789 #ifdef DIAGNOSTIC
1790     /* Make sure we didn't get fed a bogus mbuf */
1791     if (m->m_act)
1792 	panic("tbf_queue: m_act");
1793 #endif
1794     m->m_act = NULL;
1795 
1796     t->tbf_q_len++;
1797 
1798     splx(s);
1799 }
1800 
1801 
1802 /*
1803  * processes the queue at the interface
1804  */
1805 static void
1806 tbf_process_q(vifp)
1807     register struct vif *vifp;
1808 {
1809     register struct mbuf *m;
1810     register int len;
1811     register int s = splnet();
1812     register struct tbf *t = vifp->v_tbf;
1813 
1814     /* loop through the queue at the interface and send as many packets
1815      * as possible
1816      */
1817     while (t->tbf_q_len > 0) {
1818 	m = t->tbf_q;
1819 
1820 	len = mtod(m, struct ip *)->ip_len;
1821 
1822 	/* determine if the packet can be sent */
1823 	if (len <= t->tbf_n_tok) {
1824 	    /* if so,
1825 	     * reduce no of tokens, dequeue the packet,
1826 	     * send the packet.
1827 	     */
1828 	    t->tbf_n_tok -= len;
1829 
1830 	    t->tbf_q = m->m_act;
1831 	    if (--t->tbf_q_len == 0)
1832 		t->tbf_t = NULL;
1833 
1834 	    m->m_act = NULL;
1835 	    tbf_send_packet(vifp, m);
1836 
1837 	} else break;
1838     }
1839     splx(s);
1840 }
1841 
1842 static void
1843 tbf_reprocess_q(xvifp)
1844 	void *xvifp;
1845 {
1846     register struct vif *vifp = xvifp;
1847     if (ip_mrouter == NULL)
1848 	return;
1849 
1850     tbf_update_tokens(vifp);
1851 
1852     tbf_process_q(vifp);
1853 
1854     if (vifp->v_tbf->tbf_q_len)
1855 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1856 }
1857 
1858 /* function that will selectively discard a member of the queue
1859  * based on the precedence value and the priority
1860  */
1861 static int
1862 tbf_dq_sel(vifp, ip)
1863     register struct vif *vifp;
1864     register struct ip *ip;
1865 {
1866     register int s = splnet();
1867     register u_int p;
1868     register struct mbuf *m, *last;
1869     register struct mbuf **np;
1870     register struct tbf *t = vifp->v_tbf;
1871 
1872     p = priority(vifp, ip);
1873 
1874     np = &t->tbf_q;
1875     last = NULL;
1876     while ((m = *np) != NULL) {
1877 	if (p > priority(vifp, mtod(m, struct ip *))) {
1878 	    *np = m->m_act;
1879 	    /* If we're removing the last packet, fix the tail pointer */
1880 	    if (m == t->tbf_t)
1881 		t->tbf_t = last;
1882 	    m_freem(m);
1883 	    /* it's impossible for the queue to be empty, but
1884 	     * we check anyway. */
1885 	    if (--t->tbf_q_len == 0)
1886 		t->tbf_t = NULL;
1887 	    splx(s);
1888 	    mrtstat.mrts_drop_sel++;
1889 	    return(1);
1890 	}
1891 	np = &m->m_act;
1892 	last = m;
1893     }
1894     splx(s);
1895     return(0);
1896 }
1897 
1898 static void
1899 tbf_send_packet(vifp, m)
1900     register struct vif *vifp;
1901     register struct mbuf *m;
1902 {
1903     struct ip_moptions imo;
1904     int error;
1905     static struct route ro;
1906     int s = splnet();
1907 
1908     if (vifp->v_flags & VIFF_TUNNEL) {
1909 	/* If tunnel options */
1910 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1911 		  IP_FORWARDING, (struct ip_moptions *)0);
1912     } else {
1913 	imo.imo_multicast_ifp  = vifp->v_ifp;
1914 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1915 	imo.imo_multicast_loop = 1;
1916 	imo.imo_multicast_vif  = -1;
1917 
1918 	/*
1919 	 * Re-entrancy should not be a problem here, because
1920 	 * the packets that we send out and are looped back at us
1921 	 * should get rejected because they appear to come from
1922 	 * the loopback interface, thus preventing looping.
1923 	 */
1924 	error = ip_output(m, (struct mbuf *)0, &ro,
1925 			  IP_FORWARDING, &imo);
1926 
1927 	if (mrtdebug & DEBUG_XMIT)
1928 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1929 		vifp - viftable, error);
1930     }
1931     splx(s);
1932 }
1933 
1934 /* determine the current time and then
1935  * the elapsed time (between the last time and time now)
1936  * in milliseconds & update the no. of tokens in the bucket
1937  */
1938 static void
1939 tbf_update_tokens(vifp)
1940     register struct vif *vifp;
1941 {
1942     struct timeval tp;
1943     register u_long tm;
1944     register int s = splnet();
1945     register struct tbf *t = vifp->v_tbf;
1946 
1947     GET_TIME(tp);
1948 
1949     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1950 
1951     /*
1952      * This formula is actually
1953      * "time in seconds" * "bytes/second".
1954      *
1955      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1956      *
1957      * The (1000/1024) was introduced in add_vif to optimize
1958      * this divide into a shift.
1959      */
1960     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1961     t->tbf_last_pkt_t = tp;
1962 
1963     if (t->tbf_n_tok > MAX_BKT_SIZE)
1964 	t->tbf_n_tok = MAX_BKT_SIZE;
1965 
1966     splx(s);
1967 }
1968 
1969 static int
1970 priority(vifp, ip)
1971     register struct vif *vifp;
1972     register struct ip *ip;
1973 {
1974     register int prio;
1975 
1976     /* temporary hack; may add general packet classifier some day */
1977 
1978     /*
1979      * The UDP port space is divided up into four priority ranges:
1980      * [0, 16384)     : unclassified - lowest priority
1981      * [16384, 32768) : audio - highest priority
1982      * [32768, 49152) : whiteboard - medium priority
1983      * [49152, 65536) : video - low priority
1984      */
1985     if (ip->ip_p == IPPROTO_UDP) {
1986 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1987 	switch (ntohs(udp->uh_dport) & 0xc000) {
1988 	    case 0x4000:
1989 		prio = 70;
1990 		break;
1991 	    case 0x8000:
1992 		prio = 60;
1993 		break;
1994 	    case 0xc000:
1995 		prio = 55;
1996 		break;
1997 	    default:
1998 		prio = 50;
1999 		break;
2000 	}
2001 	if (tbfdebug > 1)
2002 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2003     } else {
2004 	    prio = 50;
2005     }
2006     return prio;
2007 }
2008 
2009 /*
2010  * End of token bucket filter modifications
2011  */
2012 
2013 int
2014 ip_rsvp_vif_init(so, m)
2015     struct socket *so;
2016     struct mbuf *m;
2017 {
2018     int i;
2019     register int s;
2020 
2021     if (rsvpdebug)
2022 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2023 	       so->so_type, so->so_proto->pr_protocol);
2024 
2025     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2026 	return EOPNOTSUPP;
2027 
2028     /* Check mbuf. */
2029     if (m == NULL || m->m_len != sizeof(int)) {
2030 	return EINVAL;
2031     }
2032     i = *(mtod(m, int *));
2033 
2034     if (rsvpdebug)
2035 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2036 
2037     s = splnet();
2038 
2039     /* Check vif. */
2040     if (!legal_vif_num(i)) {
2041 	splx(s);
2042 	return EADDRNOTAVAIL;
2043     }
2044 
2045     /* Check if socket is available. */
2046     if (viftable[i].v_rsvpd != NULL) {
2047 	splx(s);
2048 	return EADDRINUSE;
2049     }
2050 
2051     viftable[i].v_rsvpd = so;
2052     /* This may seem silly, but we need to be sure we don't over-increment
2053      * the RSVP counter, in case something slips up.
2054      */
2055     if (!viftable[i].v_rsvp_on) {
2056 	viftable[i].v_rsvp_on = 1;
2057 	rsvp_on++;
2058     }
2059 
2060     splx(s);
2061     return 0;
2062 }
2063 
2064 int
2065 ip_rsvp_vif_done(so, m)
2066     struct socket *so;
2067     struct mbuf *m;
2068 {
2069 	int i;
2070 	register int s;
2071 
2072     if (rsvpdebug)
2073 	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2074 	       so->so_type, so->so_proto->pr_protocol);
2075 
2076     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2077 	return EOPNOTSUPP;
2078 
2079     /* Check mbuf. */
2080     if (m == NULL || m->m_len != sizeof(int)) {
2081 	    return EINVAL;
2082     }
2083     i = *(mtod(m, int *));
2084 
2085     s = splnet();
2086 
2087     /* Check vif. */
2088     if (!legal_vif_num(i)) {
2089 	splx(s);
2090         return EADDRNOTAVAIL;
2091     }
2092 
2093     if (rsvpdebug)
2094 	printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2095 	       viftable[i].v_rsvpd, so);
2096 
2097     viftable[i].v_rsvpd = NULL;
2098     /* This may seem silly, but we need to be sure we don't over-decrement
2099      * the RSVP counter, in case something slips up.
2100      */
2101     if (viftable[i].v_rsvp_on) {
2102 	viftable[i].v_rsvp_on = 0;
2103 	rsvp_on--;
2104     }
2105 
2106     splx(s);
2107     return 0;
2108 }
2109 
2110 void
2111 ip_rsvp_force_done(so)
2112     struct socket *so;
2113 {
2114     int vifi;
2115     register int s;
2116 
2117     /* Don't bother if it is not the right type of socket. */
2118     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2119 	return;
2120 
2121     s = splnet();
2122 
2123     /* The socket may be attached to more than one vif...this
2124      * is perfectly legal.
2125      */
2126     for (vifi = 0; vifi < numvifs; vifi++) {
2127 	if (viftable[vifi].v_rsvpd == so) {
2128 	    viftable[vifi].v_rsvpd = NULL;
2129 	    /* This may seem silly, but we need to be sure we don't
2130 	     * over-decrement the RSVP counter, in case something slips up.
2131 	     */
2132 	    if (viftable[vifi].v_rsvp_on) {
2133 		viftable[vifi].v_rsvp_on = 0;
2134 		rsvp_on--;
2135 	    }
2136 	}
2137     }
2138 
2139     splx(s);
2140     return;
2141 }
2142 
2143 void
2144 rsvp_input(m, iphlen)
2145 	struct mbuf *m;
2146 	int iphlen;
2147 {
2148     int vifi;
2149     register struct ip *ip = mtod(m, struct ip *);
2150     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2151     register int s;
2152     struct ifnet *ifp;
2153 
2154     if (rsvpdebug)
2155 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2156 
2157     /* Can still get packets with rsvp_on = 0 if there is a local member
2158      * of the group to which the RSVP packet is addressed.  But in this
2159      * case we want to throw the packet away.
2160      */
2161     if (!rsvp_on) {
2162 	m_freem(m);
2163 	return;
2164     }
2165 
2166     /* If the old-style non-vif-associated socket is set, then use
2167      * it and ignore the new ones.
2168      */
2169     if (ip_rsvpd != NULL) {
2170 	if (rsvpdebug)
2171 	    printf("rsvp_input: Sending packet up old-style socket\n");
2172 	rip_input(m, iphlen);
2173 	return;
2174     }
2175 
2176     s = splnet();
2177 
2178     if (rsvpdebug)
2179 	printf("rsvp_input: check vifs\n");
2180 
2181 #ifdef DIAGNOSTIC
2182     if (!(m->m_flags & M_PKTHDR))
2183 	    panic("rsvp_input no hdr");
2184 #endif
2185 
2186     ifp = m->m_pkthdr.rcvif;
2187     /* Find which vif the packet arrived on. */
2188     for (vifi = 0; vifi < numvifs; vifi++) {
2189 	if (viftable[vifi].v_ifp == ifp)
2190  		break;
2191  	}
2192 
2193     if (vifi == numvifs) {
2194 	/* Can't find vif packet arrived on. Drop packet. */
2195 	if (rsvpdebug)
2196 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2197 	m_freem(m);
2198 	splx(s);
2199 	return;
2200     }
2201 
2202     if (rsvpdebug)
2203 	printf("rsvp_input: check socket\n");
2204 
2205     if (viftable[vifi].v_rsvpd == NULL) {
2206 	/* drop packet, since there is no specific socket for this
2207 	 * interface */
2208 	    if (rsvpdebug)
2209 		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2210 	    m_freem(m);
2211 	    splx(s);
2212 	    return;
2213     }
2214     rsvp_src.sin_addr = ip->ip_src;
2215 
2216     if (rsvpdebug && m)
2217 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2218 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2219 
2220     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2221 	if (rsvpdebug)
2222 	    printf("rsvp_input: Failed to append to socket\n");
2223     else
2224 	if (rsvpdebug)
2225 	    printf("rsvp_input: send packet up\n");
2226 
2227     splx(s);
2228 }
2229 
2230 #ifdef MROUTE_LKM
2231 #include <sys/conf.h>
2232 #include <sys/exec.h>
2233 #include <sys/sysent.h>
2234 #include <sys/lkm.h>
2235 
2236 MOD_MISC("ip_mroute_mod")
2237 
2238 static int
2239 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2240 {
2241 	int i;
2242 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2243 	int err = 0;
2244 
2245 	switch(cmd) {
2246 		static int (*old_ip_mrouter_cmd)();
2247 		static int (*old_ip_mrouter_done)();
2248 		static int (*old_ip_mforward)();
2249 		static int (*old_mrt_ioctl)();
2250 		static void (*old_proto4_input)();
2251 		static int (*old_legal_vif_num)();
2252 		extern struct protosw inetsw[];
2253 
2254 	case LKM_E_LOAD:
2255 		if(lkmexists(lkmtp) || ip_mrtproto)
2256 		  return(EEXIST);
2257 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2258 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2259 		old_ip_mrouter_done = ip_mrouter_done;
2260 		ip_mrouter_done = X_ip_mrouter_done;
2261 		old_ip_mforward = ip_mforward;
2262 		ip_mforward = X_ip_mforward;
2263 		old_mrt_ioctl = mrt_ioctl;
2264 		mrt_ioctl = X_mrt_ioctl;
2265               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2266               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2267 		old_legal_vif_num = legal_vif_num;
2268 		legal_vif_num = X_legal_vif_num;
2269 		ip_mrtproto = IGMP_DVMRP;
2270 
2271 		printf("\nIP multicast routing loaded\n");
2272 		break;
2273 
2274 	case LKM_E_UNLOAD:
2275 		if (ip_mrouter)
2276 		  return EINVAL;
2277 
2278 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2279 		ip_mrouter_done = old_ip_mrouter_done;
2280 		ip_mforward = old_ip_mforward;
2281 		mrt_ioctl = old_mrt_ioctl;
2282               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2283 		legal_vif_num = old_legal_vif_num;
2284 		ip_mrtproto = 0;
2285 		break;
2286 
2287 	default:
2288 		err = EINVAL;
2289 		break;
2290 	}
2291 
2292 	return(err);
2293 }
2294 
2295 int
2296 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2297 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2298 		 nosys);
2299 }
2300 
2301 #endif /* MROUTE_LKM */
2302 #endif /* MROUTING */
2303