xref: /freebsd/sys/netinet/ip_mroute.c (revision 093cf790569775b80662926efea6d9d3464bde94)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  * Modified by Wojciech Macek, Semihalf, May 2021
53  *
54  * MROUTING Revision: 3.5
55  * and PIM-SMv2 and PIM-DM support, advanced API support,
56  * bandwidth metering and signaling
57  */
58 
59 /*
60  * TODO: Prefix functions with ipmf_.
61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62  * domain attachment (if_afdata) so we can track consumers of that service.
63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64  * move it to socket options.
65  * TODO: Cleanup LSRR removal further.
66  * TODO: Push RSVP stubs into raw_ip.c.
67  * TODO: Use bitstring.h for vif set.
68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69  * TODO: Sync ip6_mroute.c with this file.
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 #include "opt_inet.h"
76 #include "opt_mrouting.h"
77 
78 #define _PIM_VT 1
79 
80 #include <sys/types.h>
81 #include <sys/param.h>
82 #include <sys/kernel.h>
83 #include <sys/stddef.h>
84 #include <sys/condvar.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/module.h>
92 #include <sys/priv.h>
93 #include <sys/protosw.h>
94 #include <sys/signalvar.h>
95 #include <sys/socket.h>
96 #include <sys/socketvar.h>
97 #include <sys/sockio.h>
98 #include <sys/sx.h>
99 #include <sys/sysctl.h>
100 #include <sys/syslog.h>
101 #include <sys/systm.h>
102 #include <sys/time.h>
103 #include <sys/counter.h>
104 #include <machine/atomic.h>
105 
106 #include <net/if.h>
107 #include <net/if_var.h>
108 #include <net/if_types.h>
109 #include <net/netisr.h>
110 #include <net/route.h>
111 #include <net/vnet.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/igmp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/in_var.h>
117 #include <netinet/ip.h>
118 #include <netinet/ip_encap.h>
119 #include <netinet/ip_mroute.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip_options.h>
122 #include <netinet/pim.h>
123 #include <netinet/pim_var.h>
124 #include <netinet/udp.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #ifndef KTR_IPMF
129 #define KTR_IPMF KTR_INET
130 #endif
131 
132 #define		VIFI_INVALID	((vifi_t) -1)
133 
134 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
135 
136 /*
137  * Locking.  We use two locks: one for the virtual interface table and
138  * one for the forwarding table.  These locks may be nested in which case
139  * the VIF lock must always be taken first.  Note that each lock is used
140  * to cover not only the specific data structure but also related data
141  * structures.
142  */
143 
144 static struct rwlock mrouter_mtx;
145 #define	MRW_RLOCK()		rw_rlock(&mrouter_mtx)
146 #define	MRW_WLOCK()		rw_wlock(&mrouter_mtx)
147 #define	MRW_RUNLOCK()	rw_runlock(&mrouter_mtx)
148 #define	MRW_WUNLOCK()	rw_wunlock(&mrouter_mtx)
149 #define	MRW_UNLOCK()	rw_unlock(&mrouter_mtx)
150 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_LOCKED)
151 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_WLOCKED)
152 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_mtx)
153 #define	MRW_WOWNED()	rw_wowned(&mrouter_mtx)
154 #define	MRW_LOCK_INIT()						\
155 	rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
156 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_mtx)
157 
158 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
159 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
160 
161 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
162 VNET_PCPUSTAT_SYSINIT(mrtstat);
163 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
164 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
165     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
166     "netinet/ip_mroute.h)");
167 
168 VNET_DEFINE_STATIC(u_long, mfchash);
169 #define	V_mfchash		VNET(mfchash)
170 #define	MFCHASH(a, g)							\
171 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
172 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
173 #define	MFCHASHSIZE	256
174 
175 static u_long mfchashsize;			/* Hash size */
176 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
177 #define	V_nexpire		VNET(nexpire)
178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
179 #define	V_mfchashtbl		VNET(mfchashtbl)
180 
181 VNET_DEFINE_STATIC(vifi_t, numvifs);
182 #define	V_numvifs		VNET(numvifs)
183 VNET_DEFINE_STATIC(struct vif *, viftable);
184 #define	V_viftable		VNET(viftable)
185 
186 static eventhandler_tag if_detach_event_tag = NULL;
187 
188 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
189 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
190 
191 VNET_DEFINE_STATIC(struct mtx, upcall_thread_mtx);
192 #define	V_upcall_thread_mtx	VNET(upcall_thread_mtx)
193 
194 VNET_DEFINE_STATIC(struct cv, upcall_thread_cv);
195 #define	V_upcall_thread_cv	VNET(upcall_thread_cv)
196 
197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
198 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
199 
200 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
201 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
202 
203 /*
204  * Bandwidth meter variables and constants
205  */
206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
207 
208 /*
209  * Pending upcalls are stored in a ring which is flushed when
210  * full, or periodically
211  */
212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
213 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
215 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
217 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
218 
219 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
220 
221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
222 VNET_PCPUSTAT_SYSINIT(pimstat);
223 VNET_PCPUSTAT_SYSUNINIT(pimstat);
224 
225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
226     "PIM");
227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
228     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
229 
230 static u_long	pim_squelch_wholepkt = 0;
231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
232     &pim_squelch_wholepkt, 0,
233     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
234 
235 static volatile int upcall_thread_shutdown = 0;
236 
237 static const struct encaptab *pim_encap_cookie;
238 static int pim_encapcheck(const struct mbuf *, int, int, void *);
239 static int pim_input(struct mbuf *, int, int, void *);
240 
241 extern int in_mcast_loop;
242 
243 static const struct encap_config ipv4_encap_cfg = {
244 	.proto = IPPROTO_PIM,
245 	.min_length = sizeof(struct ip) + PIM_MINLEN,
246 	.exact_match = 8,
247 	.check = pim_encapcheck,
248 	.input = pim_input
249 };
250 
251 /*
252  * Note: the PIM Register encapsulation adds the following in front of a
253  * data packet:
254  *
255  * struct pim_encap_hdr {
256  *    struct ip ip;
257  *    struct pim_encap_pimhdr  pim;
258  * }
259  *
260  */
261 
262 struct pim_encap_pimhdr {
263 	struct pim pim;
264 	uint32_t   flags;
265 };
266 #define		PIM_ENCAP_TTL	64
267 
268 static struct ip pim_encap_iphdr = {
269 #if BYTE_ORDER == LITTLE_ENDIAN
270 	sizeof(struct ip) >> 2,
271 	IPVERSION,
272 #else
273 	IPVERSION,
274 	sizeof(struct ip) >> 2,
275 #endif
276 	0,			/* tos */
277 	sizeof(struct ip),	/* total length */
278 	0,			/* id */
279 	0,			/* frag offset */
280 	PIM_ENCAP_TTL,
281 	IPPROTO_PIM,
282 	0,			/* checksum */
283 };
284 
285 static struct pim_encap_pimhdr pim_encap_pimhdr = {
286     {
287 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
288 	0,			/* reserved */
289 	0,			/* checksum */
290     },
291     0				/* flags */
292 };
293 
294 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
295 #define	V_reg_vif_num		VNET(reg_vif_num)
296 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
297 #define	V_multicast_register_if	VNET(multicast_register_if)
298 
299 /*
300  * Private variables.
301  */
302 
303 static u_long	X_ip_mcast_src(int);
304 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
305 		    struct ip_moptions *);
306 static int	X_ip_mrouter_done(void);
307 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
308 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
309 static int	X_legal_vif_num(int);
310 static int	X_mrt_ioctl(u_long, caddr_t, int);
311 
312 static int	add_bw_upcall(struct bw_upcall *);
313 static int	add_mfc(struct mfcctl2 *);
314 static int	add_vif(struct vifctl *);
315 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
316 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
317 		    struct timeval *);
318 static void	bw_upcalls_send(void);
319 static int	del_bw_upcall(struct bw_upcall *);
320 static int	del_mfc(struct mfcctl2 *);
321 static int	del_vif(vifi_t);
322 static int	del_vif_locked(vifi_t);
323 static void	expire_bw_upcalls_send(void *);
324 static void	expire_mfc(struct mfc *);
325 static void	expire_upcalls(void *);
326 static void	free_bw_list(struct bw_meter *);
327 static int	get_sg_cnt(struct sioc_sg_req *);
328 static int	get_vif_cnt(struct sioc_vif_req *);
329 static void	if_detached_event(void *, struct ifnet *);
330 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
331 static int	ip_mrouter_init(struct socket *, int);
332 static __inline struct mfc *
333 		mfc_find(struct in_addr *, struct in_addr *);
334 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
335 static struct mbuf *
336 		pim_register_prepare(struct ip *, struct mbuf *);
337 static int	pim_register_send(struct ip *, struct vif *,
338 		    struct mbuf *, struct mfc *);
339 static int	pim_register_send_rp(struct ip *, struct vif *,
340 		    struct mbuf *, struct mfc *);
341 static int	pim_register_send_upcall(struct ip *, struct vif *,
342 		    struct mbuf *, struct mfc *);
343 static void	send_packet(struct vif *, struct mbuf *);
344 static int	set_api_config(uint32_t *);
345 static int	set_assert(int);
346 static int	socket_send(struct socket *, struct mbuf *,
347 		    struct sockaddr_in *);
348 
349 /*
350  * Kernel multicast forwarding API capabilities and setup.
351  * If more API capabilities are added to the kernel, they should be
352  * recorded in `mrt_api_support'.
353  */
354 #define MRT_API_VERSION		0x0305
355 
356 static const int mrt_api_version = MRT_API_VERSION;
357 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
358 					 MRT_MFC_FLAGS_BORDER_VIF |
359 					 MRT_MFC_RP |
360 					 MRT_MFC_BW_UPCALL);
361 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
362 #define	V_mrt_api_config	VNET(mrt_api_config)
363 VNET_DEFINE_STATIC(int, pim_assert_enabled);
364 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
365 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
366 
367 /*
368  * Find a route for a given origin IP address and multicast group address.
369  * Statistics must be updated by the caller.
370  */
371 static __inline struct mfc *
372 mfc_find(struct in_addr *o, struct in_addr *g)
373 {
374 	struct mfc *rt;
375 
376 	/*
377 	 * Might be called both RLOCK and WLOCK.
378 	 * Check if any, it's caller responsibility
379 	 * to choose correct option.
380 	 */
381 	MRW_LOCK_ASSERT();
382 
383 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
384 		if (in_hosteq(rt->mfc_origin, *o) &&
385 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
386 		    buf_ring_empty(rt->mfc_stall_ring))
387 			break;
388 	}
389 
390 	return (rt);
391 }
392 
393 static __inline struct mfc *
394 mfc_alloc(void)
395 {
396 	struct mfc *rt;
397 	rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
398 	if (rt == NULL)
399 		return rt;
400 
401 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
402 	    M_NOWAIT, &V_buf_ring_mtx);
403 	if (rt->mfc_stall_ring == NULL) {
404 		free(rt, M_MRTABLE);
405 		return NULL;
406 	}
407 
408 	return rt;
409 }
410 
411 /*
412  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
413  */
414 static int
415 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
416 {
417     int	error, optval;
418     vifi_t	vifi;
419     struct	vifctl vifc;
420     struct	mfcctl2 mfc;
421     struct	bw_upcall bw_upcall;
422     uint32_t	i;
423 
424     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
425 	return EPERM;
426 
427     error = 0;
428     switch (sopt->sopt_name) {
429     case MRT_INIT:
430 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
431 	if (error)
432 	    break;
433 	error = ip_mrouter_init(so, optval);
434 	break;
435 
436     case MRT_DONE:
437 	error = ip_mrouter_done();
438 	break;
439 
440     case MRT_ADD_VIF:
441 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
442 	if (error)
443 	    break;
444 	error = add_vif(&vifc);
445 	break;
446 
447     case MRT_DEL_VIF:
448 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
449 	if (error)
450 	    break;
451 	error = del_vif(vifi);
452 	break;
453 
454     case MRT_ADD_MFC:
455     case MRT_DEL_MFC:
456 	/*
457 	 * select data size depending on API version.
458 	 */
459 	if (sopt->sopt_name == MRT_ADD_MFC &&
460 		V_mrt_api_config & MRT_API_FLAGS_ALL) {
461 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
462 				sizeof(struct mfcctl2));
463 	} else {
464 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
465 				sizeof(struct mfcctl));
466 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
467 			sizeof(mfc) - sizeof(struct mfcctl));
468 	}
469 	if (error)
470 	    break;
471 	if (sopt->sopt_name == MRT_ADD_MFC)
472 	    error = add_mfc(&mfc);
473 	else
474 	    error = del_mfc(&mfc);
475 	break;
476 
477     case MRT_ASSERT:
478 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
479 	if (error)
480 	    break;
481 	set_assert(optval);
482 	break;
483 
484     case MRT_API_CONFIG:
485 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
486 	if (!error)
487 	    error = set_api_config(&i);
488 	if (!error)
489 	    error = sooptcopyout(sopt, &i, sizeof i);
490 	break;
491 
492     case MRT_ADD_BW_UPCALL:
493     case MRT_DEL_BW_UPCALL:
494 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
495 				sizeof bw_upcall);
496 	if (error)
497 	    break;
498 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
499 	    error = add_bw_upcall(&bw_upcall);
500 	else
501 	    error = del_bw_upcall(&bw_upcall);
502 	break;
503 
504     default:
505 	error = EOPNOTSUPP;
506 	break;
507     }
508     return error;
509 }
510 
511 /*
512  * Handle MRT getsockopt commands
513  */
514 static int
515 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
516 {
517     int error;
518 
519     switch (sopt->sopt_name) {
520     case MRT_VERSION:
521 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
522 	break;
523 
524     case MRT_ASSERT:
525 	error = sooptcopyout(sopt, &V_pim_assert_enabled,
526 	    sizeof V_pim_assert_enabled);
527 	break;
528 
529     case MRT_API_SUPPORT:
530 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
531 	break;
532 
533     case MRT_API_CONFIG:
534 	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
535 	break;
536 
537     default:
538 	error = EOPNOTSUPP;
539 	break;
540     }
541     return error;
542 }
543 
544 /*
545  * Handle ioctl commands to obtain information from the cache
546  */
547 static int
548 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
549 {
550     int error = 0;
551 
552     /*
553      * Currently the only function calling this ioctl routine is rtioctl_fib().
554      * Typically, only root can create the raw socket in order to execute
555      * this ioctl method, however the request might be coming from a prison
556      */
557     error = priv_check(curthread, PRIV_NETINET_MROUTE);
558     if (error)
559 	return (error);
560     switch (cmd) {
561     case (SIOCGETVIFCNT):
562 	error = get_vif_cnt((struct sioc_vif_req *)data);
563 	break;
564 
565     case (SIOCGETSGCNT):
566 	error = get_sg_cnt((struct sioc_sg_req *)data);
567 	break;
568 
569     default:
570 	error = EINVAL;
571 	break;
572     }
573     return error;
574 }
575 
576 /*
577  * returns the packet, byte, rpf-failure count for the source group provided
578  */
579 static int
580 get_sg_cnt(struct sioc_sg_req *req)
581 {
582     struct mfc *rt;
583 
584     MRW_RLOCK();
585     rt = mfc_find(&req->src, &req->grp);
586     if (rt == NULL) {
587 	    MRW_RUNLOCK();
588 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
589 	return EADDRNOTAVAIL;
590     }
591     req->pktcnt = rt->mfc_pkt_cnt;
592     req->bytecnt = rt->mfc_byte_cnt;
593     req->wrong_if = rt->mfc_wrong_if;
594     MRW_RUNLOCK();
595     return 0;
596 }
597 
598 /*
599  * returns the input and output packet and byte counts on the vif provided
600  */
601 static int
602 get_vif_cnt(struct sioc_vif_req *req)
603 {
604     vifi_t vifi = req->vifi;
605 
606     MRW_RLOCK();
607     if (vifi >= V_numvifs) {
608 	MRW_RUNLOCK();
609 	return EINVAL;
610     }
611 
612     mtx_lock_spin(&V_viftable[vifi].v_spin);
613     req->icount = V_viftable[vifi].v_pkt_in;
614     req->ocount = V_viftable[vifi].v_pkt_out;
615     req->ibytes = V_viftable[vifi].v_bytes_in;
616     req->obytes = V_viftable[vifi].v_bytes_out;
617     mtx_unlock_spin(&V_viftable[vifi].v_spin);
618     MRW_RUNLOCK();
619 
620     return 0;
621 }
622 
623 static void
624 if_detached_event(void *arg __unused, struct ifnet *ifp)
625 {
626     vifi_t vifi;
627     u_long i;
628 
629     MRW_WLOCK();
630 
631     if (V_ip_mrouter == NULL) {
632 	MRW_WUNLOCK();
633 	return;
634     }
635 
636     /*
637      * Tear down multicast forwarder state associated with this ifnet.
638      * 1. Walk the vif list, matching vifs against this ifnet.
639      * 2. Walk the multicast forwarding cache (mfc) looking for
640      *    inner matches with this vif's index.
641      * 3. Expire any matching multicast forwarding cache entries.
642      * 4. Free vif state. This should disable ALLMULTI on the interface.
643      */
644     for (vifi = 0; vifi < V_numvifs; vifi++) {
645 	if (V_viftable[vifi].v_ifp != ifp)
646 		continue;
647 	for (i = 0; i < mfchashsize; i++) {
648 		struct mfc *rt, *nrt;
649 
650 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
651 			if (rt->mfc_parent == vifi) {
652 				expire_mfc(rt);
653 			}
654 		}
655 	}
656 	del_vif_locked(vifi);
657     }
658 
659     MRW_WUNLOCK();
660 }
661 
662 static void
663 ip_mrouter_upcall_thread(void *arg)
664 {
665 	CURVNET_SET((struct vnet *) arg);
666 
667 	while (upcall_thread_shutdown == 0) {
668 		/* START: Event loop */
669 
670 		/* END: Event loop */
671 		mtx_lock(&V_upcall_thread_mtx);
672 		cv_timedwait(&V_upcall_thread_cv, &V_upcall_thread_mtx, hz);
673 		mtx_unlock(&V_upcall_thread_mtx);
674 	}
675 
676 	upcall_thread_shutdown = 0;
677 	CURVNET_RESTORE();
678 	kthread_exit();
679 }
680 
681 /*
682  * Enable multicast forwarding.
683  */
684 static int
685 ip_mrouter_init(struct socket *so, int version)
686 {
687 
688     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
689         so->so_type, so->so_proto->pr_protocol);
690 
691     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
692 	return EOPNOTSUPP;
693 
694     if (version != 1)
695 	return ENOPROTOOPT;
696 
697     MRW_WLOCK();
698 
699     if (ip_mrouter_unloading) {
700 	MRW_WUNLOCK();
701 	return ENOPROTOOPT;
702     }
703 
704     if (V_ip_mrouter != NULL) {
705 	MRW_WUNLOCK();
706 	return EADDRINUSE;
707     }
708 
709     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
710 	HASH_NOWAIT);
711 
712     /* Create upcall ring */
713     mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
714     V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
715 	M_NOWAIT, &V_bw_upcalls_ring_mtx);
716     if (!V_bw_upcalls_ring) {
717 	MRW_WUNLOCK();
718 	return (ENOMEM);
719     }
720 
721     /* Create upcall thread */
722     upcall_thread_shutdown = 0;
723     mtx_init(&V_upcall_thread_mtx, "ip_mroute upcall thread mtx", NULL, MTX_DEF);
724     cv_init(&V_upcall_thread_cv, "ip_mroute upcall cv");
725     kthread_add(ip_mrouter_upcall_thread, curvnet,
726         NULL, NULL, 0, 0, "ip_mroute upcall thread");
727 
728     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
729 	curvnet);
730     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
731 	curvnet);
732 
733     V_ip_mrouter = so;
734     atomic_add_int(&ip_mrouter_cnt, 1);
735 
736     /* This is a mutex required by buf_ring init, but not used internally */
737     mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
738 
739     MRW_WUNLOCK();
740 
741     CTR1(KTR_IPMF, "%s: done", __func__);
742 
743     return 0;
744 }
745 
746 /*
747  * Disable multicast forwarding.
748  */
749 static int
750 X_ip_mrouter_done(void)
751 {
752     struct ifnet *ifp;
753     u_long i;
754     vifi_t vifi;
755     struct bw_upcall *bu;
756 
757     if (V_ip_mrouter == NULL)
758 	return EINVAL;
759 
760     /*
761      * Detach/disable hooks to the reset of the system.
762      */
763     V_ip_mrouter = NULL;
764     atomic_subtract_int(&ip_mrouter_cnt, 1);
765     V_mrt_api_config = 0;
766 
767     MROUTER_WAIT();
768 
769     MRW_WLOCK();
770 
771     upcall_thread_shutdown = 1;
772     mtx_lock(&V_upcall_thread_mtx);
773     cv_signal(&V_upcall_thread_cv);
774     mtx_unlock(&V_upcall_thread_mtx);
775 
776     /* Wait for thread shutdown */
777     while (upcall_thread_shutdown == 1) {};
778 
779     mtx_destroy(&V_upcall_thread_mtx);
780 
781     /* Destroy upcall ring */
782     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
783 	free(bu, M_MRTABLE);
784     }
785     buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
786     mtx_destroy(&V_bw_upcalls_ring_mtx);
787 
788     /*
789      * For each phyint in use, disable promiscuous reception of all IP
790      * multicasts.
791      */
792     for (vifi = 0; vifi < V_numvifs; vifi++) {
793 	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
794 		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
795 	    ifp = V_viftable[vifi].v_ifp;
796 	    if_allmulti(ifp, 0);
797 	}
798     }
799     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
800     V_numvifs = 0;
801     V_pim_assert_enabled = 0;
802 
803     callout_stop(&V_expire_upcalls_ch);
804     callout_stop(&V_bw_upcalls_ch);
805 
806     /*
807      * Free all multicast forwarding cache entries.
808      * Do not use hashdestroy(), as we must perform other cleanup.
809      */
810     for (i = 0; i < mfchashsize; i++) {
811 	struct mfc *rt, *nrt;
812 
813 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
814 		expire_mfc(rt);
815 	}
816     }
817     free(V_mfchashtbl, M_MRTABLE);
818     V_mfchashtbl = NULL;
819 
820     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
821 
822     V_reg_vif_num = VIFI_INVALID;
823 
824     mtx_destroy(&V_buf_ring_mtx);
825 
826     MRW_WUNLOCK();
827 
828     CTR1(KTR_IPMF, "%s: done", __func__);
829 
830     return 0;
831 }
832 
833 /*
834  * Set PIM assert processing global
835  */
836 static int
837 set_assert(int i)
838 {
839     if ((i != 1) && (i != 0))
840 	return EINVAL;
841 
842     V_pim_assert_enabled = i;
843 
844     return 0;
845 }
846 
847 /*
848  * Configure API capabilities
849  */
850 int
851 set_api_config(uint32_t *apival)
852 {
853     u_long i;
854 
855     /*
856      * We can set the API capabilities only if it is the first operation
857      * after MRT_INIT. I.e.:
858      *  - there are no vifs installed
859      *  - pim_assert is not enabled
860      *  - the MFC table is empty
861      */
862     if (V_numvifs > 0) {
863 	*apival = 0;
864 	return EPERM;
865     }
866     if (V_pim_assert_enabled) {
867 	*apival = 0;
868 	return EPERM;
869     }
870 
871     MRW_RLOCK();
872 
873     for (i = 0; i < mfchashsize; i++) {
874 	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
875 	    MRW_RUNLOCK();
876 	    *apival = 0;
877 	    return EPERM;
878 	}
879     }
880 
881     MRW_RUNLOCK();
882 
883     V_mrt_api_config = *apival & mrt_api_support;
884     *apival = V_mrt_api_config;
885 
886     return 0;
887 }
888 
889 /*
890  * Add a vif to the vif table
891  */
892 static int
893 add_vif(struct vifctl *vifcp)
894 {
895     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
896     struct sockaddr_in sin = {sizeof sin, AF_INET};
897     struct ifaddr *ifa;
898     struct ifnet *ifp;
899     int error;
900 
901 
902     if (vifcp->vifc_vifi >= MAXVIFS)
903 	return EINVAL;
904     /* rate limiting is no longer supported by this code */
905     if (vifcp->vifc_rate_limit != 0) {
906 	log(LOG_ERR, "rate limiting is no longer supported\n");
907 	return EINVAL;
908     }
909 
910     if (in_nullhost(vifcp->vifc_lcl_addr))
911 	return EADDRNOTAVAIL;
912 
913     /* Find the interface with an address in AF_INET family */
914     if (vifcp->vifc_flags & VIFF_REGISTER) {
915 	/*
916 	 * XXX: Because VIFF_REGISTER does not really need a valid
917 	 * local interface (e.g. it could be 127.0.0.2), we don't
918 	 * check its address.
919 	 */
920 	ifp = NULL;
921     } else {
922 	struct epoch_tracker et;
923 
924 	sin.sin_addr = vifcp->vifc_lcl_addr;
925 	NET_EPOCH_ENTER(et);
926 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
927 	if (ifa == NULL) {
928 	    NET_EPOCH_EXIT(et);
929 	    return EADDRNOTAVAIL;
930 	}
931 	ifp = ifa->ifa_ifp;
932 	/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
933 	NET_EPOCH_EXIT(et);
934     }
935 
936     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
937 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
938 	return EOPNOTSUPP;
939     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
940 	ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
941 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
942 	if (V_reg_vif_num == VIFI_INVALID) {
943 	    if_initname(V_multicast_register_if, "register_vif", 0);
944 	    V_reg_vif_num = vifcp->vifc_vifi;
945 	}
946     } else {		/* Make sure the interface supports multicast */
947 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
948 	    return EOPNOTSUPP;
949 
950 	/* Enable promiscuous reception of all IP multicasts from the if */
951 	error = if_allmulti(ifp, 1);
952 	if (error)
953 	    return error;
954     }
955 
956     MRW_WLOCK();
957 
958     if (!in_nullhost(vifp->v_lcl_addr)) {
959 	if (ifp)
960 		V_multicast_register_if = NULL;
961 	MRW_WUNLOCK();
962 	if (ifp)
963 		if_free(ifp);
964 	return EADDRINUSE;
965     }
966 
967     vifp->v_flags     = vifcp->vifc_flags;
968     vifp->v_threshold = vifcp->vifc_threshold;
969     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
970     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
971     vifp->v_ifp       = ifp;
972     /* initialize per vif pkt counters */
973     vifp->v_pkt_in    = 0;
974     vifp->v_pkt_out   = 0;
975     vifp->v_bytes_in  = 0;
976     vifp->v_bytes_out = 0;
977     sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
978     mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
979 
980     /* Adjust numvifs up if the vifi is higher than numvifs */
981     if (V_numvifs <= vifcp->vifc_vifi)
982 	V_numvifs = vifcp->vifc_vifi + 1;
983 
984     MRW_WUNLOCK();
985 
986     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
987 	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
988 	(int)vifcp->vifc_threshold);
989 
990     return 0;
991 }
992 
993 /*
994  * Delete a vif from the vif table
995  */
996 static int
997 del_vif_locked(vifi_t vifi)
998 {
999     struct vif *vifp;
1000 
1001     MRW_WLOCK_ASSERT();
1002 
1003     if (vifi >= V_numvifs) {
1004 	return EINVAL;
1005     }
1006     vifp = &V_viftable[vifi];
1007     if (in_nullhost(vifp->v_lcl_addr)) {
1008 	return EADDRNOTAVAIL;
1009     }
1010 
1011     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1012 	if_allmulti(vifp->v_ifp, 0);
1013 
1014     if (vifp->v_flags & VIFF_REGISTER) {
1015 	V_reg_vif_num = VIFI_INVALID;
1016 	if (vifp->v_ifp) {
1017 	    if (vifp->v_ifp == V_multicast_register_if)
1018 	        V_multicast_register_if = NULL;
1019 	    if_free(vifp->v_ifp);
1020 	}
1021     }
1022 
1023     mtx_destroy(&vifp->v_spin);
1024 
1025     bzero((caddr_t)vifp, sizeof (*vifp));
1026 
1027     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1028 
1029     /* Adjust numvifs down */
1030     for (vifi = V_numvifs; vifi > 0; vifi--)
1031 	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1032 	    break;
1033     V_numvifs = vifi;
1034 
1035     return 0;
1036 }
1037 
1038 static int
1039 del_vif(vifi_t vifi)
1040 {
1041     int cc;
1042 
1043     MRW_WLOCK();
1044     cc = del_vif_locked(vifi);
1045     MRW_WUNLOCK();
1046 
1047     return cc;
1048 }
1049 
1050 /*
1051  * update an mfc entry without resetting counters and S,G addresses.
1052  */
1053 static void
1054 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1055 {
1056     int i;
1057 
1058     rt->mfc_parent = mfccp->mfcc_parent;
1059     for (i = 0; i < V_numvifs; i++) {
1060 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1061 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1062 	    MRT_MFC_FLAGS_ALL;
1063     }
1064     /* set the RP address */
1065     if (V_mrt_api_config & MRT_MFC_RP)
1066 	rt->mfc_rp = mfccp->mfcc_rp;
1067     else
1068 	rt->mfc_rp.s_addr = INADDR_ANY;
1069 }
1070 
1071 /*
1072  * fully initialize an mfc entry from the parameter.
1073  */
1074 static void
1075 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1076 {
1077     rt->mfc_origin     = mfccp->mfcc_origin;
1078     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1079 
1080     update_mfc_params(rt, mfccp);
1081 
1082     /* initialize pkt counters per src-grp */
1083     rt->mfc_pkt_cnt    = 0;
1084     rt->mfc_byte_cnt   = 0;
1085     rt->mfc_wrong_if   = 0;
1086     timevalclear(&rt->mfc_last_assert);
1087 }
1088 
1089 static void
1090 expire_mfc(struct mfc *rt)
1091 {
1092 	struct rtdetq *rte;
1093 
1094 	MRW_WLOCK_ASSERT();
1095 
1096 	free_bw_list(rt->mfc_bw_meter_leq);
1097 	free_bw_list(rt->mfc_bw_meter_geq);
1098 
1099 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1100 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1101 		if (rte) {
1102 			m_freem(rte->m);
1103 			free(rte, M_MRTABLE);
1104 		}
1105 	}
1106 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1107 
1108 	LIST_REMOVE(rt, mfc_hash);
1109 	free(rt, M_MRTABLE);
1110 }
1111 
1112 /*
1113  * Add an mfc entry
1114  */
1115 static int
1116 add_mfc(struct mfcctl2 *mfccp)
1117 {
1118     struct mfc *rt;
1119     struct rtdetq *rte;
1120     u_long hash = 0;
1121     u_short nstl;
1122 
1123     MRW_WLOCK();
1124     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1125 
1126     /* If an entry already exists, just update the fields */
1127     if (rt) {
1128 	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1129 	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1130 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1131 	    mfccp->mfcc_parent);
1132 	update_mfc_params(rt, mfccp);
1133 	MRW_WUNLOCK();
1134 	return (0);
1135     }
1136 
1137     /*
1138      * Find the entry for which the upcall was made and update
1139      */
1140     nstl = 0;
1141     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1142     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1143 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1144 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1145 	    !buf_ring_empty(rt->mfc_stall_ring)) {
1146 		CTR5(KTR_IPMF,
1147 		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1148 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1149 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1150 		    mfccp->mfcc_parent,
1151 		    rt->mfc_stall_ring);
1152 		if (nstl++)
1153 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1154 
1155 		init_mfc_params(rt, mfccp);
1156 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1157 		V_nexpire[hash]--;
1158 
1159 		/* Free queued packets, but attempt to forward them first. */
1160 		while (!buf_ring_empty(rt->mfc_stall_ring)) {
1161 			rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1162 			if (rte->ifp != NULL)
1163 				ip_mdq(rte->m, rte->ifp, rt, -1);
1164 			m_freem(rte->m);
1165 			free(rte, M_MRTABLE);
1166 		}
1167 	}
1168     }
1169 
1170     /*
1171      * It is possible that an entry is being inserted without an upcall
1172      */
1173     if (nstl == 0) {
1174 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1175 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1176 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1177 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1178 			init_mfc_params(rt, mfccp);
1179 			if (rt->mfc_expire)
1180 			    V_nexpire[hash]--;
1181 			rt->mfc_expire = 0;
1182 			break; /* XXX */
1183 		}
1184 	}
1185 
1186 	if (rt == NULL) {		/* no upcall, so make a new entry */
1187 	    rt = mfc_alloc();
1188 	    if (rt == NULL) {
1189 		MRW_WUNLOCK();
1190 		return (ENOBUFS);
1191 	    }
1192 
1193 	    init_mfc_params(rt, mfccp);
1194 
1195 	    rt->mfc_expire     = 0;
1196 	    rt->mfc_bw_meter_leq = NULL;
1197 	    rt->mfc_bw_meter_geq = NULL;
1198 
1199 	    /* insert new entry at head of hash chain */
1200 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1201 	}
1202     }
1203 
1204     MRW_WUNLOCK();
1205 
1206     return (0);
1207 }
1208 
1209 /*
1210  * Delete an mfc entry
1211  */
1212 static int
1213 del_mfc(struct mfcctl2 *mfccp)
1214 {
1215     struct in_addr	origin;
1216     struct in_addr	mcastgrp;
1217     struct mfc		*rt;
1218 
1219     origin = mfccp->mfcc_origin;
1220     mcastgrp = mfccp->mfcc_mcastgrp;
1221 
1222     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1223 	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1224 
1225     MRW_WLOCK();
1226 
1227     rt = mfc_find(&origin, &mcastgrp);
1228     if (rt == NULL) {
1229 	MRW_WUNLOCK();
1230 	return EADDRNOTAVAIL;
1231     }
1232 
1233     /*
1234      * free the bw_meter entries
1235      */
1236     free_bw_list(rt->mfc_bw_meter_leq);
1237     rt->mfc_bw_meter_leq = NULL;
1238     free_bw_list(rt->mfc_bw_meter_geq);
1239     rt->mfc_bw_meter_geq = NULL;
1240 
1241     LIST_REMOVE(rt, mfc_hash);
1242     free(rt, M_MRTABLE);
1243 
1244     MRW_WUNLOCK();
1245 
1246     return (0);
1247 }
1248 
1249 /*
1250  * Send a message to the routing daemon on the multicast routing socket.
1251  */
1252 static int
1253 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1254 {
1255     if (s) {
1256 	SOCKBUF_LOCK(&s->so_rcv);
1257 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1258 	    NULL) != 0) {
1259 	    sorwakeup_locked(s);
1260 	    return 0;
1261 	}
1262 	soroverflow_locked(s);
1263     }
1264     m_freem(mm);
1265     return -1;
1266 }
1267 
1268 /*
1269  * IP multicast forwarding function. This function assumes that the packet
1270  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1271  * pointed to by "ifp", and the packet is to be relayed to other networks
1272  * that have members of the packet's destination IP multicast group.
1273  *
1274  * The packet is returned unscathed to the caller, unless it is
1275  * erroneous, in which case a non-zero return value tells the caller to
1276  * discard it.
1277  */
1278 
1279 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1280 
1281 static int
1282 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1283     struct ip_moptions *imo)
1284 {
1285 	struct mfc *rt;
1286 	int error;
1287 	vifi_t vifi;
1288 	struct mbuf *mb0;
1289 	struct rtdetq *rte;
1290 	u_long hash;
1291 	int hlen;
1292 
1293 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1294 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1295 
1296 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1297 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1298 		/*
1299 		 * Packet arrived via a physical interface or
1300 		 * an encapsulated tunnel or a register_vif.
1301 		 */
1302 	} else {
1303 		/*
1304 		 * Packet arrived through a source-route tunnel.
1305 		 * Source-route tunnels are no longer supported.
1306 		 */
1307 		return (1);
1308 	}
1309 
1310 	/*
1311 	 * BEGIN: MCAST ROUTING HOT PATH
1312 	 */
1313 	MRW_RLOCK();
1314 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1315 		if (ip->ip_ttl < MAXTTL)
1316 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1317 		error = ip_mdq(m, ifp, NULL, vifi);
1318 		MRW_RUNLOCK();
1319 		return error;
1320 	}
1321 
1322 	/*
1323 	 * Don't forward a packet with time-to-live of zero or one,
1324 	 * or a packet destined to a local-only group.
1325 	 */
1326 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1327 		MRW_RUNLOCK();
1328 		return 0;
1329 	}
1330 
1331 	mfc_find_retry:
1332 	/*
1333 	 * Determine forwarding vifs from the forwarding cache table
1334 	 */
1335 	MRTSTAT_INC(mrts_mfc_lookups);
1336 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1337 
1338 	/* Entry exists, so forward if necessary */
1339 	if (rt != NULL) {
1340 		error = ip_mdq(m, ifp, rt, -1);
1341 		/* Generic unlock here as we might release R or W lock */
1342 		MRW_UNLOCK();
1343 		return error;
1344 	}
1345 
1346 	/*
1347 	 * END: MCAST ROUTING HOT PATH
1348 	 */
1349 
1350 	/* Further processing must be done with WLOCK taken */
1351 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1352 		MRW_RUNLOCK();
1353 		MRW_WLOCK();
1354 		goto mfc_find_retry;
1355 	}
1356 
1357 	/*
1358 	 * If we don't have a route for packet's origin,
1359 	 * Make a copy of the packet & send message to routing daemon
1360 	 */
1361 	hlen = ip->ip_hl << 2;
1362 
1363 	MRTSTAT_INC(mrts_mfc_misses);
1364 	MRTSTAT_INC(mrts_no_route);
1365 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1366 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1367 
1368 	/*
1369 	 * Allocate mbufs early so that we don't do extra work if we are
1370 	 * just going to fail anyway.  Make sure to pullup the header so
1371 	 * that other people can't step on it.
1372 	 */
1373 	rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
1374 	    M_NOWAIT|M_ZERO);
1375 	if (rte == NULL) {
1376 		MRW_WUNLOCK();
1377 		return ENOBUFS;
1378 	}
1379 
1380 	mb0 = m_copypacket(m, M_NOWAIT);
1381 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1382 		mb0 = m_pullup(mb0, hlen);
1383 	if (mb0 == NULL) {
1384 		free(rte, M_MRTABLE);
1385 		MRW_WUNLOCK();
1386 		return ENOBUFS;
1387 	}
1388 
1389 	/* is there an upcall waiting for this flow ? */
1390 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1391 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1392 	{
1393 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1394 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1395 		    !buf_ring_empty(rt->mfc_stall_ring))
1396 			break;
1397 	}
1398 
1399 	if (rt == NULL) {
1400 		int i;
1401 		struct igmpmsg *im;
1402 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1403 		struct mbuf *mm;
1404 
1405 		/*
1406 		 * Locate the vifi for the incoming interface for this packet.
1407 		 * If none found, drop packet.
1408 		 */
1409 		for (vifi = 0; vifi < V_numvifs &&
1410 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1411 			;
1412 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1413 			goto non_fatal;
1414 
1415 		/* no upcall, so make a new entry */
1416 		rt = mfc_alloc();
1417 		if (rt == NULL)
1418 			goto fail;
1419 
1420 		/* Make a copy of the header to send to the user level process */
1421 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1422 		if (mm == NULL)
1423 			goto fail1;
1424 
1425 		/*
1426 		 * Send message to routing daemon to install
1427 		 * a route into the kernel table
1428 		 */
1429 
1430 		im = mtod(mm, struct igmpmsg*);
1431 		im->im_msgtype = IGMPMSG_NOCACHE;
1432 		im->im_mbz = 0;
1433 		im->im_vif = vifi;
1434 
1435 		MRTSTAT_INC(mrts_upcalls);
1436 
1437 		k_igmpsrc.sin_addr = ip->ip_src;
1438 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1439 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1440 			MRTSTAT_INC(mrts_upq_sockfull);
1441 			fail1: free(rt, M_MRTABLE);
1442 			fail: free(rte, M_MRTABLE);
1443 			m_freem(mb0);
1444 			MRW_WUNLOCK();
1445 			return ENOBUFS;
1446 		}
1447 
1448 		/* insert new entry at head of hash chain */
1449 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1450 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1451 		rt->mfc_expire = UPCALL_EXPIRE;
1452 		V_nexpire[hash]++;
1453 		for (i = 0; i < V_numvifs; i++) {
1454 			rt->mfc_ttls[i] = 0;
1455 			rt->mfc_flags[i] = 0;
1456 		}
1457 		rt->mfc_parent = -1;
1458 
1459 		/* clear the RP address */
1460 		rt->mfc_rp.s_addr = INADDR_ANY;
1461 		rt->mfc_bw_meter_leq = NULL;
1462 		rt->mfc_bw_meter_geq = NULL;
1463 
1464 		/* initialize pkt counters per src-grp */
1465 		rt->mfc_pkt_cnt = 0;
1466 		rt->mfc_byte_cnt = 0;
1467 		rt->mfc_wrong_if = 0;
1468 		timevalclear(&rt->mfc_last_assert);
1469 
1470 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1471 
1472 		/* Add RT to hashtable as it didn't exist before */
1473 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1474 	} else {
1475 		/* determine if queue has overflowed */
1476 		if (buf_ring_full(rt->mfc_stall_ring)) {
1477 			MRTSTAT_INC(mrts_upq_ovflw);
1478 			non_fatal: free(rte, M_MRTABLE);
1479 			m_freem(mb0);
1480 			MRW_WUNLOCK();
1481 			return (0);
1482 		}
1483 
1484 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1485 	}
1486 
1487 	rte->m = mb0;
1488 	rte->ifp = ifp;
1489 
1490 	MRW_WUNLOCK();
1491 
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Clean up the cache entry if upcall is not serviced
1497  */
1498 static void
1499 expire_upcalls(void *arg)
1500 {
1501     u_long i;
1502 
1503     CURVNET_SET((struct vnet *) arg);
1504 
1505     /*This callout is always run with MRW_WLOCK taken. */
1506 
1507     for (i = 0; i < mfchashsize; i++) {
1508 	struct mfc *rt, *nrt;
1509 
1510 	if (V_nexpire[i] == 0)
1511 	    continue;
1512 
1513 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1514 		if (buf_ring_empty(rt->mfc_stall_ring))
1515 			continue;
1516 
1517 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1518 			continue;
1519 
1520 		MRTSTAT_INC(mrts_cache_cleanups);
1521 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1522 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1523 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1524 
1525 		expire_mfc(rt);
1526 	    }
1527     }
1528 
1529     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1530 	curvnet);
1531 
1532     CURVNET_RESTORE();
1533 }
1534 
1535 /*
1536  * Packet forwarding routine once entry in the cache is made
1537  */
1538 static int
1539 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1540 {
1541     struct ip  *ip = mtod(m, struct ip *);
1542     vifi_t vifi;
1543     int plen = ntohs(ip->ip_len);
1544 
1545     MRW_LOCK_ASSERT();
1546 
1547     /*
1548      * If xmt_vif is not -1, send on only the requested vif.
1549      *
1550      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1551      */
1552     if (xmt_vif < V_numvifs) {
1553 	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1554 		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1555 	else
1556 		phyint_send(ip, V_viftable + xmt_vif, m);
1557 	return 1;
1558     }
1559 
1560     /*
1561      * Don't forward if it didn't arrive from the parent vif for its origin.
1562      */
1563     vifi = rt->mfc_parent;
1564     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1565 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1566 	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1567 	MRTSTAT_INC(mrts_wrong_if);
1568 	++rt->mfc_wrong_if;
1569 	/*
1570 	 * If we are doing PIM assert processing, send a message
1571 	 * to the routing daemon.
1572 	 *
1573 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1574 	 * can complete the SPT switch, regardless of the type
1575 	 * of the iif (broadcast media, GRE tunnel, etc).
1576 	 */
1577 	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1578 	    V_viftable[vifi].v_ifp) {
1579 	    if (ifp == V_multicast_register_if)
1580 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1581 
1582 	    /* Get vifi for the incoming packet */
1583 	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1584 		vifi++)
1585 		;
1586 	    if (vifi >= V_numvifs)
1587 		return 0;	/* The iif is not found: ignore the packet. */
1588 
1589 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1590 		return 0;	/* WRONGVIF disabled: ignore the packet */
1591 
1592 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1593 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1594 		struct igmpmsg *im;
1595 		int hlen = ip->ip_hl << 2;
1596 		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1597 
1598 		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1599 		    mm = m_pullup(mm, hlen);
1600 		if (mm == NULL)
1601 		    return ENOBUFS;
1602 
1603 		im = mtod(mm, struct igmpmsg *);
1604 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1605 		im->im_mbz		= 0;
1606 		im->im_vif		= vifi;
1607 
1608 		MRTSTAT_INC(mrts_upcalls);
1609 
1610 		k_igmpsrc.sin_addr = im->im_src;
1611 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1612 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1613 		    MRTSTAT_INC(mrts_upq_sockfull);
1614 		    return ENOBUFS;
1615 		}
1616 	    }
1617 	}
1618 	return 0;
1619     }
1620 
1621     /* If I sourced this packet, it counts as output, else it was input. */
1622     mtx_lock_spin(&V_viftable[vifi].v_spin);
1623     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1624 	V_viftable[vifi].v_pkt_out++;
1625 	V_viftable[vifi].v_bytes_out += plen;
1626     } else {
1627 	V_viftable[vifi].v_pkt_in++;
1628 	V_viftable[vifi].v_bytes_in += plen;
1629     }
1630     mtx_unlock_spin(&V_viftable[vifi].v_spin);
1631 
1632     rt->mfc_pkt_cnt++;
1633     rt->mfc_byte_cnt += plen;
1634 
1635     /*
1636      * For each vif, decide if a copy of the packet should be forwarded.
1637      * Forward if:
1638      *		- the ttl exceeds the vif's threshold
1639      *		- there are group members downstream on interface
1640      */
1641     for (vifi = 0; vifi < V_numvifs; vifi++)
1642 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1643 	    V_viftable[vifi].v_pkt_out++;
1644 	    V_viftable[vifi].v_bytes_out += plen;
1645 	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1646 		pim_register_send(ip, V_viftable + vifi, m, rt);
1647 	    else
1648 		phyint_send(ip, V_viftable + vifi, m);
1649 	}
1650 
1651     /*
1652      * Perform upcall-related bw measuring.
1653      */
1654     if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1655 	struct bw_meter *x;
1656 	struct timeval now;
1657 
1658 	microtime(&now);
1659 	/* Process meters for Greater-or-EQual case */
1660 	for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1661 		bw_meter_geq_receive_packet(x, plen, &now);
1662 
1663 	/* Process meters for Lower-or-EQual case */
1664 	for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1665 		/*
1666 		 * Record that a packet is received.
1667 		 * Spin lock has to be taken as callout context
1668 		 * (expire_bw_meter_leq) might modify these fields
1669 		 * as well
1670 		 */
1671 		mtx_lock_spin(&x->bm_spin);
1672 		x->bm_measured.b_packets++;
1673 		x->bm_measured.b_bytes += plen;
1674 		mtx_unlock_spin(&x->bm_spin);
1675 	}
1676     }
1677 
1678     return 0;
1679 }
1680 
1681 /*
1682  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1683  */
1684 static int
1685 X_legal_vif_num(int vif)
1686 {
1687 	int ret;
1688 
1689 	ret = 0;
1690 	if (vif < 0)
1691 		return (ret);
1692 
1693 	MRW_RLOCK();
1694 	if (vif < V_numvifs)
1695 		ret = 1;
1696 	MRW_RUNLOCK();
1697 
1698 	return (ret);
1699 }
1700 
1701 /*
1702  * Return the local address used by this vif
1703  */
1704 static u_long
1705 X_ip_mcast_src(int vifi)
1706 {
1707 	in_addr_t addr;
1708 
1709 	addr = INADDR_ANY;
1710 	if (vifi < 0)
1711 		return (addr);
1712 
1713 	MRW_RLOCK();
1714 	if (vifi < V_numvifs)
1715 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1716 	MRW_RUNLOCK();
1717 
1718 	return (addr);
1719 }
1720 
1721 static void
1722 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1723 {
1724     struct mbuf *mb_copy;
1725     int hlen = ip->ip_hl << 2;
1726 
1727     MRW_LOCK_ASSERT();
1728 
1729     /*
1730      * Make a new reference to the packet; make sure that
1731      * the IP header is actually copied, not just referenced,
1732      * so that ip_output() only scribbles on the copy.
1733      */
1734     mb_copy = m_copypacket(m, M_NOWAIT);
1735     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1736 	mb_copy = m_pullup(mb_copy, hlen);
1737     if (mb_copy == NULL)
1738 	return;
1739 
1740     send_packet(vifp, mb_copy);
1741 }
1742 
1743 static void
1744 send_packet(struct vif *vifp, struct mbuf *m)
1745 {
1746 	struct ip_moptions imo;
1747 	int error __unused;
1748 
1749 	MRW_LOCK_ASSERT();
1750 
1751 	imo.imo_multicast_ifp  = vifp->v_ifp;
1752 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1753 	imo.imo_multicast_loop = !!in_mcast_loop;
1754 	imo.imo_multicast_vif  = -1;
1755 	STAILQ_INIT(&imo.imo_head);
1756 
1757 	/*
1758 	 * Re-entrancy should not be a problem here, because
1759 	 * the packets that we send out and are looped back at us
1760 	 * should get rejected because they appear to come from
1761 	 * the loopback interface, thus preventing looping.
1762 	 */
1763 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1764 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1765 	    (ptrdiff_t)(vifp - V_viftable), error);
1766 }
1767 
1768 /*
1769  * Stubs for old RSVP socket shim implementation.
1770  */
1771 
1772 static int
1773 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1774 {
1775 
1776 	return (EOPNOTSUPP);
1777 }
1778 
1779 static void
1780 X_ip_rsvp_force_done(struct socket *so __unused)
1781 {
1782 
1783 }
1784 
1785 static int
1786 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1787 {
1788 	struct mbuf *m;
1789 
1790 	m = *mp;
1791 	*mp = NULL;
1792 	if (!V_rsvp_on)
1793 		m_freem(m);
1794 	return (IPPROTO_DONE);
1795 }
1796 
1797 /*
1798  * Code for bandwidth monitors
1799  */
1800 
1801 /*
1802  * Define common interface for timeval-related methods
1803  */
1804 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1805 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1806 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1807 
1808 static uint32_t
1809 compute_bw_meter_flags(struct bw_upcall *req)
1810 {
1811     uint32_t flags = 0;
1812 
1813     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1814 	flags |= BW_METER_UNIT_PACKETS;
1815     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1816 	flags |= BW_METER_UNIT_BYTES;
1817     if (req->bu_flags & BW_UPCALL_GEQ)
1818 	flags |= BW_METER_GEQ;
1819     if (req->bu_flags & BW_UPCALL_LEQ)
1820 	flags |= BW_METER_LEQ;
1821 
1822     return flags;
1823 }
1824 
1825 static void
1826 expire_bw_meter_leq(void *arg)
1827 {
1828 	struct bw_meter *x = arg;
1829 	struct timeval now;
1830 	/*
1831 	 * INFO:
1832 	 * callout is always executed with MRW_WLOCK taken
1833 	 */
1834 
1835 	CURVNET_SET((struct vnet *)x->arg);
1836 
1837 	microtime(&now);
1838 
1839 	/*
1840 	 * Test if we should deliver an upcall
1841 	 */
1842 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1843 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1844 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1845 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1846 		/* Prepare an upcall for delivery */
1847 		bw_meter_prepare_upcall(x, &now);
1848 	}
1849 
1850 	/* Send all upcalls that are pending delivery */
1851 	mtx_lock(&V_upcall_thread_mtx);
1852 	cv_signal(&V_upcall_thread_cv);
1853 	mtx_unlock(&V_upcall_thread_mtx);
1854 
1855 	/* Reset counters */
1856 	x->bm_start_time = now;
1857 	/* Spin lock has to be taken as ip_forward context
1858 	 * might modify these fields as well
1859 	 */
1860 	mtx_lock_spin(&x->bm_spin);
1861 	x->bm_measured.b_bytes = 0;
1862 	x->bm_measured.b_packets = 0;
1863 	mtx_unlock_spin(&x->bm_spin);
1864 
1865 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1866 
1867 	CURVNET_RESTORE();
1868 }
1869 
1870 /*
1871  * Add a bw_meter entry
1872  */
1873 static int
1874 add_bw_upcall(struct bw_upcall *req)
1875 {
1876 	struct mfc *mfc;
1877 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1878 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1879 	struct timeval now;
1880 	struct bw_meter *x, **bwm_ptr;
1881 	uint32_t flags;
1882 
1883 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1884 		return EOPNOTSUPP;
1885 
1886 	/* Test if the flags are valid */
1887 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1888 		return EINVAL;
1889 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1890 		return EINVAL;
1891 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1892 			== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1893 		return EINVAL;
1894 
1895 	/* Test if the threshold time interval is valid */
1896 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1897 		return EINVAL;
1898 
1899 	flags = compute_bw_meter_flags(req);
1900 
1901 	/*
1902 	 * Find if we have already same bw_meter entry
1903 	 */
1904 	MRW_WLOCK();
1905 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1906 	if (mfc == NULL) {
1907 		MRW_WUNLOCK();
1908 		return EADDRNOTAVAIL;
1909 	}
1910 
1911 	/* Choose an appropriate bw_meter list */
1912 	if (req->bu_flags & BW_UPCALL_GEQ)
1913 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1914 	else
1915 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1916 
1917 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1918 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1919 		    &req->bu_threshold.b_time, ==))
1920 		    && (x->bm_threshold.b_packets
1921 		    == req->bu_threshold.b_packets)
1922 		    && (x->bm_threshold.b_bytes
1923 		    == req->bu_threshold.b_bytes)
1924 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1925 		    == flags) {
1926 			MRW_WUNLOCK();
1927 			return 0; /* XXX Already installed */
1928 		}
1929 	}
1930 
1931 	/* Allocate the new bw_meter entry */
1932 	x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
1933 	    M_ZERO | M_NOWAIT);
1934 	if (x == NULL) {
1935 		MRW_WUNLOCK();
1936 		return ENOBUFS;
1937 	}
1938 
1939 	/* Set the new bw_meter entry */
1940 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1941 	microtime(&now);
1942 	x->bm_start_time = now;
1943 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1944 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1945 	x->bm_measured.b_packets = 0;
1946 	x->bm_measured.b_bytes = 0;
1947 	x->bm_flags = flags;
1948 	x->bm_time_next = NULL;
1949 	x->bm_mfc = mfc;
1950 	x->arg = curvnet;
1951 	sprintf(x->bm_spin_name, "BM spin %p", x);
1952 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1953 
1954 	/* For LEQ case create periodic callout */
1955 	if (req->bu_flags & BW_UPCALL_LEQ) {
1956 		callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
1957 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1958 		    expire_bw_meter_leq, x);
1959 	}
1960 
1961 	/* Add the new bw_meter entry to the front of entries for this MFC */
1962 	x->bm_mfc_next = *bwm_ptr;
1963 	*bwm_ptr = x;
1964 
1965 	MRW_WUNLOCK();
1966 
1967 	return 0;
1968 }
1969 
1970 static void
1971 free_bw_list(struct bw_meter *list)
1972 {
1973     while (list != NULL) {
1974 	struct bw_meter *x = list;
1975 
1976 	/* MRW_WLOCK must be held here */
1977 	if (x->bm_flags & BW_METER_LEQ) {
1978 		callout_drain(&x->bm_meter_callout);
1979 		mtx_destroy(&x->bm_spin);
1980 	}
1981 
1982 	list = list->bm_mfc_next;
1983 	free(x, M_BWMETER);
1984     }
1985 }
1986 
1987 /*
1988  * Delete one or multiple bw_meter entries
1989  */
1990 static int
1991 del_bw_upcall(struct bw_upcall *req)
1992 {
1993     struct mfc *mfc;
1994     struct bw_meter *x, **bwm_ptr;
1995 
1996     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1997 	return EOPNOTSUPP;
1998 
1999     MRW_WLOCK();
2000 
2001     /* Find the corresponding MFC entry */
2002     mfc = mfc_find(&req->bu_src, &req->bu_dst);
2003     if (mfc == NULL) {
2004 	MRW_WUNLOCK();
2005 	return EADDRNOTAVAIL;
2006     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2007 	/*
2008 	 * Delete all bw_meter entries for this mfc
2009 	 */
2010 	struct bw_meter *list;
2011 
2012 	/* Free LEQ list */
2013 	list = mfc->mfc_bw_meter_leq;
2014 	mfc->mfc_bw_meter_leq = NULL;
2015 	free_bw_list(list);
2016 
2017 	/* Free GEQ list */
2018 	list = mfc->mfc_bw_meter_geq;
2019 	mfc->mfc_bw_meter_geq = NULL;
2020 	free_bw_list(list);
2021 	MRW_WUNLOCK();
2022 	return 0;
2023     } else {			/* Delete a single bw_meter entry */
2024 	struct bw_meter *prev;
2025 	uint32_t flags = 0;
2026 
2027 	flags = compute_bw_meter_flags(req);
2028 
2029 	/* Choose an appropriate bw_meter list */
2030 	if (req->bu_flags & BW_UPCALL_GEQ)
2031 		bwm_ptr = &mfc->mfc_bw_meter_geq;
2032 	else
2033 		bwm_ptr = &mfc->mfc_bw_meter_leq;
2034 
2035 	/* Find the bw_meter entry to delete */
2036 	for (prev = NULL, x = *bwm_ptr; x != NULL;
2037 	     prev = x, x = x->bm_mfc_next) {
2038 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2039 			       &req->bu_threshold.b_time, ==)) &&
2040 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2041 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2042 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2043 		break;
2044 	}
2045 	if (x != NULL) { /* Delete entry from the list for this MFC */
2046 	    if (prev != NULL)
2047 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2048 	    else
2049 		*bwm_ptr = x->bm_mfc_next;/* new head of list */
2050 
2051 	    if (req->bu_flags & BW_UPCALL_LEQ)
2052 		    callout_stop(&x->bm_meter_callout);
2053 
2054 	    MRW_WUNLOCK();
2055 	    /* Free the bw_meter entry */
2056 	    free(x, M_BWMETER);
2057 	    return 0;
2058 	} else {
2059 	    MRW_WUNLOCK();
2060 	    return EINVAL;
2061 	}
2062     }
2063     /* NOTREACHED */
2064 }
2065 
2066 /*
2067  * Perform bandwidth measurement processing that may result in an upcall
2068  */
2069 static void
2070 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2071 {
2072 	struct timeval delta;
2073 
2074 	MRW_LOCK_ASSERT();
2075 
2076 	delta = *nowp;
2077 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2078 
2079 	/*
2080 	 * Processing for ">=" type of bw_meter entry.
2081 	 * bm_spin does not have to be hold here as in GEQ
2082 	 * case this is the only context accessing bm_measured.
2083 	 */
2084 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2085 	    /* Reset the bw_meter entry */
2086 	    x->bm_start_time = *nowp;
2087 	    x->bm_measured.b_packets = 0;
2088 	    x->bm_measured.b_bytes = 0;
2089 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2090 	}
2091 
2092 	/* Record that a packet is received */
2093 	x->bm_measured.b_packets++;
2094 	x->bm_measured.b_bytes += plen;
2095 
2096 	/*
2097 	 * Test if we should deliver an upcall
2098 	 */
2099 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2100 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2101 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2102 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2103 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2104 			/* Prepare an upcall for delivery */
2105 			bw_meter_prepare_upcall(x, nowp);
2106 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2107 		}
2108 	}
2109 }
2110 
2111 /*
2112  * Prepare a bandwidth-related upcall
2113  */
2114 static void
2115 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2116 {
2117 	struct timeval delta;
2118 	struct bw_upcall *u;
2119 
2120 	MRW_LOCK_ASSERT();
2121 
2122 	/*
2123 	 * Compute the measured time interval
2124 	 */
2125 	delta = *nowp;
2126 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2127 
2128 	/*
2129 	 * Set the bw_upcall entry
2130 	 */
2131 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2132 	if (!u) {
2133 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2134 		return;
2135 	}
2136 	u->bu_src = x->bm_mfc->mfc_origin;
2137 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2138 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2139 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2140 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2141 	u->bu_measured.b_time = delta;
2142 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2143 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2144 	u->bu_flags = 0;
2145 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2146 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2147 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2148 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2149 	if (x->bm_flags & BW_METER_GEQ)
2150 		u->bu_flags |= BW_UPCALL_GEQ;
2151 	if (x->bm_flags & BW_METER_LEQ)
2152 		u->bu_flags |= BW_UPCALL_LEQ;
2153 
2154 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2155 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2156 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2157 		mtx_lock(&V_upcall_thread_mtx);
2158 		cv_signal(&V_upcall_thread_cv);
2159 		mtx_unlock(&V_upcall_thread_mtx);
2160 	}
2161 }
2162 /*
2163  * Send the pending bandwidth-related upcalls
2164  */
2165 static void
2166 bw_upcalls_send(void)
2167 {
2168     struct mbuf *m;
2169     int len = 0;
2170     struct bw_upcall *bu;
2171     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2172     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2173 				      0,		/* unused2 */
2174 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2175 				      0,		/* im_mbz  */
2176 				      0,		/* im_vif  */
2177 				      0,		/* unused3 */
2178 				      { 0 },		/* im_src  */
2179 				      { 0 } };		/* im_dst  */
2180 
2181     MRW_LOCK_ASSERT();
2182 
2183     if (buf_ring_empty(V_bw_upcalls_ring))
2184 	return;
2185 
2186     /*
2187      * Allocate a new mbuf, initialize it with the header and
2188      * the payload for the pending calls.
2189      */
2190     m = m_gethdr(M_NOWAIT, MT_DATA);
2191     if (m == NULL) {
2192 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2193 	return;
2194     }
2195 
2196     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2197     len += sizeof(struct igmpmsg);
2198     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2199 	m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2200 	len += sizeof(struct bw_upcall);
2201 	free(bu, M_MRTABLE);
2202     }
2203 
2204     /*
2205      * Send the upcalls
2206      * XXX do we need to set the address in k_igmpsrc ?
2207      */
2208     MRTSTAT_INC(mrts_upcalls);
2209     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2210 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2211 	MRTSTAT_INC(mrts_upq_sockfull);
2212     }
2213 }
2214 
2215 /*
2216  * A periodic function for sending all upcalls that are pending delivery
2217  */
2218 static void
2219 expire_bw_upcalls_send(void *arg)
2220 {
2221     CURVNET_SET((struct vnet *) arg);
2222 
2223     /* This callout is run with MRW_RLOCK taken */
2224 
2225     bw_upcalls_send();
2226 
2227     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2228 	curvnet);
2229     CURVNET_RESTORE();
2230 }
2231 
2232 /*
2233  * End of bandwidth monitoring code
2234  */
2235 
2236 /*
2237  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2238  *
2239  */
2240 static int
2241 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2242     struct mfc *rt)
2243 {
2244     struct mbuf *mb_copy, *mm;
2245 
2246     /*
2247      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2248      * rendezvous point was unspecified, and we were told not to.
2249      */
2250     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2251 	in_nullhost(rt->mfc_rp))
2252 	return 0;
2253 
2254     mb_copy = pim_register_prepare(ip, m);
2255     if (mb_copy == NULL)
2256 	return ENOBUFS;
2257 
2258     /*
2259      * Send all the fragments. Note that the mbuf for each fragment
2260      * is freed by the sending machinery.
2261      */
2262     for (mm = mb_copy; mm; mm = mb_copy) {
2263 	mb_copy = mm->m_nextpkt;
2264 	mm->m_nextpkt = 0;
2265 	mm = m_pullup(mm, sizeof(struct ip));
2266 	if (mm != NULL) {
2267 	    ip = mtod(mm, struct ip *);
2268 	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2269 		pim_register_send_rp(ip, vifp, mm, rt);
2270 	    } else {
2271 		pim_register_send_upcall(ip, vifp, mm, rt);
2272 	    }
2273 	}
2274     }
2275 
2276     return 0;
2277 }
2278 
2279 /*
2280  * Return a copy of the data packet that is ready for PIM Register
2281  * encapsulation.
2282  * XXX: Note that in the returned copy the IP header is a valid one.
2283  */
2284 static struct mbuf *
2285 pim_register_prepare(struct ip *ip, struct mbuf *m)
2286 {
2287     struct mbuf *mb_copy = NULL;
2288     int mtu;
2289 
2290     /* Take care of delayed checksums */
2291     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2292 	in_delayed_cksum(m);
2293 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2294     }
2295 
2296     /*
2297      * Copy the old packet & pullup its IP header into the
2298      * new mbuf so we can modify it.
2299      */
2300     mb_copy = m_copypacket(m, M_NOWAIT);
2301     if (mb_copy == NULL)
2302 	return NULL;
2303     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2304     if (mb_copy == NULL)
2305 	return NULL;
2306 
2307     /* take care of the TTL */
2308     ip = mtod(mb_copy, struct ip *);
2309     --ip->ip_ttl;
2310 
2311     /* Compute the MTU after the PIM Register encapsulation */
2312     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2313 
2314     if (ntohs(ip->ip_len) <= mtu) {
2315 	/* Turn the IP header into a valid one */
2316 	ip->ip_sum = 0;
2317 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2318     } else {
2319 	/* Fragment the packet */
2320 	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2321 	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2322 	    m_freem(mb_copy);
2323 	    return NULL;
2324 	}
2325     }
2326     return mb_copy;
2327 }
2328 
2329 /*
2330  * Send an upcall with the data packet to the user-level process.
2331  */
2332 static int
2333 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2334     struct mbuf *mb_copy, struct mfc *rt)
2335 {
2336     struct mbuf *mb_first;
2337     int len = ntohs(ip->ip_len);
2338     struct igmpmsg *im;
2339     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2340 
2341     MRW_LOCK_ASSERT();
2342 
2343     /*
2344      * Add a new mbuf with an upcall header
2345      */
2346     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2347     if (mb_first == NULL) {
2348 	m_freem(mb_copy);
2349 	return ENOBUFS;
2350     }
2351     mb_first->m_data += max_linkhdr;
2352     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2353     mb_first->m_len = sizeof(struct igmpmsg);
2354     mb_first->m_next = mb_copy;
2355 
2356     /* Send message to routing daemon */
2357     im = mtod(mb_first, struct igmpmsg *);
2358     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2359     im->im_mbz		= 0;
2360     im->im_vif		= vifp - V_viftable;
2361     im->im_src		= ip->ip_src;
2362     im->im_dst		= ip->ip_dst;
2363 
2364     k_igmpsrc.sin_addr	= ip->ip_src;
2365 
2366     MRTSTAT_INC(mrts_upcalls);
2367 
2368     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2369 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2370 	MRTSTAT_INC(mrts_upq_sockfull);
2371 	return ENOBUFS;
2372     }
2373 
2374     /* Keep statistics */
2375     PIMSTAT_INC(pims_snd_registers_msgs);
2376     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2377 
2378     return 0;
2379 }
2380 
2381 /*
2382  * Encapsulate the data packet in PIM Register message and send it to the RP.
2383  */
2384 static int
2385 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2386     struct mfc *rt)
2387 {
2388     struct mbuf *mb_first;
2389     struct ip *ip_outer;
2390     struct pim_encap_pimhdr *pimhdr;
2391     int len = ntohs(ip->ip_len);
2392     vifi_t vifi = rt->mfc_parent;
2393 
2394     MRW_LOCK_ASSERT();
2395 
2396     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2397 	m_freem(mb_copy);
2398 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2399     }
2400 
2401     /*
2402      * Add a new mbuf with the encapsulating header
2403      */
2404     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2405     if (mb_first == NULL) {
2406 	m_freem(mb_copy);
2407 	return ENOBUFS;
2408     }
2409     mb_first->m_data += max_linkhdr;
2410     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2411     mb_first->m_next = mb_copy;
2412 
2413     mb_first->m_pkthdr.len = len + mb_first->m_len;
2414 
2415     /*
2416      * Fill in the encapsulating IP and PIM header
2417      */
2418     ip_outer = mtod(mb_first, struct ip *);
2419     *ip_outer = pim_encap_iphdr;
2420     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2421 	sizeof(pim_encap_pimhdr));
2422     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2423     ip_outer->ip_dst = rt->mfc_rp;
2424     /*
2425      * Copy the inner header TOS to the outer header, and take care of the
2426      * IP_DF bit.
2427      */
2428     ip_outer->ip_tos = ip->ip_tos;
2429     if (ip->ip_off & htons(IP_DF))
2430 	ip_outer->ip_off |= htons(IP_DF);
2431     ip_fillid(ip_outer);
2432     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2433 					 + sizeof(pim_encap_iphdr));
2434     *pimhdr = pim_encap_pimhdr;
2435     /* If the iif crosses a border, set the Border-bit */
2436     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2437 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2438 
2439     mb_first->m_data += sizeof(pim_encap_iphdr);
2440     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2441     mb_first->m_data -= sizeof(pim_encap_iphdr);
2442 
2443     send_packet(vifp, mb_first);
2444 
2445     /* Keep statistics */
2446     PIMSTAT_INC(pims_snd_registers_msgs);
2447     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2448 
2449     return 0;
2450 }
2451 
2452 /*
2453  * pim_encapcheck() is called by the encap4_input() path at runtime to
2454  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2455  * into the kernel.
2456  */
2457 static int
2458 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2459     int proto __unused, void *arg __unused)
2460 {
2461 
2462     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2463     return (8);		/* claim the datagram. */
2464 }
2465 
2466 /*
2467  * PIM-SMv2 and PIM-DM messages processing.
2468  * Receives and verifies the PIM control messages, and passes them
2469  * up to the listening socket, using rip_input().
2470  * The only message with special processing is the PIM_REGISTER message
2471  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2472  * is passed to if_simloop().
2473  */
2474 static int
2475 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2476 {
2477     struct ip *ip = mtod(m, struct ip *);
2478     struct pim *pim;
2479     int iphlen = off;
2480     int minlen;
2481     int datalen = ntohs(ip->ip_len) - iphlen;
2482     int ip_tos;
2483 
2484     /* Keep statistics */
2485     PIMSTAT_INC(pims_rcv_total_msgs);
2486     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2487 
2488     /*
2489      * Validate lengths
2490      */
2491     if (datalen < PIM_MINLEN) {
2492 	PIMSTAT_INC(pims_rcv_tooshort);
2493 	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2494 	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2495 	m_freem(m);
2496 	return (IPPROTO_DONE);
2497     }
2498 
2499     /*
2500      * If the packet is at least as big as a REGISTER, go agead
2501      * and grab the PIM REGISTER header size, to avoid another
2502      * possible m_pullup() later.
2503      *
2504      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2505      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2506      */
2507     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2508     /*
2509      * Get the IP and PIM headers in contiguous memory, and
2510      * possibly the PIM REGISTER header.
2511      */
2512     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2513 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2514 	return (IPPROTO_DONE);
2515     }
2516 
2517     /* m_pullup() may have given us a new mbuf so reset ip. */
2518     ip = mtod(m, struct ip *);
2519     ip_tos = ip->ip_tos;
2520 
2521     /* adjust mbuf to point to the PIM header */
2522     m->m_data += iphlen;
2523     m->m_len  -= iphlen;
2524     pim = mtod(m, struct pim *);
2525 
2526     /*
2527      * Validate checksum. If PIM REGISTER, exclude the data packet.
2528      *
2529      * XXX: some older PIMv2 implementations don't make this distinction,
2530      * so for compatibility reason perform the checksum over part of the
2531      * message, and if error, then over the whole message.
2532      */
2533     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2534 	/* do nothing, checksum okay */
2535     } else if (in_cksum(m, datalen)) {
2536 	PIMSTAT_INC(pims_rcv_badsum);
2537 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2538 	m_freem(m);
2539 	return (IPPROTO_DONE);
2540     }
2541 
2542     /* PIM version check */
2543     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2544 	PIMSTAT_INC(pims_rcv_badversion);
2545 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2546 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2547 	m_freem(m);
2548 	return (IPPROTO_DONE);
2549     }
2550 
2551     /* restore mbuf back to the outer IP */
2552     m->m_data -= iphlen;
2553     m->m_len  += iphlen;
2554 
2555     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2556 	/*
2557 	 * Since this is a REGISTER, we'll make a copy of the register
2558 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2559 	 * routing daemon.
2560 	 */
2561 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2562 	struct mbuf *mcp;
2563 	struct ip *encap_ip;
2564 	u_int32_t *reghdr;
2565 	struct ifnet *vifp;
2566 
2567 	MRW_RLOCK();
2568 	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2569 	    MRW_RUNLOCK();
2570 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2571 		(int)V_reg_vif_num);
2572 	    m_freem(m);
2573 	    return (IPPROTO_DONE);
2574 	}
2575 	/* XXX need refcnt? */
2576 	vifp = V_viftable[V_reg_vif_num].v_ifp;
2577 	MRW_RUNLOCK();
2578 
2579 	/*
2580 	 * Validate length
2581 	 */
2582 	if (datalen < PIM_REG_MINLEN) {
2583 	    PIMSTAT_INC(pims_rcv_tooshort);
2584 	    PIMSTAT_INC(pims_rcv_badregisters);
2585 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2586 	    m_freem(m);
2587 	    return (IPPROTO_DONE);
2588 	}
2589 
2590 	reghdr = (u_int32_t *)(pim + 1);
2591 	encap_ip = (struct ip *)(reghdr + 1);
2592 
2593 	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2594 	    __func__, ntohl(encap_ip->ip_src.s_addr),
2595 	    ntohs(encap_ip->ip_len));
2596 
2597 	/* verify the version number of the inner packet */
2598 	if (encap_ip->ip_v != IPVERSION) {
2599 	    PIMSTAT_INC(pims_rcv_badregisters);
2600 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2601 	    m_freem(m);
2602 	    return (IPPROTO_DONE);
2603 	}
2604 
2605 	/* verify the inner packet is destined to a mcast group */
2606 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2607 	    PIMSTAT_INC(pims_rcv_badregisters);
2608 	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2609 		ntohl(encap_ip->ip_dst.s_addr));
2610 	    m_freem(m);
2611 	    return (IPPROTO_DONE);
2612 	}
2613 
2614 	/* If a NULL_REGISTER, pass it to the daemon */
2615 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2616 	    goto pim_input_to_daemon;
2617 
2618 	/*
2619 	 * Copy the TOS from the outer IP header to the inner IP header.
2620 	 */
2621 	if (encap_ip->ip_tos != ip_tos) {
2622 	    /* Outer TOS -> inner TOS */
2623 	    encap_ip->ip_tos = ip_tos;
2624 	    /* Recompute the inner header checksum. Sigh... */
2625 
2626 	    /* adjust mbuf to point to the inner IP header */
2627 	    m->m_data += (iphlen + PIM_MINLEN);
2628 	    m->m_len  -= (iphlen + PIM_MINLEN);
2629 
2630 	    encap_ip->ip_sum = 0;
2631 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2632 
2633 	    /* restore mbuf to point back to the outer IP header */
2634 	    m->m_data -= (iphlen + PIM_MINLEN);
2635 	    m->m_len  += (iphlen + PIM_MINLEN);
2636 	}
2637 
2638 	/*
2639 	 * Decapsulate the inner IP packet and loopback to forward it
2640 	 * as a normal multicast packet. Also, make a copy of the
2641 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2642 	 * to pass to the daemon later, so it can take the appropriate
2643 	 * actions (e.g., send back PIM_REGISTER_STOP).
2644 	 * XXX: here m->m_data points to the outer IP header.
2645 	 */
2646 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2647 	if (mcp == NULL) {
2648 	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2649 	    m_freem(m);
2650 	    return (IPPROTO_DONE);
2651 	}
2652 
2653 	/* Keep statistics */
2654 	/* XXX: registers_bytes include only the encap. mcast pkt */
2655 	PIMSTAT_INC(pims_rcv_registers_msgs);
2656 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2657 
2658 	/*
2659 	 * forward the inner ip packet; point m_data at the inner ip.
2660 	 */
2661 	m_adj(m, iphlen + PIM_MINLEN);
2662 
2663 	CTR4(KTR_IPMF,
2664 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2665 	    __func__,
2666 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2667 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2668 	    (int)V_reg_vif_num);
2669 
2670 	/* NB: vifp was collected above; can it change on us? */
2671 	if_simloop(vifp, m, dst.sin_family, 0);
2672 
2673 	/* prepare the register head to send to the mrouting daemon */
2674 	m = mcp;
2675     }
2676 
2677 pim_input_to_daemon:
2678     /*
2679      * Pass the PIM message up to the daemon; if it is a Register message,
2680      * pass the 'head' only up to the daemon. This includes the
2681      * outer IP header, PIM header, PIM-Register header and the
2682      * inner IP header.
2683      * XXX: the outer IP header pkt size of a Register is not adjust to
2684      * reflect the fact that the inner multicast data is truncated.
2685      */
2686     return (rip_input(&m, &off, proto));
2687 }
2688 
2689 static int
2690 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2691 {
2692 	struct mfc	*rt;
2693 	int		 error, i;
2694 
2695 	if (req->newptr)
2696 		return (EPERM);
2697 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2698 		return (0);
2699 	error = sysctl_wire_old_buffer(req, 0);
2700 	if (error)
2701 		return (error);
2702 
2703 	MRW_RLOCK();
2704 	for (i = 0; i < mfchashsize; i++) {
2705 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2706 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2707 			if (error)
2708 				goto out_locked;
2709 		}
2710 	}
2711 out_locked:
2712 	MRW_RUNLOCK();
2713 	return (error);
2714 }
2715 
2716 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2717     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2718     "IPv4 Multicast Forwarding Table "
2719     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2720 
2721 static int
2722 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2723 {
2724 	int error;
2725 
2726 	if (req->newptr)
2727 		return (EPERM);
2728 	if (V_viftable == NULL)		/* XXX unlocked */
2729 		return (0);
2730 	error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS);
2731 	if (error)
2732 		return (error);
2733 
2734 	MRW_RLOCK();
2735 	error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS);
2736 	MRW_RUNLOCK();
2737 	return (error);
2738 }
2739 
2740 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2741     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2742     sysctl_viflist, "S,vif[MAXVIFS]",
2743     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2744 
2745 static void
2746 vnet_mroute_init(const void *unused __unused)
2747 {
2748 
2749 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2750 
2751 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2752 	    M_MRTABLE, M_WAITOK|M_ZERO);
2753 
2754 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
2755 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
2756 }
2757 
2758 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2759 	NULL);
2760 
2761 static void
2762 vnet_mroute_uninit(const void *unused __unused)
2763 {
2764 
2765 	free(V_viftable, M_MRTABLE);
2766 	free(V_nexpire, M_MRTABLE);
2767 	V_nexpire = NULL;
2768 }
2769 
2770 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2771 	vnet_mroute_uninit, NULL);
2772 
2773 static int
2774 ip_mroute_modevent(module_t mod, int type, void *unused)
2775 {
2776 
2777     switch (type) {
2778     case MOD_LOAD:
2779 	MRW_LOCK_INIT();
2780 
2781 	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2782 	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2783 	if (if_detach_event_tag == NULL) {
2784 		printf("ip_mroute: unable to register "
2785 		    "ifnet_departure_event handler\n");
2786 		MRW_LOCK_DESTROY();
2787 		return (EINVAL);
2788 	}
2789 
2790 	mfchashsize = MFCHASHSIZE;
2791 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2792 	    !powerof2(mfchashsize)) {
2793 		printf("WARNING: %s not a power of 2; using default\n",
2794 		    "net.inet.ip.mfchashsize");
2795 		mfchashsize = MFCHASHSIZE;
2796 	}
2797 
2798 	pim_squelch_wholepkt = 0;
2799 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2800 	    &pim_squelch_wholepkt);
2801 
2802 	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2803 	if (pim_encap_cookie == NULL) {
2804 		printf("ip_mroute: unable to attach pim encap\n");
2805 		MRW_LOCK_DESTROY();
2806 		return (EINVAL);
2807 	}
2808 
2809 	ip_mcast_src = X_ip_mcast_src;
2810 	ip_mforward = X_ip_mforward;
2811 	ip_mrouter_done = X_ip_mrouter_done;
2812 	ip_mrouter_get = X_ip_mrouter_get;
2813 	ip_mrouter_set = X_ip_mrouter_set;
2814 
2815 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2816 	ip_rsvp_vif = X_ip_rsvp_vif;
2817 
2818 	legal_vif_num = X_legal_vif_num;
2819 	mrt_ioctl = X_mrt_ioctl;
2820 	rsvp_input_p = X_rsvp_input;
2821 	break;
2822 
2823     case MOD_UNLOAD:
2824 	/*
2825 	 * Typically module unload happens after the user-level
2826 	 * process has shutdown the kernel services (the check
2827 	 * below insures someone can't just yank the module out
2828 	 * from under a running process).  But if the module is
2829 	 * just loaded and then unloaded w/o starting up a user
2830 	 * process we still need to cleanup.
2831 	 */
2832 	MRW_WLOCK();
2833 	if (ip_mrouter_cnt != 0) {
2834 	    MRW_WUNLOCK();
2835 	    return (EINVAL);
2836 	}
2837 	ip_mrouter_unloading = 1;
2838 	MRW_WUNLOCK();
2839 
2840 	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2841 
2842 	if (pim_encap_cookie) {
2843 	    ip_encap_detach(pim_encap_cookie);
2844 	    pim_encap_cookie = NULL;
2845 	}
2846 
2847 	ip_mcast_src = NULL;
2848 	ip_mforward = NULL;
2849 	ip_mrouter_done = NULL;
2850 	ip_mrouter_get = NULL;
2851 	ip_mrouter_set = NULL;
2852 
2853 	ip_rsvp_force_done = NULL;
2854 	ip_rsvp_vif = NULL;
2855 
2856 	legal_vif_num = NULL;
2857 	mrt_ioctl = NULL;
2858 	rsvp_input_p = NULL;
2859 
2860 	MRW_LOCK_DESTROY();
2861 	break;
2862 
2863     default:
2864 	return EOPNOTSUPP;
2865     }
2866     return 0;
2867 }
2868 
2869 static moduledata_t ip_mroutemod = {
2870     "ip_mroute",
2871     ip_mroute_modevent,
2872     0
2873 };
2874 
2875 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2876