xref: /freebsd/sys/netinet/ip_input.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 int rsvp_on = 0;
90 static int ip_rsvp_on;
91 struct socket *ip_rsvpd;
92 
93 int	ipforwarding = 0;
94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &ipforwarding, 0, "Enable IP forwarding between interfaces");
96 
97 static int	ipsendredirects = 1; /* XXX */
98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99     &ipsendredirects, 0, "Enable sending IP redirects");
100 
101 int	ip_defttl = IPDEFTTL;
102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103     &ip_defttl, 0, "Maximum TTL on IP packets");
104 
105 static int	ip_dosourceroute = 0;
106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
107     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
108 
109 static int	ip_acceptsourceroute = 0;
110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
111     CTLFLAG_RW, &ip_acceptsourceroute, 0,
112     "Enable accepting source routed IP packets");
113 
114 static int	ip_keepfaith = 0;
115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
116 	&ip_keepfaith,	0,
117 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
118 
119 static int	ip_nfragpackets = 0;
120 static int	ip_maxfragpackets;	/* initialized in ip_init() */
121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
122 	&ip_maxfragpackets, 0,
123 	"Maximum number of IPv4 fragment reassembly queue entries");
124 
125 /*
126  * XXX - Setting ip_checkinterface mostly implements the receive side of
127  * the Strong ES model described in RFC 1122, but since the routing table
128  * and transmit implementation do not implement the Strong ES model,
129  * setting this to 1 results in an odd hybrid.
130  *
131  * XXX - ip_checkinterface currently must be disabled if you use ipnat
132  * to translate the destination address to another local interface.
133  *
134  * XXX - ip_checkinterface must be disabled if you add IP aliases
135  * to the loopback interface instead of the interface where the
136  * packets for those addresses are received.
137  */
138 static int	ip_checkinterface = 1;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
141 
142 #ifdef DIAGNOSTIC
143 static int	ipprintfs = 0;
144 #endif
145 
146 static int	ipqmaxlen = IFQ_MAXLEN;
147 
148 extern	struct domain inetdomain;
149 extern	struct protosw inetsw[];
150 u_char	ip_protox[IPPROTO_MAX];
151 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
152 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
153 u_long 	in_ifaddrhmask;				/* mask for hash table */
154 
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
156     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
158     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
159 
160 struct ipstat ipstat;
161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
162     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
163 
164 /* Packet reassembly stuff */
165 #define IPREASS_NHASH_LOG2      6
166 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
168 #define IPREASS_HASH(x,y) \
169 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170 
171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
172 static int    nipq = 0;         /* total # of reass queues */
173 static int    maxnipq;
174 
175 #ifdef IPCTL_DEFMTU
176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
177     &ip_mtu, 0, "Default MTU");
178 #endif
179 
180 #ifdef IPSTEALTH
181 static int	ipstealth = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
183     &ipstealth, 0, "");
184 #endif
185 
186 
187 /* Firewall hooks */
188 ip_fw_chk_t *ip_fw_chk_ptr;
189 int fw_enable = 1 ;
190 
191 /* Dummynet hooks */
192 ip_dn_io_t *ip_dn_io_ptr;
193 
194 
195 /*
196  * We need to save the IP options in case a protocol wants to respond
197  * to an incoming packet over the same route if the packet got here
198  * using IP source routing.  This allows connection establishment and
199  * maintenance when the remote end is on a network that is not known
200  * to us.
201  */
202 static int	ip_nhops = 0;
203 static	struct ip_srcrt {
204 	struct	in_addr dst;			/* final destination */
205 	char	nop;				/* one NOP to align */
206 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
207 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
208 } ip_srcrt;
209 
210 struct sockaddr_in *ip_fw_fwd_addr;
211 
212 static void	save_rte(u_char *, struct in_addr);
213 static int	ip_dooptions(struct mbuf *, int);
214 static void	ip_forward(struct mbuf *, int);
215 static void	ip_freef(struct ipqhead *, struct ipq *);
216 #ifdef IPDIVERT
217 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *);
218 #else
219 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *);
220 #endif
221 static void	ipintr(void);
222 
223 /*
224  * IP initialization: fill in IP protocol switch table.
225  * All protocols not implemented in kernel go to raw IP protocol handler.
226  */
227 void
228 ip_init()
229 {
230 	register struct protosw *pr;
231 	register int i;
232 
233 	TAILQ_INIT(&in_ifaddrhead);
234 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
235 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
236 	if (pr == 0)
237 		panic("ip_init");
238 	for (i = 0; i < IPPROTO_MAX; i++)
239 		ip_protox[i] = pr - inetsw;
240 	for (pr = inetdomain.dom_protosw;
241 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
242 		if (pr->pr_domain->dom_family == PF_INET &&
243 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
244 			ip_protox[pr->pr_protocol] = pr - inetsw;
245 
246 	for (i = 0; i < IPREASS_NHASH; i++)
247 	    TAILQ_INIT(&ipq[i]);
248 
249 	maxnipq = nmbclusters / 4;
250 	ip_maxfragpackets = nmbclusters / 4;
251 
252 #ifndef RANDOM_IP_ID
253 	ip_id = time_second & 0xffff;
254 #endif
255 	ipintrq.ifq_maxlen = ipqmaxlen;
256 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
257 	ipintrq_present = 1;
258 
259 	register_netisr(NETISR_IP, ipintr);
260 }
261 
262 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
263 struct	route ipforward_rt;
264 
265 /*
266  * Ip input routine.  Checksum and byte swap header.  If fragmented
267  * try to reassemble.  Process options.  Pass to next level.
268  */
269 void
270 ip_input(struct mbuf *m)
271 {
272 	struct ip *ip;
273 	struct ipq *fp;
274 	struct in_ifaddr *ia = NULL;
275 	struct ifaddr *ifa;
276 	int    i, hlen, checkif;
277 	u_short sum;
278 	u_int16_t divert_cookie;		/* firewall cookie */
279 	struct in_addr pkt_dst;
280 #ifdef IPDIVERT
281 	u_int32_t divert_info = 0;		/* packet divert/tee info */
282 #endif
283 	struct ip_fw *rule = NULL;
284 #ifdef PFIL_HOOKS
285 	struct packet_filter_hook *pfh;
286 	struct mbuf *m0;
287 	int rv;
288 #endif /* PFIL_HOOKS */
289 
290 #ifdef IPDIVERT
291 	/* Get and reset firewall cookie */
292 	divert_cookie = ip_divert_cookie;
293 	ip_divert_cookie = 0;
294 #else
295 	divert_cookie = 0;
296 #endif
297 
298         /*
299          * dummynet packet are prepended a vestigial mbuf with
300          * m_type = MT_DUMMYNET and m_data pointing to the matching
301          * rule.
302          */
303         if (m->m_type == MT_DUMMYNET) {
304             rule = (struct ip_fw *)(m->m_data) ;
305             m = m->m_next ;
306             ip = mtod(m, struct ip *);
307             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
308             goto iphack ;
309         } else
310             rule = NULL ;
311 
312 #ifdef	DIAGNOSTIC
313 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
314 		panic("ip_input no HDR");
315 #endif
316 	ipstat.ips_total++;
317 
318 	if (m->m_pkthdr.len < sizeof(struct ip))
319 		goto tooshort;
320 
321 	if (m->m_len < sizeof (struct ip) &&
322 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
323 		ipstat.ips_toosmall++;
324 		return;
325 	}
326 	ip = mtod(m, struct ip *);
327 
328 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
329 		ipstat.ips_badvers++;
330 		goto bad;
331 	}
332 
333 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
334 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
335 		ipstat.ips_badhlen++;
336 		goto bad;
337 	}
338 	if (hlen > m->m_len) {
339 		if ((m = m_pullup(m, hlen)) == 0) {
340 			ipstat.ips_badhlen++;
341 			return;
342 		}
343 		ip = mtod(m, struct ip *);
344 	}
345 
346 	/* 127/8 must not appear on wire - RFC1122 */
347 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
348 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
349 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
350 			ipstat.ips_badaddr++;
351 			goto bad;
352 		}
353 	}
354 
355 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
356 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
357 	} else {
358 		if (hlen == sizeof(struct ip)) {
359 			sum = in_cksum_hdr(ip);
360 		} else {
361 			sum = in_cksum(m, hlen);
362 		}
363 	}
364 	if (sum) {
365 		ipstat.ips_badsum++;
366 		goto bad;
367 	}
368 
369 	/*
370 	 * Convert fields to host representation.
371 	 */
372 	ip->ip_len = ntohs(ip->ip_len);
373 	if (ip->ip_len < hlen) {
374 		ipstat.ips_badlen++;
375 		goto bad;
376 	}
377 	ip->ip_off = ntohs(ip->ip_off);
378 
379 	/*
380 	 * Check that the amount of data in the buffers
381 	 * is as at least much as the IP header would have us expect.
382 	 * Trim mbufs if longer than we expect.
383 	 * Drop packet if shorter than we expect.
384 	 */
385 	if (m->m_pkthdr.len < ip->ip_len) {
386 tooshort:
387 		ipstat.ips_tooshort++;
388 		goto bad;
389 	}
390 	if (m->m_pkthdr.len > ip->ip_len) {
391 		if (m->m_len == m->m_pkthdr.len) {
392 			m->m_len = ip->ip_len;
393 			m->m_pkthdr.len = ip->ip_len;
394 		} else
395 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
396 	}
397 
398 #ifdef IPSEC
399 	if (ipsec_gethist(m, NULL))
400 		goto pass;
401 #endif
402 
403 	/*
404 	 * IpHack's section.
405 	 * Right now when no processing on packet has done
406 	 * and it is still fresh out of network we do our black
407 	 * deals with it.
408 	 * - Firewall: deny/allow/divert
409 	 * - Xlate: translate packet's addr/port (NAT).
410 	 * - Pipe: pass pkt through dummynet.
411 	 * - Wrap: fake packet's addr/port <unimpl.>
412 	 * - Encapsulate: put it in another IP and send out. <unimp.>
413  	 */
414 
415 iphack:
416 
417 #ifdef PFIL_HOOKS
418 	/*
419 	 * Run through list of hooks for input packets.  If there are any
420 	 * filters which require that additional packets in the flow are
421 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
422 	 * Note that filters must _never_ set this flag, as another filter
423 	 * in the list may have previously cleared it.
424 	 */
425 	m0 = m;
426 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
427 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
428 		if (pfh->pfil_func) {
429 			rv = pfh->pfil_func(ip, hlen,
430 					    m->m_pkthdr.rcvif, 0, &m0);
431 			if (rv)
432 				return;
433 			m = m0;
434 			if (m == NULL)
435 				return;
436 			ip = mtod(m, struct ip *);
437 		}
438 #endif /* PFIL_HOOKS */
439 
440 	if (fw_enable && IPFW_LOADED) {
441 #ifdef IPFIREWALL_FORWARD
442 		/*
443 		 * If we've been forwarded from the output side, then
444 		 * skip the firewall a second time
445 		 */
446 		if (ip_fw_fwd_addr)
447 			goto ours;
448 #endif	/* IPFIREWALL_FORWARD */
449 		/*
450 		 * See the comment in ip_output for the return values
451 		 * produced by the firewall.
452 		 */
453 		i = ip_fw_chk_ptr(&ip, hlen, NULL,
454 		    &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
455 		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
456 			if (m)
457 				m_freem(m);
458 			return;
459 		}
460 		if (m == NULL) {	/* Packet discarded by firewall */
461 			static int __debug=10;
462 			if (__debug > 0) {
463 				printf(
464 				    "firewall returns NULL, please update!\n");
465 				__debug--;
466 			}
467 			return;
468 		}
469 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
470 			goto pass;
471                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
472                         /* Send packet to the appropriate pipe */
473                         ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
474 				    0);
475 			return;
476 		}
477 #ifdef IPDIVERT
478 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
479 			/* Divert or tee packet */
480 			divert_info = i;
481 			goto ours;
482 		}
483 #endif
484 #ifdef IPFIREWALL_FORWARD
485 		if (i == 0 && ip_fw_fwd_addr != NULL)
486 			goto pass;
487 #endif
488 		/*
489 		 * if we get here, the packet must be dropped
490 		 */
491 		m_freem(m);
492 		return;
493 	}
494 pass:
495 
496 	/*
497 	 * Process options and, if not destined for us,
498 	 * ship it on.  ip_dooptions returns 1 when an
499 	 * error was detected (causing an icmp message
500 	 * to be sent and the original packet to be freed).
501 	 */
502 	ip_nhops = 0;		/* for source routed packets */
503 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) {
504 #ifdef IPFIREWALL_FORWARD
505 		ip_fw_fwd_addr = NULL;
506 #endif
507 		return;
508 	}
509 
510         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
511          * matter if it is destined to another node, or whether it is
512          * a multicast one, RSVP wants it! and prevents it from being forwarded
513          * anywhere else. Also checks if the rsvp daemon is running before
514 	 * grabbing the packet.
515          */
516 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
517 		goto ours;
518 
519 	/*
520 	 * Check our list of addresses, to see if the packet is for us.
521 	 * If we don't have any addresses, assume any unicast packet
522 	 * we receive might be for us (and let the upper layers deal
523 	 * with it).
524 	 */
525 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
526 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
527 		goto ours;
528 
529 	/*
530 	 * Cache the destination address of the packet; this may be
531 	 * changed by use of 'ipfw fwd'.
532 	 */
533 	pkt_dst = ip_fw_fwd_addr == NULL ?
534 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
535 
536 	/*
537 	 * Enable a consistency check between the destination address
538 	 * and the arrival interface for a unicast packet (the RFC 1122
539 	 * strong ES model) if IP forwarding is disabled and the packet
540 	 * is not locally generated and the packet is not subject to
541 	 * 'ipfw fwd'.
542 	 *
543 	 * XXX - Checking also should be disabled if the destination
544 	 * address is ipnat'ed to a different interface.
545 	 *
546 	 * XXX - Checking is incompatible with IP aliases added
547 	 * to the loopback interface instead of the interface where
548 	 * the packets are received.
549 	 */
550 	checkif = ip_checkinterface && (ipforwarding == 0) &&
551 	    m->m_pkthdr.rcvif != NULL &&
552 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
553 	    (ip_fw_fwd_addr == NULL);
554 
555 	/*
556 	 * Check for exact addresses in the hash bucket.
557 	 */
558 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
559 		/*
560 		 * If the address matches, verify that the packet
561 		 * arrived via the correct interface if checking is
562 		 * enabled.
563 		 */
564 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
565 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
566 			goto ours;
567 	}
568 	/*
569 	 * Check for broadcast addresses.
570 	 *
571 	 * Only accept broadcast packets that arrive via the matching
572 	 * interface.  Reception of forwarded directed broadcasts would
573 	 * be handled via ip_forward() and ether_output() with the loopback
574 	 * into the stack for SIMPLEX interfaces handled by ether_output().
575 	 */
576 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
577 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
578 			if (ifa->ifa_addr->sa_family != AF_INET)
579 				continue;
580 			ia = ifatoia(ifa);
581 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
582 			    pkt_dst.s_addr)
583 				goto ours;
584 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
585 				goto ours;
586 #ifdef BOOTP_COMPAT
587 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
588 				goto ours;
589 #endif
590 		}
591 	}
592 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
593 		struct in_multi *inm;
594 		if (ip_mrouter) {
595 			/*
596 			 * If we are acting as a multicast router, all
597 			 * incoming multicast packets are passed to the
598 			 * kernel-level multicast forwarding function.
599 			 * The packet is returned (relatively) intact; if
600 			 * ip_mforward() returns a non-zero value, the packet
601 			 * must be discarded, else it may be accepted below.
602 			 */
603 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
604 				ipstat.ips_cantforward++;
605 				m_freem(m);
606 				return;
607 			}
608 
609 			/*
610 			 * The process-level routing demon needs to receive
611 			 * all multicast IGMP packets, whether or not this
612 			 * host belongs to their destination groups.
613 			 */
614 			if (ip->ip_p == IPPROTO_IGMP)
615 				goto ours;
616 			ipstat.ips_forward++;
617 		}
618 		/*
619 		 * See if we belong to the destination multicast group on the
620 		 * arrival interface.
621 		 */
622 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
623 		if (inm == NULL) {
624 			ipstat.ips_notmember++;
625 			m_freem(m);
626 			return;
627 		}
628 		goto ours;
629 	}
630 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
631 		goto ours;
632 	if (ip->ip_dst.s_addr == INADDR_ANY)
633 		goto ours;
634 
635 	/*
636 	 * FAITH(Firewall Aided Internet Translator)
637 	 */
638 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
639 		if (ip_keepfaith) {
640 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
641 				goto ours;
642 		}
643 		m_freem(m);
644 		return;
645 	}
646 
647 	/*
648 	 * Not for us; forward if possible and desirable.
649 	 */
650 	if (ipforwarding == 0) {
651 		ipstat.ips_cantforward++;
652 		m_freem(m);
653 	} else {
654 #ifdef IPSEC
655 		/*
656 		 * Enforce inbound IPsec SPD.
657 		 */
658 		if (ipsec4_in_reject(m, NULL)) {
659 			ipsecstat.in_polvio++;
660 			goto bad;
661 		}
662 #endif /* IPSEC */
663 		ip_forward(m, 0);
664 	}
665 #ifdef IPFIREWALL_FORWARD
666 	ip_fw_fwd_addr = NULL;
667 #endif
668 	return;
669 
670 ours:
671 #ifdef IPSTEALTH
672 	/*
673 	 * IPSTEALTH: Process non-routing options only
674 	 * if the packet is destined for us.
675 	 */
676 	if (ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
677 #ifdef IPFIREWALL_FORWARD
678 		ip_fw_fwd_addr = NULL;
679 #endif
680 		return;
681 	}
682 #endif /* IPSTEALTH */
683 
684 	/* Count the packet in the ip address stats */
685 	if (ia != NULL) {
686 		ia->ia_ifa.if_ipackets++;
687 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
688 	}
689 
690 	/*
691 	 * If offset or IP_MF are set, must reassemble.
692 	 * Otherwise, nothing need be done.
693 	 * (We could look in the reassembly queue to see
694 	 * if the packet was previously fragmented,
695 	 * but it's not worth the time; just let them time out.)
696 	 */
697 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
698 
699 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
700 		/*
701 		 * Look for queue of fragments
702 		 * of this datagram.
703 		 */
704 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
705 			if (ip->ip_id == fp->ipq_id &&
706 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
707 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
708 			    ip->ip_p == fp->ipq_p)
709 				goto found;
710 
711 		fp = 0;
712 
713 		/* check if there's a place for the new queue */
714 		if (nipq > maxnipq) {
715 		    /*
716 		     * drop something from the tail of the current queue
717 		     * before proceeding further
718 		     */
719 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
720 		    if (q == NULL) {   /* gak */
721 			for (i = 0; i < IPREASS_NHASH; i++) {
722 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
723 			    if (r) {
724 				ip_freef(&ipq[i], r);
725 				break;
726 			    }
727 			}
728 		    } else
729 			ip_freef(&ipq[sum], q);
730 		}
731 found:
732 		/*
733 		 * Adjust ip_len to not reflect header,
734 		 * convert offset of this to bytes.
735 		 */
736 		ip->ip_len -= hlen;
737 		if (ip->ip_off & IP_MF) {
738 		        /*
739 		         * Make sure that fragments have a data length
740 			 * that's a non-zero multiple of 8 bytes.
741 		         */
742 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
743 				ipstat.ips_toosmall++; /* XXX */
744 				goto bad;
745 			}
746 			m->m_flags |= M_FRAG;
747 		}
748 		ip->ip_off <<= 3;
749 
750 		/*
751 		 * Attempt reassembly; if it succeeds, proceed.
752 		 */
753 		ipstat.ips_fragments++;
754 		m->m_pkthdr.header = ip;
755 #ifdef IPDIVERT
756 		m = ip_reass(m,
757 		    &ipq[sum], fp, &divert_info, &divert_cookie);
758 #else
759 		m = ip_reass(m, &ipq[sum], fp);
760 #endif
761 		if (m == 0) {
762 #ifdef IPFIREWALL_FORWARD
763 			ip_fw_fwd_addr = NULL;
764 #endif
765 			return;
766 		}
767 		ipstat.ips_reassembled++;
768 		ip = mtod(m, struct ip *);
769 		/* Get the header length of the reassembled packet */
770 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
771 #ifdef IPDIVERT
772 		/* Restore original checksum before diverting packet */
773 		if (divert_info != 0) {
774 			ip->ip_len += hlen;
775 			ip->ip_len = htons(ip->ip_len);
776 			ip->ip_off = htons(ip->ip_off);
777 			ip->ip_sum = 0;
778 			if (hlen == sizeof(struct ip))
779 				ip->ip_sum = in_cksum_hdr(ip);
780 			else
781 				ip->ip_sum = in_cksum(m, hlen);
782 			ip->ip_off = ntohs(ip->ip_off);
783 			ip->ip_len = ntohs(ip->ip_len);
784 			ip->ip_len -= hlen;
785 		}
786 #endif
787 	} else
788 		ip->ip_len -= hlen;
789 
790 #ifdef IPDIVERT
791 	/*
792 	 * Divert or tee packet to the divert protocol if required.
793 	 *
794 	 * If divert_info is zero then cookie should be too, so we shouldn't
795 	 * need to clear them here.  Assume divert_packet() does so also.
796 	 */
797 	if (divert_info != 0) {
798 		struct mbuf *clone = NULL;
799 
800 		/* Clone packet if we're doing a 'tee' */
801 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
802 			clone = m_dup(m, M_DONTWAIT);
803 
804 		/* Restore packet header fields to original values */
805 		ip->ip_len += hlen;
806 		ip->ip_len = htons(ip->ip_len);
807 		ip->ip_off = htons(ip->ip_off);
808 
809 		/* Deliver packet to divert input routine */
810 		ip_divert_cookie = divert_cookie;
811 		divert_packet(m, 1, divert_info & 0xffff);
812 		ipstat.ips_delivered++;
813 
814 		/* If 'tee', continue with original packet */
815 		if (clone == NULL)
816 			return;
817 		m = clone;
818 		ip = mtod(m, struct ip *);
819 		ip->ip_len += hlen;
820 		divert_info = 0;
821 		goto pass;
822 	}
823 #endif
824 
825 #ifdef IPSEC
826 	/*
827 	 * enforce IPsec policy checking if we are seeing last header.
828 	 * note that we do not visit this with protocols with pcb layer
829 	 * code - like udp/tcp/raw ip.
830 	 */
831 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
832 	    ipsec4_in_reject(m, NULL)) {
833 		ipsecstat.in_polvio++;
834 		goto bad;
835 	}
836 #endif
837 
838 	/*
839 	 * Switch out to protocol's input routine.
840 	 */
841 	ipstat.ips_delivered++;
842     {
843 	int off = hlen;
844 
845 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off);
846 #ifdef	IPFIREWALL_FORWARD
847 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
848 #endif
849 	return;
850     }
851 bad:
852 #ifdef	IPFIREWALL_FORWARD
853 	ip_fw_fwd_addr = NULL;
854 #endif
855 	m_freem(m);
856 }
857 
858 /*
859  * IP software interrupt routine - to go away sometime soon
860  */
861 static void
862 ipintr(void)
863 {
864 	struct mbuf *m;
865 
866 	while (1) {
867 		IF_DEQUEUE(&ipintrq, m);
868 		if (m == 0)
869 			return;
870 		ip_input(m);
871 	}
872 }
873 
874 /*
875  * Take incoming datagram fragment and try to reassemble it into
876  * whole datagram.  If a chain for reassembly of this datagram already
877  * exists, then it is given as fp; otherwise have to make a chain.
878  *
879  * When IPDIVERT enabled, keep additional state with each packet that
880  * tells us if we need to divert or tee the packet we're building.
881  */
882 
883 static struct mbuf *
884 #ifdef IPDIVERT
885 ip_reass(m, head, fp, divinfo, divcookie)
886 #else
887 ip_reass(m, head, fp)
888 #endif
889 	struct mbuf *m;
890 	struct ipqhead *head;
891 	struct ipq *fp;
892 #ifdef IPDIVERT
893 	u_int32_t *divinfo;
894 	u_int16_t *divcookie;
895 #endif
896 {
897 	struct ip *ip = mtod(m, struct ip *);
898 	register struct mbuf *p, *q, *nq;
899 	struct mbuf *t;
900 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
901 	int i, next;
902 
903 	/*
904 	 * Presence of header sizes in mbufs
905 	 * would confuse code below.
906 	 */
907 	m->m_data += hlen;
908 	m->m_len -= hlen;
909 
910 	/*
911 	 * If first fragment to arrive, create a reassembly queue.
912 	 */
913 	if (fp == 0) {
914 		/*
915 		 * Enforce upper bound on number of fragmented packets
916 		 * for which we attempt reassembly;
917 		 * If maxfrag is 0, never accept fragments.
918 		 * If maxfrag is -1, accept all fragments without limitation.
919 		 */
920 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
921 			goto dropfrag;
922 		ip_nfragpackets++;
923 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
924 			goto dropfrag;
925 		fp = mtod(t, struct ipq *);
926 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
927 		nipq++;
928 		fp->ipq_ttl = IPFRAGTTL;
929 		fp->ipq_p = ip->ip_p;
930 		fp->ipq_id = ip->ip_id;
931 		fp->ipq_src = ip->ip_src;
932 		fp->ipq_dst = ip->ip_dst;
933 		fp->ipq_frags = m;
934 		m->m_nextpkt = NULL;
935 #ifdef IPDIVERT
936 		fp->ipq_div_info = 0;
937 		fp->ipq_div_cookie = 0;
938 #endif
939 		goto inserted;
940 	}
941 
942 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
943 
944 	/*
945 	 * Find a segment which begins after this one does.
946 	 */
947 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
948 		if (GETIP(q)->ip_off > ip->ip_off)
949 			break;
950 
951 	/*
952 	 * If there is a preceding segment, it may provide some of
953 	 * our data already.  If so, drop the data from the incoming
954 	 * segment.  If it provides all of our data, drop us, otherwise
955 	 * stick new segment in the proper place.
956 	 *
957 	 * If some of the data is dropped from the the preceding
958 	 * segment, then it's checksum is invalidated.
959 	 */
960 	if (p) {
961 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
962 		if (i > 0) {
963 			if (i >= ip->ip_len)
964 				goto dropfrag;
965 			m_adj(m, i);
966 			m->m_pkthdr.csum_flags = 0;
967 			ip->ip_off += i;
968 			ip->ip_len -= i;
969 		}
970 		m->m_nextpkt = p->m_nextpkt;
971 		p->m_nextpkt = m;
972 	} else {
973 		m->m_nextpkt = fp->ipq_frags;
974 		fp->ipq_frags = m;
975 	}
976 
977 	/*
978 	 * While we overlap succeeding segments trim them or,
979 	 * if they are completely covered, dequeue them.
980 	 */
981 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
982 	     q = nq) {
983 		i = (ip->ip_off + ip->ip_len) -
984 		    GETIP(q)->ip_off;
985 		if (i < GETIP(q)->ip_len) {
986 			GETIP(q)->ip_len -= i;
987 			GETIP(q)->ip_off += i;
988 			m_adj(q, i);
989 			q->m_pkthdr.csum_flags = 0;
990 			break;
991 		}
992 		nq = q->m_nextpkt;
993 		m->m_nextpkt = nq;
994 		m_freem(q);
995 	}
996 
997 inserted:
998 
999 #ifdef IPDIVERT
1000 	/*
1001 	 * Transfer firewall instructions to the fragment structure.
1002 	 * Any fragment diverting causes the whole packet to divert.
1003 	 */
1004 	fp->ipq_div_info = *divinfo;
1005 	fp->ipq_div_cookie = *divcookie;
1006 	*divinfo = 0;
1007 	*divcookie = 0;
1008 #endif
1009 
1010 	/*
1011 	 * Check for complete reassembly.
1012 	 */
1013 	next = 0;
1014 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1015 		if (GETIP(q)->ip_off != next)
1016 			return (0);
1017 		next += GETIP(q)->ip_len;
1018 	}
1019 	/* Make sure the last packet didn't have the IP_MF flag */
1020 	if (p->m_flags & M_FRAG)
1021 		return (0);
1022 
1023 	/*
1024 	 * Reassembly is complete.  Make sure the packet is a sane size.
1025 	 */
1026 	q = fp->ipq_frags;
1027 	ip = GETIP(q);
1028 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1029 		ipstat.ips_toolong++;
1030 		ip_freef(head, fp);
1031 		return (0);
1032 	}
1033 
1034 	/*
1035 	 * Concatenate fragments.
1036 	 */
1037 	m = q;
1038 	t = m->m_next;
1039 	m->m_next = 0;
1040 	m_cat(m, t);
1041 	nq = q->m_nextpkt;
1042 	q->m_nextpkt = 0;
1043 	for (q = nq; q != NULL; q = nq) {
1044 		nq = q->m_nextpkt;
1045 		q->m_nextpkt = NULL;
1046 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1047 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1048 		m_cat(m, q);
1049 	}
1050 
1051 #ifdef IPDIVERT
1052 	/*
1053 	 * Extract firewall instructions from the fragment structure.
1054 	 */
1055 	*divinfo = fp->ipq_div_info;
1056 	*divcookie = fp->ipq_div_cookie;
1057 #endif
1058 
1059 	/*
1060 	 * Create header for new ip packet by
1061 	 * modifying header of first packet;
1062 	 * dequeue and discard fragment reassembly header.
1063 	 * Make header visible.
1064 	 */
1065 	ip->ip_len = next;
1066 	ip->ip_src = fp->ipq_src;
1067 	ip->ip_dst = fp->ipq_dst;
1068 	TAILQ_REMOVE(head, fp, ipq_list);
1069 	nipq--;
1070 	(void) m_free(dtom(fp));
1071 	ip_nfragpackets--;
1072 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1073 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1074 	/* some debugging cruft by sklower, below, will go away soon */
1075 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1076 		register int plen = 0;
1077 		for (t = m; t; t = t->m_next)
1078 			plen += t->m_len;
1079 		m->m_pkthdr.len = plen;
1080 	}
1081 	return (m);
1082 
1083 dropfrag:
1084 #ifdef IPDIVERT
1085 	*divinfo = 0;
1086 	*divcookie = 0;
1087 #endif
1088 	ipstat.ips_fragdropped++;
1089 	m_freem(m);
1090 	return (0);
1091 
1092 #undef GETIP
1093 }
1094 
1095 /*
1096  * Free a fragment reassembly header and all
1097  * associated datagrams.
1098  */
1099 static void
1100 ip_freef(fhp, fp)
1101 	struct ipqhead *fhp;
1102 	struct ipq *fp;
1103 {
1104 	register struct mbuf *q;
1105 
1106 	while (fp->ipq_frags) {
1107 		q = fp->ipq_frags;
1108 		fp->ipq_frags = q->m_nextpkt;
1109 		m_freem(q);
1110 	}
1111 	TAILQ_REMOVE(fhp, fp, ipq_list);
1112 	(void) m_free(dtom(fp));
1113 	ip_nfragpackets--;
1114 	nipq--;
1115 }
1116 
1117 /*
1118  * IP timer processing;
1119  * if a timer expires on a reassembly
1120  * queue, discard it.
1121  */
1122 void
1123 ip_slowtimo()
1124 {
1125 	register struct ipq *fp;
1126 	int s = splnet();
1127 	int i;
1128 
1129 	for (i = 0; i < IPREASS_NHASH; i++) {
1130 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1131 			struct ipq *fpp;
1132 
1133 			fpp = fp;
1134 			fp = TAILQ_NEXT(fp, ipq_list);
1135 			if(--fpp->ipq_ttl == 0) {
1136 				ipstat.ips_fragtimeout++;
1137 				ip_freef(&ipq[i], fpp);
1138 			}
1139 		}
1140 	}
1141 	/*
1142 	 * If we are over the maximum number of fragments
1143 	 * (due to the limit being lowered), drain off
1144 	 * enough to get down to the new limit.
1145 	 */
1146 	for (i = 0; i < IPREASS_NHASH; i++) {
1147 		if (ip_maxfragpackets >= 0) {
1148 			while (ip_nfragpackets > ip_maxfragpackets &&
1149 				!TAILQ_EMPTY(&ipq[i])) {
1150 				ipstat.ips_fragdropped++;
1151 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1152 			}
1153 		}
1154 	}
1155 	ipflow_slowtimo();
1156 	splx(s);
1157 }
1158 
1159 /*
1160  * Drain off all datagram fragments.
1161  */
1162 void
1163 ip_drain()
1164 {
1165 	int     i;
1166 
1167 	for (i = 0; i < IPREASS_NHASH; i++) {
1168 		while(!TAILQ_EMPTY(&ipq[i])) {
1169 			ipstat.ips_fragdropped++;
1170 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1171 		}
1172 	}
1173 	in_rtqdrain();
1174 }
1175 
1176 /*
1177  * Do option processing on a datagram,
1178  * possibly discarding it if bad options are encountered,
1179  * or forwarding it if source-routed.
1180  * The pass argument is used when operating in the IPSTEALTH
1181  * mode to tell what options to process:
1182  * [LS]SRR (pass 0) or the others (pass 1).
1183  * The reason for as many as two passes is that when doing IPSTEALTH,
1184  * non-routing options should be processed only if the packet is for us.
1185  * Returns 1 if packet has been forwarded/freed,
1186  * 0 if the packet should be processed further.
1187  */
1188 static int
1189 ip_dooptions(m, pass)
1190 	struct mbuf *m;
1191 	int pass;
1192 {
1193 	register struct ip *ip = mtod(m, struct ip *);
1194 	register u_char *cp;
1195 	register struct in_ifaddr *ia;
1196 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1197 	struct in_addr *sin, dst;
1198 	n_time ntime;
1199 
1200 	dst = ip->ip_dst;
1201 	cp = (u_char *)(ip + 1);
1202 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1203 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1204 		opt = cp[IPOPT_OPTVAL];
1205 		if (opt == IPOPT_EOL)
1206 			break;
1207 		if (opt == IPOPT_NOP)
1208 			optlen = 1;
1209 		else {
1210 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1211 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1212 				goto bad;
1213 			}
1214 			optlen = cp[IPOPT_OLEN];
1215 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1216 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1217 				goto bad;
1218 			}
1219 		}
1220 		switch (opt) {
1221 
1222 		default:
1223 			break;
1224 
1225 		/*
1226 		 * Source routing with record.
1227 		 * Find interface with current destination address.
1228 		 * If none on this machine then drop if strictly routed,
1229 		 * or do nothing if loosely routed.
1230 		 * Record interface address and bring up next address
1231 		 * component.  If strictly routed make sure next
1232 		 * address is on directly accessible net.
1233 		 */
1234 		case IPOPT_LSRR:
1235 		case IPOPT_SSRR:
1236 #ifdef IPSTEALTH
1237 			if (ipstealth && pass > 0)
1238 				break;
1239 #endif
1240 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1241 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1242 				goto bad;
1243 			}
1244 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1245 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1246 				goto bad;
1247 			}
1248 			ipaddr.sin_addr = ip->ip_dst;
1249 			ia = (struct in_ifaddr *)
1250 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1251 			if (ia == 0) {
1252 				if (opt == IPOPT_SSRR) {
1253 					type = ICMP_UNREACH;
1254 					code = ICMP_UNREACH_SRCFAIL;
1255 					goto bad;
1256 				}
1257 				if (!ip_dosourceroute)
1258 					goto nosourcerouting;
1259 				/*
1260 				 * Loose routing, and not at next destination
1261 				 * yet; nothing to do except forward.
1262 				 */
1263 				break;
1264 			}
1265 			off--;			/* 0 origin */
1266 			if (off > optlen - (int)sizeof(struct in_addr)) {
1267 				/*
1268 				 * End of source route.  Should be for us.
1269 				 */
1270 				if (!ip_acceptsourceroute)
1271 					goto nosourcerouting;
1272 				save_rte(cp, ip->ip_src);
1273 				break;
1274 			}
1275 #ifdef IPSTEALTH
1276 			if (ipstealth)
1277 				goto dropit;
1278 #endif
1279 			if (!ip_dosourceroute) {
1280 				if (ipforwarding) {
1281 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1282 					/*
1283 					 * Acting as a router, so generate ICMP
1284 					 */
1285 nosourcerouting:
1286 					strcpy(buf, inet_ntoa(ip->ip_dst));
1287 					log(LOG_WARNING,
1288 					    "attempted source route from %s to %s\n",
1289 					    inet_ntoa(ip->ip_src), buf);
1290 					type = ICMP_UNREACH;
1291 					code = ICMP_UNREACH_SRCFAIL;
1292 					goto bad;
1293 				} else {
1294 					/*
1295 					 * Not acting as a router, so silently drop.
1296 					 */
1297 #ifdef IPSTEALTH
1298 dropit:
1299 #endif
1300 					ipstat.ips_cantforward++;
1301 					m_freem(m);
1302 					return (1);
1303 				}
1304 			}
1305 
1306 			/*
1307 			 * locate outgoing interface
1308 			 */
1309 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1310 			    sizeof(ipaddr.sin_addr));
1311 
1312 			if (opt == IPOPT_SSRR) {
1313 #define	INA	struct in_ifaddr *
1314 #define	SA	struct sockaddr *
1315 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1316 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1317 			} else
1318 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1319 			if (ia == 0) {
1320 				type = ICMP_UNREACH;
1321 				code = ICMP_UNREACH_SRCFAIL;
1322 				goto bad;
1323 			}
1324 			ip->ip_dst = ipaddr.sin_addr;
1325 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1326 			    sizeof(struct in_addr));
1327 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1328 			/*
1329 			 * Let ip_intr's mcast routing check handle mcast pkts
1330 			 */
1331 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1332 			break;
1333 
1334 		case IPOPT_RR:
1335 #ifdef IPSTEALTH
1336 			if (ipstealth && pass == 0)
1337 				break;
1338 #endif
1339 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1340 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1341 				goto bad;
1342 			}
1343 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1344 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1345 				goto bad;
1346 			}
1347 			/*
1348 			 * If no space remains, ignore.
1349 			 */
1350 			off--;			/* 0 origin */
1351 			if (off > optlen - (int)sizeof(struct in_addr))
1352 				break;
1353 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1354 			    sizeof(ipaddr.sin_addr));
1355 			/*
1356 			 * locate outgoing interface; if we're the destination,
1357 			 * use the incoming interface (should be same).
1358 			 */
1359 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1360 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1361 			    &ipforward_rt)) == 0) {
1362 				type = ICMP_UNREACH;
1363 				code = ICMP_UNREACH_HOST;
1364 				goto bad;
1365 			}
1366 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1367 			    sizeof(struct in_addr));
1368 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1369 			break;
1370 
1371 		case IPOPT_TS:
1372 #ifdef IPSTEALTH
1373 			if (ipstealth && pass == 0)
1374 				break;
1375 #endif
1376 			code = cp - (u_char *)ip;
1377 			if (optlen < 4 || optlen > 40) {
1378 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1379 				goto bad;
1380 			}
1381 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1382 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1383 				goto bad;
1384 			}
1385 			if (off > optlen - (int)sizeof(int32_t)) {
1386 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1387 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1388 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1389 					goto bad;
1390 				}
1391 				break;
1392 			}
1393 			off--;				/* 0 origin */
1394 			sin = (struct in_addr *)(cp + off);
1395 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1396 
1397 			case IPOPT_TS_TSONLY:
1398 				break;
1399 
1400 			case IPOPT_TS_TSANDADDR:
1401 				if (off + sizeof(n_time) +
1402 				    sizeof(struct in_addr) > optlen) {
1403 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1404 					goto bad;
1405 				}
1406 				ipaddr.sin_addr = dst;
1407 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1408 							    m->m_pkthdr.rcvif);
1409 				if (ia == 0)
1410 					continue;
1411 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1412 				    sizeof(struct in_addr));
1413 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1414 				break;
1415 
1416 			case IPOPT_TS_PRESPEC:
1417 				if (off + sizeof(n_time) +
1418 				    sizeof(struct in_addr) > optlen) {
1419 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1420 					goto bad;
1421 				}
1422 				(void)memcpy(&ipaddr.sin_addr, sin,
1423 				    sizeof(struct in_addr));
1424 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1425 					continue;
1426 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1427 				break;
1428 
1429 			default:
1430 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1431 				goto bad;
1432 			}
1433 			ntime = iptime();
1434 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1435 			cp[IPOPT_OFFSET] += sizeof(n_time);
1436 		}
1437 	}
1438 	if (forward && ipforwarding) {
1439 		ip_forward(m, 1);
1440 		return (1);
1441 	}
1442 	return (0);
1443 bad:
1444 	icmp_error(m, type, code, 0, 0);
1445 	ipstat.ips_badoptions++;
1446 	return (1);
1447 }
1448 
1449 /*
1450  * Given address of next destination (final or next hop),
1451  * return internet address info of interface to be used to get there.
1452  */
1453 struct in_ifaddr *
1454 ip_rtaddr(dst, rt)
1455 	struct in_addr dst;
1456 	struct route *rt;
1457 {
1458 	register struct sockaddr_in *sin;
1459 
1460 	sin = (struct sockaddr_in *)&rt->ro_dst;
1461 
1462 	if (rt->ro_rt == 0 ||
1463 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1464 	    dst.s_addr != sin->sin_addr.s_addr) {
1465 		if (rt->ro_rt) {
1466 			RTFREE(rt->ro_rt);
1467 			rt->ro_rt = 0;
1468 		}
1469 		sin->sin_family = AF_INET;
1470 		sin->sin_len = sizeof(*sin);
1471 		sin->sin_addr = dst;
1472 
1473 		rtalloc_ign(rt, RTF_PRCLONING);
1474 	}
1475 	if (rt->ro_rt == 0)
1476 		return ((struct in_ifaddr *)0);
1477 	return (ifatoia(rt->ro_rt->rt_ifa));
1478 }
1479 
1480 /*
1481  * Save incoming source route for use in replies,
1482  * to be picked up later by ip_srcroute if the receiver is interested.
1483  */
1484 void
1485 save_rte(option, dst)
1486 	u_char *option;
1487 	struct in_addr dst;
1488 {
1489 	unsigned olen;
1490 
1491 	olen = option[IPOPT_OLEN];
1492 #ifdef DIAGNOSTIC
1493 	if (ipprintfs)
1494 		printf("save_rte: olen %d\n", olen);
1495 #endif
1496 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1497 		return;
1498 	bcopy(option, ip_srcrt.srcopt, olen);
1499 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1500 	ip_srcrt.dst = dst;
1501 }
1502 
1503 /*
1504  * Retrieve incoming source route for use in replies,
1505  * in the same form used by setsockopt.
1506  * The first hop is placed before the options, will be removed later.
1507  */
1508 struct mbuf *
1509 ip_srcroute()
1510 {
1511 	register struct in_addr *p, *q;
1512 	register struct mbuf *m;
1513 
1514 	if (ip_nhops == 0)
1515 		return ((struct mbuf *)0);
1516 	m = m_get(M_DONTWAIT, MT_HEADER);
1517 	if (m == 0)
1518 		return ((struct mbuf *)0);
1519 
1520 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1521 
1522 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1523 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1524 	    OPTSIZ;
1525 #ifdef DIAGNOSTIC
1526 	if (ipprintfs)
1527 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1528 #endif
1529 
1530 	/*
1531 	 * First save first hop for return route
1532 	 */
1533 	p = &ip_srcrt.route[ip_nhops - 1];
1534 	*(mtod(m, struct in_addr *)) = *p--;
1535 #ifdef DIAGNOSTIC
1536 	if (ipprintfs)
1537 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1538 #endif
1539 
1540 	/*
1541 	 * Copy option fields and padding (nop) to mbuf.
1542 	 */
1543 	ip_srcrt.nop = IPOPT_NOP;
1544 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1545 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1546 	    &ip_srcrt.nop, OPTSIZ);
1547 	q = (struct in_addr *)(mtod(m, caddr_t) +
1548 	    sizeof(struct in_addr) + OPTSIZ);
1549 #undef OPTSIZ
1550 	/*
1551 	 * Record return path as an IP source route,
1552 	 * reversing the path (pointers are now aligned).
1553 	 */
1554 	while (p >= ip_srcrt.route) {
1555 #ifdef DIAGNOSTIC
1556 		if (ipprintfs)
1557 			printf(" %lx", (u_long)ntohl(q->s_addr));
1558 #endif
1559 		*q++ = *p--;
1560 	}
1561 	/*
1562 	 * Last hop goes to final destination.
1563 	 */
1564 	*q = ip_srcrt.dst;
1565 #ifdef DIAGNOSTIC
1566 	if (ipprintfs)
1567 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1568 #endif
1569 	return (m);
1570 }
1571 
1572 /*
1573  * Strip out IP options, at higher
1574  * level protocol in the kernel.
1575  * Second argument is buffer to which options
1576  * will be moved, and return value is their length.
1577  * XXX should be deleted; last arg currently ignored.
1578  */
1579 void
1580 ip_stripoptions(m, mopt)
1581 	register struct mbuf *m;
1582 	struct mbuf *mopt;
1583 {
1584 	register int i;
1585 	struct ip *ip = mtod(m, struct ip *);
1586 	register caddr_t opts;
1587 	int olen;
1588 
1589 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1590 	opts = (caddr_t)(ip + 1);
1591 	i = m->m_len - (sizeof (struct ip) + olen);
1592 	bcopy(opts + olen, opts, (unsigned)i);
1593 	m->m_len -= olen;
1594 	if (m->m_flags & M_PKTHDR)
1595 		m->m_pkthdr.len -= olen;
1596 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1597 }
1598 
1599 u_char inetctlerrmap[PRC_NCMDS] = {
1600 	0,		0,		0,		0,
1601 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1602 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1603 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1604 	0,		0,		0,		0,
1605 	ENOPROTOOPT,	ECONNREFUSED
1606 };
1607 
1608 /*
1609  * Forward a packet.  If some error occurs return the sender
1610  * an icmp packet.  Note we can't always generate a meaningful
1611  * icmp message because icmp doesn't have a large enough repertoire
1612  * of codes and types.
1613  *
1614  * If not forwarding, just drop the packet.  This could be confusing
1615  * if ipforwarding was zero but some routing protocol was advancing
1616  * us as a gateway to somewhere.  However, we must let the routing
1617  * protocol deal with that.
1618  *
1619  * The srcrt parameter indicates whether the packet is being forwarded
1620  * via a source route.
1621  */
1622 static void
1623 ip_forward(m, srcrt)
1624 	struct mbuf *m;
1625 	int srcrt;
1626 {
1627 	register struct ip *ip = mtod(m, struct ip *);
1628 	register struct rtentry *rt;
1629 	int error, type = 0, code = 0;
1630 	struct mbuf *mcopy;
1631 	n_long dest;
1632 	struct in_addr pkt_dst;
1633 	struct ifnet *destifp;
1634 #ifdef IPSEC
1635 	struct ifnet dummyifp;
1636 #endif
1637 
1638 	dest = 0;
1639 	/*
1640 	 * Cache the destination address of the packet; this may be
1641 	 * changed by use of 'ipfw fwd'.
1642 	 */
1643 	pkt_dst = ip_fw_fwd_addr == NULL ?
1644 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
1645 
1646 #ifdef DIAGNOSTIC
1647 	if (ipprintfs)
1648 		printf("forward: src %lx dst %lx ttl %x\n",
1649 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1650 		    ip->ip_ttl);
1651 #endif
1652 
1653 
1654 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1655 		ipstat.ips_cantforward++;
1656 		m_freem(m);
1657 		return;
1658 	}
1659 #ifdef IPSTEALTH
1660 	if (!ipstealth) {
1661 #endif
1662 		if (ip->ip_ttl <= IPTTLDEC) {
1663 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1664 			    dest, 0);
1665 			return;
1666 		}
1667 #ifdef IPSTEALTH
1668 	}
1669 #endif
1670 
1671 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1672 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1673 		return;
1674 	} else
1675 		rt = ipforward_rt.ro_rt;
1676 
1677 	/*
1678 	 * Save the IP header and at most 8 bytes of the payload,
1679 	 * in case we need to generate an ICMP message to the src.
1680 	 *
1681 	 * We don't use m_copy() because it might return a reference
1682 	 * to a shared cluster. Both this function and ip_output()
1683 	 * assume exclusive access to the IP header in `m', so any
1684 	 * data in a cluster may change before we reach icmp_error().
1685 	 */
1686 	MGET(mcopy, M_DONTWAIT, m->m_type);
1687 	if (mcopy != NULL) {
1688 		M_COPY_PKTHDR(mcopy, m);
1689 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1690 		    (int)ip->ip_len);
1691 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1692 	}
1693 
1694 #ifdef IPSTEALTH
1695 	if (!ipstealth) {
1696 #endif
1697 		ip->ip_ttl -= IPTTLDEC;
1698 #ifdef IPSTEALTH
1699 	}
1700 #endif
1701 
1702 	/*
1703 	 * If forwarding packet using same interface that it came in on,
1704 	 * perhaps should send a redirect to sender to shortcut a hop.
1705 	 * Only send redirect if source is sending directly to us,
1706 	 * and if packet was not source routed (or has any options).
1707 	 * Also, don't send redirect if forwarding using a default route
1708 	 * or a route modified by a redirect.
1709 	 */
1710 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1711 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1712 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1713 	    ipsendredirects && !srcrt && !ip_fw_fwd_addr) {
1714 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1715 		u_long src = ntohl(ip->ip_src.s_addr);
1716 
1717 		if (RTA(rt) &&
1718 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1719 		    if (rt->rt_flags & RTF_GATEWAY)
1720 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1721 		    else
1722 			dest = pkt_dst.s_addr;
1723 		    /* Router requirements says to only send host redirects */
1724 		    type = ICMP_REDIRECT;
1725 		    code = ICMP_REDIRECT_HOST;
1726 #ifdef DIAGNOSTIC
1727 		    if (ipprintfs)
1728 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1729 #endif
1730 		}
1731 	}
1732 
1733 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1734 			  IP_FORWARDING, 0);
1735 	if (error)
1736 		ipstat.ips_cantforward++;
1737 	else {
1738 		ipstat.ips_forward++;
1739 		if (type)
1740 			ipstat.ips_redirectsent++;
1741 		else {
1742 			if (mcopy) {
1743 				ipflow_create(&ipforward_rt, mcopy);
1744 				m_freem(mcopy);
1745 			}
1746 			return;
1747 		}
1748 	}
1749 	if (mcopy == NULL)
1750 		return;
1751 	destifp = NULL;
1752 
1753 	switch (error) {
1754 
1755 	case 0:				/* forwarded, but need redirect */
1756 		/* type, code set above */
1757 		break;
1758 
1759 	case ENETUNREACH:		/* shouldn't happen, checked above */
1760 	case EHOSTUNREACH:
1761 	case ENETDOWN:
1762 	case EHOSTDOWN:
1763 	default:
1764 		type = ICMP_UNREACH;
1765 		code = ICMP_UNREACH_HOST;
1766 		break;
1767 
1768 	case EMSGSIZE:
1769 		type = ICMP_UNREACH;
1770 		code = ICMP_UNREACH_NEEDFRAG;
1771 #ifndef IPSEC
1772 		if (ipforward_rt.ro_rt)
1773 			destifp = ipforward_rt.ro_rt->rt_ifp;
1774 #else
1775 		/*
1776 		 * If the packet is routed over IPsec tunnel, tell the
1777 		 * originator the tunnel MTU.
1778 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1779 		 * XXX quickhack!!!
1780 		 */
1781 		if (ipforward_rt.ro_rt) {
1782 			struct secpolicy *sp = NULL;
1783 			int ipsecerror;
1784 			int ipsechdr;
1785 			struct route *ro;
1786 
1787 			sp = ipsec4_getpolicybyaddr(mcopy,
1788 						    IPSEC_DIR_OUTBOUND,
1789 			                            IP_FORWARDING,
1790 			                            &ipsecerror);
1791 
1792 			if (sp == NULL)
1793 				destifp = ipforward_rt.ro_rt->rt_ifp;
1794 			else {
1795 				/* count IPsec header size */
1796 				ipsechdr = ipsec4_hdrsiz(mcopy,
1797 							 IPSEC_DIR_OUTBOUND,
1798 							 NULL);
1799 
1800 				/*
1801 				 * find the correct route for outer IPv4
1802 				 * header, compute tunnel MTU.
1803 				 *
1804 				 * XXX BUG ALERT
1805 				 * The "dummyifp" code relies upon the fact
1806 				 * that icmp_error() touches only ifp->if_mtu.
1807 				 */
1808 				/*XXX*/
1809 				destifp = NULL;
1810 				if (sp->req != NULL
1811 				 && sp->req->sav != NULL
1812 				 && sp->req->sav->sah != NULL) {
1813 					ro = &sp->req->sav->sah->sa_route;
1814 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1815 						dummyifp.if_mtu =
1816 						    ro->ro_rt->rt_ifp->if_mtu;
1817 						dummyifp.if_mtu -= ipsechdr;
1818 						destifp = &dummyifp;
1819 					}
1820 				}
1821 
1822 				key_freesp(sp);
1823 			}
1824 		}
1825 #endif /*IPSEC*/
1826 		ipstat.ips_cantfrag++;
1827 		break;
1828 
1829 	case ENOBUFS:
1830 		type = ICMP_SOURCEQUENCH;
1831 		code = 0;
1832 		break;
1833 
1834 	case EACCES:			/* ipfw denied packet */
1835 		m_freem(mcopy);
1836 		return;
1837 	}
1838 	icmp_error(mcopy, type, code, dest, destifp);
1839 }
1840 
1841 void
1842 ip_savecontrol(inp, mp, ip, m)
1843 	register struct inpcb *inp;
1844 	register struct mbuf **mp;
1845 	register struct ip *ip;
1846 	register struct mbuf *m;
1847 {
1848 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1849 		struct timeval tv;
1850 
1851 		microtime(&tv);
1852 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1853 			SCM_TIMESTAMP, SOL_SOCKET);
1854 		if (*mp)
1855 			mp = &(*mp)->m_next;
1856 	}
1857 	if (inp->inp_flags & INP_RECVDSTADDR) {
1858 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1859 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1860 		if (*mp)
1861 			mp = &(*mp)->m_next;
1862 	}
1863 #ifdef notyet
1864 	/* XXX
1865 	 * Moving these out of udp_input() made them even more broken
1866 	 * than they already were.
1867 	 */
1868 	/* options were tossed already */
1869 	if (inp->inp_flags & INP_RECVOPTS) {
1870 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1871 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1872 		if (*mp)
1873 			mp = &(*mp)->m_next;
1874 	}
1875 	/* ip_srcroute doesn't do what we want here, need to fix */
1876 	if (inp->inp_flags & INP_RECVRETOPTS) {
1877 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1878 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1879 		if (*mp)
1880 			mp = &(*mp)->m_next;
1881 	}
1882 #endif
1883 	if (inp->inp_flags & INP_RECVIF) {
1884 		struct ifnet *ifp;
1885 		struct sdlbuf {
1886 			struct sockaddr_dl sdl;
1887 			u_char	pad[32];
1888 		} sdlbuf;
1889 		struct sockaddr_dl *sdp;
1890 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1891 
1892 		if (((ifp = m->m_pkthdr.rcvif))
1893 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1894 			sdp = (struct sockaddr_dl *)
1895 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1896 			/*
1897 			 * Change our mind and don't try copy.
1898 			 */
1899 			if ((sdp->sdl_family != AF_LINK)
1900 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1901 				goto makedummy;
1902 			}
1903 			bcopy(sdp, sdl2, sdp->sdl_len);
1904 		} else {
1905 makedummy:
1906 			sdl2->sdl_len
1907 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1908 			sdl2->sdl_family = AF_LINK;
1909 			sdl2->sdl_index = 0;
1910 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1911 		}
1912 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1913 			IP_RECVIF, IPPROTO_IP);
1914 		if (*mp)
1915 			mp = &(*mp)->m_next;
1916 	}
1917 }
1918 
1919 int
1920 ip_rsvp_init(struct socket *so)
1921 {
1922 	if (so->so_type != SOCK_RAW ||
1923 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1924 	  return EOPNOTSUPP;
1925 
1926 	if (ip_rsvpd != NULL)
1927 	  return EADDRINUSE;
1928 
1929 	ip_rsvpd = so;
1930 	/*
1931 	 * This may seem silly, but we need to be sure we don't over-increment
1932 	 * the RSVP counter, in case something slips up.
1933 	 */
1934 	if (!ip_rsvp_on) {
1935 		ip_rsvp_on = 1;
1936 		rsvp_on++;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 int
1943 ip_rsvp_done(void)
1944 {
1945 	ip_rsvpd = NULL;
1946 	/*
1947 	 * This may seem silly, but we need to be sure we don't over-decrement
1948 	 * the RSVP counter, in case something slips up.
1949 	 */
1950 	if (ip_rsvp_on) {
1951 		ip_rsvp_on = 0;
1952 		rsvp_on--;
1953 	}
1954 	return 0;
1955 }
1956