1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #define _IP_VHL 38 39 #include "opt_bootp.h" 40 #include "opt_ipfw.h" 41 #include "opt_ipdn.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 #include "opt_ipstealth.h" 45 #include "opt_ipsec.h" 46 #include "opt_pfil_hooks.h" 47 #include "opt_random_ip_id.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/mbuf.h> 52 #include <sys/malloc.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/time.h> 57 #include <sys/kernel.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 61 #include <net/pfil.h> 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/if_var.h> 65 #include <net/if_dl.h> 66 #include <net/route.h> 67 #include <net/netisr.h> 68 #include <net/intrq.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/ip_var.h> 76 #include <netinet/ip_icmp.h> 77 #include <machine/in_cksum.h> 78 79 #include <sys/socketvar.h> 80 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_dummynet.h> 83 84 #ifdef IPSEC 85 #include <netinet6/ipsec.h> 86 #include <netkey/key.h> 87 #endif 88 89 int rsvp_on = 0; 90 static int ip_rsvp_on; 91 struct socket *ip_rsvpd; 92 93 int ipforwarding = 0; 94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 95 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 96 97 static int ipsendredirects = 1; /* XXX */ 98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 99 &ipsendredirects, 0, "Enable sending IP redirects"); 100 101 int ip_defttl = IPDEFTTL; 102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 103 &ip_defttl, 0, "Maximum TTL on IP packets"); 104 105 static int ip_dosourceroute = 0; 106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 107 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 108 109 static int ip_acceptsourceroute = 0; 110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 111 CTLFLAG_RW, &ip_acceptsourceroute, 0, 112 "Enable accepting source routed IP packets"); 113 114 static int ip_keepfaith = 0; 115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 116 &ip_keepfaith, 0, 117 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 118 119 static int ip_nfragpackets = 0; 120 static int ip_maxfragpackets; /* initialized in ip_init() */ 121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 122 &ip_maxfragpackets, 0, 123 "Maximum number of IPv4 fragment reassembly queue entries"); 124 125 /* 126 * XXX - Setting ip_checkinterface mostly implements the receive side of 127 * the Strong ES model described in RFC 1122, but since the routing table 128 * and transmit implementation do not implement the Strong ES model, 129 * setting this to 1 results in an odd hybrid. 130 * 131 * XXX - ip_checkinterface currently must be disabled if you use ipnat 132 * to translate the destination address to another local interface. 133 * 134 * XXX - ip_checkinterface must be disabled if you add IP aliases 135 * to the loopback interface instead of the interface where the 136 * packets for those addresses are received. 137 */ 138 static int ip_checkinterface = 1; 139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 140 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 141 142 #ifdef DIAGNOSTIC 143 static int ipprintfs = 0; 144 #endif 145 146 static int ipqmaxlen = IFQ_MAXLEN; 147 148 extern struct domain inetdomain; 149 extern struct protosw inetsw[]; 150 u_char ip_protox[IPPROTO_MAX]; 151 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 152 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 153 u_long in_ifaddrhmask; /* mask for hash table */ 154 155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 156 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 158 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 159 160 struct ipstat ipstat; 161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 162 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 163 164 /* Packet reassembly stuff */ 165 #define IPREASS_NHASH_LOG2 6 166 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 167 #define IPREASS_HMASK (IPREASS_NHASH - 1) 168 #define IPREASS_HASH(x,y) \ 169 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 170 171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 172 static int nipq = 0; /* total # of reass queues */ 173 static int maxnipq; 174 175 #ifdef IPCTL_DEFMTU 176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 177 &ip_mtu, 0, "Default MTU"); 178 #endif 179 180 #ifdef IPSTEALTH 181 static int ipstealth = 0; 182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 183 &ipstealth, 0, ""); 184 #endif 185 186 187 /* Firewall hooks */ 188 ip_fw_chk_t *ip_fw_chk_ptr; 189 int fw_enable = 1 ; 190 191 /* Dummynet hooks */ 192 ip_dn_io_t *ip_dn_io_ptr; 193 194 195 /* 196 * We need to save the IP options in case a protocol wants to respond 197 * to an incoming packet over the same route if the packet got here 198 * using IP source routing. This allows connection establishment and 199 * maintenance when the remote end is on a network that is not known 200 * to us. 201 */ 202 static int ip_nhops = 0; 203 static struct ip_srcrt { 204 struct in_addr dst; /* final destination */ 205 char nop; /* one NOP to align */ 206 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 207 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 208 } ip_srcrt; 209 210 struct sockaddr_in *ip_fw_fwd_addr; 211 212 static void save_rte __P((u_char *, struct in_addr)); 213 static int ip_dooptions __P((struct mbuf *, int)); 214 static void ip_forward __P((struct mbuf *, int)); 215 static void ip_freef __P((struct ipqhead *, struct ipq *)); 216 #ifdef IPDIVERT 217 static struct mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *)); 218 #else 219 static struct mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *)); 220 #endif 221 static void ipintr __P((void)); 222 223 /* 224 * IP initialization: fill in IP protocol switch table. 225 * All protocols not implemented in kernel go to raw IP protocol handler. 226 */ 227 void 228 ip_init() 229 { 230 register struct protosw *pr; 231 register int i; 232 233 TAILQ_INIT(&in_ifaddrhead); 234 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 235 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 236 if (pr == 0) 237 panic("ip_init"); 238 for (i = 0; i < IPPROTO_MAX; i++) 239 ip_protox[i] = pr - inetsw; 240 for (pr = inetdomain.dom_protosw; 241 pr < inetdomain.dom_protoswNPROTOSW; pr++) 242 if (pr->pr_domain->dom_family == PF_INET && 243 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 244 ip_protox[pr->pr_protocol] = pr - inetsw; 245 246 for (i = 0; i < IPREASS_NHASH; i++) 247 TAILQ_INIT(&ipq[i]); 248 249 maxnipq = nmbclusters / 4; 250 ip_maxfragpackets = nmbclusters / 4; 251 252 #ifndef RANDOM_IP_ID 253 ip_id = time_second & 0xffff; 254 #endif 255 ipintrq.ifq_maxlen = ipqmaxlen; 256 mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF); 257 ipintrq_present = 1; 258 259 register_netisr(NETISR_IP, ipintr); 260 } 261 262 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 263 struct route ipforward_rt; 264 265 /* 266 * Ip input routine. Checksum and byte swap header. If fragmented 267 * try to reassemble. Process options. Pass to next level. 268 */ 269 void 270 ip_input(struct mbuf *m) 271 { 272 struct ip *ip; 273 struct ipq *fp; 274 struct in_ifaddr *ia = NULL; 275 struct ifaddr *ifa; 276 int i, hlen, checkif; 277 u_short sum; 278 u_int16_t divert_cookie; /* firewall cookie */ 279 struct in_addr pkt_dst; 280 #ifdef IPDIVERT 281 u_int32_t divert_info = 0; /* packet divert/tee info */ 282 #endif 283 struct ip_fw *rule = NULL; 284 #ifdef PFIL_HOOKS 285 struct packet_filter_hook *pfh; 286 struct mbuf *m0; 287 int rv; 288 #endif /* PFIL_HOOKS */ 289 290 #ifdef IPDIVERT 291 /* Get and reset firewall cookie */ 292 divert_cookie = ip_divert_cookie; 293 ip_divert_cookie = 0; 294 #else 295 divert_cookie = 0; 296 #endif 297 298 /* 299 * dummynet packet are prepended a vestigial mbuf with 300 * m_type = MT_DUMMYNET and m_data pointing to the matching 301 * rule. 302 */ 303 if (m->m_type == MT_DUMMYNET) { 304 rule = (struct ip_fw *)(m->m_data) ; 305 m = m->m_next ; 306 ip = mtod(m, struct ip *); 307 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 308 goto iphack ; 309 } else 310 rule = NULL ; 311 312 #ifdef DIAGNOSTIC 313 if (m == NULL || (m->m_flags & M_PKTHDR) == 0) 314 panic("ip_input no HDR"); 315 #endif 316 ipstat.ips_total++; 317 318 if (m->m_pkthdr.len < sizeof(struct ip)) 319 goto tooshort; 320 321 if (m->m_len < sizeof (struct ip) && 322 (m = m_pullup(m, sizeof (struct ip))) == 0) { 323 ipstat.ips_toosmall++; 324 return; 325 } 326 ip = mtod(m, struct ip *); 327 328 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 329 ipstat.ips_badvers++; 330 goto bad; 331 } 332 333 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 334 if (hlen < sizeof(struct ip)) { /* minimum header length */ 335 ipstat.ips_badhlen++; 336 goto bad; 337 } 338 if (hlen > m->m_len) { 339 if ((m = m_pullup(m, hlen)) == 0) { 340 ipstat.ips_badhlen++; 341 return; 342 } 343 ip = mtod(m, struct ip *); 344 } 345 346 /* 127/8 must not appear on wire - RFC1122 */ 347 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 348 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 349 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 350 ipstat.ips_badaddr++; 351 goto bad; 352 } 353 } 354 355 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 356 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 357 } else { 358 if (hlen == sizeof(struct ip)) { 359 sum = in_cksum_hdr(ip); 360 } else { 361 sum = in_cksum(m, hlen); 362 } 363 } 364 if (sum) { 365 ipstat.ips_badsum++; 366 goto bad; 367 } 368 369 /* 370 * Convert fields to host representation. 371 */ 372 ip->ip_len = ntohs(ip->ip_len); 373 if (ip->ip_len < hlen) { 374 ipstat.ips_badlen++; 375 goto bad; 376 } 377 ip->ip_off = ntohs(ip->ip_off); 378 379 /* 380 * Check that the amount of data in the buffers 381 * is as at least much as the IP header would have us expect. 382 * Trim mbufs if longer than we expect. 383 * Drop packet if shorter than we expect. 384 */ 385 if (m->m_pkthdr.len < ip->ip_len) { 386 tooshort: 387 ipstat.ips_tooshort++; 388 goto bad; 389 } 390 if (m->m_pkthdr.len > ip->ip_len) { 391 if (m->m_len == m->m_pkthdr.len) { 392 m->m_len = ip->ip_len; 393 m->m_pkthdr.len = ip->ip_len; 394 } else 395 m_adj(m, ip->ip_len - m->m_pkthdr.len); 396 } 397 398 #ifdef IPSEC 399 if (ipsec_gethist(m, NULL)) 400 goto pass; 401 #endif 402 403 /* 404 * IpHack's section. 405 * Right now when no processing on packet has done 406 * and it is still fresh out of network we do our black 407 * deals with it. 408 * - Firewall: deny/allow/divert 409 * - Xlate: translate packet's addr/port (NAT). 410 * - Pipe: pass pkt through dummynet. 411 * - Wrap: fake packet's addr/port <unimpl.> 412 * - Encapsulate: put it in another IP and send out. <unimp.> 413 */ 414 415 iphack: 416 417 #ifdef PFIL_HOOKS 418 /* 419 * Run through list of hooks for input packets. If there are any 420 * filters which require that additional packets in the flow are 421 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 422 * Note that filters must _never_ set this flag, as another filter 423 * in the list may have previously cleared it. 424 */ 425 m0 = m; 426 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 427 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 428 if (pfh->pfil_func) { 429 rv = pfh->pfil_func(ip, hlen, 430 m->m_pkthdr.rcvif, 0, &m0); 431 if (rv) 432 return; 433 m = m0; 434 if (m == NULL) 435 return; 436 ip = mtod(m, struct ip *); 437 } 438 #endif /* PFIL_HOOKS */ 439 440 if (fw_enable && IPFW_LOADED) { 441 #ifdef IPFIREWALL_FORWARD 442 /* 443 * If we've been forwarded from the output side, then 444 * skip the firewall a second time 445 */ 446 if (ip_fw_fwd_addr) 447 goto ours; 448 #endif /* IPFIREWALL_FORWARD */ 449 /* 450 * See the comment in ip_output for the return values 451 * produced by the firewall. 452 */ 453 i = ip_fw_chk_ptr(&ip, hlen, NULL, 454 &divert_cookie, &m, &rule, &ip_fw_fwd_addr); 455 if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */ 456 if (m) 457 m_freem(m); 458 return; 459 } 460 if (m == NULL) { /* Packet discarded by firewall */ 461 static int __debug=10; 462 if (__debug > 0) { 463 printf( 464 "firewall returns NULL, please update!\n"); 465 __debug--; 466 } 467 return; 468 } 469 if (i == 0 && ip_fw_fwd_addr == NULL) /* common case */ 470 goto pass; 471 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 472 /* Send packet to the appropriate pipe */ 473 ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule, 474 0); 475 return; 476 } 477 #ifdef IPDIVERT 478 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 479 /* Divert or tee packet */ 480 divert_info = i; 481 goto ours; 482 } 483 #endif 484 #ifdef IPFIREWALL_FORWARD 485 if (i == 0 && ip_fw_fwd_addr != NULL) 486 goto pass; 487 #endif 488 /* 489 * if we get here, the packet must be dropped 490 */ 491 m_freem(m); 492 return; 493 } 494 pass: 495 496 /* 497 * Process options and, if not destined for us, 498 * ship it on. ip_dooptions returns 1 when an 499 * error was detected (causing an icmp message 500 * to be sent and the original packet to be freed). 501 */ 502 ip_nhops = 0; /* for source routed packets */ 503 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) { 504 #ifdef IPFIREWALL_FORWARD 505 ip_fw_fwd_addr = NULL; 506 #endif 507 return; 508 } 509 510 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 511 * matter if it is destined to another node, or whether it is 512 * a multicast one, RSVP wants it! and prevents it from being forwarded 513 * anywhere else. Also checks if the rsvp daemon is running before 514 * grabbing the packet. 515 */ 516 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 517 goto ours; 518 519 /* 520 * Check our list of addresses, to see if the packet is for us. 521 * If we don't have any addresses, assume any unicast packet 522 * we receive might be for us (and let the upper layers deal 523 * with it). 524 */ 525 if (TAILQ_EMPTY(&in_ifaddrhead) && 526 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 527 goto ours; 528 529 /* 530 * Cache the destination address of the packet; this may be 531 * changed by use of 'ipfw fwd'. 532 */ 533 pkt_dst = ip_fw_fwd_addr == NULL ? 534 ip->ip_dst : ip_fw_fwd_addr->sin_addr; 535 536 /* 537 * Enable a consistency check between the destination address 538 * and the arrival interface for a unicast packet (the RFC 1122 539 * strong ES model) if IP forwarding is disabled and the packet 540 * is not locally generated and the packet is not subject to 541 * 'ipfw fwd'. 542 * 543 * XXX - Checking also should be disabled if the destination 544 * address is ipnat'ed to a different interface. 545 * 546 * XXX - Checking is incompatible with IP aliases added 547 * to the loopback interface instead of the interface where 548 * the packets are received. 549 */ 550 checkif = ip_checkinterface && (ipforwarding == 0) && 551 m->m_pkthdr.rcvif != NULL && 552 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 553 (ip_fw_fwd_addr == NULL); 554 555 /* 556 * Check for exact addresses in the hash bucket. 557 */ 558 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 559 /* 560 * If the address matches, verify that the packet 561 * arrived via the correct interface if checking is 562 * enabled. 563 */ 564 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 565 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 566 goto ours; 567 } 568 /* 569 * Check for broadcast addresses. 570 * 571 * Only accept broadcast packets that arrive via the matching 572 * interface. Reception of forwarded directed broadcasts would 573 * be handled via ip_forward() and ether_output() with the loopback 574 * into the stack for SIMPLEX interfaces handled by ether_output(). 575 */ 576 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 577 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 578 if (ifa->ifa_addr->sa_family != AF_INET) 579 continue; 580 ia = ifatoia(ifa); 581 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 582 pkt_dst.s_addr) 583 goto ours; 584 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 585 goto ours; 586 #ifdef BOOTP_COMPAT 587 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 588 goto ours; 589 #endif 590 } 591 } 592 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 593 struct in_multi *inm; 594 if (ip_mrouter) { 595 /* 596 * If we are acting as a multicast router, all 597 * incoming multicast packets are passed to the 598 * kernel-level multicast forwarding function. 599 * The packet is returned (relatively) intact; if 600 * ip_mforward() returns a non-zero value, the packet 601 * must be discarded, else it may be accepted below. 602 */ 603 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 604 ipstat.ips_cantforward++; 605 m_freem(m); 606 return; 607 } 608 609 /* 610 * The process-level routing demon needs to receive 611 * all multicast IGMP packets, whether or not this 612 * host belongs to their destination groups. 613 */ 614 if (ip->ip_p == IPPROTO_IGMP) 615 goto ours; 616 ipstat.ips_forward++; 617 } 618 /* 619 * See if we belong to the destination multicast group on the 620 * arrival interface. 621 */ 622 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 623 if (inm == NULL) { 624 ipstat.ips_notmember++; 625 m_freem(m); 626 return; 627 } 628 goto ours; 629 } 630 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 631 goto ours; 632 if (ip->ip_dst.s_addr == INADDR_ANY) 633 goto ours; 634 635 /* 636 * FAITH(Firewall Aided Internet Translator) 637 */ 638 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 639 if (ip_keepfaith) { 640 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 641 goto ours; 642 } 643 m_freem(m); 644 return; 645 } 646 647 /* 648 * Not for us; forward if possible and desirable. 649 */ 650 if (ipforwarding == 0) { 651 ipstat.ips_cantforward++; 652 m_freem(m); 653 } else 654 ip_forward(m, 0); 655 #ifdef IPFIREWALL_FORWARD 656 ip_fw_fwd_addr = NULL; 657 #endif 658 return; 659 660 ours: 661 #ifdef IPSTEALTH 662 /* 663 * IPSTEALTH: Process non-routing options only 664 * if the packet is destined for us. 665 */ 666 if (ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) { 667 #ifdef IPFIREWALL_FORWARD 668 ip_fw_fwd_addr = NULL; 669 #endif 670 return; 671 } 672 #endif /* IPSTEALTH */ 673 674 /* Count the packet in the ip address stats */ 675 if (ia != NULL) { 676 ia->ia_ifa.if_ipackets++; 677 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 678 } 679 680 /* 681 * If offset or IP_MF are set, must reassemble. 682 * Otherwise, nothing need be done. 683 * (We could look in the reassembly queue to see 684 * if the packet was previously fragmented, 685 * but it's not worth the time; just let them time out.) 686 */ 687 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 688 689 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 690 /* 691 * Look for queue of fragments 692 * of this datagram. 693 */ 694 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 695 if (ip->ip_id == fp->ipq_id && 696 ip->ip_src.s_addr == fp->ipq_src.s_addr && 697 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 698 ip->ip_p == fp->ipq_p) 699 goto found; 700 701 fp = 0; 702 703 /* check if there's a place for the new queue */ 704 if (nipq > maxnipq) { 705 /* 706 * drop something from the tail of the current queue 707 * before proceeding further 708 */ 709 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 710 if (q == NULL) { /* gak */ 711 for (i = 0; i < IPREASS_NHASH; i++) { 712 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 713 if (r) { 714 ip_freef(&ipq[i], r); 715 break; 716 } 717 } 718 } else 719 ip_freef(&ipq[sum], q); 720 } 721 found: 722 /* 723 * Adjust ip_len to not reflect header, 724 * convert offset of this to bytes. 725 */ 726 ip->ip_len -= hlen; 727 if (ip->ip_off & IP_MF) { 728 /* 729 * Make sure that fragments have a data length 730 * that's a non-zero multiple of 8 bytes. 731 */ 732 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 733 ipstat.ips_toosmall++; /* XXX */ 734 goto bad; 735 } 736 m->m_flags |= M_FRAG; 737 } 738 ip->ip_off <<= 3; 739 740 /* 741 * Attempt reassembly; if it succeeds, proceed. 742 */ 743 ipstat.ips_fragments++; 744 m->m_pkthdr.header = ip; 745 #ifdef IPDIVERT 746 m = ip_reass(m, 747 &ipq[sum], fp, &divert_info, &divert_cookie); 748 #else 749 m = ip_reass(m, &ipq[sum], fp); 750 #endif 751 if (m == 0) { 752 #ifdef IPFIREWALL_FORWARD 753 ip_fw_fwd_addr = NULL; 754 #endif 755 return; 756 } 757 ipstat.ips_reassembled++; 758 ip = mtod(m, struct ip *); 759 /* Get the header length of the reassembled packet */ 760 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 761 #ifdef IPDIVERT 762 /* Restore original checksum before diverting packet */ 763 if (divert_info != 0) { 764 ip->ip_len += hlen; 765 ip->ip_len = htons(ip->ip_len); 766 ip->ip_off = htons(ip->ip_off); 767 ip->ip_sum = 0; 768 if (hlen == sizeof(struct ip)) 769 ip->ip_sum = in_cksum_hdr(ip); 770 else 771 ip->ip_sum = in_cksum(m, hlen); 772 ip->ip_off = ntohs(ip->ip_off); 773 ip->ip_len = ntohs(ip->ip_len); 774 ip->ip_len -= hlen; 775 } 776 #endif 777 } else 778 ip->ip_len -= hlen; 779 780 #ifdef IPDIVERT 781 /* 782 * Divert or tee packet to the divert protocol if required. 783 * 784 * If divert_info is zero then cookie should be too, so we shouldn't 785 * need to clear them here. Assume divert_packet() does so also. 786 */ 787 if (divert_info != 0) { 788 struct mbuf *clone = NULL; 789 790 /* Clone packet if we're doing a 'tee' */ 791 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 792 clone = m_dup(m, M_DONTWAIT); 793 794 /* Restore packet header fields to original values */ 795 ip->ip_len += hlen; 796 ip->ip_len = htons(ip->ip_len); 797 ip->ip_off = htons(ip->ip_off); 798 799 /* Deliver packet to divert input routine */ 800 ip_divert_cookie = divert_cookie; 801 divert_packet(m, 1, divert_info & 0xffff); 802 ipstat.ips_delivered++; 803 804 /* If 'tee', continue with original packet */ 805 if (clone == NULL) 806 return; 807 m = clone; 808 ip = mtod(m, struct ip *); 809 ip->ip_len += hlen; 810 divert_info = 0; 811 goto pass; 812 } 813 #endif 814 815 #ifdef IPSEC 816 /* 817 * enforce IPsec policy checking if we are seeing last header. 818 * note that we do not visit this with protocols with pcb layer 819 * code - like udp/tcp/raw ip. 820 */ 821 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 822 ipsec4_in_reject(m, NULL)) { 823 ipsecstat.in_polvio++; 824 goto bad; 825 } 826 #endif 827 828 /* 829 * Switch out to protocol's input routine. 830 */ 831 ipstat.ips_delivered++; 832 { 833 int off = hlen; 834 835 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off); 836 #ifdef IPFIREWALL_FORWARD 837 ip_fw_fwd_addr = NULL; /* tcp needed it */ 838 #endif 839 return; 840 } 841 bad: 842 #ifdef IPFIREWALL_FORWARD 843 ip_fw_fwd_addr = NULL; 844 #endif 845 m_freem(m); 846 } 847 848 /* 849 * IP software interrupt routine - to go away sometime soon 850 */ 851 static void 852 ipintr(void) 853 { 854 struct mbuf *m; 855 856 while (1) { 857 IF_DEQUEUE(&ipintrq, m); 858 if (m == 0) 859 return; 860 ip_input(m); 861 } 862 } 863 864 /* 865 * Take incoming datagram fragment and try to reassemble it into 866 * whole datagram. If a chain for reassembly of this datagram already 867 * exists, then it is given as fp; otherwise have to make a chain. 868 * 869 * When IPDIVERT enabled, keep additional state with each packet that 870 * tells us if we need to divert or tee the packet we're building. 871 */ 872 873 static struct mbuf * 874 #ifdef IPDIVERT 875 ip_reass(m, head, fp, divinfo, divcookie) 876 #else 877 ip_reass(m, head, fp) 878 #endif 879 struct mbuf *m; 880 struct ipqhead *head; 881 struct ipq *fp; 882 #ifdef IPDIVERT 883 u_int32_t *divinfo; 884 u_int16_t *divcookie; 885 #endif 886 { 887 struct ip *ip = mtod(m, struct ip *); 888 register struct mbuf *p, *q, *nq; 889 struct mbuf *t; 890 int hlen = IP_VHL_HL(ip->ip_vhl) << 2; 891 int i, next; 892 893 /* 894 * Presence of header sizes in mbufs 895 * would confuse code below. 896 */ 897 m->m_data += hlen; 898 m->m_len -= hlen; 899 900 /* 901 * If first fragment to arrive, create a reassembly queue. 902 */ 903 if (fp == 0) { 904 /* 905 * Enforce upper bound on number of fragmented packets 906 * for which we attempt reassembly; 907 * If maxfrag is 0, never accept fragments. 908 * If maxfrag is -1, accept all fragments without limitation. 909 */ 910 if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets)) 911 goto dropfrag; 912 ip_nfragpackets++; 913 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 914 goto dropfrag; 915 fp = mtod(t, struct ipq *); 916 TAILQ_INSERT_HEAD(head, fp, ipq_list); 917 nipq++; 918 fp->ipq_ttl = IPFRAGTTL; 919 fp->ipq_p = ip->ip_p; 920 fp->ipq_id = ip->ip_id; 921 fp->ipq_src = ip->ip_src; 922 fp->ipq_dst = ip->ip_dst; 923 fp->ipq_frags = m; 924 m->m_nextpkt = NULL; 925 #ifdef IPDIVERT 926 fp->ipq_div_info = 0; 927 fp->ipq_div_cookie = 0; 928 #endif 929 goto inserted; 930 } 931 932 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 933 934 /* 935 * Find a segment which begins after this one does. 936 */ 937 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 938 if (GETIP(q)->ip_off > ip->ip_off) 939 break; 940 941 /* 942 * If there is a preceding segment, it may provide some of 943 * our data already. If so, drop the data from the incoming 944 * segment. If it provides all of our data, drop us, otherwise 945 * stick new segment in the proper place. 946 * 947 * If some of the data is dropped from the the preceding 948 * segment, then it's checksum is invalidated. 949 */ 950 if (p) { 951 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 952 if (i > 0) { 953 if (i >= ip->ip_len) 954 goto dropfrag; 955 m_adj(m, i); 956 m->m_pkthdr.csum_flags = 0; 957 ip->ip_off += i; 958 ip->ip_len -= i; 959 } 960 m->m_nextpkt = p->m_nextpkt; 961 p->m_nextpkt = m; 962 } else { 963 m->m_nextpkt = fp->ipq_frags; 964 fp->ipq_frags = m; 965 } 966 967 /* 968 * While we overlap succeeding segments trim them or, 969 * if they are completely covered, dequeue them. 970 */ 971 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 972 q = nq) { 973 i = (ip->ip_off + ip->ip_len) - 974 GETIP(q)->ip_off; 975 if (i < GETIP(q)->ip_len) { 976 GETIP(q)->ip_len -= i; 977 GETIP(q)->ip_off += i; 978 m_adj(q, i); 979 q->m_pkthdr.csum_flags = 0; 980 break; 981 } 982 nq = q->m_nextpkt; 983 m->m_nextpkt = nq; 984 m_freem(q); 985 } 986 987 inserted: 988 989 #ifdef IPDIVERT 990 /* 991 * Transfer firewall instructions to the fragment structure. 992 * Any fragment diverting causes the whole packet to divert. 993 */ 994 fp->ipq_div_info = *divinfo; 995 fp->ipq_div_cookie = *divcookie; 996 *divinfo = 0; 997 *divcookie = 0; 998 #endif 999 1000 /* 1001 * Check for complete reassembly. 1002 */ 1003 next = 0; 1004 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 1005 if (GETIP(q)->ip_off != next) 1006 return (0); 1007 next += GETIP(q)->ip_len; 1008 } 1009 /* Make sure the last packet didn't have the IP_MF flag */ 1010 if (p->m_flags & M_FRAG) 1011 return (0); 1012 1013 /* 1014 * Reassembly is complete. Make sure the packet is a sane size. 1015 */ 1016 q = fp->ipq_frags; 1017 ip = GETIP(q); 1018 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { 1019 ipstat.ips_toolong++; 1020 ip_freef(head, fp); 1021 return (0); 1022 } 1023 1024 /* 1025 * Concatenate fragments. 1026 */ 1027 m = q; 1028 t = m->m_next; 1029 m->m_next = 0; 1030 m_cat(m, t); 1031 nq = q->m_nextpkt; 1032 q->m_nextpkt = 0; 1033 for (q = nq; q != NULL; q = nq) { 1034 nq = q->m_nextpkt; 1035 q->m_nextpkt = NULL; 1036 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1037 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1038 m_cat(m, q); 1039 } 1040 1041 #ifdef IPDIVERT 1042 /* 1043 * Extract firewall instructions from the fragment structure. 1044 */ 1045 *divinfo = fp->ipq_div_info; 1046 *divcookie = fp->ipq_div_cookie; 1047 #endif 1048 1049 /* 1050 * Create header for new ip packet by 1051 * modifying header of first packet; 1052 * dequeue and discard fragment reassembly header. 1053 * Make header visible. 1054 */ 1055 ip->ip_len = next; 1056 ip->ip_src = fp->ipq_src; 1057 ip->ip_dst = fp->ipq_dst; 1058 TAILQ_REMOVE(head, fp, ipq_list); 1059 nipq--; 1060 (void) m_free(dtom(fp)); 1061 ip_nfragpackets--; 1062 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); 1063 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); 1064 /* some debugging cruft by sklower, below, will go away soon */ 1065 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 1066 register int plen = 0; 1067 for (t = m; t; t = t->m_next) 1068 plen += t->m_len; 1069 m->m_pkthdr.len = plen; 1070 } 1071 return (m); 1072 1073 dropfrag: 1074 #ifdef IPDIVERT 1075 *divinfo = 0; 1076 *divcookie = 0; 1077 #endif 1078 ipstat.ips_fragdropped++; 1079 m_freem(m); 1080 return (0); 1081 1082 #undef GETIP 1083 } 1084 1085 /* 1086 * Free a fragment reassembly header and all 1087 * associated datagrams. 1088 */ 1089 static void 1090 ip_freef(fhp, fp) 1091 struct ipqhead *fhp; 1092 struct ipq *fp; 1093 { 1094 register struct mbuf *q; 1095 1096 while (fp->ipq_frags) { 1097 q = fp->ipq_frags; 1098 fp->ipq_frags = q->m_nextpkt; 1099 m_freem(q); 1100 } 1101 TAILQ_REMOVE(fhp, fp, ipq_list); 1102 (void) m_free(dtom(fp)); 1103 ip_nfragpackets--; 1104 nipq--; 1105 } 1106 1107 /* 1108 * IP timer processing; 1109 * if a timer expires on a reassembly 1110 * queue, discard it. 1111 */ 1112 void 1113 ip_slowtimo() 1114 { 1115 register struct ipq *fp; 1116 int s = splnet(); 1117 int i; 1118 1119 for (i = 0; i < IPREASS_NHASH; i++) { 1120 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1121 struct ipq *fpp; 1122 1123 fpp = fp; 1124 fp = TAILQ_NEXT(fp, ipq_list); 1125 if(--fpp->ipq_ttl == 0) { 1126 ipstat.ips_fragtimeout++; 1127 ip_freef(&ipq[i], fpp); 1128 } 1129 } 1130 } 1131 /* 1132 * If we are over the maximum number of fragments 1133 * (due to the limit being lowered), drain off 1134 * enough to get down to the new limit. 1135 */ 1136 for (i = 0; i < IPREASS_NHASH; i++) { 1137 if (ip_maxfragpackets >= 0) { 1138 while (ip_nfragpackets > ip_maxfragpackets && 1139 !TAILQ_EMPTY(&ipq[i])) { 1140 ipstat.ips_fragdropped++; 1141 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1142 } 1143 } 1144 } 1145 ipflow_slowtimo(); 1146 splx(s); 1147 } 1148 1149 /* 1150 * Drain off all datagram fragments. 1151 */ 1152 void 1153 ip_drain() 1154 { 1155 int i; 1156 1157 for (i = 0; i < IPREASS_NHASH; i++) { 1158 while(!TAILQ_EMPTY(&ipq[i])) { 1159 ipstat.ips_fragdropped++; 1160 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1161 } 1162 } 1163 in_rtqdrain(); 1164 } 1165 1166 /* 1167 * Do option processing on a datagram, 1168 * possibly discarding it if bad options are encountered, 1169 * or forwarding it if source-routed. 1170 * The pass argument is used when operating in the IPSTEALTH 1171 * mode to tell what options to process: 1172 * [LS]SRR (pass 0) or the others (pass 1). 1173 * The reason for as many as two passes is that when doing IPSTEALTH, 1174 * non-routing options should be processed only if the packet is for us. 1175 * Returns 1 if packet has been forwarded/freed, 1176 * 0 if the packet should be processed further. 1177 */ 1178 static int 1179 ip_dooptions(m, pass) 1180 struct mbuf *m; 1181 int pass; 1182 { 1183 register struct ip *ip = mtod(m, struct ip *); 1184 register u_char *cp; 1185 register struct in_ifaddr *ia; 1186 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1187 struct in_addr *sin, dst; 1188 n_time ntime; 1189 1190 dst = ip->ip_dst; 1191 cp = (u_char *)(ip + 1); 1192 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1193 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1194 opt = cp[IPOPT_OPTVAL]; 1195 if (opt == IPOPT_EOL) 1196 break; 1197 if (opt == IPOPT_NOP) 1198 optlen = 1; 1199 else { 1200 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1201 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1202 goto bad; 1203 } 1204 optlen = cp[IPOPT_OLEN]; 1205 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1206 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1207 goto bad; 1208 } 1209 } 1210 switch (opt) { 1211 1212 default: 1213 break; 1214 1215 /* 1216 * Source routing with record. 1217 * Find interface with current destination address. 1218 * If none on this machine then drop if strictly routed, 1219 * or do nothing if loosely routed. 1220 * Record interface address and bring up next address 1221 * component. If strictly routed make sure next 1222 * address is on directly accessible net. 1223 */ 1224 case IPOPT_LSRR: 1225 case IPOPT_SSRR: 1226 #ifdef IPSTEALTH 1227 if (ipstealth && pass > 0) 1228 break; 1229 #endif 1230 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1231 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1232 goto bad; 1233 } 1234 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1235 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1236 goto bad; 1237 } 1238 ipaddr.sin_addr = ip->ip_dst; 1239 ia = (struct in_ifaddr *) 1240 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1241 if (ia == 0) { 1242 if (opt == IPOPT_SSRR) { 1243 type = ICMP_UNREACH; 1244 code = ICMP_UNREACH_SRCFAIL; 1245 goto bad; 1246 } 1247 if (!ip_dosourceroute) 1248 goto nosourcerouting; 1249 /* 1250 * Loose routing, and not at next destination 1251 * yet; nothing to do except forward. 1252 */ 1253 break; 1254 } 1255 off--; /* 0 origin */ 1256 if (off > optlen - (int)sizeof(struct in_addr)) { 1257 /* 1258 * End of source route. Should be for us. 1259 */ 1260 if (!ip_acceptsourceroute) 1261 goto nosourcerouting; 1262 save_rte(cp, ip->ip_src); 1263 break; 1264 } 1265 #ifdef IPSTEALTH 1266 if (ipstealth) 1267 goto dropit; 1268 #endif 1269 if (!ip_dosourceroute) { 1270 if (ipforwarding) { 1271 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1272 /* 1273 * Acting as a router, so generate ICMP 1274 */ 1275 nosourcerouting: 1276 strcpy(buf, inet_ntoa(ip->ip_dst)); 1277 log(LOG_WARNING, 1278 "attempted source route from %s to %s\n", 1279 inet_ntoa(ip->ip_src), buf); 1280 type = ICMP_UNREACH; 1281 code = ICMP_UNREACH_SRCFAIL; 1282 goto bad; 1283 } else { 1284 /* 1285 * Not acting as a router, so silently drop. 1286 */ 1287 #ifdef IPSTEALTH 1288 dropit: 1289 #endif 1290 ipstat.ips_cantforward++; 1291 m_freem(m); 1292 return (1); 1293 } 1294 } 1295 1296 /* 1297 * locate outgoing interface 1298 */ 1299 (void)memcpy(&ipaddr.sin_addr, cp + off, 1300 sizeof(ipaddr.sin_addr)); 1301 1302 if (opt == IPOPT_SSRR) { 1303 #define INA struct in_ifaddr * 1304 #define SA struct sockaddr * 1305 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1306 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1307 } else 1308 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1309 if (ia == 0) { 1310 type = ICMP_UNREACH; 1311 code = ICMP_UNREACH_SRCFAIL; 1312 goto bad; 1313 } 1314 ip->ip_dst = ipaddr.sin_addr; 1315 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1316 sizeof(struct in_addr)); 1317 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1318 /* 1319 * Let ip_intr's mcast routing check handle mcast pkts 1320 */ 1321 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1322 break; 1323 1324 case IPOPT_RR: 1325 #ifdef IPSTEALTH 1326 if (ipstealth && pass == 0) 1327 break; 1328 #endif 1329 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1330 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1331 goto bad; 1332 } 1333 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1334 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1335 goto bad; 1336 } 1337 /* 1338 * If no space remains, ignore. 1339 */ 1340 off--; /* 0 origin */ 1341 if (off > optlen - (int)sizeof(struct in_addr)) 1342 break; 1343 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1344 sizeof(ipaddr.sin_addr)); 1345 /* 1346 * locate outgoing interface; if we're the destination, 1347 * use the incoming interface (should be same). 1348 */ 1349 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1350 (ia = ip_rtaddr(ipaddr.sin_addr, 1351 &ipforward_rt)) == 0) { 1352 type = ICMP_UNREACH; 1353 code = ICMP_UNREACH_HOST; 1354 goto bad; 1355 } 1356 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1357 sizeof(struct in_addr)); 1358 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1359 break; 1360 1361 case IPOPT_TS: 1362 #ifdef IPSTEALTH 1363 if (ipstealth && pass == 0) 1364 break; 1365 #endif 1366 code = cp - (u_char *)ip; 1367 if (optlen < 4 || optlen > 40) { 1368 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1369 goto bad; 1370 } 1371 if ((off = cp[IPOPT_OFFSET]) < 5) { 1372 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1373 goto bad; 1374 } 1375 if (off > optlen - (int)sizeof(int32_t)) { 1376 cp[IPOPT_OFFSET + 1] += (1 << 4); 1377 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1378 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1379 goto bad; 1380 } 1381 break; 1382 } 1383 off--; /* 0 origin */ 1384 sin = (struct in_addr *)(cp + off); 1385 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1386 1387 case IPOPT_TS_TSONLY: 1388 break; 1389 1390 case IPOPT_TS_TSANDADDR: 1391 if (off + sizeof(n_time) + 1392 sizeof(struct in_addr) > optlen) { 1393 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1394 goto bad; 1395 } 1396 ipaddr.sin_addr = dst; 1397 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1398 m->m_pkthdr.rcvif); 1399 if (ia == 0) 1400 continue; 1401 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1402 sizeof(struct in_addr)); 1403 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1404 break; 1405 1406 case IPOPT_TS_PRESPEC: 1407 if (off + sizeof(n_time) + 1408 sizeof(struct in_addr) > optlen) { 1409 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1410 goto bad; 1411 } 1412 (void)memcpy(&ipaddr.sin_addr, sin, 1413 sizeof(struct in_addr)); 1414 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1415 continue; 1416 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1417 break; 1418 1419 default: 1420 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1421 goto bad; 1422 } 1423 ntime = iptime(); 1424 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1425 cp[IPOPT_OFFSET] += sizeof(n_time); 1426 } 1427 } 1428 if (forward && ipforwarding) { 1429 ip_forward(m, 1); 1430 return (1); 1431 } 1432 return (0); 1433 bad: 1434 icmp_error(m, type, code, 0, 0); 1435 ipstat.ips_badoptions++; 1436 return (1); 1437 } 1438 1439 /* 1440 * Given address of next destination (final or next hop), 1441 * return internet address info of interface to be used to get there. 1442 */ 1443 struct in_ifaddr * 1444 ip_rtaddr(dst, rt) 1445 struct in_addr dst; 1446 struct route *rt; 1447 { 1448 register struct sockaddr_in *sin; 1449 1450 sin = (struct sockaddr_in *)&rt->ro_dst; 1451 1452 if (rt->ro_rt == 0 || 1453 !(rt->ro_rt->rt_flags & RTF_UP) || 1454 dst.s_addr != sin->sin_addr.s_addr) { 1455 if (rt->ro_rt) { 1456 RTFREE(rt->ro_rt); 1457 rt->ro_rt = 0; 1458 } 1459 sin->sin_family = AF_INET; 1460 sin->sin_len = sizeof(*sin); 1461 sin->sin_addr = dst; 1462 1463 rtalloc_ign(rt, RTF_PRCLONING); 1464 } 1465 if (rt->ro_rt == 0) 1466 return ((struct in_ifaddr *)0); 1467 return (ifatoia(rt->ro_rt->rt_ifa)); 1468 } 1469 1470 /* 1471 * Save incoming source route for use in replies, 1472 * to be picked up later by ip_srcroute if the receiver is interested. 1473 */ 1474 void 1475 save_rte(option, dst) 1476 u_char *option; 1477 struct in_addr dst; 1478 { 1479 unsigned olen; 1480 1481 olen = option[IPOPT_OLEN]; 1482 #ifdef DIAGNOSTIC 1483 if (ipprintfs) 1484 printf("save_rte: olen %d\n", olen); 1485 #endif 1486 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1487 return; 1488 bcopy(option, ip_srcrt.srcopt, olen); 1489 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1490 ip_srcrt.dst = dst; 1491 } 1492 1493 /* 1494 * Retrieve incoming source route for use in replies, 1495 * in the same form used by setsockopt. 1496 * The first hop is placed before the options, will be removed later. 1497 */ 1498 struct mbuf * 1499 ip_srcroute() 1500 { 1501 register struct in_addr *p, *q; 1502 register struct mbuf *m; 1503 1504 if (ip_nhops == 0) 1505 return ((struct mbuf *)0); 1506 m = m_get(M_DONTWAIT, MT_HEADER); 1507 if (m == 0) 1508 return ((struct mbuf *)0); 1509 1510 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1511 1512 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1513 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1514 OPTSIZ; 1515 #ifdef DIAGNOSTIC 1516 if (ipprintfs) 1517 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1518 #endif 1519 1520 /* 1521 * First save first hop for return route 1522 */ 1523 p = &ip_srcrt.route[ip_nhops - 1]; 1524 *(mtod(m, struct in_addr *)) = *p--; 1525 #ifdef DIAGNOSTIC 1526 if (ipprintfs) 1527 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1528 #endif 1529 1530 /* 1531 * Copy option fields and padding (nop) to mbuf. 1532 */ 1533 ip_srcrt.nop = IPOPT_NOP; 1534 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1535 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1536 &ip_srcrt.nop, OPTSIZ); 1537 q = (struct in_addr *)(mtod(m, caddr_t) + 1538 sizeof(struct in_addr) + OPTSIZ); 1539 #undef OPTSIZ 1540 /* 1541 * Record return path as an IP source route, 1542 * reversing the path (pointers are now aligned). 1543 */ 1544 while (p >= ip_srcrt.route) { 1545 #ifdef DIAGNOSTIC 1546 if (ipprintfs) 1547 printf(" %lx", (u_long)ntohl(q->s_addr)); 1548 #endif 1549 *q++ = *p--; 1550 } 1551 /* 1552 * Last hop goes to final destination. 1553 */ 1554 *q = ip_srcrt.dst; 1555 #ifdef DIAGNOSTIC 1556 if (ipprintfs) 1557 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1558 #endif 1559 return (m); 1560 } 1561 1562 /* 1563 * Strip out IP options, at higher 1564 * level protocol in the kernel. 1565 * Second argument is buffer to which options 1566 * will be moved, and return value is their length. 1567 * XXX should be deleted; last arg currently ignored. 1568 */ 1569 void 1570 ip_stripoptions(m, mopt) 1571 register struct mbuf *m; 1572 struct mbuf *mopt; 1573 { 1574 register int i; 1575 struct ip *ip = mtod(m, struct ip *); 1576 register caddr_t opts; 1577 int olen; 1578 1579 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1580 opts = (caddr_t)(ip + 1); 1581 i = m->m_len - (sizeof (struct ip) + olen); 1582 bcopy(opts + olen, opts, (unsigned)i); 1583 m->m_len -= olen; 1584 if (m->m_flags & M_PKTHDR) 1585 m->m_pkthdr.len -= olen; 1586 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1587 } 1588 1589 u_char inetctlerrmap[PRC_NCMDS] = { 1590 0, 0, 0, 0, 1591 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1592 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1593 EMSGSIZE, EHOSTUNREACH, 0, 0, 1594 0, 0, 0, 0, 1595 ENOPROTOOPT, ECONNREFUSED 1596 }; 1597 1598 /* 1599 * Forward a packet. If some error occurs return the sender 1600 * an icmp packet. Note we can't always generate a meaningful 1601 * icmp message because icmp doesn't have a large enough repertoire 1602 * of codes and types. 1603 * 1604 * If not forwarding, just drop the packet. This could be confusing 1605 * if ipforwarding was zero but some routing protocol was advancing 1606 * us as a gateway to somewhere. However, we must let the routing 1607 * protocol deal with that. 1608 * 1609 * The srcrt parameter indicates whether the packet is being forwarded 1610 * via a source route. 1611 */ 1612 static void 1613 ip_forward(m, srcrt) 1614 struct mbuf *m; 1615 int srcrt; 1616 { 1617 register struct ip *ip = mtod(m, struct ip *); 1618 register struct rtentry *rt; 1619 int error, type = 0, code = 0; 1620 struct mbuf *mcopy; 1621 n_long dest; 1622 struct in_addr pkt_dst; 1623 struct ifnet *destifp; 1624 #ifdef IPSEC 1625 struct ifnet dummyifp; 1626 #endif 1627 1628 dest = 0; 1629 /* 1630 * Cache the destination address of the packet; this may be 1631 * changed by use of 'ipfw fwd'. 1632 */ 1633 pkt_dst = ip_fw_fwd_addr == NULL ? 1634 ip->ip_dst : ip_fw_fwd_addr->sin_addr; 1635 1636 #ifdef DIAGNOSTIC 1637 if (ipprintfs) 1638 printf("forward: src %lx dst %lx ttl %x\n", 1639 (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, 1640 ip->ip_ttl); 1641 #endif 1642 1643 1644 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { 1645 ipstat.ips_cantforward++; 1646 m_freem(m); 1647 return; 1648 } 1649 #ifdef IPSTEALTH 1650 if (!ipstealth) { 1651 #endif 1652 if (ip->ip_ttl <= IPTTLDEC) { 1653 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1654 dest, 0); 1655 return; 1656 } 1657 #ifdef IPSTEALTH 1658 } 1659 #endif 1660 1661 if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) { 1662 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1663 return; 1664 } else 1665 rt = ipforward_rt.ro_rt; 1666 1667 /* 1668 * Save the IP header and at most 8 bytes of the payload, 1669 * in case we need to generate an ICMP message to the src. 1670 * 1671 * We don't use m_copy() because it might return a reference 1672 * to a shared cluster. Both this function and ip_output() 1673 * assume exclusive access to the IP header in `m', so any 1674 * data in a cluster may change before we reach icmp_error(). 1675 */ 1676 MGET(mcopy, M_DONTWAIT, m->m_type); 1677 if (mcopy != NULL) { 1678 M_COPY_PKTHDR(mcopy, m); 1679 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, 1680 (int)ip->ip_len); 1681 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1682 } 1683 1684 #ifdef IPSTEALTH 1685 if (!ipstealth) { 1686 #endif 1687 ip->ip_ttl -= IPTTLDEC; 1688 #ifdef IPSTEALTH 1689 } 1690 #endif 1691 1692 /* 1693 * If forwarding packet using same interface that it came in on, 1694 * perhaps should send a redirect to sender to shortcut a hop. 1695 * Only send redirect if source is sending directly to us, 1696 * and if packet was not source routed (or has any options). 1697 * Also, don't send redirect if forwarding using a default route 1698 * or a route modified by a redirect. 1699 */ 1700 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1701 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1702 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1703 ipsendredirects && !srcrt && !ip_fw_fwd_addr) { 1704 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1705 u_long src = ntohl(ip->ip_src.s_addr); 1706 1707 if (RTA(rt) && 1708 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1709 if (rt->rt_flags & RTF_GATEWAY) 1710 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1711 else 1712 dest = pkt_dst.s_addr; 1713 /* Router requirements says to only send host redirects */ 1714 type = ICMP_REDIRECT; 1715 code = ICMP_REDIRECT_HOST; 1716 #ifdef DIAGNOSTIC 1717 if (ipprintfs) 1718 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1719 #endif 1720 } 1721 } 1722 1723 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1724 IP_FORWARDING, 0); 1725 if (error) 1726 ipstat.ips_cantforward++; 1727 else { 1728 ipstat.ips_forward++; 1729 if (type) 1730 ipstat.ips_redirectsent++; 1731 else { 1732 if (mcopy) { 1733 ipflow_create(&ipforward_rt, mcopy); 1734 m_freem(mcopy); 1735 } 1736 return; 1737 } 1738 } 1739 if (mcopy == NULL) 1740 return; 1741 destifp = NULL; 1742 1743 switch (error) { 1744 1745 case 0: /* forwarded, but need redirect */ 1746 /* type, code set above */ 1747 break; 1748 1749 case ENETUNREACH: /* shouldn't happen, checked above */ 1750 case EHOSTUNREACH: 1751 case ENETDOWN: 1752 case EHOSTDOWN: 1753 default: 1754 type = ICMP_UNREACH; 1755 code = ICMP_UNREACH_HOST; 1756 break; 1757 1758 case EMSGSIZE: 1759 type = ICMP_UNREACH; 1760 code = ICMP_UNREACH_NEEDFRAG; 1761 #ifndef IPSEC 1762 if (ipforward_rt.ro_rt) 1763 destifp = ipforward_rt.ro_rt->rt_ifp; 1764 #else 1765 /* 1766 * If the packet is routed over IPsec tunnel, tell the 1767 * originator the tunnel MTU. 1768 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1769 * XXX quickhack!!! 1770 */ 1771 if (ipforward_rt.ro_rt) { 1772 struct secpolicy *sp = NULL; 1773 int ipsecerror; 1774 int ipsechdr; 1775 struct route *ro; 1776 1777 sp = ipsec4_getpolicybyaddr(mcopy, 1778 IPSEC_DIR_OUTBOUND, 1779 IP_FORWARDING, 1780 &ipsecerror); 1781 1782 if (sp == NULL) 1783 destifp = ipforward_rt.ro_rt->rt_ifp; 1784 else { 1785 /* count IPsec header size */ 1786 ipsechdr = ipsec4_hdrsiz(mcopy, 1787 IPSEC_DIR_OUTBOUND, 1788 NULL); 1789 1790 /* 1791 * find the correct route for outer IPv4 1792 * header, compute tunnel MTU. 1793 * 1794 * XXX BUG ALERT 1795 * The "dummyifp" code relies upon the fact 1796 * that icmp_error() touches only ifp->if_mtu. 1797 */ 1798 /*XXX*/ 1799 destifp = NULL; 1800 if (sp->req != NULL 1801 && sp->req->sav != NULL 1802 && sp->req->sav->sah != NULL) { 1803 ro = &sp->req->sav->sah->sa_route; 1804 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1805 dummyifp.if_mtu = 1806 ro->ro_rt->rt_ifp->if_mtu; 1807 dummyifp.if_mtu -= ipsechdr; 1808 destifp = &dummyifp; 1809 } 1810 } 1811 1812 key_freesp(sp); 1813 } 1814 } 1815 #endif /*IPSEC*/ 1816 ipstat.ips_cantfrag++; 1817 break; 1818 1819 case ENOBUFS: 1820 type = ICMP_SOURCEQUENCH; 1821 code = 0; 1822 break; 1823 1824 case EACCES: /* ipfw denied packet */ 1825 m_freem(mcopy); 1826 return; 1827 } 1828 icmp_error(mcopy, type, code, dest, destifp); 1829 } 1830 1831 void 1832 ip_savecontrol(inp, mp, ip, m) 1833 register struct inpcb *inp; 1834 register struct mbuf **mp; 1835 register struct ip *ip; 1836 register struct mbuf *m; 1837 { 1838 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1839 struct timeval tv; 1840 1841 microtime(&tv); 1842 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1843 SCM_TIMESTAMP, SOL_SOCKET); 1844 if (*mp) 1845 mp = &(*mp)->m_next; 1846 } 1847 if (inp->inp_flags & INP_RECVDSTADDR) { 1848 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1849 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1850 if (*mp) 1851 mp = &(*mp)->m_next; 1852 } 1853 #ifdef notyet 1854 /* XXX 1855 * Moving these out of udp_input() made them even more broken 1856 * than they already were. 1857 */ 1858 /* options were tossed already */ 1859 if (inp->inp_flags & INP_RECVOPTS) { 1860 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1861 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1862 if (*mp) 1863 mp = &(*mp)->m_next; 1864 } 1865 /* ip_srcroute doesn't do what we want here, need to fix */ 1866 if (inp->inp_flags & INP_RECVRETOPTS) { 1867 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1868 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1869 if (*mp) 1870 mp = &(*mp)->m_next; 1871 } 1872 #endif 1873 if (inp->inp_flags & INP_RECVIF) { 1874 struct ifnet *ifp; 1875 struct sdlbuf { 1876 struct sockaddr_dl sdl; 1877 u_char pad[32]; 1878 } sdlbuf; 1879 struct sockaddr_dl *sdp; 1880 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1881 1882 if (((ifp = m->m_pkthdr.rcvif)) 1883 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1884 sdp = (struct sockaddr_dl *) 1885 (ifaddr_byindex(ifp->if_index)->ifa_addr); 1886 /* 1887 * Change our mind and don't try copy. 1888 */ 1889 if ((sdp->sdl_family != AF_LINK) 1890 || (sdp->sdl_len > sizeof(sdlbuf))) { 1891 goto makedummy; 1892 } 1893 bcopy(sdp, sdl2, sdp->sdl_len); 1894 } else { 1895 makedummy: 1896 sdl2->sdl_len 1897 = offsetof(struct sockaddr_dl, sdl_data[0]); 1898 sdl2->sdl_family = AF_LINK; 1899 sdl2->sdl_index = 0; 1900 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1901 } 1902 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1903 IP_RECVIF, IPPROTO_IP); 1904 if (*mp) 1905 mp = &(*mp)->m_next; 1906 } 1907 } 1908 1909 int 1910 ip_rsvp_init(struct socket *so) 1911 { 1912 if (so->so_type != SOCK_RAW || 1913 so->so_proto->pr_protocol != IPPROTO_RSVP) 1914 return EOPNOTSUPP; 1915 1916 if (ip_rsvpd != NULL) 1917 return EADDRINUSE; 1918 1919 ip_rsvpd = so; 1920 /* 1921 * This may seem silly, but we need to be sure we don't over-increment 1922 * the RSVP counter, in case something slips up. 1923 */ 1924 if (!ip_rsvp_on) { 1925 ip_rsvp_on = 1; 1926 rsvp_on++; 1927 } 1928 1929 return 0; 1930 } 1931 1932 int 1933 ip_rsvp_done(void) 1934 { 1935 ip_rsvpd = NULL; 1936 /* 1937 * This may seem silly, but we need to be sure we don't over-decrement 1938 * the RSVP counter, in case something slips up. 1939 */ 1940 if (ip_rsvp_on) { 1941 ip_rsvp_on = 0; 1942 rsvp_on--; 1943 } 1944 return 0; 1945 } 1946