1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_bootp.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipstealth.h" 38 #include "opt_ipsec.h" 39 #include "opt_mac.h" 40 #include "opt_carp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/mbuf.h> 46 #include <sys/malloc.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/syslog.h> 53 #include <sys/sysctl.h> 54 #include <sys/vimage.h> 55 56 #include <net/pfil.h> 57 #include <net/if.h> 58 #include <net/if_types.h> 59 #include <net/if_var.h> 60 #include <net/if_dl.h> 61 #include <net/route.h> 62 #include <net/netisr.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/ip_icmp.h> 71 #include <netinet/ip_options.h> 72 #include <machine/in_cksum.h> 73 #ifdef DEV_CARP 74 #include <netinet/ip_carp.h> 75 #endif 76 #ifdef IPSEC 77 #include <netinet/ip_ipsec.h> 78 #endif /* IPSEC */ 79 80 #include <sys/socketvar.h> 81 82 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */ 83 #include <netinet/ip_fw.h> 84 #include <netinet/ip_dummynet.h> 85 86 #include <security/mac/mac_framework.h> 87 88 int rsvp_on = 0; 89 90 int ipforwarding = 0; 91 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 92 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 93 94 static int ipsendredirects = 1; /* XXX */ 95 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 96 &ipsendredirects, 0, "Enable sending IP redirects"); 97 98 int ip_defttl = IPDEFTTL; 99 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 100 &ip_defttl, 0, "Maximum TTL on IP packets"); 101 102 static int ip_keepfaith = 0; 103 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 104 &ip_keepfaith, 0, 105 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 106 107 static int ip_sendsourcequench = 0; 108 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW, 109 &ip_sendsourcequench, 0, 110 "Enable the transmission of source quench packets"); 111 112 int ip_do_randomid = 0; 113 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW, 114 &ip_do_randomid, 0, 115 "Assign random ip_id values"); 116 117 /* 118 * XXX - Setting ip_checkinterface mostly implements the receive side of 119 * the Strong ES model described in RFC 1122, but since the routing table 120 * and transmit implementation do not implement the Strong ES model, 121 * setting this to 1 results in an odd hybrid. 122 * 123 * XXX - ip_checkinterface currently must be disabled if you use ipnat 124 * to translate the destination address to another local interface. 125 * 126 * XXX - ip_checkinterface must be disabled if you add IP aliases 127 * to the loopback interface instead of the interface where the 128 * packets for those addresses are received. 129 */ 130 static int ip_checkinterface = 0; 131 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 132 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 133 134 struct pfil_head inet_pfil_hook; /* Packet filter hooks */ 135 136 static struct ifqueue ipintrq; 137 static int ipqmaxlen = IFQ_MAXLEN; 138 139 extern struct domain inetdomain; 140 extern struct protosw inetsw[]; 141 u_char ip_protox[IPPROTO_MAX]; 142 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 143 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 144 u_long in_ifaddrhmask; /* mask for hash table */ 145 146 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 147 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 148 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 149 &ipintrq.ifq_drops, 0, 150 "Number of packets dropped from the IP input queue"); 151 152 struct ipstat ipstat; 153 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 154 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 155 156 /* 157 * IP datagram reassembly. 158 */ 159 #define IPREASS_NHASH_LOG2 6 160 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 161 #define IPREASS_HMASK (IPREASS_NHASH - 1) 162 #define IPREASS_HASH(x,y) \ 163 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 164 165 static uma_zone_t ipq_zone; 166 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 167 static struct mtx ipqlock; 168 169 #define IPQ_LOCK() mtx_lock(&ipqlock) 170 #define IPQ_UNLOCK() mtx_unlock(&ipqlock) 171 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF) 172 #define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED) 173 174 static void maxnipq_update(void); 175 static void ipq_zone_change(void *); 176 177 static int maxnipq; /* Administrative limit on # reass queues. */ 178 static int nipq = 0; /* Total # of reass queues */ 179 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, 180 &nipq, 0, "Current number of IPv4 fragment reassembly queue entries"); 181 182 static int maxfragsperpacket; 183 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW, 184 &maxfragsperpacket, 0, 185 "Maximum number of IPv4 fragments allowed per packet"); 186 187 struct callout ipport_tick_callout; 188 189 #ifdef IPCTL_DEFMTU 190 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 191 &ip_mtu, 0, "Default MTU"); 192 #endif 193 194 #ifdef IPSTEALTH 195 int ipstealth = 0; 196 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 197 &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding"); 198 #endif 199 200 /* 201 * ipfw_ether and ipfw_bridge hooks. 202 * XXX: Temporary until those are converted to pfil_hooks as well. 203 */ 204 ip_fw_chk_t *ip_fw_chk_ptr = NULL; 205 ip_dn_io_t *ip_dn_io_ptr = NULL; 206 int fw_one_pass = 1; 207 208 static void ip_freef(struct ipqhead *, struct ipq *); 209 210 /* 211 * IP initialization: fill in IP protocol switch table. 212 * All protocols not implemented in kernel go to raw IP protocol handler. 213 */ 214 void 215 ip_init(void) 216 { 217 struct protosw *pr; 218 int i; 219 220 TAILQ_INIT(&V_in_ifaddrhead); 221 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 222 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 223 if (pr == NULL) 224 panic("ip_init: PF_INET not found"); 225 226 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 227 for (i = 0; i < IPPROTO_MAX; i++) 228 ip_protox[i] = pr - inetsw; 229 /* 230 * Cycle through IP protocols and put them into the appropriate place 231 * in ip_protox[]. 232 */ 233 for (pr = inetdomain.dom_protosw; 234 pr < inetdomain.dom_protoswNPROTOSW; pr++) 235 if (pr->pr_domain->dom_family == PF_INET && 236 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 237 /* Be careful to only index valid IP protocols. */ 238 if (pr->pr_protocol < IPPROTO_MAX) 239 ip_protox[pr->pr_protocol] = pr - inetsw; 240 } 241 242 /* Initialize packet filter hooks. */ 243 inet_pfil_hook.ph_type = PFIL_TYPE_AF; 244 inet_pfil_hook.ph_af = AF_INET; 245 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) 246 printf("%s: WARNING: unable to register pfil hook, " 247 "error %d\n", __func__, i); 248 249 /* Initialize IP reassembly queue. */ 250 IPQ_LOCK_INIT(); 251 for (i = 0; i < IPREASS_NHASH; i++) 252 TAILQ_INIT(&V_ipq[i]); 253 V_maxnipq = nmbclusters / 32; 254 V_maxfragsperpacket = 16; 255 V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL, 256 NULL, UMA_ALIGN_PTR, 0); 257 maxnipq_update(); 258 259 /* Start ipport_tick. */ 260 callout_init(&ipport_tick_callout, CALLOUT_MPSAFE); 261 ipport_tick(NULL); 262 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 263 SHUTDOWN_PRI_DEFAULT); 264 EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change, 265 NULL, EVENTHANDLER_PRI_ANY); 266 267 /* Initialize various other remaining things. */ 268 ip_id = time_second & 0xffff; 269 ipintrq.ifq_maxlen = ipqmaxlen; 270 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 271 netisr_register(NETISR_IP, ip_input, &ipintrq, 0); 272 } 273 274 void 275 ip_fini(void *xtp) 276 { 277 278 callout_stop(&ipport_tick_callout); 279 } 280 281 /* 282 * Ip input routine. Checksum and byte swap header. If fragmented 283 * try to reassemble. Process options. Pass to next level. 284 */ 285 void 286 ip_input(struct mbuf *m) 287 { 288 struct ip *ip = NULL; 289 struct in_ifaddr *ia = NULL; 290 struct ifaddr *ifa; 291 int checkif, hlen = 0; 292 u_short sum; 293 int dchg = 0; /* dest changed after fw */ 294 struct in_addr odst; /* original dst address */ 295 296 M_ASSERTPKTHDR(m); 297 298 if (m->m_flags & M_FASTFWD_OURS) { 299 /* 300 * Firewall or NAT changed destination to local. 301 * We expect ip_len and ip_off to be in host byte order. 302 */ 303 m->m_flags &= ~M_FASTFWD_OURS; 304 /* Set up some basics that will be used later. */ 305 ip = mtod(m, struct ip *); 306 hlen = ip->ip_hl << 2; 307 goto ours; 308 } 309 310 V_ipstat.ips_total++; 311 312 if (m->m_pkthdr.len < sizeof(struct ip)) 313 goto tooshort; 314 315 if (m->m_len < sizeof (struct ip) && 316 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 317 V_ipstat.ips_toosmall++; 318 return; 319 } 320 ip = mtod(m, struct ip *); 321 322 if (ip->ip_v != IPVERSION) { 323 V_ipstat.ips_badvers++; 324 goto bad; 325 } 326 327 hlen = ip->ip_hl << 2; 328 if (hlen < sizeof(struct ip)) { /* minimum header length */ 329 V_ipstat.ips_badhlen++; 330 goto bad; 331 } 332 if (hlen > m->m_len) { 333 if ((m = m_pullup(m, hlen)) == NULL) { 334 V_ipstat.ips_badhlen++; 335 return; 336 } 337 ip = mtod(m, struct ip *); 338 } 339 340 /* 127/8 must not appear on wire - RFC1122 */ 341 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 342 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 343 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 344 V_ipstat.ips_badaddr++; 345 goto bad; 346 } 347 } 348 349 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 350 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 351 } else { 352 if (hlen == sizeof(struct ip)) { 353 sum = in_cksum_hdr(ip); 354 } else { 355 sum = in_cksum(m, hlen); 356 } 357 } 358 if (sum) { 359 V_ipstat.ips_badsum++; 360 goto bad; 361 } 362 363 #ifdef ALTQ 364 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 365 /* packet is dropped by traffic conditioner */ 366 return; 367 #endif 368 369 /* 370 * Convert fields to host representation. 371 */ 372 ip->ip_len = ntohs(ip->ip_len); 373 if (ip->ip_len < hlen) { 374 V_ipstat.ips_badlen++; 375 goto bad; 376 } 377 ip->ip_off = ntohs(ip->ip_off); 378 379 /* 380 * Check that the amount of data in the buffers 381 * is as at least much as the IP header would have us expect. 382 * Trim mbufs if longer than we expect. 383 * Drop packet if shorter than we expect. 384 */ 385 if (m->m_pkthdr.len < ip->ip_len) { 386 tooshort: 387 V_ipstat.ips_tooshort++; 388 goto bad; 389 } 390 if (m->m_pkthdr.len > ip->ip_len) { 391 if (m->m_len == m->m_pkthdr.len) { 392 m->m_len = ip->ip_len; 393 m->m_pkthdr.len = ip->ip_len; 394 } else 395 m_adj(m, ip->ip_len - m->m_pkthdr.len); 396 } 397 #ifdef IPSEC 398 /* 399 * Bypass packet filtering for packets from a tunnel (gif). 400 */ 401 if (ip_ipsec_filtertunnel(m)) 402 goto passin; 403 #endif /* IPSEC */ 404 405 /* 406 * Run through list of hooks for input packets. 407 * 408 * NB: Beware of the destination address changing (e.g. 409 * by NAT rewriting). When this happens, tell 410 * ip_forward to do the right thing. 411 */ 412 413 /* Jump over all PFIL processing if hooks are not active. */ 414 if (!PFIL_HOOKED(&inet_pfil_hook)) 415 goto passin; 416 417 odst = ip->ip_dst; 418 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, 419 PFIL_IN, NULL) != 0) 420 return; 421 if (m == NULL) /* consumed by filter */ 422 return; 423 424 ip = mtod(m, struct ip *); 425 dchg = (odst.s_addr != ip->ip_dst.s_addr); 426 427 #ifdef IPFIREWALL_FORWARD 428 if (m->m_flags & M_FASTFWD_OURS) { 429 m->m_flags &= ~M_FASTFWD_OURS; 430 goto ours; 431 } 432 if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) { 433 /* 434 * Directly ship on the packet. This allows to forward packets 435 * that were destined for us to some other directly connected 436 * host. 437 */ 438 ip_forward(m, dchg); 439 return; 440 } 441 #endif /* IPFIREWALL_FORWARD */ 442 443 passin: 444 /* 445 * Process options and, if not destined for us, 446 * ship it on. ip_dooptions returns 1 when an 447 * error was detected (causing an icmp message 448 * to be sent and the original packet to be freed). 449 */ 450 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 451 return; 452 453 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 454 * matter if it is destined to another node, or whether it is 455 * a multicast one, RSVP wants it! and prevents it from being forwarded 456 * anywhere else. Also checks if the rsvp daemon is running before 457 * grabbing the packet. 458 */ 459 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 460 goto ours; 461 462 /* 463 * Check our list of addresses, to see if the packet is for us. 464 * If we don't have any addresses, assume any unicast packet 465 * we receive might be for us (and let the upper layers deal 466 * with it). 467 */ 468 if (TAILQ_EMPTY(&V_in_ifaddrhead) && 469 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 470 goto ours; 471 472 /* 473 * Enable a consistency check between the destination address 474 * and the arrival interface for a unicast packet (the RFC 1122 475 * strong ES model) if IP forwarding is disabled and the packet 476 * is not locally generated and the packet is not subject to 477 * 'ipfw fwd'. 478 * 479 * XXX - Checking also should be disabled if the destination 480 * address is ipnat'ed to a different interface. 481 * 482 * XXX - Checking is incompatible with IP aliases added 483 * to the loopback interface instead of the interface where 484 * the packets are received. 485 * 486 * XXX - This is the case for carp vhost IPs as well so we 487 * insert a workaround. If the packet got here, we already 488 * checked with carp_iamatch() and carp_forus(). 489 */ 490 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 491 m->m_pkthdr.rcvif != NULL && 492 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 493 #ifdef DEV_CARP 494 !m->m_pkthdr.rcvif->if_carp && 495 #endif 496 (dchg == 0); 497 498 /* 499 * Check for exact addresses in the hash bucket. 500 */ 501 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 502 /* 503 * If the address matches, verify that the packet 504 * arrived via the correct interface if checking is 505 * enabled. 506 */ 507 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 508 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 509 goto ours; 510 } 511 /* 512 * Check for broadcast addresses. 513 * 514 * Only accept broadcast packets that arrive via the matching 515 * interface. Reception of forwarded directed broadcasts would 516 * be handled via ip_forward() and ether_output() with the loopback 517 * into the stack for SIMPLEX interfaces handled by ether_output(). 518 */ 519 if (m->m_pkthdr.rcvif != NULL && 520 m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 521 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 522 if (ifa->ifa_addr->sa_family != AF_INET) 523 continue; 524 ia = ifatoia(ifa); 525 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 526 ip->ip_dst.s_addr) 527 goto ours; 528 if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) 529 goto ours; 530 #ifdef BOOTP_COMPAT 531 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 532 goto ours; 533 #endif 534 } 535 } 536 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 537 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 538 V_ipstat.ips_cantforward++; 539 m_freem(m); 540 return; 541 } 542 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 543 struct in_multi *inm; 544 if (V_ip_mrouter) { 545 /* 546 * If we are acting as a multicast router, all 547 * incoming multicast packets are passed to the 548 * kernel-level multicast forwarding function. 549 * The packet is returned (relatively) intact; if 550 * ip_mforward() returns a non-zero value, the packet 551 * must be discarded, else it may be accepted below. 552 */ 553 if (ip_mforward && 554 ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 555 V_ipstat.ips_cantforward++; 556 m_freem(m); 557 return; 558 } 559 560 /* 561 * The process-level routing daemon needs to receive 562 * all multicast IGMP packets, whether or not this 563 * host belongs to their destination groups. 564 */ 565 if (ip->ip_p == IPPROTO_IGMP) 566 goto ours; 567 V_ipstat.ips_forward++; 568 } 569 /* 570 * See if we belong to the destination multicast group on the 571 * arrival interface. 572 */ 573 IN_MULTI_LOCK(); 574 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 575 IN_MULTI_UNLOCK(); 576 if (inm == NULL) { 577 V_ipstat.ips_notmember++; 578 m_freem(m); 579 return; 580 } 581 goto ours; 582 } 583 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 584 goto ours; 585 if (ip->ip_dst.s_addr == INADDR_ANY) 586 goto ours; 587 588 /* 589 * FAITH(Firewall Aided Internet Translator) 590 */ 591 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 592 if (V_ip_keepfaith) { 593 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 594 goto ours; 595 } 596 m_freem(m); 597 return; 598 } 599 600 /* 601 * Not for us; forward if possible and desirable. 602 */ 603 if (V_ipforwarding == 0) { 604 V_ipstat.ips_cantforward++; 605 m_freem(m); 606 } else { 607 #ifdef IPSEC 608 if (ip_ipsec_fwd(m)) 609 goto bad; 610 #endif /* IPSEC */ 611 ip_forward(m, dchg); 612 } 613 return; 614 615 ours: 616 #ifdef IPSTEALTH 617 /* 618 * IPSTEALTH: Process non-routing options only 619 * if the packet is destined for us. 620 */ 621 if (V_ipstealth && hlen > sizeof (struct ip) && 622 ip_dooptions(m, 1)) 623 return; 624 #endif /* IPSTEALTH */ 625 626 /* Count the packet in the ip address stats */ 627 if (ia != NULL) { 628 ia->ia_ifa.if_ipackets++; 629 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 630 } 631 632 /* 633 * Attempt reassembly; if it succeeds, proceed. 634 * ip_reass() will return a different mbuf. 635 */ 636 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 637 m = ip_reass(m); 638 if (m == NULL) 639 return; 640 ip = mtod(m, struct ip *); 641 /* Get the header length of the reassembled packet */ 642 hlen = ip->ip_hl << 2; 643 } 644 645 /* 646 * Further protocols expect the packet length to be w/o the 647 * IP header. 648 */ 649 ip->ip_len -= hlen; 650 651 #ifdef IPSEC 652 /* 653 * enforce IPsec policy checking if we are seeing last header. 654 * note that we do not visit this with protocols with pcb layer 655 * code - like udp/tcp/raw ip. 656 */ 657 if (ip_ipsec_input(m)) 658 goto bad; 659 #endif /* IPSEC */ 660 661 /* 662 * Switch out to protocol's input routine. 663 */ 664 V_ipstat.ips_delivered++; 665 666 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 667 return; 668 bad: 669 m_freem(m); 670 } 671 672 /* 673 * After maxnipq has been updated, propagate the change to UMA. The UMA zone 674 * max has slightly different semantics than the sysctl, for historical 675 * reasons. 676 */ 677 static void 678 maxnipq_update(void) 679 { 680 681 /* 682 * -1 for unlimited allocation. 683 */ 684 if (V_maxnipq < 0) 685 uma_zone_set_max(V_ipq_zone, 0); 686 /* 687 * Positive number for specific bound. 688 */ 689 if (V_maxnipq > 0) 690 uma_zone_set_max(V_ipq_zone, V_maxnipq); 691 /* 692 * Zero specifies no further fragment queue allocation -- set the 693 * bound very low, but rely on implementation elsewhere to actually 694 * prevent allocation and reclaim current queues. 695 */ 696 if (V_maxnipq == 0) 697 uma_zone_set_max(V_ipq_zone, 1); 698 } 699 700 static void 701 ipq_zone_change(void *tag) 702 { 703 704 if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) { 705 V_maxnipq = nmbclusters / 32; 706 maxnipq_update(); 707 } 708 } 709 710 static int 711 sysctl_maxnipq(SYSCTL_HANDLER_ARGS) 712 { 713 int error, i; 714 715 i = V_maxnipq; 716 error = sysctl_handle_int(oidp, &i, 0, req); 717 if (error || !req->newptr) 718 return (error); 719 720 /* 721 * XXXRW: Might be a good idea to sanity check the argument and place 722 * an extreme upper bound. 723 */ 724 if (i < -1) 725 return (EINVAL); 726 V_maxnipq = i; 727 maxnipq_update(); 728 return (0); 729 } 730 731 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW, 732 NULL, 0, sysctl_maxnipq, "I", 733 "Maximum number of IPv4 fragment reassembly queue entries"); 734 735 /* 736 * Take incoming datagram fragment and try to reassemble it into 737 * whole datagram. If the argument is the first fragment or one 738 * in between the function will return NULL and store the mbuf 739 * in the fragment chain. If the argument is the last fragment 740 * the packet will be reassembled and the pointer to the new 741 * mbuf returned for further processing. Only m_tags attached 742 * to the first packet/fragment are preserved. 743 * The IP header is *NOT* adjusted out of iplen. 744 */ 745 struct mbuf * 746 ip_reass(struct mbuf *m) 747 { 748 struct ip *ip; 749 struct mbuf *p, *q, *nq, *t; 750 struct ipq *fp = NULL; 751 struct ipqhead *head; 752 int i, hlen, next; 753 u_int8_t ecn, ecn0; 754 u_short hash; 755 756 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */ 757 if (V_maxnipq == 0 || V_maxfragsperpacket == 0) { 758 V_ipstat.ips_fragments++; 759 V_ipstat.ips_fragdropped++; 760 m_freem(m); 761 return (NULL); 762 } 763 764 ip = mtod(m, struct ip *); 765 hlen = ip->ip_hl << 2; 766 767 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 768 head = &V_ipq[hash]; 769 IPQ_LOCK(); 770 771 /* 772 * Look for queue of fragments 773 * of this datagram. 774 */ 775 TAILQ_FOREACH(fp, head, ipq_list) 776 if (ip->ip_id == fp->ipq_id && 777 ip->ip_src.s_addr == fp->ipq_src.s_addr && 778 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 779 #ifdef MAC 780 mac_ipq_match(m, fp) && 781 #endif 782 ip->ip_p == fp->ipq_p) 783 goto found; 784 785 fp = NULL; 786 787 /* 788 * Attempt to trim the number of allocated fragment queues if it 789 * exceeds the administrative limit. 790 */ 791 if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) { 792 /* 793 * drop something from the tail of the current queue 794 * before proceeding further 795 */ 796 struct ipq *q = TAILQ_LAST(head, ipqhead); 797 if (q == NULL) { /* gak */ 798 for (i = 0; i < IPREASS_NHASH; i++) { 799 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead); 800 if (r) { 801 V_ipstat.ips_fragtimeout += 802 r->ipq_nfrags; 803 ip_freef(&V_ipq[i], r); 804 break; 805 } 806 } 807 } else { 808 V_ipstat.ips_fragtimeout += q->ipq_nfrags; 809 ip_freef(head, q); 810 } 811 } 812 813 found: 814 /* 815 * Adjust ip_len to not reflect header, 816 * convert offset of this to bytes. 817 */ 818 ip->ip_len -= hlen; 819 if (ip->ip_off & IP_MF) { 820 /* 821 * Make sure that fragments have a data length 822 * that's a non-zero multiple of 8 bytes. 823 */ 824 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 825 V_ipstat.ips_toosmall++; /* XXX */ 826 goto dropfrag; 827 } 828 m->m_flags |= M_FRAG; 829 } else 830 m->m_flags &= ~M_FRAG; 831 ip->ip_off <<= 3; 832 833 834 /* 835 * Attempt reassembly; if it succeeds, proceed. 836 * ip_reass() will return a different mbuf. 837 */ 838 V_ipstat.ips_fragments++; 839 m->m_pkthdr.header = ip; 840 841 /* Previous ip_reass() started here. */ 842 /* 843 * Presence of header sizes in mbufs 844 * would confuse code below. 845 */ 846 m->m_data += hlen; 847 m->m_len -= hlen; 848 849 /* 850 * If first fragment to arrive, create a reassembly queue. 851 */ 852 if (fp == NULL) { 853 fp = uma_zalloc(V_ipq_zone, M_NOWAIT); 854 if (fp == NULL) 855 goto dropfrag; 856 #ifdef MAC 857 if (mac_ipq_init(fp, M_NOWAIT) != 0) { 858 uma_zfree(V_ipq_zone, fp); 859 fp = NULL; 860 goto dropfrag; 861 } 862 mac_ipq_create(m, fp); 863 #endif 864 TAILQ_INSERT_HEAD(head, fp, ipq_list); 865 V_nipq++; 866 fp->ipq_nfrags = 1; 867 fp->ipq_ttl = IPFRAGTTL; 868 fp->ipq_p = ip->ip_p; 869 fp->ipq_id = ip->ip_id; 870 fp->ipq_src = ip->ip_src; 871 fp->ipq_dst = ip->ip_dst; 872 fp->ipq_frags = m; 873 m->m_nextpkt = NULL; 874 goto done; 875 } else { 876 fp->ipq_nfrags++; 877 #ifdef MAC 878 mac_ipq_update(m, fp); 879 #endif 880 } 881 882 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 883 884 /* 885 * Handle ECN by comparing this segment with the first one; 886 * if CE is set, do not lose CE. 887 * drop if CE and not-ECT are mixed for the same packet. 888 */ 889 ecn = ip->ip_tos & IPTOS_ECN_MASK; 890 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; 891 if (ecn == IPTOS_ECN_CE) { 892 if (ecn0 == IPTOS_ECN_NOTECT) 893 goto dropfrag; 894 if (ecn0 != IPTOS_ECN_CE) 895 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; 896 } 897 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) 898 goto dropfrag; 899 900 /* 901 * Find a segment which begins after this one does. 902 */ 903 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 904 if (GETIP(q)->ip_off > ip->ip_off) 905 break; 906 907 /* 908 * If there is a preceding segment, it may provide some of 909 * our data already. If so, drop the data from the incoming 910 * segment. If it provides all of our data, drop us, otherwise 911 * stick new segment in the proper place. 912 * 913 * If some of the data is dropped from the the preceding 914 * segment, then it's checksum is invalidated. 915 */ 916 if (p) { 917 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 918 if (i > 0) { 919 if (i >= ip->ip_len) 920 goto dropfrag; 921 m_adj(m, i); 922 m->m_pkthdr.csum_flags = 0; 923 ip->ip_off += i; 924 ip->ip_len -= i; 925 } 926 m->m_nextpkt = p->m_nextpkt; 927 p->m_nextpkt = m; 928 } else { 929 m->m_nextpkt = fp->ipq_frags; 930 fp->ipq_frags = m; 931 } 932 933 /* 934 * While we overlap succeeding segments trim them or, 935 * if they are completely covered, dequeue them. 936 */ 937 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 938 q = nq) { 939 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off; 940 if (i < GETIP(q)->ip_len) { 941 GETIP(q)->ip_len -= i; 942 GETIP(q)->ip_off += i; 943 m_adj(q, i); 944 q->m_pkthdr.csum_flags = 0; 945 break; 946 } 947 nq = q->m_nextpkt; 948 m->m_nextpkt = nq; 949 V_ipstat.ips_fragdropped++; 950 fp->ipq_nfrags--; 951 m_freem(q); 952 } 953 954 /* 955 * Check for complete reassembly and perform frag per packet 956 * limiting. 957 * 958 * Frag limiting is performed here so that the nth frag has 959 * a chance to complete the packet before we drop the packet. 960 * As a result, n+1 frags are actually allowed per packet, but 961 * only n will ever be stored. (n = maxfragsperpacket.) 962 * 963 */ 964 next = 0; 965 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 966 if (GETIP(q)->ip_off != next) { 967 if (fp->ipq_nfrags > V_maxfragsperpacket) { 968 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 969 ip_freef(head, fp); 970 } 971 goto done; 972 } 973 next += GETIP(q)->ip_len; 974 } 975 /* Make sure the last packet didn't have the IP_MF flag */ 976 if (p->m_flags & M_FRAG) { 977 if (fp->ipq_nfrags > V_maxfragsperpacket) { 978 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 979 ip_freef(head, fp); 980 } 981 goto done; 982 } 983 984 /* 985 * Reassembly is complete. Make sure the packet is a sane size. 986 */ 987 q = fp->ipq_frags; 988 ip = GETIP(q); 989 if (next + (ip->ip_hl << 2) > IP_MAXPACKET) { 990 V_ipstat.ips_toolong++; 991 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 992 ip_freef(head, fp); 993 goto done; 994 } 995 996 /* 997 * Concatenate fragments. 998 */ 999 m = q; 1000 t = m->m_next; 1001 m->m_next = NULL; 1002 m_cat(m, t); 1003 nq = q->m_nextpkt; 1004 q->m_nextpkt = NULL; 1005 for (q = nq; q != NULL; q = nq) { 1006 nq = q->m_nextpkt; 1007 q->m_nextpkt = NULL; 1008 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1009 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1010 m_cat(m, q); 1011 } 1012 /* 1013 * In order to do checksumming faster we do 'end-around carry' here 1014 * (and not in for{} loop), though it implies we are not going to 1015 * reassemble more than 64k fragments. 1016 */ 1017 m->m_pkthdr.csum_data = 1018 (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16); 1019 #ifdef MAC 1020 mac_ipq_reassemble(fp, m); 1021 mac_ipq_destroy(fp); 1022 #endif 1023 1024 /* 1025 * Create header for new ip packet by modifying header of first 1026 * packet; dequeue and discard fragment reassembly header. 1027 * Make header visible. 1028 */ 1029 ip->ip_len = (ip->ip_hl << 2) + next; 1030 ip->ip_src = fp->ipq_src; 1031 ip->ip_dst = fp->ipq_dst; 1032 TAILQ_REMOVE(head, fp, ipq_list); 1033 V_nipq--; 1034 uma_zfree(V_ipq_zone, fp); 1035 m->m_len += (ip->ip_hl << 2); 1036 m->m_data -= (ip->ip_hl << 2); 1037 /* some debugging cruft by sklower, below, will go away soon */ 1038 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ 1039 m_fixhdr(m); 1040 V_ipstat.ips_reassembled++; 1041 IPQ_UNLOCK(); 1042 return (m); 1043 1044 dropfrag: 1045 V_ipstat.ips_fragdropped++; 1046 if (fp != NULL) 1047 fp->ipq_nfrags--; 1048 m_freem(m); 1049 done: 1050 IPQ_UNLOCK(); 1051 return (NULL); 1052 1053 #undef GETIP 1054 } 1055 1056 /* 1057 * Free a fragment reassembly header and all 1058 * associated datagrams. 1059 */ 1060 static void 1061 ip_freef(struct ipqhead *fhp, struct ipq *fp) 1062 { 1063 struct mbuf *q; 1064 1065 IPQ_LOCK_ASSERT(); 1066 1067 while (fp->ipq_frags) { 1068 q = fp->ipq_frags; 1069 fp->ipq_frags = q->m_nextpkt; 1070 m_freem(q); 1071 } 1072 TAILQ_REMOVE(fhp, fp, ipq_list); 1073 uma_zfree(V_ipq_zone, fp); 1074 V_nipq--; 1075 } 1076 1077 /* 1078 * IP timer processing; 1079 * if a timer expires on a reassembly 1080 * queue, discard it. 1081 */ 1082 void 1083 ip_slowtimo(void) 1084 { 1085 struct ipq *fp; 1086 int i; 1087 1088 IPQ_LOCK(); 1089 for (i = 0; i < IPREASS_NHASH; i++) { 1090 for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) { 1091 struct ipq *fpp; 1092 1093 fpp = fp; 1094 fp = TAILQ_NEXT(fp, ipq_list); 1095 if(--fpp->ipq_ttl == 0) { 1096 V_ipstat.ips_fragtimeout += fpp->ipq_nfrags; 1097 ip_freef(&V_ipq[i], fpp); 1098 } 1099 } 1100 } 1101 /* 1102 * If we are over the maximum number of fragments 1103 * (due to the limit being lowered), drain off 1104 * enough to get down to the new limit. 1105 */ 1106 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) { 1107 for (i = 0; i < IPREASS_NHASH; i++) { 1108 while (V_nipq > V_maxnipq && !TAILQ_EMPTY(&V_ipq[i])) { 1109 V_ipstat.ips_fragdropped += 1110 TAILQ_FIRST(&V_ipq[i])->ipq_nfrags; 1111 ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i])); 1112 } 1113 } 1114 } 1115 IPQ_UNLOCK(); 1116 } 1117 1118 /* 1119 * Drain off all datagram fragments. 1120 */ 1121 void 1122 ip_drain(void) 1123 { 1124 int i; 1125 1126 IPQ_LOCK(); 1127 for (i = 0; i < IPREASS_NHASH; i++) { 1128 while(!TAILQ_EMPTY(&V_ipq[i])) { 1129 V_ipstat.ips_fragdropped += 1130 TAILQ_FIRST(&V_ipq[i])->ipq_nfrags; 1131 ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i])); 1132 } 1133 } 1134 IPQ_UNLOCK(); 1135 in_rtqdrain(); 1136 } 1137 1138 /* 1139 * The protocol to be inserted into ip_protox[] must be already registered 1140 * in inetsw[], either statically or through pf_proto_register(). 1141 */ 1142 int 1143 ipproto_register(u_char ipproto) 1144 { 1145 struct protosw *pr; 1146 1147 /* Sanity checks. */ 1148 if (ipproto == 0) 1149 return (EPROTONOSUPPORT); 1150 1151 /* 1152 * The protocol slot must not be occupied by another protocol 1153 * already. An index pointing to IPPROTO_RAW is unused. 1154 */ 1155 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1156 if (pr == NULL) 1157 return (EPFNOSUPPORT); 1158 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 1159 return (EEXIST); 1160 1161 /* Find the protocol position in inetsw[] and set the index. */ 1162 for (pr = inetdomain.dom_protosw; 1163 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 1164 if (pr->pr_domain->dom_family == PF_INET && 1165 pr->pr_protocol && pr->pr_protocol == ipproto) { 1166 /* Be careful to only index valid IP protocols. */ 1167 if (pr->pr_protocol < IPPROTO_MAX) { 1168 ip_protox[pr->pr_protocol] = pr - inetsw; 1169 return (0); 1170 } else 1171 return (EINVAL); 1172 } 1173 } 1174 return (EPROTONOSUPPORT); 1175 } 1176 1177 int 1178 ipproto_unregister(u_char ipproto) 1179 { 1180 struct protosw *pr; 1181 1182 /* Sanity checks. */ 1183 if (ipproto == 0) 1184 return (EPROTONOSUPPORT); 1185 1186 /* Check if the protocol was indeed registered. */ 1187 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1188 if (pr == NULL) 1189 return (EPFNOSUPPORT); 1190 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 1191 return (ENOENT); 1192 1193 /* Reset the protocol slot to IPPROTO_RAW. */ 1194 ip_protox[ipproto] = pr - inetsw; 1195 return (0); 1196 } 1197 1198 /* 1199 * Given address of next destination (final or next hop), 1200 * return internet address info of interface to be used to get there. 1201 */ 1202 struct in_ifaddr * 1203 ip_rtaddr(struct in_addr dst, u_int fibnum) 1204 { 1205 struct route sro; 1206 struct sockaddr_in *sin; 1207 struct in_ifaddr *ifa; 1208 1209 bzero(&sro, sizeof(sro)); 1210 sin = (struct sockaddr_in *)&sro.ro_dst; 1211 sin->sin_family = AF_INET; 1212 sin->sin_len = sizeof(*sin); 1213 sin->sin_addr = dst; 1214 in_rtalloc_ign(&sro, RTF_CLONING, fibnum); 1215 1216 if (sro.ro_rt == NULL) 1217 return (NULL); 1218 1219 ifa = ifatoia(sro.ro_rt->rt_ifa); 1220 RTFREE(sro.ro_rt); 1221 return (ifa); 1222 } 1223 1224 u_char inetctlerrmap[PRC_NCMDS] = { 1225 0, 0, 0, 0, 1226 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1227 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1228 EMSGSIZE, EHOSTUNREACH, 0, 0, 1229 0, 0, EHOSTUNREACH, 0, 1230 ENOPROTOOPT, ECONNREFUSED 1231 }; 1232 1233 /* 1234 * Forward a packet. If some error occurs return the sender 1235 * an icmp packet. Note we can't always generate a meaningful 1236 * icmp message because icmp doesn't have a large enough repertoire 1237 * of codes and types. 1238 * 1239 * If not forwarding, just drop the packet. This could be confusing 1240 * if ipforwarding was zero but some routing protocol was advancing 1241 * us as a gateway to somewhere. However, we must let the routing 1242 * protocol deal with that. 1243 * 1244 * The srcrt parameter indicates whether the packet is being forwarded 1245 * via a source route. 1246 */ 1247 void 1248 ip_forward(struct mbuf *m, int srcrt) 1249 { 1250 struct ip *ip = mtod(m, struct ip *); 1251 struct in_ifaddr *ia = NULL; 1252 struct mbuf *mcopy; 1253 struct in_addr dest; 1254 struct route ro; 1255 int error, type = 0, code = 0, mtu = 0; 1256 1257 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 1258 V_ipstat.ips_cantforward++; 1259 m_freem(m); 1260 return; 1261 } 1262 #ifdef IPSTEALTH 1263 if (!V_ipstealth) { 1264 #endif 1265 if (ip->ip_ttl <= IPTTLDEC) { 1266 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1267 0, 0); 1268 return; 1269 } 1270 #ifdef IPSTEALTH 1271 } 1272 #endif 1273 1274 ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m)); 1275 if (!srcrt && ia == NULL) { 1276 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); 1277 return; 1278 } 1279 1280 /* 1281 * Save the IP header and at most 8 bytes of the payload, 1282 * in case we need to generate an ICMP message to the src. 1283 * 1284 * XXX this can be optimized a lot by saving the data in a local 1285 * buffer on the stack (72 bytes at most), and only allocating the 1286 * mbuf if really necessary. The vast majority of the packets 1287 * are forwarded without having to send an ICMP back (either 1288 * because unnecessary, or because rate limited), so we are 1289 * really we are wasting a lot of work here. 1290 * 1291 * We don't use m_copy() because it might return a reference 1292 * to a shared cluster. Both this function and ip_output() 1293 * assume exclusive access to the IP header in `m', so any 1294 * data in a cluster may change before we reach icmp_error(). 1295 */ 1296 MGETHDR(mcopy, M_DONTWAIT, m->m_type); 1297 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) { 1298 /* 1299 * It's probably ok if the pkthdr dup fails (because 1300 * the deep copy of the tag chain failed), but for now 1301 * be conservative and just discard the copy since 1302 * code below may some day want the tags. 1303 */ 1304 m_free(mcopy); 1305 mcopy = NULL; 1306 } 1307 if (mcopy != NULL) { 1308 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy)); 1309 mcopy->m_pkthdr.len = mcopy->m_len; 1310 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1311 } 1312 1313 #ifdef IPSTEALTH 1314 if (!V_ipstealth) { 1315 #endif 1316 ip->ip_ttl -= IPTTLDEC; 1317 #ifdef IPSTEALTH 1318 } 1319 #endif 1320 1321 /* 1322 * If forwarding packet using same interface that it came in on, 1323 * perhaps should send a redirect to sender to shortcut a hop. 1324 * Only send redirect if source is sending directly to us, 1325 * and if packet was not source routed (or has any options). 1326 * Also, don't send redirect if forwarding using a default route 1327 * or a route modified by a redirect. 1328 */ 1329 dest.s_addr = 0; 1330 if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) { 1331 struct sockaddr_in *sin; 1332 struct rtentry *rt; 1333 1334 bzero(&ro, sizeof(ro)); 1335 sin = (struct sockaddr_in *)&ro.ro_dst; 1336 sin->sin_family = AF_INET; 1337 sin->sin_len = sizeof(*sin); 1338 sin->sin_addr = ip->ip_dst; 1339 in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m)); 1340 1341 rt = ro.ro_rt; 1342 1343 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1344 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1345 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1346 u_long src = ntohl(ip->ip_src.s_addr); 1347 1348 if (RTA(rt) && 1349 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1350 if (rt->rt_flags & RTF_GATEWAY) 1351 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1352 else 1353 dest.s_addr = ip->ip_dst.s_addr; 1354 /* Router requirements says to only send host redirects */ 1355 type = ICMP_REDIRECT; 1356 code = ICMP_REDIRECT_HOST; 1357 } 1358 } 1359 if (rt) 1360 RTFREE(rt); 1361 } 1362 1363 /* 1364 * Try to cache the route MTU from ip_output so we can consider it for 1365 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191. 1366 */ 1367 bzero(&ro, sizeof(ro)); 1368 1369 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1370 1371 if (error == EMSGSIZE && ro.ro_rt) 1372 mtu = ro.ro_rt->rt_rmx.rmx_mtu; 1373 if (ro.ro_rt) 1374 RTFREE(ro.ro_rt); 1375 1376 if (error) 1377 V_ipstat.ips_cantforward++; 1378 else { 1379 V_ipstat.ips_forward++; 1380 if (type) 1381 V_ipstat.ips_redirectsent++; 1382 else { 1383 if (mcopy) 1384 m_freem(mcopy); 1385 return; 1386 } 1387 } 1388 if (mcopy == NULL) 1389 return; 1390 1391 switch (error) { 1392 1393 case 0: /* forwarded, but need redirect */ 1394 /* type, code set above */ 1395 break; 1396 1397 case ENETUNREACH: /* shouldn't happen, checked above */ 1398 case EHOSTUNREACH: 1399 case ENETDOWN: 1400 case EHOSTDOWN: 1401 default: 1402 type = ICMP_UNREACH; 1403 code = ICMP_UNREACH_HOST; 1404 break; 1405 1406 case EMSGSIZE: 1407 type = ICMP_UNREACH; 1408 code = ICMP_UNREACH_NEEDFRAG; 1409 1410 #ifdef IPSEC 1411 /* 1412 * If IPsec is configured for this path, 1413 * override any possibly mtu value set by ip_output. 1414 */ 1415 mtu = ip_ipsec_mtu(m, mtu); 1416 #endif /* IPSEC */ 1417 /* 1418 * If the MTU was set before make sure we are below the 1419 * interface MTU. 1420 * If the MTU wasn't set before use the interface mtu or 1421 * fall back to the next smaller mtu step compared to the 1422 * current packet size. 1423 */ 1424 if (mtu != 0) { 1425 if (ia != NULL) 1426 mtu = min(mtu, ia->ia_ifp->if_mtu); 1427 } else { 1428 if (ia != NULL) 1429 mtu = ia->ia_ifp->if_mtu; 1430 else 1431 mtu = ip_next_mtu(ip->ip_len, 0); 1432 } 1433 V_ipstat.ips_cantfrag++; 1434 break; 1435 1436 case ENOBUFS: 1437 /* 1438 * A router should not generate ICMP_SOURCEQUENCH as 1439 * required in RFC1812 Requirements for IP Version 4 Routers. 1440 * Source quench could be a big problem under DoS attacks, 1441 * or if the underlying interface is rate-limited. 1442 * Those who need source quench packets may re-enable them 1443 * via the net.inet.ip.sendsourcequench sysctl. 1444 */ 1445 if (V_ip_sendsourcequench == 0) { 1446 m_freem(mcopy); 1447 return; 1448 } else { 1449 type = ICMP_SOURCEQUENCH; 1450 code = 0; 1451 } 1452 break; 1453 1454 case EACCES: /* ipfw denied packet */ 1455 m_freem(mcopy); 1456 return; 1457 } 1458 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1459 } 1460 1461 void 1462 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1463 struct mbuf *m) 1464 { 1465 if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) { 1466 struct bintime bt; 1467 1468 bintime(&bt); 1469 if (inp->inp_socket->so_options & SO_BINTIME) { 1470 *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt), 1471 SCM_BINTIME, SOL_SOCKET); 1472 if (*mp) 1473 mp = &(*mp)->m_next; 1474 } 1475 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1476 struct timeval tv; 1477 1478 bintime2timeval(&bt, &tv); 1479 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1480 SCM_TIMESTAMP, SOL_SOCKET); 1481 if (*mp) 1482 mp = &(*mp)->m_next; 1483 } 1484 } 1485 if (inp->inp_flags & INP_RECVDSTADDR) { 1486 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1487 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1488 if (*mp) 1489 mp = &(*mp)->m_next; 1490 } 1491 if (inp->inp_flags & INP_RECVTTL) { 1492 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl, 1493 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1494 if (*mp) 1495 mp = &(*mp)->m_next; 1496 } 1497 #ifdef notyet 1498 /* XXX 1499 * Moving these out of udp_input() made them even more broken 1500 * than they already were. 1501 */ 1502 /* options were tossed already */ 1503 if (inp->inp_flags & INP_RECVOPTS) { 1504 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1505 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1506 if (*mp) 1507 mp = &(*mp)->m_next; 1508 } 1509 /* ip_srcroute doesn't do what we want here, need to fix */ 1510 if (inp->inp_flags & INP_RECVRETOPTS) { 1511 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m), 1512 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1513 if (*mp) 1514 mp = &(*mp)->m_next; 1515 } 1516 #endif 1517 if (inp->inp_flags & INP_RECVIF) { 1518 struct ifnet *ifp; 1519 struct sdlbuf { 1520 struct sockaddr_dl sdl; 1521 u_char pad[32]; 1522 } sdlbuf; 1523 struct sockaddr_dl *sdp; 1524 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1525 1526 if (((ifp = m->m_pkthdr.rcvif)) 1527 && ( ifp->if_index && (ifp->if_index <= V_if_index))) { 1528 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1529 /* 1530 * Change our mind and don't try copy. 1531 */ 1532 if ((sdp->sdl_family != AF_LINK) 1533 || (sdp->sdl_len > sizeof(sdlbuf))) { 1534 goto makedummy; 1535 } 1536 bcopy(sdp, sdl2, sdp->sdl_len); 1537 } else { 1538 makedummy: 1539 sdl2->sdl_len 1540 = offsetof(struct sockaddr_dl, sdl_data[0]); 1541 sdl2->sdl_family = AF_LINK; 1542 sdl2->sdl_index = 0; 1543 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1544 } 1545 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1546 IP_RECVIF, IPPROTO_IP); 1547 if (*mp) 1548 mp = &(*mp)->m_next; 1549 } 1550 } 1551 1552 /* 1553 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1554 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1555 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1556 * compiled. 1557 */ 1558 static int ip_rsvp_on; 1559 struct socket *ip_rsvpd; 1560 int 1561 ip_rsvp_init(struct socket *so) 1562 { 1563 if (so->so_type != SOCK_RAW || 1564 so->so_proto->pr_protocol != IPPROTO_RSVP) 1565 return EOPNOTSUPP; 1566 1567 if (V_ip_rsvpd != NULL) 1568 return EADDRINUSE; 1569 1570 V_ip_rsvpd = so; 1571 /* 1572 * This may seem silly, but we need to be sure we don't over-increment 1573 * the RSVP counter, in case something slips up. 1574 */ 1575 if (!V_ip_rsvp_on) { 1576 V_ip_rsvp_on = 1; 1577 V_rsvp_on++; 1578 } 1579 1580 return 0; 1581 } 1582 1583 int 1584 ip_rsvp_done(void) 1585 { 1586 V_ip_rsvpd = NULL; 1587 /* 1588 * This may seem silly, but we need to be sure we don't over-decrement 1589 * the RSVP counter, in case something slips up. 1590 */ 1591 if (V_ip_rsvp_on) { 1592 V_ip_rsvp_on = 0; 1593 V_rsvp_on--; 1594 } 1595 return 0; 1596 } 1597 1598 void 1599 rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */ 1600 { 1601 if (rsvp_input_p) { /* call the real one if loaded */ 1602 rsvp_input_p(m, off); 1603 return; 1604 } 1605 1606 /* Can still get packets with rsvp_on = 0 if there is a local member 1607 * of the group to which the RSVP packet is addressed. But in this 1608 * case we want to throw the packet away. 1609 */ 1610 1611 if (!V_rsvp_on) { 1612 m_freem(m); 1613 return; 1614 } 1615 1616 if (V_ip_rsvpd != NULL) { 1617 rip_input(m, off); 1618 return; 1619 } 1620 /* Drop the packet */ 1621 m_freem(m); 1622 } 1623