1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 86 #include <netipsec/ipsec_support.h> 87 88 #include <sys/socketvar.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #ifdef CTASSERT 93 CTASSERT(sizeof(struct ip) == 20); 94 #endif 95 96 /* IP reassembly functions are defined in ip_reass.c. */ 97 extern void ipreass_init(void); 98 extern void ipreass_drain(void); 99 extern void ipreass_slowtimo(void); 100 #ifdef VIMAGE 101 extern void ipreass_destroy(void); 102 #endif 103 104 struct rmlock in_ifaddr_lock; 105 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 106 107 VNET_DEFINE(int, rsvp_on); 108 109 VNET_DEFINE(int, ipforwarding); 110 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 111 &VNET_NAME(ipforwarding), 0, 112 "Enable IP forwarding between interfaces"); 113 114 VNET_DEFINE_STATIC(int, ipsendredirects) = 1; /* XXX */ 115 #define V_ipsendredirects VNET(ipsendredirects) 116 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 117 &VNET_NAME(ipsendredirects), 0, 118 "Enable sending IP redirects"); 119 120 /* 121 * XXX - Setting ip_checkinterface mostly implements the receive side of 122 * the Strong ES model described in RFC 1122, but since the routing table 123 * and transmit implementation do not implement the Strong ES model, 124 * setting this to 1 results in an odd hybrid. 125 * 126 * XXX - ip_checkinterface currently must be disabled if you use ipnat 127 * to translate the destination address to another local interface. 128 * 129 * XXX - ip_checkinterface must be disabled if you add IP aliases 130 * to the loopback interface instead of the interface where the 131 * packets for those addresses are received. 132 */ 133 VNET_DEFINE_STATIC(int, ip_checkinterface); 134 #define V_ip_checkinterface VNET(ip_checkinterface) 135 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 136 &VNET_NAME(ip_checkinterface), 0, 137 "Verify packet arrives on correct interface"); 138 139 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 140 141 static struct netisr_handler ip_nh = { 142 .nh_name = "ip", 143 .nh_handler = ip_input, 144 .nh_proto = NETISR_IP, 145 #ifdef RSS 146 .nh_m2cpuid = rss_soft_m2cpuid_v4, 147 .nh_policy = NETISR_POLICY_CPU, 148 .nh_dispatch = NETISR_DISPATCH_HYBRID, 149 #else 150 .nh_policy = NETISR_POLICY_FLOW, 151 #endif 152 }; 153 154 #ifdef RSS 155 /* 156 * Directly dispatched frames are currently assumed 157 * to have a flowid already calculated. 158 * 159 * It should likely have something that assert it 160 * actually has valid flow details. 161 */ 162 static struct netisr_handler ip_direct_nh = { 163 .nh_name = "ip_direct", 164 .nh_handler = ip_direct_input, 165 .nh_proto = NETISR_IP_DIRECT, 166 .nh_m2cpuid = rss_soft_m2cpuid_v4, 167 .nh_policy = NETISR_POLICY_CPU, 168 .nh_dispatch = NETISR_DISPATCH_HYBRID, 169 }; 170 #endif 171 172 extern struct domain inetdomain; 173 extern struct protosw inetsw[]; 174 u_char ip_protox[IPPROTO_MAX]; 175 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 176 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 177 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 178 179 #ifdef IPCTL_DEFMTU 180 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 181 &ip_mtu, 0, "Default MTU"); 182 #endif 183 184 #ifdef IPSTEALTH 185 VNET_DEFINE(int, ipstealth); 186 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 187 &VNET_NAME(ipstealth), 0, 188 "IP stealth mode, no TTL decrementation on forwarding"); 189 #endif 190 191 /* 192 * IP statistics are stored in the "array" of counter(9)s. 193 */ 194 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 195 VNET_PCPUSTAT_SYSINIT(ipstat); 196 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 197 "IP statistics (struct ipstat, netinet/ip_var.h)"); 198 199 #ifdef VIMAGE 200 VNET_PCPUSTAT_SYSUNINIT(ipstat); 201 #endif /* VIMAGE */ 202 203 /* 204 * Kernel module interface for updating ipstat. The argument is an index 205 * into ipstat treated as an array. 206 */ 207 void 208 kmod_ipstat_inc(int statnum) 209 { 210 211 counter_u64_add(VNET(ipstat)[statnum], 1); 212 } 213 214 void 215 kmod_ipstat_dec(int statnum) 216 { 217 218 counter_u64_add(VNET(ipstat)[statnum], -1); 219 } 220 221 static int 222 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 223 { 224 int error, qlimit; 225 226 netisr_getqlimit(&ip_nh, &qlimit); 227 error = sysctl_handle_int(oidp, &qlimit, 0, req); 228 if (error || !req->newptr) 229 return (error); 230 if (qlimit < 1) 231 return (EINVAL); 232 return (netisr_setqlimit(&ip_nh, qlimit)); 233 } 234 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 235 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 236 sysctl_netinet_intr_queue_maxlen, "I", 237 "Maximum size of the IP input queue"); 238 239 static int 240 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 241 { 242 u_int64_t qdrops_long; 243 int error, qdrops; 244 245 netisr_getqdrops(&ip_nh, &qdrops_long); 246 qdrops = qdrops_long; 247 error = sysctl_handle_int(oidp, &qdrops, 0, req); 248 if (error || !req->newptr) 249 return (error); 250 if (qdrops != 0) 251 return (EINVAL); 252 netisr_clearqdrops(&ip_nh); 253 return (0); 254 } 255 256 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 257 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 258 0, 0, sysctl_netinet_intr_queue_drops, "I", 259 "Number of packets dropped from the IP input queue"); 260 261 #ifdef RSS 262 static int 263 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 264 { 265 int error, qlimit; 266 267 netisr_getqlimit(&ip_direct_nh, &qlimit); 268 error = sysctl_handle_int(oidp, &qlimit, 0, req); 269 if (error || !req->newptr) 270 return (error); 271 if (qlimit < 1) 272 return (EINVAL); 273 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 274 } 275 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 276 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 277 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 278 "I", "Maximum size of the IP direct input queue"); 279 280 static int 281 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 282 { 283 u_int64_t qdrops_long; 284 int error, qdrops; 285 286 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 287 qdrops = qdrops_long; 288 error = sysctl_handle_int(oidp, &qdrops, 0, req); 289 if (error || !req->newptr) 290 return (error); 291 if (qdrops != 0) 292 return (EINVAL); 293 netisr_clearqdrops(&ip_direct_nh); 294 return (0); 295 } 296 297 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 298 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 299 sysctl_netinet_intr_direct_queue_drops, "I", 300 "Number of packets dropped from the IP direct input queue"); 301 #endif /* RSS */ 302 303 /* 304 * IP initialization: fill in IP protocol switch table. 305 * All protocols not implemented in kernel go to raw IP protocol handler. 306 */ 307 void 308 ip_init(void) 309 { 310 struct pfil_head_args args; 311 struct protosw *pr; 312 int i; 313 314 CK_STAILQ_INIT(&V_in_ifaddrhead); 315 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 316 317 /* Initialize IP reassembly queue. */ 318 ipreass_init(); 319 320 /* Initialize packet filter hooks. */ 321 args.pa_version = PFIL_VERSION; 322 args.pa_flags = PFIL_IN | PFIL_OUT; 323 args.pa_type = PFIL_TYPE_IP4; 324 args.pa_headname = PFIL_INET_NAME; 325 V_inet_pfil_head = pfil_head_register(&args); 326 327 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 328 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 329 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 330 printf("%s: WARNING: unable to register input helper hook\n", 331 __func__); 332 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 333 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 334 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 335 printf("%s: WARNING: unable to register output helper hook\n", 336 __func__); 337 338 /* Skip initialization of globals for non-default instances. */ 339 #ifdef VIMAGE 340 if (!IS_DEFAULT_VNET(curvnet)) { 341 netisr_register_vnet(&ip_nh); 342 #ifdef RSS 343 netisr_register_vnet(&ip_direct_nh); 344 #endif 345 return; 346 } 347 #endif 348 349 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 350 if (pr == NULL) 351 panic("ip_init: PF_INET not found"); 352 353 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 354 for (i = 0; i < IPPROTO_MAX; i++) 355 ip_protox[i] = pr - inetsw; 356 /* 357 * Cycle through IP protocols and put them into the appropriate place 358 * in ip_protox[]. 359 */ 360 for (pr = inetdomain.dom_protosw; 361 pr < inetdomain.dom_protoswNPROTOSW; pr++) 362 if (pr->pr_domain->dom_family == PF_INET && 363 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 364 /* Be careful to only index valid IP protocols. */ 365 if (pr->pr_protocol < IPPROTO_MAX) 366 ip_protox[pr->pr_protocol] = pr - inetsw; 367 } 368 369 netisr_register(&ip_nh); 370 #ifdef RSS 371 netisr_register(&ip_direct_nh); 372 #endif 373 } 374 375 #ifdef VIMAGE 376 static void 377 ip_destroy(void *unused __unused) 378 { 379 struct ifnet *ifp; 380 int error; 381 382 #ifdef RSS 383 netisr_unregister_vnet(&ip_direct_nh); 384 #endif 385 netisr_unregister_vnet(&ip_nh); 386 387 pfil_head_unregister(V_inet_pfil_head); 388 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 389 if (error != 0) { 390 printf("%s: WARNING: unable to deregister input helper hook " 391 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 392 "error %d returned\n", __func__, error); 393 } 394 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 395 if (error != 0) { 396 printf("%s: WARNING: unable to deregister output helper hook " 397 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 398 "error %d returned\n", __func__, error); 399 } 400 401 /* Remove the IPv4 addresses from all interfaces. */ 402 in_ifscrub_all(); 403 404 /* Make sure the IPv4 routes are gone as well. */ 405 IFNET_RLOCK(); 406 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 407 rt_flushifroutes_af(ifp, AF_INET); 408 IFNET_RUNLOCK(); 409 410 /* Destroy IP reassembly queue. */ 411 ipreass_destroy(); 412 413 /* Cleanup in_ifaddr hash table; should be empty. */ 414 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 415 } 416 417 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 418 #endif 419 420 #ifdef RSS 421 /* 422 * IP direct input routine. 423 * 424 * This is called when reinjecting completed fragments where 425 * all of the previous checking and book-keeping has been done. 426 */ 427 void 428 ip_direct_input(struct mbuf *m) 429 { 430 struct ip *ip; 431 int hlen; 432 433 ip = mtod(m, struct ip *); 434 hlen = ip->ip_hl << 2; 435 436 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 437 if (IPSEC_ENABLED(ipv4)) { 438 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 439 return; 440 } 441 #endif /* IPSEC */ 442 IPSTAT_INC(ips_delivered); 443 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 444 return; 445 } 446 #endif 447 448 /* 449 * Ip input routine. Checksum and byte swap header. If fragmented 450 * try to reassemble. Process options. Pass to next level. 451 */ 452 void 453 ip_input(struct mbuf *m) 454 { 455 struct rm_priotracker in_ifa_tracker; 456 struct ip *ip = NULL; 457 struct in_ifaddr *ia = NULL; 458 struct ifaddr *ifa; 459 struct ifnet *ifp; 460 int checkif, hlen = 0; 461 uint16_t sum, ip_len; 462 int dchg = 0; /* dest changed after fw */ 463 struct in_addr odst; /* original dst address */ 464 465 M_ASSERTPKTHDR(m); 466 NET_EPOCH_ASSERT(); 467 468 if (m->m_flags & M_FASTFWD_OURS) { 469 m->m_flags &= ~M_FASTFWD_OURS; 470 /* Set up some basics that will be used later. */ 471 ip = mtod(m, struct ip *); 472 hlen = ip->ip_hl << 2; 473 ip_len = ntohs(ip->ip_len); 474 goto ours; 475 } 476 477 IPSTAT_INC(ips_total); 478 479 if (m->m_pkthdr.len < sizeof(struct ip)) 480 goto tooshort; 481 482 if (m->m_len < sizeof (struct ip) && 483 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 484 IPSTAT_INC(ips_toosmall); 485 return; 486 } 487 ip = mtod(m, struct ip *); 488 489 if (ip->ip_v != IPVERSION) { 490 IPSTAT_INC(ips_badvers); 491 goto bad; 492 } 493 494 hlen = ip->ip_hl << 2; 495 if (hlen < sizeof(struct ip)) { /* minimum header length */ 496 IPSTAT_INC(ips_badhlen); 497 goto bad; 498 } 499 if (hlen > m->m_len) { 500 if ((m = m_pullup(m, hlen)) == NULL) { 501 IPSTAT_INC(ips_badhlen); 502 return; 503 } 504 ip = mtod(m, struct ip *); 505 } 506 507 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 508 509 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 510 ifp = m->m_pkthdr.rcvif; 511 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 512 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 513 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 514 IPSTAT_INC(ips_badaddr); 515 goto bad; 516 } 517 } 518 519 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 520 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 521 } else { 522 if (hlen == sizeof(struct ip)) { 523 sum = in_cksum_hdr(ip); 524 } else { 525 sum = in_cksum(m, hlen); 526 } 527 } 528 if (sum) { 529 IPSTAT_INC(ips_badsum); 530 goto bad; 531 } 532 533 #ifdef ALTQ 534 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 535 /* packet is dropped by traffic conditioner */ 536 return; 537 #endif 538 539 ip_len = ntohs(ip->ip_len); 540 if (ip_len < hlen) { 541 IPSTAT_INC(ips_badlen); 542 goto bad; 543 } 544 545 /* 546 * Check that the amount of data in the buffers 547 * is as at least much as the IP header would have us expect. 548 * Trim mbufs if longer than we expect. 549 * Drop packet if shorter than we expect. 550 */ 551 if (m->m_pkthdr.len < ip_len) { 552 tooshort: 553 IPSTAT_INC(ips_tooshort); 554 goto bad; 555 } 556 if (m->m_pkthdr.len > ip_len) { 557 if (m->m_len == m->m_pkthdr.len) { 558 m->m_len = ip_len; 559 m->m_pkthdr.len = ip_len; 560 } else 561 m_adj(m, ip_len - m->m_pkthdr.len); 562 } 563 564 /* 565 * Try to forward the packet, but if we fail continue. 566 * ip_tryforward() does not generate redirects, so fall 567 * through to normal processing if redirects are required. 568 * ip_tryforward() does inbound and outbound packet firewall 569 * processing. If firewall has decided that destination becomes 570 * our local address, it sets M_FASTFWD_OURS flag. In this 571 * case skip another inbound firewall processing and update 572 * ip pointer. 573 */ 574 if (V_ipforwarding != 0 && V_ipsendredirects == 0 575 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 576 && (!IPSEC_ENABLED(ipv4) || 577 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 578 #endif 579 ) { 580 if ((m = ip_tryforward(m)) == NULL) 581 return; 582 if (m->m_flags & M_FASTFWD_OURS) { 583 m->m_flags &= ~M_FASTFWD_OURS; 584 ip = mtod(m, struct ip *); 585 goto ours; 586 } 587 } 588 589 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 590 /* 591 * Bypass packet filtering for packets previously handled by IPsec. 592 */ 593 if (IPSEC_ENABLED(ipv4) && 594 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 595 goto passin; 596 #endif 597 598 /* 599 * Run through list of hooks for input packets. 600 * 601 * NB: Beware of the destination address changing (e.g. 602 * by NAT rewriting). When this happens, tell 603 * ip_forward to do the right thing. 604 */ 605 606 /* Jump over all PFIL processing if hooks are not active. */ 607 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 608 goto passin; 609 610 odst = ip->ip_dst; 611 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 612 PFIL_PASS) 613 return; 614 if (m == NULL) /* consumed by filter */ 615 return; 616 617 ip = mtod(m, struct ip *); 618 dchg = (odst.s_addr != ip->ip_dst.s_addr); 619 ifp = m->m_pkthdr.rcvif; 620 621 if (m->m_flags & M_FASTFWD_OURS) { 622 m->m_flags &= ~M_FASTFWD_OURS; 623 goto ours; 624 } 625 if (m->m_flags & M_IP_NEXTHOP) { 626 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 627 /* 628 * Directly ship the packet on. This allows 629 * forwarding packets originally destined to us 630 * to some other directly connected host. 631 */ 632 ip_forward(m, 1); 633 return; 634 } 635 } 636 passin: 637 638 /* 639 * Process options and, if not destined for us, 640 * ship it on. ip_dooptions returns 1 when an 641 * error was detected (causing an icmp message 642 * to be sent and the original packet to be freed). 643 */ 644 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 645 return; 646 647 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 648 * matter if it is destined to another node, or whether it is 649 * a multicast one, RSVP wants it! and prevents it from being forwarded 650 * anywhere else. Also checks if the rsvp daemon is running before 651 * grabbing the packet. 652 */ 653 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 654 goto ours; 655 656 /* 657 * Check our list of addresses, to see if the packet is for us. 658 * If we don't have any addresses, assume any unicast packet 659 * we receive might be for us (and let the upper layers deal 660 * with it). 661 */ 662 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 663 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 664 goto ours; 665 666 /* 667 * Enable a consistency check between the destination address 668 * and the arrival interface for a unicast packet (the RFC 1122 669 * strong ES model) if IP forwarding is disabled and the packet 670 * is not locally generated and the packet is not subject to 671 * 'ipfw fwd'. 672 * 673 * XXX - Checking also should be disabled if the destination 674 * address is ipnat'ed to a different interface. 675 * 676 * XXX - Checking is incompatible with IP aliases added 677 * to the loopback interface instead of the interface where 678 * the packets are received. 679 * 680 * XXX - This is the case for carp vhost IPs as well so we 681 * insert a workaround. If the packet got here, we already 682 * checked with carp_iamatch() and carp_forus(). 683 */ 684 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 685 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 686 ifp->if_carp == NULL && (dchg == 0); 687 688 /* 689 * Check for exact addresses in the hash bucket. 690 */ 691 IN_IFADDR_RLOCK(&in_ifa_tracker); 692 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 693 /* 694 * If the address matches, verify that the packet 695 * arrived via the correct interface if checking is 696 * enabled. 697 */ 698 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 699 (!checkif || ia->ia_ifp == ifp)) { 700 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 701 counter_u64_add(ia->ia_ifa.ifa_ibytes, 702 m->m_pkthdr.len); 703 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 704 goto ours; 705 } 706 } 707 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 708 709 /* 710 * Check for broadcast addresses. 711 * 712 * Only accept broadcast packets that arrive via the matching 713 * interface. Reception of forwarded directed broadcasts would 714 * be handled via ip_forward() and ether_output() with the loopback 715 * into the stack for SIMPLEX interfaces handled by ether_output(). 716 */ 717 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 718 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 719 if (ifa->ifa_addr->sa_family != AF_INET) 720 continue; 721 ia = ifatoia(ifa); 722 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 723 ip->ip_dst.s_addr) { 724 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 725 counter_u64_add(ia->ia_ifa.ifa_ibytes, 726 m->m_pkthdr.len); 727 goto ours; 728 } 729 #ifdef BOOTP_COMPAT 730 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 731 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 732 counter_u64_add(ia->ia_ifa.ifa_ibytes, 733 m->m_pkthdr.len); 734 goto ours; 735 } 736 #endif 737 } 738 ia = NULL; 739 } 740 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 741 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 742 IPSTAT_INC(ips_cantforward); 743 m_freem(m); 744 return; 745 } 746 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 747 if (V_ip_mrouter) { 748 /* 749 * If we are acting as a multicast router, all 750 * incoming multicast packets are passed to the 751 * kernel-level multicast forwarding function. 752 * The packet is returned (relatively) intact; if 753 * ip_mforward() returns a non-zero value, the packet 754 * must be discarded, else it may be accepted below. 755 */ 756 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 757 IPSTAT_INC(ips_cantforward); 758 m_freem(m); 759 return; 760 } 761 762 /* 763 * The process-level routing daemon needs to receive 764 * all multicast IGMP packets, whether or not this 765 * host belongs to their destination groups. 766 */ 767 if (ip->ip_p == IPPROTO_IGMP) 768 goto ours; 769 IPSTAT_INC(ips_forward); 770 } 771 /* 772 * Assume the packet is for us, to avoid prematurely taking 773 * a lock on the in_multi hash. Protocols must perform 774 * their own filtering and update statistics accordingly. 775 */ 776 goto ours; 777 } 778 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 779 goto ours; 780 if (ip->ip_dst.s_addr == INADDR_ANY) 781 goto ours; 782 783 /* 784 * Not for us; forward if possible and desirable. 785 */ 786 if (V_ipforwarding == 0) { 787 IPSTAT_INC(ips_cantforward); 788 m_freem(m); 789 } else { 790 ip_forward(m, dchg); 791 } 792 return; 793 794 ours: 795 #ifdef IPSTEALTH 796 /* 797 * IPSTEALTH: Process non-routing options only 798 * if the packet is destined for us. 799 */ 800 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 801 return; 802 #endif /* IPSTEALTH */ 803 804 /* 805 * Attempt reassembly; if it succeeds, proceed. 806 * ip_reass() will return a different mbuf. 807 */ 808 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 809 /* XXXGL: shouldn't we save & set m_flags? */ 810 m = ip_reass(m); 811 if (m == NULL) 812 return; 813 ip = mtod(m, struct ip *); 814 /* Get the header length of the reassembled packet */ 815 hlen = ip->ip_hl << 2; 816 } 817 818 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 819 if (IPSEC_ENABLED(ipv4)) { 820 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 821 return; 822 } 823 #endif /* IPSEC */ 824 825 /* 826 * Switch out to protocol's input routine. 827 */ 828 IPSTAT_INC(ips_delivered); 829 830 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 831 return; 832 bad: 833 m_freem(m); 834 } 835 836 /* 837 * IP timer processing; 838 * if a timer expires on a reassembly 839 * queue, discard it. 840 */ 841 void 842 ip_slowtimo(void) 843 { 844 VNET_ITERATOR_DECL(vnet_iter); 845 846 VNET_LIST_RLOCK_NOSLEEP(); 847 VNET_FOREACH(vnet_iter) { 848 CURVNET_SET(vnet_iter); 849 ipreass_slowtimo(); 850 CURVNET_RESTORE(); 851 } 852 VNET_LIST_RUNLOCK_NOSLEEP(); 853 } 854 855 void 856 ip_drain(void) 857 { 858 VNET_ITERATOR_DECL(vnet_iter); 859 860 VNET_LIST_RLOCK_NOSLEEP(); 861 VNET_FOREACH(vnet_iter) { 862 CURVNET_SET(vnet_iter); 863 ipreass_drain(); 864 CURVNET_RESTORE(); 865 } 866 VNET_LIST_RUNLOCK_NOSLEEP(); 867 } 868 869 /* 870 * The protocol to be inserted into ip_protox[] must be already registered 871 * in inetsw[], either statically or through pf_proto_register(). 872 */ 873 int 874 ipproto_register(short ipproto) 875 { 876 struct protosw *pr; 877 878 /* Sanity checks. */ 879 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 880 return (EPROTONOSUPPORT); 881 882 /* 883 * The protocol slot must not be occupied by another protocol 884 * already. An index pointing to IPPROTO_RAW is unused. 885 */ 886 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 887 if (pr == NULL) 888 return (EPFNOSUPPORT); 889 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 890 return (EEXIST); 891 892 /* Find the protocol position in inetsw[] and set the index. */ 893 for (pr = inetdomain.dom_protosw; 894 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 895 if (pr->pr_domain->dom_family == PF_INET && 896 pr->pr_protocol && pr->pr_protocol == ipproto) { 897 ip_protox[pr->pr_protocol] = pr - inetsw; 898 return (0); 899 } 900 } 901 return (EPROTONOSUPPORT); 902 } 903 904 int 905 ipproto_unregister(short ipproto) 906 { 907 struct protosw *pr; 908 909 /* Sanity checks. */ 910 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 911 return (EPROTONOSUPPORT); 912 913 /* Check if the protocol was indeed registered. */ 914 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 915 if (pr == NULL) 916 return (EPFNOSUPPORT); 917 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 918 return (ENOENT); 919 920 /* Reset the protocol slot to IPPROTO_RAW. */ 921 ip_protox[ipproto] = pr - inetsw; 922 return (0); 923 } 924 925 u_char inetctlerrmap[PRC_NCMDS] = { 926 0, 0, 0, 0, 927 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 928 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 929 EMSGSIZE, EHOSTUNREACH, 0, 0, 930 0, 0, EHOSTUNREACH, 0, 931 ENOPROTOOPT, ECONNREFUSED 932 }; 933 934 /* 935 * Forward a packet. If some error occurs return the sender 936 * an icmp packet. Note we can't always generate a meaningful 937 * icmp message because icmp doesn't have a large enough repertoire 938 * of codes and types. 939 * 940 * If not forwarding, just drop the packet. This could be confusing 941 * if ipforwarding was zero but some routing protocol was advancing 942 * us as a gateway to somewhere. However, we must let the routing 943 * protocol deal with that. 944 * 945 * The srcrt parameter indicates whether the packet is being forwarded 946 * via a source route. 947 */ 948 void 949 ip_forward(struct mbuf *m, int srcrt) 950 { 951 struct ip *ip = mtod(m, struct ip *); 952 struct in_ifaddr *ia; 953 struct mbuf *mcopy; 954 struct sockaddr_in *sin; 955 struct in_addr dest; 956 struct route ro; 957 uint32_t flowid; 958 int error, type = 0, code = 0, mtu = 0; 959 960 NET_EPOCH_ASSERT(); 961 962 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 963 IPSTAT_INC(ips_cantforward); 964 m_freem(m); 965 return; 966 } 967 if ( 968 #ifdef IPSTEALTH 969 V_ipstealth == 0 && 970 #endif 971 ip->ip_ttl <= IPTTLDEC) { 972 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 973 return; 974 } 975 976 bzero(&ro, sizeof(ro)); 977 sin = (struct sockaddr_in *)&ro.ro_dst; 978 sin->sin_family = AF_INET; 979 sin->sin_len = sizeof(*sin); 980 sin->sin_addr = ip->ip_dst; 981 #ifdef RADIX_MPATH 982 flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr); 983 #else 984 flowid = m->m_pkthdr.flowid; 985 #endif 986 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 987 if (ro.ro_nh != NULL) { 988 ia = ifatoia(ro.ro_nh->nh_ifa); 989 } else 990 ia = NULL; 991 /* 992 * Save the IP header and at most 8 bytes of the payload, 993 * in case we need to generate an ICMP message to the src. 994 * 995 * XXX this can be optimized a lot by saving the data in a local 996 * buffer on the stack (72 bytes at most), and only allocating the 997 * mbuf if really necessary. The vast majority of the packets 998 * are forwarded without having to send an ICMP back (either 999 * because unnecessary, or because rate limited), so we are 1000 * really we are wasting a lot of work here. 1001 * 1002 * We don't use m_copym() because it might return a reference 1003 * to a shared cluster. Both this function and ip_output() 1004 * assume exclusive access to the IP header in `m', so any 1005 * data in a cluster may change before we reach icmp_error(). 1006 */ 1007 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1008 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1009 /* 1010 * It's probably ok if the pkthdr dup fails (because 1011 * the deep copy of the tag chain failed), but for now 1012 * be conservative and just discard the copy since 1013 * code below may some day want the tags. 1014 */ 1015 m_free(mcopy); 1016 mcopy = NULL; 1017 } 1018 if (mcopy != NULL) { 1019 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1020 mcopy->m_pkthdr.len = mcopy->m_len; 1021 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1022 } 1023 #ifdef IPSTEALTH 1024 if (V_ipstealth == 0) 1025 #endif 1026 ip->ip_ttl -= IPTTLDEC; 1027 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1028 if (IPSEC_ENABLED(ipv4)) { 1029 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1030 /* mbuf consumed by IPsec */ 1031 RO_NHFREE(&ro); 1032 m_freem(mcopy); 1033 if (error != EINPROGRESS) 1034 IPSTAT_INC(ips_cantforward); 1035 return; 1036 } 1037 /* No IPsec processing required */ 1038 } 1039 #endif /* IPSEC */ 1040 /* 1041 * If forwarding packet using same interface that it came in on, 1042 * perhaps should send a redirect to sender to shortcut a hop. 1043 * Only send redirect if source is sending directly to us, 1044 * and if packet was not source routed (or has any options). 1045 * Also, don't send redirect if forwarding using a default route 1046 * or a route modified by a redirect. 1047 */ 1048 dest.s_addr = 0; 1049 if (!srcrt && V_ipsendredirects && 1050 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1051 struct nhop_object *nh; 1052 1053 nh = ro.ro_nh; 1054 1055 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1056 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1057 u_long src = ntohl(ip->ip_src.s_addr); 1058 1059 if (nh_ia != NULL && 1060 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1061 if (nh->nh_flags & NHF_GATEWAY) 1062 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1063 else 1064 dest.s_addr = ip->ip_dst.s_addr; 1065 /* Router requirements says to only send host redirects */ 1066 type = ICMP_REDIRECT; 1067 code = ICMP_REDIRECT_HOST; 1068 } 1069 } 1070 } 1071 1072 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1073 1074 if (error == EMSGSIZE && ro.ro_nh) 1075 mtu = ro.ro_nh->nh_mtu; 1076 RO_NHFREE(&ro); 1077 1078 if (error) 1079 IPSTAT_INC(ips_cantforward); 1080 else { 1081 IPSTAT_INC(ips_forward); 1082 if (type) 1083 IPSTAT_INC(ips_redirectsent); 1084 else { 1085 if (mcopy) 1086 m_freem(mcopy); 1087 return; 1088 } 1089 } 1090 if (mcopy == NULL) 1091 return; 1092 1093 1094 switch (error) { 1095 1096 case 0: /* forwarded, but need redirect */ 1097 /* type, code set above */ 1098 break; 1099 1100 case ENETUNREACH: 1101 case EHOSTUNREACH: 1102 case ENETDOWN: 1103 case EHOSTDOWN: 1104 default: 1105 type = ICMP_UNREACH; 1106 code = ICMP_UNREACH_HOST; 1107 break; 1108 1109 case EMSGSIZE: 1110 type = ICMP_UNREACH; 1111 code = ICMP_UNREACH_NEEDFRAG; 1112 /* 1113 * If the MTU was set before make sure we are below the 1114 * interface MTU. 1115 * If the MTU wasn't set before use the interface mtu or 1116 * fall back to the next smaller mtu step compared to the 1117 * current packet size. 1118 */ 1119 if (mtu != 0) { 1120 if (ia != NULL) 1121 mtu = min(mtu, ia->ia_ifp->if_mtu); 1122 } else { 1123 if (ia != NULL) 1124 mtu = ia->ia_ifp->if_mtu; 1125 else 1126 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1127 } 1128 IPSTAT_INC(ips_cantfrag); 1129 break; 1130 1131 case ENOBUFS: 1132 case EACCES: /* ipfw denied packet */ 1133 m_freem(mcopy); 1134 return; 1135 } 1136 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1137 } 1138 1139 #define CHECK_SO_CT(sp, ct) \ 1140 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1141 1142 void 1143 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1144 struct mbuf *m) 1145 { 1146 bool stamped; 1147 1148 stamped = false; 1149 if ((inp->inp_socket->so_options & SO_BINTIME) || 1150 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1151 struct bintime boottimebin, bt; 1152 struct timespec ts1; 1153 1154 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1155 M_TSTMP)) { 1156 mbuf_tstmp2timespec(m, &ts1); 1157 timespec2bintime(&ts1, &bt); 1158 getboottimebin(&boottimebin); 1159 bintime_add(&bt, &boottimebin); 1160 } else { 1161 bintime(&bt); 1162 } 1163 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1164 SCM_BINTIME, SOL_SOCKET); 1165 if (*mp != NULL) { 1166 mp = &(*mp)->m_next; 1167 stamped = true; 1168 } 1169 } 1170 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1171 struct bintime boottimebin, bt1; 1172 struct timespec ts1; 1173 struct timeval tv; 1174 1175 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1176 M_TSTMP)) { 1177 mbuf_tstmp2timespec(m, &ts1); 1178 timespec2bintime(&ts1, &bt1); 1179 getboottimebin(&boottimebin); 1180 bintime_add(&bt1, &boottimebin); 1181 bintime2timeval(&bt1, &tv); 1182 } else { 1183 microtime(&tv); 1184 } 1185 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1186 SCM_TIMESTAMP, SOL_SOCKET); 1187 if (*mp != NULL) { 1188 mp = &(*mp)->m_next; 1189 stamped = true; 1190 } 1191 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1192 struct bintime boottimebin; 1193 struct timespec ts, ts1; 1194 1195 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1196 M_TSTMP)) { 1197 mbuf_tstmp2timespec(m, &ts); 1198 getboottimebin(&boottimebin); 1199 bintime2timespec(&boottimebin, &ts1); 1200 timespecadd(&ts, &ts1, &ts); 1201 } else { 1202 nanotime(&ts); 1203 } 1204 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1205 SCM_REALTIME, SOL_SOCKET); 1206 if (*mp != NULL) { 1207 mp = &(*mp)->m_next; 1208 stamped = true; 1209 } 1210 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1211 struct timespec ts; 1212 1213 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1214 M_TSTMP)) 1215 mbuf_tstmp2timespec(m, &ts); 1216 else 1217 nanouptime(&ts); 1218 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1219 SCM_MONOTONIC, SOL_SOCKET); 1220 if (*mp != NULL) { 1221 mp = &(*mp)->m_next; 1222 stamped = true; 1223 } 1224 } 1225 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1226 M_TSTMP)) { 1227 struct sock_timestamp_info sti; 1228 1229 bzero(&sti, sizeof(sti)); 1230 sti.st_info_flags = ST_INFO_HW; 1231 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1232 sti.st_info_flags |= ST_INFO_HW_HPREC; 1233 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1234 SOL_SOCKET); 1235 if (*mp != NULL) 1236 mp = &(*mp)->m_next; 1237 } 1238 if (inp->inp_flags & INP_RECVDSTADDR) { 1239 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1240 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1241 if (*mp) 1242 mp = &(*mp)->m_next; 1243 } 1244 if (inp->inp_flags & INP_RECVTTL) { 1245 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1246 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1247 if (*mp) 1248 mp = &(*mp)->m_next; 1249 } 1250 #ifdef notyet 1251 /* XXX 1252 * Moving these out of udp_input() made them even more broken 1253 * than they already were. 1254 */ 1255 /* options were tossed already */ 1256 if (inp->inp_flags & INP_RECVOPTS) { 1257 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1258 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1259 if (*mp) 1260 mp = &(*mp)->m_next; 1261 } 1262 /* ip_srcroute doesn't do what we want here, need to fix */ 1263 if (inp->inp_flags & INP_RECVRETOPTS) { 1264 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1265 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1266 if (*mp) 1267 mp = &(*mp)->m_next; 1268 } 1269 #endif 1270 if (inp->inp_flags & INP_RECVIF) { 1271 struct ifnet *ifp; 1272 struct sdlbuf { 1273 struct sockaddr_dl sdl; 1274 u_char pad[32]; 1275 } sdlbuf; 1276 struct sockaddr_dl *sdp; 1277 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1278 1279 if ((ifp = m->m_pkthdr.rcvif) && 1280 ifp->if_index && ifp->if_index <= V_if_index) { 1281 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1282 /* 1283 * Change our mind and don't try copy. 1284 */ 1285 if (sdp->sdl_family != AF_LINK || 1286 sdp->sdl_len > sizeof(sdlbuf)) { 1287 goto makedummy; 1288 } 1289 bcopy(sdp, sdl2, sdp->sdl_len); 1290 } else { 1291 makedummy: 1292 sdl2->sdl_len = 1293 offsetof(struct sockaddr_dl, sdl_data[0]); 1294 sdl2->sdl_family = AF_LINK; 1295 sdl2->sdl_index = 0; 1296 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1297 } 1298 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1299 IP_RECVIF, IPPROTO_IP); 1300 if (*mp) 1301 mp = &(*mp)->m_next; 1302 } 1303 if (inp->inp_flags & INP_RECVTOS) { 1304 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1305 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1306 if (*mp) 1307 mp = &(*mp)->m_next; 1308 } 1309 1310 if (inp->inp_flags2 & INP_RECVFLOWID) { 1311 uint32_t flowid, flow_type; 1312 1313 flowid = m->m_pkthdr.flowid; 1314 flow_type = M_HASHTYPE_GET(m); 1315 1316 /* 1317 * XXX should handle the failure of one or the 1318 * other - don't populate both? 1319 */ 1320 *mp = sbcreatecontrol((caddr_t) &flowid, 1321 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1322 if (*mp) 1323 mp = &(*mp)->m_next; 1324 *mp = sbcreatecontrol((caddr_t) &flow_type, 1325 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1326 if (*mp) 1327 mp = &(*mp)->m_next; 1328 } 1329 1330 #ifdef RSS 1331 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1332 uint32_t flowid, flow_type; 1333 uint32_t rss_bucketid; 1334 1335 flowid = m->m_pkthdr.flowid; 1336 flow_type = M_HASHTYPE_GET(m); 1337 1338 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1339 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1340 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1341 if (*mp) 1342 mp = &(*mp)->m_next; 1343 } 1344 } 1345 #endif 1346 } 1347 1348 /* 1349 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1350 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1351 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1352 * compiled. 1353 */ 1354 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1355 VNET_DEFINE(struct socket *, ip_rsvpd); 1356 1357 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1358 1359 int 1360 ip_rsvp_init(struct socket *so) 1361 { 1362 1363 if (so->so_type != SOCK_RAW || 1364 so->so_proto->pr_protocol != IPPROTO_RSVP) 1365 return EOPNOTSUPP; 1366 1367 if (V_ip_rsvpd != NULL) 1368 return EADDRINUSE; 1369 1370 V_ip_rsvpd = so; 1371 /* 1372 * This may seem silly, but we need to be sure we don't over-increment 1373 * the RSVP counter, in case something slips up. 1374 */ 1375 if (!V_ip_rsvp_on) { 1376 V_ip_rsvp_on = 1; 1377 V_rsvp_on++; 1378 } 1379 1380 return 0; 1381 } 1382 1383 int 1384 ip_rsvp_done(void) 1385 { 1386 1387 V_ip_rsvpd = NULL; 1388 /* 1389 * This may seem silly, but we need to be sure we don't over-decrement 1390 * the RSVP counter, in case something slips up. 1391 */ 1392 if (V_ip_rsvp_on) { 1393 V_ip_rsvp_on = 0; 1394 V_rsvp_on--; 1395 } 1396 return 0; 1397 } 1398 1399 int 1400 rsvp_input(struct mbuf **mp, int *offp, int proto) 1401 { 1402 struct mbuf *m; 1403 1404 m = *mp; 1405 *mp = NULL; 1406 1407 if (rsvp_input_p) { /* call the real one if loaded */ 1408 *mp = m; 1409 rsvp_input_p(mp, offp, proto); 1410 return (IPPROTO_DONE); 1411 } 1412 1413 /* Can still get packets with rsvp_on = 0 if there is a local member 1414 * of the group to which the RSVP packet is addressed. But in this 1415 * case we want to throw the packet away. 1416 */ 1417 1418 if (!V_rsvp_on) { 1419 m_freem(m); 1420 return (IPPROTO_DONE); 1421 } 1422 1423 if (V_ip_rsvpd != NULL) { 1424 *mp = m; 1425 rip_input(mp, offp, proto); 1426 return (IPPROTO_DONE); 1427 } 1428 /* Drop the packet */ 1429 m_freem(m); 1430 return (IPPROTO_DONE); 1431 } 1432