1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/pfil.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_var.h> 64 #include <net/if_dl.h> 65 #include <net/route.h> 66 #include <net/netisr.h> 67 #include <net/rss_config.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_pcb.h> 76 #include <netinet/ip_var.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_options.h> 80 #include <machine/in_cksum.h> 81 #include <netinet/ip_carp.h> 82 #include <netinet/in_rss.h> 83 84 #include <netipsec/ipsec_support.h> 85 86 #include <sys/socketvar.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #ifdef CTASSERT 91 CTASSERT(sizeof(struct ip) == 20); 92 #endif 93 94 /* IP reassembly functions are defined in ip_reass.c. */ 95 extern void ipreass_init(void); 96 extern void ipreass_drain(void); 97 extern void ipreass_slowtimo(void); 98 #ifdef VIMAGE 99 extern void ipreass_destroy(void); 100 #endif 101 102 struct rmlock in_ifaddr_lock; 103 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 static VNET_DEFINE(int, ipsendredirects) = 1; /* XXX */ 113 #define V_ipsendredirects VNET(ipsendredirects) 114 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 115 &VNET_NAME(ipsendredirects), 0, 116 "Enable sending IP redirects"); 117 118 /* 119 * XXX - Setting ip_checkinterface mostly implements the receive side of 120 * the Strong ES model described in RFC 1122, but since the routing table 121 * and transmit implementation do not implement the Strong ES model, 122 * setting this to 1 results in an odd hybrid. 123 * 124 * XXX - ip_checkinterface currently must be disabled if you use ipnat 125 * to translate the destination address to another local interface. 126 * 127 * XXX - ip_checkinterface must be disabled if you add IP aliases 128 * to the loopback interface instead of the interface where the 129 * packets for those addresses are received. 130 */ 131 static VNET_DEFINE(int, ip_checkinterface); 132 #define V_ip_checkinterface VNET(ip_checkinterface) 133 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 134 &VNET_NAME(ip_checkinterface), 0, 135 "Verify packet arrives on correct interface"); 136 137 VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */ 138 139 static struct netisr_handler ip_nh = { 140 .nh_name = "ip", 141 .nh_handler = ip_input, 142 .nh_proto = NETISR_IP, 143 #ifdef RSS 144 .nh_m2cpuid = rss_soft_m2cpuid_v4, 145 .nh_policy = NETISR_POLICY_CPU, 146 .nh_dispatch = NETISR_DISPATCH_HYBRID, 147 #else 148 .nh_policy = NETISR_POLICY_FLOW, 149 #endif 150 }; 151 152 #ifdef RSS 153 /* 154 * Directly dispatched frames are currently assumed 155 * to have a flowid already calculated. 156 * 157 * It should likely have something that assert it 158 * actually has valid flow details. 159 */ 160 static struct netisr_handler ip_direct_nh = { 161 .nh_name = "ip_direct", 162 .nh_handler = ip_direct_input, 163 .nh_proto = NETISR_IP_DIRECT, 164 .nh_m2cpuid = rss_soft_m2cpuid_v4, 165 .nh_policy = NETISR_POLICY_CPU, 166 .nh_dispatch = NETISR_DISPATCH_HYBRID, 167 }; 168 #endif 169 170 extern struct domain inetdomain; 171 extern struct protosw inetsw[]; 172 u_char ip_protox[IPPROTO_MAX]; 173 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 174 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 175 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 176 177 #ifdef IPCTL_DEFMTU 178 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 179 &ip_mtu, 0, "Default MTU"); 180 #endif 181 182 #ifdef IPSTEALTH 183 VNET_DEFINE(int, ipstealth); 184 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 185 &VNET_NAME(ipstealth), 0, 186 "IP stealth mode, no TTL decrementation on forwarding"); 187 #endif 188 189 /* 190 * IP statistics are stored in the "array" of counter(9)s. 191 */ 192 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 193 VNET_PCPUSTAT_SYSINIT(ipstat); 194 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 195 "IP statistics (struct ipstat, netinet/ip_var.h)"); 196 197 #ifdef VIMAGE 198 VNET_PCPUSTAT_SYSUNINIT(ipstat); 199 #endif /* VIMAGE */ 200 201 /* 202 * Kernel module interface for updating ipstat. The argument is an index 203 * into ipstat treated as an array. 204 */ 205 void 206 kmod_ipstat_inc(int statnum) 207 { 208 209 counter_u64_add(VNET(ipstat)[statnum], 1); 210 } 211 212 void 213 kmod_ipstat_dec(int statnum) 214 { 215 216 counter_u64_add(VNET(ipstat)[statnum], -1); 217 } 218 219 static int 220 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 221 { 222 int error, qlimit; 223 224 netisr_getqlimit(&ip_nh, &qlimit); 225 error = sysctl_handle_int(oidp, &qlimit, 0, req); 226 if (error || !req->newptr) 227 return (error); 228 if (qlimit < 1) 229 return (EINVAL); 230 return (netisr_setqlimit(&ip_nh, qlimit)); 231 } 232 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 233 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", 234 "Maximum size of the IP input queue"); 235 236 static int 237 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 238 { 239 u_int64_t qdrops_long; 240 int error, qdrops; 241 242 netisr_getqdrops(&ip_nh, &qdrops_long); 243 qdrops = qdrops_long; 244 error = sysctl_handle_int(oidp, &qdrops, 0, req); 245 if (error || !req->newptr) 246 return (error); 247 if (qdrops != 0) 248 return (EINVAL); 249 netisr_clearqdrops(&ip_nh); 250 return (0); 251 } 252 253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 254 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I", 255 "Number of packets dropped from the IP input queue"); 256 257 #ifdef RSS 258 static int 259 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 260 { 261 int error, qlimit; 262 263 netisr_getqlimit(&ip_direct_nh, &qlimit); 264 error = sysctl_handle_int(oidp, &qlimit, 0, req); 265 if (error || !req->newptr) 266 return (error); 267 if (qlimit < 1) 268 return (EINVAL); 269 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 270 } 271 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 272 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 273 "I", "Maximum size of the IP direct input queue"); 274 275 static int 276 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 277 { 278 u_int64_t qdrops_long; 279 int error, qdrops; 280 281 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 282 qdrops = qdrops_long; 283 error = sysctl_handle_int(oidp, &qdrops, 0, req); 284 if (error || !req->newptr) 285 return (error); 286 if (qdrops != 0) 287 return (EINVAL); 288 netisr_clearqdrops(&ip_direct_nh); 289 return (0); 290 } 291 292 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 293 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", 294 "Number of packets dropped from the IP direct input queue"); 295 #endif /* RSS */ 296 297 /* 298 * IP initialization: fill in IP protocol switch table. 299 * All protocols not implemented in kernel go to raw IP protocol handler. 300 */ 301 void 302 ip_init(void) 303 { 304 struct protosw *pr; 305 int i; 306 307 CK_STAILQ_INIT(&V_in_ifaddrhead); 308 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 309 310 /* Initialize IP reassembly queue. */ 311 ipreass_init(); 312 313 /* Initialize packet filter hooks. */ 314 V_inet_pfil_hook.ph_type = PFIL_TYPE_AF; 315 V_inet_pfil_hook.ph_af = AF_INET; 316 if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0) 317 printf("%s: WARNING: unable to register pfil hook, " 318 "error %d\n", __func__, i); 319 320 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 321 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 322 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 323 printf("%s: WARNING: unable to register input helper hook\n", 324 __func__); 325 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 326 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 327 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 328 printf("%s: WARNING: unable to register output helper hook\n", 329 __func__); 330 331 /* Skip initialization of globals for non-default instances. */ 332 #ifdef VIMAGE 333 if (!IS_DEFAULT_VNET(curvnet)) { 334 netisr_register_vnet(&ip_nh); 335 #ifdef RSS 336 netisr_register_vnet(&ip_direct_nh); 337 #endif 338 return; 339 } 340 #endif 341 342 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 343 if (pr == NULL) 344 panic("ip_init: PF_INET not found"); 345 346 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 347 for (i = 0; i < IPPROTO_MAX; i++) 348 ip_protox[i] = pr - inetsw; 349 /* 350 * Cycle through IP protocols and put them into the appropriate place 351 * in ip_protox[]. 352 */ 353 for (pr = inetdomain.dom_protosw; 354 pr < inetdomain.dom_protoswNPROTOSW; pr++) 355 if (pr->pr_domain->dom_family == PF_INET && 356 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 357 /* Be careful to only index valid IP protocols. */ 358 if (pr->pr_protocol < IPPROTO_MAX) 359 ip_protox[pr->pr_protocol] = pr - inetsw; 360 } 361 362 netisr_register(&ip_nh); 363 #ifdef RSS 364 netisr_register(&ip_direct_nh); 365 #endif 366 } 367 368 #ifdef VIMAGE 369 static void 370 ip_destroy(void *unused __unused) 371 { 372 struct ifnet *ifp; 373 int error; 374 375 #ifdef RSS 376 netisr_unregister_vnet(&ip_direct_nh); 377 #endif 378 netisr_unregister_vnet(&ip_nh); 379 380 if ((error = pfil_head_unregister(&V_inet_pfil_hook)) != 0) 381 printf("%s: WARNING: unable to unregister pfil hook, " 382 "error %d\n", __func__, error); 383 384 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 385 if (error != 0) { 386 printf("%s: WARNING: unable to deregister input helper hook " 387 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 388 "error %d returned\n", __func__, error); 389 } 390 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 391 if (error != 0) { 392 printf("%s: WARNING: unable to deregister output helper hook " 393 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 394 "error %d returned\n", __func__, error); 395 } 396 397 /* Remove the IPv4 addresses from all interfaces. */ 398 in_ifscrub_all(); 399 400 /* Make sure the IPv4 routes are gone as well. */ 401 IFNET_RLOCK(); 402 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 403 rt_flushifroutes_af(ifp, AF_INET); 404 IFNET_RUNLOCK(); 405 406 /* Destroy IP reassembly queue. */ 407 ipreass_destroy(); 408 409 /* Cleanup in_ifaddr hash table; should be empty. */ 410 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 411 } 412 413 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 414 #endif 415 416 #ifdef RSS 417 /* 418 * IP direct input routine. 419 * 420 * This is called when reinjecting completed fragments where 421 * all of the previous checking and book-keeping has been done. 422 */ 423 void 424 ip_direct_input(struct mbuf *m) 425 { 426 struct ip *ip; 427 int hlen; 428 429 ip = mtod(m, struct ip *); 430 hlen = ip->ip_hl << 2; 431 432 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 433 if (IPSEC_ENABLED(ipv4)) { 434 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 435 return; 436 } 437 #endif /* IPSEC */ 438 IPSTAT_INC(ips_delivered); 439 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 440 return; 441 } 442 #endif 443 444 /* 445 * Ip input routine. Checksum and byte swap header. If fragmented 446 * try to reassemble. Process options. Pass to next level. 447 */ 448 void 449 ip_input(struct mbuf *m) 450 { 451 struct ip *ip = NULL; 452 struct in_ifaddr *ia = NULL; 453 struct ifaddr *ifa; 454 struct ifnet *ifp; 455 int checkif, hlen = 0; 456 uint16_t sum, ip_len; 457 int dchg = 0; /* dest changed after fw */ 458 struct in_addr odst; /* original dst address */ 459 460 M_ASSERTPKTHDR(m); 461 462 if (m->m_flags & M_FASTFWD_OURS) { 463 m->m_flags &= ~M_FASTFWD_OURS; 464 /* Set up some basics that will be used later. */ 465 ip = mtod(m, struct ip *); 466 hlen = ip->ip_hl << 2; 467 ip_len = ntohs(ip->ip_len); 468 goto ours; 469 } 470 471 IPSTAT_INC(ips_total); 472 473 if (m->m_pkthdr.len < sizeof(struct ip)) 474 goto tooshort; 475 476 if (m->m_len < sizeof (struct ip) && 477 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 478 IPSTAT_INC(ips_toosmall); 479 return; 480 } 481 ip = mtod(m, struct ip *); 482 483 if (ip->ip_v != IPVERSION) { 484 IPSTAT_INC(ips_badvers); 485 goto bad; 486 } 487 488 hlen = ip->ip_hl << 2; 489 if (hlen < sizeof(struct ip)) { /* minimum header length */ 490 IPSTAT_INC(ips_badhlen); 491 goto bad; 492 } 493 if (hlen > m->m_len) { 494 if ((m = m_pullup(m, hlen)) == NULL) { 495 IPSTAT_INC(ips_badhlen); 496 return; 497 } 498 ip = mtod(m, struct ip *); 499 } 500 501 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 502 503 /* 127/8 must not appear on wire - RFC1122 */ 504 ifp = m->m_pkthdr.rcvif; 505 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 506 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 507 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 508 IPSTAT_INC(ips_badaddr); 509 goto bad; 510 } 511 } 512 513 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 514 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 515 } else { 516 if (hlen == sizeof(struct ip)) { 517 sum = in_cksum_hdr(ip); 518 } else { 519 sum = in_cksum(m, hlen); 520 } 521 } 522 if (sum) { 523 IPSTAT_INC(ips_badsum); 524 goto bad; 525 } 526 527 #ifdef ALTQ 528 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 529 /* packet is dropped by traffic conditioner */ 530 return; 531 #endif 532 533 ip_len = ntohs(ip->ip_len); 534 if (ip_len < hlen) { 535 IPSTAT_INC(ips_badlen); 536 goto bad; 537 } 538 539 /* 540 * Check that the amount of data in the buffers 541 * is as at least much as the IP header would have us expect. 542 * Trim mbufs if longer than we expect. 543 * Drop packet if shorter than we expect. 544 */ 545 if (m->m_pkthdr.len < ip_len) { 546 tooshort: 547 IPSTAT_INC(ips_tooshort); 548 goto bad; 549 } 550 if (m->m_pkthdr.len > ip_len) { 551 if (m->m_len == m->m_pkthdr.len) { 552 m->m_len = ip_len; 553 m->m_pkthdr.len = ip_len; 554 } else 555 m_adj(m, ip_len - m->m_pkthdr.len); 556 } 557 558 /* 559 * Try to forward the packet, but if we fail continue. 560 * ip_tryforward() does inbound and outbound packet firewall 561 * processing. If firewall has decided that destination becomes 562 * our local address, it sets M_FASTFWD_OURS flag. In this 563 * case skip another inbound firewall processing and update 564 * ip pointer. 565 */ 566 if (V_ipforwarding != 0 567 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 568 && (!IPSEC_ENABLED(ipv4) || 569 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 570 #endif 571 ) { 572 if ((m = ip_tryforward(m)) == NULL) 573 return; 574 if (m->m_flags & M_FASTFWD_OURS) { 575 m->m_flags &= ~M_FASTFWD_OURS; 576 ip = mtod(m, struct ip *); 577 goto ours; 578 } 579 } 580 581 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 582 /* 583 * Bypass packet filtering for packets previously handled by IPsec. 584 */ 585 if (IPSEC_ENABLED(ipv4) && 586 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 587 goto passin; 588 #endif 589 590 /* 591 * Run through list of hooks for input packets. 592 * 593 * NB: Beware of the destination address changing (e.g. 594 * by NAT rewriting). When this happens, tell 595 * ip_forward to do the right thing. 596 */ 597 598 /* Jump over all PFIL processing if hooks are not active. */ 599 if (!PFIL_HOOKED(&V_inet_pfil_hook)) 600 goto passin; 601 602 odst = ip->ip_dst; 603 if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, 0, NULL) != 0) 604 return; 605 if (m == NULL) /* consumed by filter */ 606 return; 607 608 ip = mtod(m, struct ip *); 609 dchg = (odst.s_addr != ip->ip_dst.s_addr); 610 ifp = m->m_pkthdr.rcvif; 611 612 if (m->m_flags & M_FASTFWD_OURS) { 613 m->m_flags &= ~M_FASTFWD_OURS; 614 goto ours; 615 } 616 if (m->m_flags & M_IP_NEXTHOP) { 617 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 618 /* 619 * Directly ship the packet on. This allows 620 * forwarding packets originally destined to us 621 * to some other directly connected host. 622 */ 623 ip_forward(m, 1); 624 return; 625 } 626 } 627 passin: 628 629 /* 630 * Process options and, if not destined for us, 631 * ship it on. ip_dooptions returns 1 when an 632 * error was detected (causing an icmp message 633 * to be sent and the original packet to be freed). 634 */ 635 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 636 return; 637 638 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 639 * matter if it is destined to another node, or whether it is 640 * a multicast one, RSVP wants it! and prevents it from being forwarded 641 * anywhere else. Also checks if the rsvp daemon is running before 642 * grabbing the packet. 643 */ 644 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 645 goto ours; 646 647 /* 648 * Check our list of addresses, to see if the packet is for us. 649 * If we don't have any addresses, assume any unicast packet 650 * we receive might be for us (and let the upper layers deal 651 * with it). 652 */ 653 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 654 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 655 goto ours; 656 657 /* 658 * Enable a consistency check between the destination address 659 * and the arrival interface for a unicast packet (the RFC 1122 660 * strong ES model) if IP forwarding is disabled and the packet 661 * is not locally generated and the packet is not subject to 662 * 'ipfw fwd'. 663 * 664 * XXX - Checking also should be disabled if the destination 665 * address is ipnat'ed to a different interface. 666 * 667 * XXX - Checking is incompatible with IP aliases added 668 * to the loopback interface instead of the interface where 669 * the packets are received. 670 * 671 * XXX - This is the case for carp vhost IPs as well so we 672 * insert a workaround. If the packet got here, we already 673 * checked with carp_iamatch() and carp_forus(). 674 */ 675 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 676 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 677 ifp->if_carp == NULL && (dchg == 0); 678 679 /* 680 * Check for exact addresses in the hash bucket. 681 */ 682 /* IN_IFADDR_RLOCK(); */ 683 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 684 /* 685 * If the address matches, verify that the packet 686 * arrived via the correct interface if checking is 687 * enabled. 688 */ 689 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 690 (!checkif || ia->ia_ifp == ifp)) { 691 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 692 counter_u64_add(ia->ia_ifa.ifa_ibytes, 693 m->m_pkthdr.len); 694 /* IN_IFADDR_RUNLOCK(); */ 695 goto ours; 696 } 697 } 698 /* IN_IFADDR_RUNLOCK(); */ 699 700 /* 701 * Check for broadcast addresses. 702 * 703 * Only accept broadcast packets that arrive via the matching 704 * interface. Reception of forwarded directed broadcasts would 705 * be handled via ip_forward() and ether_output() with the loopback 706 * into the stack for SIMPLEX interfaces handled by ether_output(). 707 */ 708 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 709 IF_ADDR_RLOCK(ifp); 710 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 711 if (ifa->ifa_addr->sa_family != AF_INET) 712 continue; 713 ia = ifatoia(ifa); 714 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 715 ip->ip_dst.s_addr) { 716 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 717 counter_u64_add(ia->ia_ifa.ifa_ibytes, 718 m->m_pkthdr.len); 719 IF_ADDR_RUNLOCK(ifp); 720 goto ours; 721 } 722 #ifdef BOOTP_COMPAT 723 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 724 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 725 counter_u64_add(ia->ia_ifa.ifa_ibytes, 726 m->m_pkthdr.len); 727 IF_ADDR_RUNLOCK(ifp); 728 goto ours; 729 } 730 #endif 731 } 732 IF_ADDR_RUNLOCK(ifp); 733 ia = NULL; 734 } 735 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 736 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 737 IPSTAT_INC(ips_cantforward); 738 m_freem(m); 739 return; 740 } 741 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 742 if (V_ip_mrouter) { 743 /* 744 * If we are acting as a multicast router, all 745 * incoming multicast packets are passed to the 746 * kernel-level multicast forwarding function. 747 * The packet is returned (relatively) intact; if 748 * ip_mforward() returns a non-zero value, the packet 749 * must be discarded, else it may be accepted below. 750 */ 751 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 752 IPSTAT_INC(ips_cantforward); 753 m_freem(m); 754 return; 755 } 756 757 /* 758 * The process-level routing daemon needs to receive 759 * all multicast IGMP packets, whether or not this 760 * host belongs to their destination groups. 761 */ 762 if (ip->ip_p == IPPROTO_IGMP) 763 goto ours; 764 IPSTAT_INC(ips_forward); 765 } 766 /* 767 * Assume the packet is for us, to avoid prematurely taking 768 * a lock on the in_multi hash. Protocols must perform 769 * their own filtering and update statistics accordingly. 770 */ 771 goto ours; 772 } 773 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 774 goto ours; 775 if (ip->ip_dst.s_addr == INADDR_ANY) 776 goto ours; 777 778 /* 779 * Not for us; forward if possible and desirable. 780 */ 781 if (V_ipforwarding == 0) { 782 IPSTAT_INC(ips_cantforward); 783 m_freem(m); 784 } else { 785 ip_forward(m, dchg); 786 } 787 return; 788 789 ours: 790 #ifdef IPSTEALTH 791 /* 792 * IPSTEALTH: Process non-routing options only 793 * if the packet is destined for us. 794 */ 795 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 796 return; 797 #endif /* IPSTEALTH */ 798 799 /* 800 * Attempt reassembly; if it succeeds, proceed. 801 * ip_reass() will return a different mbuf. 802 */ 803 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 804 /* XXXGL: shouldn't we save & set m_flags? */ 805 m = ip_reass(m); 806 if (m == NULL) 807 return; 808 ip = mtod(m, struct ip *); 809 /* Get the header length of the reassembled packet */ 810 hlen = ip->ip_hl << 2; 811 } 812 813 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 814 if (IPSEC_ENABLED(ipv4)) { 815 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 816 return; 817 } 818 #endif /* IPSEC */ 819 820 /* 821 * Switch out to protocol's input routine. 822 */ 823 IPSTAT_INC(ips_delivered); 824 825 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 826 return; 827 bad: 828 m_freem(m); 829 } 830 831 /* 832 * IP timer processing; 833 * if a timer expires on a reassembly 834 * queue, discard it. 835 */ 836 void 837 ip_slowtimo(void) 838 { 839 VNET_ITERATOR_DECL(vnet_iter); 840 841 VNET_LIST_RLOCK_NOSLEEP(); 842 VNET_FOREACH(vnet_iter) { 843 CURVNET_SET(vnet_iter); 844 ipreass_slowtimo(); 845 CURVNET_RESTORE(); 846 } 847 VNET_LIST_RUNLOCK_NOSLEEP(); 848 } 849 850 void 851 ip_drain(void) 852 { 853 VNET_ITERATOR_DECL(vnet_iter); 854 855 VNET_LIST_RLOCK_NOSLEEP(); 856 VNET_FOREACH(vnet_iter) { 857 CURVNET_SET(vnet_iter); 858 ipreass_drain(); 859 CURVNET_RESTORE(); 860 } 861 VNET_LIST_RUNLOCK_NOSLEEP(); 862 } 863 864 /* 865 * The protocol to be inserted into ip_protox[] must be already registered 866 * in inetsw[], either statically or through pf_proto_register(). 867 */ 868 int 869 ipproto_register(short ipproto) 870 { 871 struct protosw *pr; 872 873 /* Sanity checks. */ 874 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 875 return (EPROTONOSUPPORT); 876 877 /* 878 * The protocol slot must not be occupied by another protocol 879 * already. An index pointing to IPPROTO_RAW is unused. 880 */ 881 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 882 if (pr == NULL) 883 return (EPFNOSUPPORT); 884 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 885 return (EEXIST); 886 887 /* Find the protocol position in inetsw[] and set the index. */ 888 for (pr = inetdomain.dom_protosw; 889 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 890 if (pr->pr_domain->dom_family == PF_INET && 891 pr->pr_protocol && pr->pr_protocol == ipproto) { 892 ip_protox[pr->pr_protocol] = pr - inetsw; 893 return (0); 894 } 895 } 896 return (EPROTONOSUPPORT); 897 } 898 899 int 900 ipproto_unregister(short ipproto) 901 { 902 struct protosw *pr; 903 904 /* Sanity checks. */ 905 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 906 return (EPROTONOSUPPORT); 907 908 /* Check if the protocol was indeed registered. */ 909 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 910 if (pr == NULL) 911 return (EPFNOSUPPORT); 912 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 913 return (ENOENT); 914 915 /* Reset the protocol slot to IPPROTO_RAW. */ 916 ip_protox[ipproto] = pr - inetsw; 917 return (0); 918 } 919 920 u_char inetctlerrmap[PRC_NCMDS] = { 921 0, 0, 0, 0, 922 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 923 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 924 EMSGSIZE, EHOSTUNREACH, 0, 0, 925 0, 0, EHOSTUNREACH, 0, 926 ENOPROTOOPT, ECONNREFUSED 927 }; 928 929 /* 930 * Forward a packet. If some error occurs return the sender 931 * an icmp packet. Note we can't always generate a meaningful 932 * icmp message because icmp doesn't have a large enough repertoire 933 * of codes and types. 934 * 935 * If not forwarding, just drop the packet. This could be confusing 936 * if ipforwarding was zero but some routing protocol was advancing 937 * us as a gateway to somewhere. However, we must let the routing 938 * protocol deal with that. 939 * 940 * The srcrt parameter indicates whether the packet is being forwarded 941 * via a source route. 942 */ 943 void 944 ip_forward(struct mbuf *m, int srcrt) 945 { 946 struct ip *ip = mtod(m, struct ip *); 947 struct in_ifaddr *ia; 948 struct mbuf *mcopy; 949 struct sockaddr_in *sin; 950 struct in_addr dest; 951 struct route ro; 952 int error, type = 0, code = 0, mtu = 0; 953 954 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 955 IPSTAT_INC(ips_cantforward); 956 m_freem(m); 957 return; 958 } 959 if ( 960 #ifdef IPSTEALTH 961 V_ipstealth == 0 && 962 #endif 963 ip->ip_ttl <= IPTTLDEC) { 964 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 965 return; 966 } 967 968 bzero(&ro, sizeof(ro)); 969 sin = (struct sockaddr_in *)&ro.ro_dst; 970 sin->sin_family = AF_INET; 971 sin->sin_len = sizeof(*sin); 972 sin->sin_addr = ip->ip_dst; 973 #ifdef RADIX_MPATH 974 rtalloc_mpath_fib(&ro, 975 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 976 M_GETFIB(m)); 977 #else 978 in_rtalloc_ign(&ro, 0, M_GETFIB(m)); 979 #endif 980 NET_EPOCH_ENTER(); 981 if (ro.ro_rt != NULL) { 982 ia = ifatoia(ro.ro_rt->rt_ifa); 983 } else 984 ia = NULL; 985 /* 986 * Save the IP header and at most 8 bytes of the payload, 987 * in case we need to generate an ICMP message to the src. 988 * 989 * XXX this can be optimized a lot by saving the data in a local 990 * buffer on the stack (72 bytes at most), and only allocating the 991 * mbuf if really necessary. The vast majority of the packets 992 * are forwarded without having to send an ICMP back (either 993 * because unnecessary, or because rate limited), so we are 994 * really we are wasting a lot of work here. 995 * 996 * We don't use m_copym() because it might return a reference 997 * to a shared cluster. Both this function and ip_output() 998 * assume exclusive access to the IP header in `m', so any 999 * data in a cluster may change before we reach icmp_error(). 1000 */ 1001 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1002 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1003 /* 1004 * It's probably ok if the pkthdr dup fails (because 1005 * the deep copy of the tag chain failed), but for now 1006 * be conservative and just discard the copy since 1007 * code below may some day want the tags. 1008 */ 1009 m_free(mcopy); 1010 mcopy = NULL; 1011 } 1012 if (mcopy != NULL) { 1013 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1014 mcopy->m_pkthdr.len = mcopy->m_len; 1015 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1016 } 1017 #ifdef IPSTEALTH 1018 if (V_ipstealth == 0) 1019 #endif 1020 ip->ip_ttl -= IPTTLDEC; 1021 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1022 if (IPSEC_ENABLED(ipv4)) { 1023 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1024 /* mbuf consumed by IPsec */ 1025 m_freem(mcopy); 1026 if (error != EINPROGRESS) 1027 IPSTAT_INC(ips_cantforward); 1028 goto out; 1029 } 1030 /* No IPsec processing required */ 1031 } 1032 #endif /* IPSEC */ 1033 /* 1034 * If forwarding packet using same interface that it came in on, 1035 * perhaps should send a redirect to sender to shortcut a hop. 1036 * Only send redirect if source is sending directly to us, 1037 * and if packet was not source routed (or has any options). 1038 * Also, don't send redirect if forwarding using a default route 1039 * or a route modified by a redirect. 1040 */ 1041 dest.s_addr = 0; 1042 if (!srcrt && V_ipsendredirects && 1043 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1044 struct rtentry *rt; 1045 1046 rt = ro.ro_rt; 1047 1048 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1049 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1050 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1051 u_long src = ntohl(ip->ip_src.s_addr); 1052 1053 if (RTA(rt) && 1054 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1055 if (rt->rt_flags & RTF_GATEWAY) 1056 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1057 else 1058 dest.s_addr = ip->ip_dst.s_addr; 1059 /* Router requirements says to only send host redirects */ 1060 type = ICMP_REDIRECT; 1061 code = ICMP_REDIRECT_HOST; 1062 } 1063 } 1064 } 1065 1066 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1067 1068 if (error == EMSGSIZE && ro.ro_rt) 1069 mtu = ro.ro_rt->rt_mtu; 1070 RO_RTFREE(&ro); 1071 1072 if (error) 1073 IPSTAT_INC(ips_cantforward); 1074 else { 1075 IPSTAT_INC(ips_forward); 1076 if (type) 1077 IPSTAT_INC(ips_redirectsent); 1078 else { 1079 if (mcopy) 1080 m_freem(mcopy); 1081 goto out; 1082 } 1083 } 1084 if (mcopy == NULL) 1085 goto out; 1086 1087 1088 switch (error) { 1089 1090 case 0: /* forwarded, but need redirect */ 1091 /* type, code set above */ 1092 break; 1093 1094 case ENETUNREACH: 1095 case EHOSTUNREACH: 1096 case ENETDOWN: 1097 case EHOSTDOWN: 1098 default: 1099 type = ICMP_UNREACH; 1100 code = ICMP_UNREACH_HOST; 1101 break; 1102 1103 case EMSGSIZE: 1104 type = ICMP_UNREACH; 1105 code = ICMP_UNREACH_NEEDFRAG; 1106 /* 1107 * If the MTU was set before make sure we are below the 1108 * interface MTU. 1109 * If the MTU wasn't set before use the interface mtu or 1110 * fall back to the next smaller mtu step compared to the 1111 * current packet size. 1112 */ 1113 if (mtu != 0) { 1114 if (ia != NULL) 1115 mtu = min(mtu, ia->ia_ifp->if_mtu); 1116 } else { 1117 if (ia != NULL) 1118 mtu = ia->ia_ifp->if_mtu; 1119 else 1120 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1121 } 1122 IPSTAT_INC(ips_cantfrag); 1123 break; 1124 1125 case ENOBUFS: 1126 case EACCES: /* ipfw denied packet */ 1127 m_freem(mcopy); 1128 goto out; 1129 } 1130 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1131 out: 1132 NET_EPOCH_EXIT(); 1133 } 1134 1135 #define CHECK_SO_CT(sp, ct) \ 1136 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1137 1138 void 1139 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1140 struct mbuf *m) 1141 { 1142 bool stamped; 1143 1144 stamped = false; 1145 if ((inp->inp_socket->so_options & SO_BINTIME) || 1146 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1147 struct bintime boottimebin, bt; 1148 struct timespec ts1; 1149 1150 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1151 M_TSTMP)) { 1152 mbuf_tstmp2timespec(m, &ts1); 1153 timespec2bintime(&ts1, &bt); 1154 getboottimebin(&boottimebin); 1155 bintime_add(&bt, &boottimebin); 1156 } else { 1157 bintime(&bt); 1158 } 1159 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1160 SCM_BINTIME, SOL_SOCKET); 1161 if (*mp != NULL) { 1162 mp = &(*mp)->m_next; 1163 stamped = true; 1164 } 1165 } 1166 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1167 struct bintime boottimebin, bt1; 1168 struct timespec ts1;; 1169 struct timeval tv; 1170 1171 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1172 M_TSTMP)) { 1173 mbuf_tstmp2timespec(m, &ts1); 1174 timespec2bintime(&ts1, &bt1); 1175 getboottimebin(&boottimebin); 1176 bintime_add(&bt1, &boottimebin); 1177 bintime2timeval(&bt1, &tv); 1178 } else { 1179 microtime(&tv); 1180 } 1181 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1182 SCM_TIMESTAMP, SOL_SOCKET); 1183 if (*mp != NULL) { 1184 mp = &(*mp)->m_next; 1185 stamped = true; 1186 } 1187 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1188 struct bintime boottimebin; 1189 struct timespec ts, ts1; 1190 1191 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1192 M_TSTMP)) { 1193 mbuf_tstmp2timespec(m, &ts); 1194 getboottimebin(&boottimebin); 1195 bintime2timespec(&boottimebin, &ts1); 1196 timespecadd(&ts, &ts1); 1197 } else { 1198 nanotime(&ts); 1199 } 1200 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1201 SCM_REALTIME, SOL_SOCKET); 1202 if (*mp != NULL) { 1203 mp = &(*mp)->m_next; 1204 stamped = true; 1205 } 1206 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1207 struct timespec ts; 1208 1209 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1210 M_TSTMP)) 1211 mbuf_tstmp2timespec(m, &ts); 1212 else 1213 nanouptime(&ts); 1214 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1215 SCM_MONOTONIC, SOL_SOCKET); 1216 if (*mp != NULL) { 1217 mp = &(*mp)->m_next; 1218 stamped = true; 1219 } 1220 } 1221 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1222 M_TSTMP)) { 1223 struct sock_timestamp_info sti; 1224 1225 bzero(&sti, sizeof(sti)); 1226 sti.st_info_flags = ST_INFO_HW; 1227 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1228 sti.st_info_flags |= ST_INFO_HW_HPREC; 1229 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1230 SOL_SOCKET); 1231 if (*mp != NULL) 1232 mp = &(*mp)->m_next; 1233 } 1234 if (inp->inp_flags & INP_RECVDSTADDR) { 1235 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1236 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1237 if (*mp) 1238 mp = &(*mp)->m_next; 1239 } 1240 if (inp->inp_flags & INP_RECVTTL) { 1241 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1242 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1243 if (*mp) 1244 mp = &(*mp)->m_next; 1245 } 1246 #ifdef notyet 1247 /* XXX 1248 * Moving these out of udp_input() made them even more broken 1249 * than they already were. 1250 */ 1251 /* options were tossed already */ 1252 if (inp->inp_flags & INP_RECVOPTS) { 1253 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1254 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1255 if (*mp) 1256 mp = &(*mp)->m_next; 1257 } 1258 /* ip_srcroute doesn't do what we want here, need to fix */ 1259 if (inp->inp_flags & INP_RECVRETOPTS) { 1260 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1261 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1262 if (*mp) 1263 mp = &(*mp)->m_next; 1264 } 1265 #endif 1266 if (inp->inp_flags & INP_RECVIF) { 1267 struct ifnet *ifp; 1268 struct sdlbuf { 1269 struct sockaddr_dl sdl; 1270 u_char pad[32]; 1271 } sdlbuf; 1272 struct sockaddr_dl *sdp; 1273 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1274 1275 if ((ifp = m->m_pkthdr.rcvif) && 1276 ifp->if_index && ifp->if_index <= V_if_index) { 1277 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1278 /* 1279 * Change our mind and don't try copy. 1280 */ 1281 if (sdp->sdl_family != AF_LINK || 1282 sdp->sdl_len > sizeof(sdlbuf)) { 1283 goto makedummy; 1284 } 1285 bcopy(sdp, sdl2, sdp->sdl_len); 1286 } else { 1287 makedummy: 1288 sdl2->sdl_len = 1289 offsetof(struct sockaddr_dl, sdl_data[0]); 1290 sdl2->sdl_family = AF_LINK; 1291 sdl2->sdl_index = 0; 1292 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1293 } 1294 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1295 IP_RECVIF, IPPROTO_IP); 1296 if (*mp) 1297 mp = &(*mp)->m_next; 1298 } 1299 if (inp->inp_flags & INP_RECVTOS) { 1300 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1301 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1302 if (*mp) 1303 mp = &(*mp)->m_next; 1304 } 1305 1306 if (inp->inp_flags2 & INP_RECVFLOWID) { 1307 uint32_t flowid, flow_type; 1308 1309 flowid = m->m_pkthdr.flowid; 1310 flow_type = M_HASHTYPE_GET(m); 1311 1312 /* 1313 * XXX should handle the failure of one or the 1314 * other - don't populate both? 1315 */ 1316 *mp = sbcreatecontrol((caddr_t) &flowid, 1317 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1318 if (*mp) 1319 mp = &(*mp)->m_next; 1320 *mp = sbcreatecontrol((caddr_t) &flow_type, 1321 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1322 if (*mp) 1323 mp = &(*mp)->m_next; 1324 } 1325 1326 #ifdef RSS 1327 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1328 uint32_t flowid, flow_type; 1329 uint32_t rss_bucketid; 1330 1331 flowid = m->m_pkthdr.flowid; 1332 flow_type = M_HASHTYPE_GET(m); 1333 1334 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1335 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1336 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1337 if (*mp) 1338 mp = &(*mp)->m_next; 1339 } 1340 } 1341 #endif 1342 } 1343 1344 /* 1345 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1346 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1347 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1348 * compiled. 1349 */ 1350 static VNET_DEFINE(int, ip_rsvp_on); 1351 VNET_DEFINE(struct socket *, ip_rsvpd); 1352 1353 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1354 1355 int 1356 ip_rsvp_init(struct socket *so) 1357 { 1358 1359 if (so->so_type != SOCK_RAW || 1360 so->so_proto->pr_protocol != IPPROTO_RSVP) 1361 return EOPNOTSUPP; 1362 1363 if (V_ip_rsvpd != NULL) 1364 return EADDRINUSE; 1365 1366 V_ip_rsvpd = so; 1367 /* 1368 * This may seem silly, but we need to be sure we don't over-increment 1369 * the RSVP counter, in case something slips up. 1370 */ 1371 if (!V_ip_rsvp_on) { 1372 V_ip_rsvp_on = 1; 1373 V_rsvp_on++; 1374 } 1375 1376 return 0; 1377 } 1378 1379 int 1380 ip_rsvp_done(void) 1381 { 1382 1383 V_ip_rsvpd = NULL; 1384 /* 1385 * This may seem silly, but we need to be sure we don't over-decrement 1386 * the RSVP counter, in case something slips up. 1387 */ 1388 if (V_ip_rsvp_on) { 1389 V_ip_rsvp_on = 0; 1390 V_rsvp_on--; 1391 } 1392 return 0; 1393 } 1394 1395 int 1396 rsvp_input(struct mbuf **mp, int *offp, int proto) 1397 { 1398 struct mbuf *m; 1399 1400 m = *mp; 1401 *mp = NULL; 1402 1403 if (rsvp_input_p) { /* call the real one if loaded */ 1404 *mp = m; 1405 rsvp_input_p(mp, offp, proto); 1406 return (IPPROTO_DONE); 1407 } 1408 1409 /* Can still get packets with rsvp_on = 0 if there is a local member 1410 * of the group to which the RSVP packet is addressed. But in this 1411 * case we want to throw the packet away. 1412 */ 1413 1414 if (!V_rsvp_on) { 1415 m_freem(m); 1416 return (IPPROTO_DONE); 1417 } 1418 1419 if (V_ip_rsvpd != NULL) { 1420 *mp = m; 1421 rip_input(mp, offp, proto); 1422 return (IPPROTO_DONE); 1423 } 1424 /* Drop the packet */ 1425 m_freem(m); 1426 return (IPPROTO_DONE); 1427 } 1428