xref: /freebsd/sys/netinet/ip_input.c (revision dda5b39711dab90ae1c5624bdd6ff7453177df31)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/time.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/sdt.h>
53 #include <sys/syslog.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/pfil.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/route.h>
62 #include <net/netisr.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_kdtrace.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_options.h>
75 #include <machine/in_cksum.h>
76 #include <netinet/ip_carp.h>
77 #ifdef IPSEC
78 #include <netinet/ip_ipsec.h>
79 #endif /* IPSEC */
80 
81 #include <sys/socketvar.h>
82 
83 #include <security/mac/mac_framework.h>
84 
85 #ifdef CTASSERT
86 CTASSERT(sizeof(struct ip) == 20);
87 #endif
88 
89 struct	rwlock in_ifaddr_lock;
90 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
91 
92 VNET_DEFINE(int, rsvp_on);
93 
94 VNET_DEFINE(int, ipforwarding);
95 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
96     &VNET_NAME(ipforwarding), 0,
97     "Enable IP forwarding between interfaces");
98 
99 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
100 #define	V_ipsendredirects	VNET(ipsendredirects)
101 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102     &VNET_NAME(ipsendredirects), 0,
103     "Enable sending IP redirects");
104 
105 static VNET_DEFINE(int, ip_keepfaith);
106 #define	V_ip_keepfaith		VNET(ip_keepfaith)
107 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
108     &VNET_NAME(ip_keepfaith), 0,
109     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
110 
111 static VNET_DEFINE(int, ip_sendsourcequench);
112 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
113 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
114     &VNET_NAME(ip_sendsourcequench), 0,
115     "Enable the transmission of source quench packets");
116 
117 VNET_DEFINE(int, ip_do_randomid);
118 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
119     &VNET_NAME(ip_do_randomid), 0,
120     "Assign random ip_id values");
121 
122 /*
123  * XXX - Setting ip_checkinterface mostly implements the receive side of
124  * the Strong ES model described in RFC 1122, but since the routing table
125  * and transmit implementation do not implement the Strong ES model,
126  * setting this to 1 results in an odd hybrid.
127  *
128  * XXX - ip_checkinterface currently must be disabled if you use ipnat
129  * to translate the destination address to another local interface.
130  *
131  * XXX - ip_checkinterface must be disabled if you add IP aliases
132  * to the loopback interface instead of the interface where the
133  * packets for those addresses are received.
134  */
135 static VNET_DEFINE(int, ip_checkinterface);
136 #define	V_ip_checkinterface	VNET(ip_checkinterface)
137 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
138     &VNET_NAME(ip_checkinterface), 0,
139     "Verify packet arrives on correct interface");
140 
141 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
142 
143 static struct netisr_handler ip_nh = {
144 	.nh_name = "ip",
145 	.nh_handler = ip_input,
146 	.nh_proto = NETISR_IP,
147 	.nh_policy = NETISR_POLICY_FLOW,
148 };
149 
150 extern	struct domain inetdomain;
151 extern	struct protosw inetsw[];
152 u_char	ip_protox[IPPROTO_MAX];
153 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
154 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
155 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
156 
157 static VNET_DEFINE(uma_zone_t, ipq_zone);
158 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
159 static struct mtx ipqlock;
160 
161 #define	V_ipq_zone		VNET(ipq_zone)
162 #define	V_ipq			VNET(ipq)
163 
164 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
165 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168 
169 static void	maxnipq_update(void);
170 static void	ipq_zone_change(void *);
171 static void	ip_drain_locked(void);
172 
173 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
174 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
175 #define	V_maxnipq		VNET(maxnipq)
176 #define	V_nipq			VNET(nipq)
177 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
178     &VNET_NAME(nipq), 0,
179     "Current number of IPv4 fragment reassembly queue entries");
180 
181 static VNET_DEFINE(int, maxfragsperpacket);
182 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
183 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
184     &VNET_NAME(maxfragsperpacket), 0,
185     "Maximum number of IPv4 fragments allowed per packet");
186 
187 #ifdef IPCTL_DEFMTU
188 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
189     &ip_mtu, 0, "Default MTU");
190 #endif
191 
192 #ifdef IPSTEALTH
193 VNET_DEFINE(int, ipstealth);
194 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
195     &VNET_NAME(ipstealth), 0,
196     "IP stealth mode, no TTL decrementation on forwarding");
197 #endif
198 
199 static void	ip_freef(struct ipqhead *, struct ipq *);
200 
201 /*
202  * IP statistics are stored in the "array" of counter(9)s.
203  */
204 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
205 VNET_PCPUSTAT_SYSINIT(ipstat);
206 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
207     "IP statistics (struct ipstat, netinet/ip_var.h)");
208 
209 #ifdef VIMAGE
210 VNET_PCPUSTAT_SYSUNINIT(ipstat);
211 #endif /* VIMAGE */
212 
213 /*
214  * Kernel module interface for updating ipstat.  The argument is an index
215  * into ipstat treated as an array.
216  */
217 void
218 kmod_ipstat_inc(int statnum)
219 {
220 
221 	counter_u64_add(VNET(ipstat)[statnum], 1);
222 }
223 
224 void
225 kmod_ipstat_dec(int statnum)
226 {
227 
228 	counter_u64_add(VNET(ipstat)[statnum], -1);
229 }
230 
231 static int
232 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
233 {
234 	int error, qlimit;
235 
236 	netisr_getqlimit(&ip_nh, &qlimit);
237 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
238 	if (error || !req->newptr)
239 		return (error);
240 	if (qlimit < 1)
241 		return (EINVAL);
242 	return (netisr_setqlimit(&ip_nh, qlimit));
243 }
244 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
245     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
246     "Maximum size of the IP input queue");
247 
248 static int
249 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
250 {
251 	u_int64_t qdrops_long;
252 	int error, qdrops;
253 
254 	netisr_getqdrops(&ip_nh, &qdrops_long);
255 	qdrops = qdrops_long;
256 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
257 	if (error || !req->newptr)
258 		return (error);
259 	if (qdrops != 0)
260 		return (EINVAL);
261 	netisr_clearqdrops(&ip_nh);
262 	return (0);
263 }
264 
265 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
266     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
267     "Number of packets dropped from the IP input queue");
268 
269 /*
270  * IP initialization: fill in IP protocol switch table.
271  * All protocols not implemented in kernel go to raw IP protocol handler.
272  */
273 void
274 ip_init(void)
275 {
276 	struct protosw *pr;
277 	int i;
278 
279 	V_ip_id = time_second & 0xffff;
280 
281 	TAILQ_INIT(&V_in_ifaddrhead);
282 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
283 
284 	/* Initialize IP reassembly queue. */
285 	for (i = 0; i < IPREASS_NHASH; i++)
286 		TAILQ_INIT(&V_ipq[i]);
287 	V_maxnipq = nmbclusters / 32;
288 	V_maxfragsperpacket = 16;
289 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
290 	    NULL, UMA_ALIGN_PTR, 0);
291 	maxnipq_update();
292 
293 	/* Initialize packet filter hooks. */
294 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
295 	V_inet_pfil_hook.ph_af = AF_INET;
296 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
297 		printf("%s: WARNING: unable to register pfil hook, "
298 			"error %d\n", __func__, i);
299 
300 	/* Skip initialization of globals for non-default instances. */
301 	if (!IS_DEFAULT_VNET(curvnet))
302 		return;
303 
304 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
305 	if (pr == NULL)
306 		panic("ip_init: PF_INET not found");
307 
308 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
309 	for (i = 0; i < IPPROTO_MAX; i++)
310 		ip_protox[i] = pr - inetsw;
311 	/*
312 	 * Cycle through IP protocols and put them into the appropriate place
313 	 * in ip_protox[].
314 	 */
315 	for (pr = inetdomain.dom_protosw;
316 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
317 		if (pr->pr_domain->dom_family == PF_INET &&
318 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
319 			/* Be careful to only index valid IP protocols. */
320 			if (pr->pr_protocol < IPPROTO_MAX)
321 				ip_protox[pr->pr_protocol] = pr - inetsw;
322 		}
323 
324 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
325 		NULL, EVENTHANDLER_PRI_ANY);
326 
327 	/* Initialize various other remaining things. */
328 	IPQ_LOCK_INIT();
329 	netisr_register(&ip_nh);
330 }
331 
332 #ifdef VIMAGE
333 void
334 ip_destroy(void)
335 {
336 	int i;
337 
338 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
339 		printf("%s: WARNING: unable to unregister pfil hook, "
340 		    "error %d\n", __func__, i);
341 
342 	/* Cleanup in_ifaddr hash table; should be empty. */
343 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
344 
345 	IPQ_LOCK();
346 	ip_drain_locked();
347 	IPQ_UNLOCK();
348 
349 	uma_zdestroy(V_ipq_zone);
350 }
351 #endif
352 
353 /*
354  * Ip input routine.  Checksum and byte swap header.  If fragmented
355  * try to reassemble.  Process options.  Pass to next level.
356  */
357 void
358 ip_input(struct mbuf *m)
359 {
360 	struct ip *ip = NULL;
361 	struct in_ifaddr *ia = NULL;
362 	struct ifaddr *ifa;
363 	struct ifnet *ifp;
364 	int    checkif, hlen = 0;
365 	uint16_t sum, ip_len;
366 	int dchg = 0;				/* dest changed after fw */
367 	struct in_addr odst;			/* original dst address */
368 
369 	M_ASSERTPKTHDR(m);
370 
371 	if (m->m_flags & M_FASTFWD_OURS) {
372 		m->m_flags &= ~M_FASTFWD_OURS;
373 		/* Set up some basics that will be used later. */
374 		ip = mtod(m, struct ip *);
375 		hlen = ip->ip_hl << 2;
376 		ip_len = ntohs(ip->ip_len);
377 		goto ours;
378 	}
379 
380 	IPSTAT_INC(ips_total);
381 
382 	if (m->m_pkthdr.len < sizeof(struct ip))
383 		goto tooshort;
384 
385 	if (m->m_len < sizeof (struct ip) &&
386 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
387 		IPSTAT_INC(ips_toosmall);
388 		return;
389 	}
390 	ip = mtod(m, struct ip *);
391 
392 	if (ip->ip_v != IPVERSION) {
393 		IPSTAT_INC(ips_badvers);
394 		goto bad;
395 	}
396 
397 	hlen = ip->ip_hl << 2;
398 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
399 		IPSTAT_INC(ips_badhlen);
400 		goto bad;
401 	}
402 	if (hlen > m->m_len) {
403 		if ((m = m_pullup(m, hlen)) == NULL) {
404 			IPSTAT_INC(ips_badhlen);
405 			return;
406 		}
407 		ip = mtod(m, struct ip *);
408 	}
409 
410 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
411 
412 	/* 127/8 must not appear on wire - RFC1122 */
413 	ifp = m->m_pkthdr.rcvif;
414 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
415 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
416 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
417 			IPSTAT_INC(ips_badaddr);
418 			goto bad;
419 		}
420 	}
421 
422 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
423 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
424 	} else {
425 		if (hlen == sizeof(struct ip)) {
426 			sum = in_cksum_hdr(ip);
427 		} else {
428 			sum = in_cksum(m, hlen);
429 		}
430 	}
431 	if (sum) {
432 		IPSTAT_INC(ips_badsum);
433 		goto bad;
434 	}
435 
436 #ifdef ALTQ
437 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
438 		/* packet is dropped by traffic conditioner */
439 		return;
440 #endif
441 
442 	ip_len = ntohs(ip->ip_len);
443 	if (ip_len < hlen) {
444 		IPSTAT_INC(ips_badlen);
445 		goto bad;
446 	}
447 
448 	/*
449 	 * Check that the amount of data in the buffers
450 	 * is as at least much as the IP header would have us expect.
451 	 * Trim mbufs if longer than we expect.
452 	 * Drop packet if shorter than we expect.
453 	 */
454 	if (m->m_pkthdr.len < ip_len) {
455 tooshort:
456 		IPSTAT_INC(ips_tooshort);
457 		goto bad;
458 	}
459 	if (m->m_pkthdr.len > ip_len) {
460 		if (m->m_len == m->m_pkthdr.len) {
461 			m->m_len = ip_len;
462 			m->m_pkthdr.len = ip_len;
463 		} else
464 			m_adj(m, ip_len - m->m_pkthdr.len);
465 	}
466 #ifdef IPSEC
467 	/*
468 	 * Bypass packet filtering for packets previously handled by IPsec.
469 	 */
470 	if (ip_ipsec_filtertunnel(m))
471 		goto passin;
472 #endif /* IPSEC */
473 
474 	/*
475 	 * Run through list of hooks for input packets.
476 	 *
477 	 * NB: Beware of the destination address changing (e.g.
478 	 *     by NAT rewriting).  When this happens, tell
479 	 *     ip_forward to do the right thing.
480 	 */
481 
482 	/* Jump over all PFIL processing if hooks are not active. */
483 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
484 		goto passin;
485 
486 	odst = ip->ip_dst;
487 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
488 		return;
489 	if (m == NULL)			/* consumed by filter */
490 		return;
491 
492 	ip = mtod(m, struct ip *);
493 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
494 	ifp = m->m_pkthdr.rcvif;
495 
496 	if (m->m_flags & M_FASTFWD_OURS) {
497 		m->m_flags &= ~M_FASTFWD_OURS;
498 		goto ours;
499 	}
500 	if (m->m_flags & M_IP_NEXTHOP) {
501 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
502 		if (dchg != 0) {
503 			/*
504 			 * Directly ship the packet on.  This allows
505 			 * forwarding packets originally destined to us
506 			 * to some other directly connected host.
507 			 */
508 			ip_forward(m, 1);
509 			return;
510 		}
511 	}
512 passin:
513 
514 	/*
515 	 * Process options and, if not destined for us,
516 	 * ship it on.  ip_dooptions returns 1 when an
517 	 * error was detected (causing an icmp message
518 	 * to be sent and the original packet to be freed).
519 	 */
520 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
521 		return;
522 
523         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
524          * matter if it is destined to another node, or whether it is
525          * a multicast one, RSVP wants it! and prevents it from being forwarded
526          * anywhere else. Also checks if the rsvp daemon is running before
527 	 * grabbing the packet.
528          */
529 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
530 		goto ours;
531 
532 	/*
533 	 * Check our list of addresses, to see if the packet is for us.
534 	 * If we don't have any addresses, assume any unicast packet
535 	 * we receive might be for us (and let the upper layers deal
536 	 * with it).
537 	 */
538 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
539 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
540 		goto ours;
541 
542 	/*
543 	 * Enable a consistency check between the destination address
544 	 * and the arrival interface for a unicast packet (the RFC 1122
545 	 * strong ES model) if IP forwarding is disabled and the packet
546 	 * is not locally generated and the packet is not subject to
547 	 * 'ipfw fwd'.
548 	 *
549 	 * XXX - Checking also should be disabled if the destination
550 	 * address is ipnat'ed to a different interface.
551 	 *
552 	 * XXX - Checking is incompatible with IP aliases added
553 	 * to the loopback interface instead of the interface where
554 	 * the packets are received.
555 	 *
556 	 * XXX - This is the case for carp vhost IPs as well so we
557 	 * insert a workaround. If the packet got here, we already
558 	 * checked with carp_iamatch() and carp_forus().
559 	 */
560 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
561 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
562 	    ifp->if_carp == NULL && (dchg == 0);
563 
564 	/*
565 	 * Check for exact addresses in the hash bucket.
566 	 */
567 	/* IN_IFADDR_RLOCK(); */
568 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
569 		/*
570 		 * If the address matches, verify that the packet
571 		 * arrived via the correct interface if checking is
572 		 * enabled.
573 		 */
574 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
575 		    (!checkif || ia->ia_ifp == ifp)) {
576 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
577 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
578 			    m->m_pkthdr.len);
579 			/* IN_IFADDR_RUNLOCK(); */
580 			goto ours;
581 		}
582 	}
583 	/* IN_IFADDR_RUNLOCK(); */
584 
585 	/*
586 	 * Check for broadcast addresses.
587 	 *
588 	 * Only accept broadcast packets that arrive via the matching
589 	 * interface.  Reception of forwarded directed broadcasts would
590 	 * be handled via ip_forward() and ether_output() with the loopback
591 	 * into the stack for SIMPLEX interfaces handled by ether_output().
592 	 */
593 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
594 		IF_ADDR_RLOCK(ifp);
595 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
596 			if (ifa->ifa_addr->sa_family != AF_INET)
597 				continue;
598 			ia = ifatoia(ifa);
599 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
600 			    ip->ip_dst.s_addr) {
601 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
602 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
603 				    m->m_pkthdr.len);
604 				IF_ADDR_RUNLOCK(ifp);
605 				goto ours;
606 			}
607 #ifdef BOOTP_COMPAT
608 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
609 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
610 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
611 				    m->m_pkthdr.len);
612 				IF_ADDR_RUNLOCK(ifp);
613 				goto ours;
614 			}
615 #endif
616 		}
617 		IF_ADDR_RUNLOCK(ifp);
618 		ia = NULL;
619 	}
620 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
621 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
622 		IPSTAT_INC(ips_cantforward);
623 		m_freem(m);
624 		return;
625 	}
626 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
627 		if (V_ip_mrouter) {
628 			/*
629 			 * If we are acting as a multicast router, all
630 			 * incoming multicast packets are passed to the
631 			 * kernel-level multicast forwarding function.
632 			 * The packet is returned (relatively) intact; if
633 			 * ip_mforward() returns a non-zero value, the packet
634 			 * must be discarded, else it may be accepted below.
635 			 */
636 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
637 				IPSTAT_INC(ips_cantforward);
638 				m_freem(m);
639 				return;
640 			}
641 
642 			/*
643 			 * The process-level routing daemon needs to receive
644 			 * all multicast IGMP packets, whether or not this
645 			 * host belongs to their destination groups.
646 			 */
647 			if (ip->ip_p == IPPROTO_IGMP)
648 				goto ours;
649 			IPSTAT_INC(ips_forward);
650 		}
651 		/*
652 		 * Assume the packet is for us, to avoid prematurely taking
653 		 * a lock on the in_multi hash. Protocols must perform
654 		 * their own filtering and update statistics accordingly.
655 		 */
656 		goto ours;
657 	}
658 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
659 		goto ours;
660 	if (ip->ip_dst.s_addr == INADDR_ANY)
661 		goto ours;
662 
663 	/*
664 	 * FAITH(Firewall Aided Internet Translator)
665 	 */
666 	if (ifp && ifp->if_type == IFT_FAITH) {
667 		if (V_ip_keepfaith) {
668 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
669 				goto ours;
670 		}
671 		m_freem(m);
672 		return;
673 	}
674 
675 	/*
676 	 * Not for us; forward if possible and desirable.
677 	 */
678 	if (V_ipforwarding == 0) {
679 		IPSTAT_INC(ips_cantforward);
680 		m_freem(m);
681 	} else {
682 #ifdef IPSEC
683 		if (ip_ipsec_fwd(m))
684 			goto bad;
685 #endif /* IPSEC */
686 		ip_forward(m, dchg);
687 	}
688 	return;
689 
690 ours:
691 #ifdef IPSTEALTH
692 	/*
693 	 * IPSTEALTH: Process non-routing options only
694 	 * if the packet is destined for us.
695 	 */
696 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
697 		return;
698 #endif /* IPSTEALTH */
699 
700 	/*
701 	 * Attempt reassembly; if it succeeds, proceed.
702 	 * ip_reass() will return a different mbuf.
703 	 */
704 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
705 		/* XXXGL: shouldn't we save & set m_flags? */
706 		m = ip_reass(m);
707 		if (m == NULL)
708 			return;
709 		ip = mtod(m, struct ip *);
710 		/* Get the header length of the reassembled packet */
711 		hlen = ip->ip_hl << 2;
712 	}
713 
714 #ifdef IPSEC
715 	/*
716 	 * enforce IPsec policy checking if we are seeing last header.
717 	 * note that we do not visit this with protocols with pcb layer
718 	 * code - like udp/tcp/raw ip.
719 	 */
720 	if (ip_ipsec_input(m))
721 		goto bad;
722 #endif /* IPSEC */
723 
724 	/*
725 	 * Switch out to protocol's input routine.
726 	 */
727 	IPSTAT_INC(ips_delivered);
728 
729 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
730 	return;
731 bad:
732 	m_freem(m);
733 }
734 
735 /*
736  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
737  * max has slightly different semantics than the sysctl, for historical
738  * reasons.
739  */
740 static void
741 maxnipq_update(void)
742 {
743 
744 	/*
745 	 * -1 for unlimited allocation.
746 	 */
747 	if (V_maxnipq < 0)
748 		uma_zone_set_max(V_ipq_zone, 0);
749 	/*
750 	 * Positive number for specific bound.
751 	 */
752 	if (V_maxnipq > 0)
753 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
754 	/*
755 	 * Zero specifies no further fragment queue allocation -- set the
756 	 * bound very low, but rely on implementation elsewhere to actually
757 	 * prevent allocation and reclaim current queues.
758 	 */
759 	if (V_maxnipq == 0)
760 		uma_zone_set_max(V_ipq_zone, 1);
761 }
762 
763 static void
764 ipq_zone_change(void *tag)
765 {
766 
767 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
768 		V_maxnipq = nmbclusters / 32;
769 		maxnipq_update();
770 	}
771 }
772 
773 static int
774 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
775 {
776 	int error, i;
777 
778 	i = V_maxnipq;
779 	error = sysctl_handle_int(oidp, &i, 0, req);
780 	if (error || !req->newptr)
781 		return (error);
782 
783 	/*
784 	 * XXXRW: Might be a good idea to sanity check the argument and place
785 	 * an extreme upper bound.
786 	 */
787 	if (i < -1)
788 		return (EINVAL);
789 	V_maxnipq = i;
790 	maxnipq_update();
791 	return (0);
792 }
793 
794 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
795     NULL, 0, sysctl_maxnipq, "I",
796     "Maximum number of IPv4 fragment reassembly queue entries");
797 
798 #define	M_IP_FRAG	M_PROTO9
799 
800 /*
801  * Take incoming datagram fragment and try to reassemble it into
802  * whole datagram.  If the argument is the first fragment or one
803  * in between the function will return NULL and store the mbuf
804  * in the fragment chain.  If the argument is the last fragment
805  * the packet will be reassembled and the pointer to the new
806  * mbuf returned for further processing.  Only m_tags attached
807  * to the first packet/fragment are preserved.
808  * The IP header is *NOT* adjusted out of iplen.
809  */
810 struct mbuf *
811 ip_reass(struct mbuf *m)
812 {
813 	struct ip *ip;
814 	struct mbuf *p, *q, *nq, *t;
815 	struct ipq *fp = NULL;
816 	struct ipqhead *head;
817 	int i, hlen, next;
818 	u_int8_t ecn, ecn0;
819 	u_short hash;
820 
821 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
822 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
823 		IPSTAT_INC(ips_fragments);
824 		IPSTAT_INC(ips_fragdropped);
825 		m_freem(m);
826 		return (NULL);
827 	}
828 
829 	ip = mtod(m, struct ip *);
830 	hlen = ip->ip_hl << 2;
831 
832 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
833 	head = &V_ipq[hash];
834 	IPQ_LOCK();
835 
836 	/*
837 	 * Look for queue of fragments
838 	 * of this datagram.
839 	 */
840 	TAILQ_FOREACH(fp, head, ipq_list)
841 		if (ip->ip_id == fp->ipq_id &&
842 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
843 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
844 #ifdef MAC
845 		    mac_ipq_match(m, fp) &&
846 #endif
847 		    ip->ip_p == fp->ipq_p)
848 			goto found;
849 
850 	fp = NULL;
851 
852 	/*
853 	 * Attempt to trim the number of allocated fragment queues if it
854 	 * exceeds the administrative limit.
855 	 */
856 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
857 		/*
858 		 * drop something from the tail of the current queue
859 		 * before proceeding further
860 		 */
861 		struct ipq *q = TAILQ_LAST(head, ipqhead);
862 		if (q == NULL) {   /* gak */
863 			for (i = 0; i < IPREASS_NHASH; i++) {
864 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
865 				if (r) {
866 					IPSTAT_ADD(ips_fragtimeout,
867 					    r->ipq_nfrags);
868 					ip_freef(&V_ipq[i], r);
869 					break;
870 				}
871 			}
872 		} else {
873 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
874 			ip_freef(head, q);
875 		}
876 	}
877 
878 found:
879 	/*
880 	 * Adjust ip_len to not reflect header,
881 	 * convert offset of this to bytes.
882 	 */
883 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
884 	if (ip->ip_off & htons(IP_MF)) {
885 		/*
886 		 * Make sure that fragments have a data length
887 		 * that's a non-zero multiple of 8 bytes.
888 		 */
889 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
890 			IPSTAT_INC(ips_toosmall); /* XXX */
891 			goto dropfrag;
892 		}
893 		m->m_flags |= M_IP_FRAG;
894 	} else
895 		m->m_flags &= ~M_IP_FRAG;
896 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
897 
898 	/*
899 	 * Attempt reassembly; if it succeeds, proceed.
900 	 * ip_reass() will return a different mbuf.
901 	 */
902 	IPSTAT_INC(ips_fragments);
903 	m->m_pkthdr.PH_loc.ptr = ip;
904 
905 	/* Previous ip_reass() started here. */
906 	/*
907 	 * Presence of header sizes in mbufs
908 	 * would confuse code below.
909 	 */
910 	m->m_data += hlen;
911 	m->m_len -= hlen;
912 
913 	/*
914 	 * If first fragment to arrive, create a reassembly queue.
915 	 */
916 	if (fp == NULL) {
917 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
918 		if (fp == NULL)
919 			goto dropfrag;
920 #ifdef MAC
921 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
922 			uma_zfree(V_ipq_zone, fp);
923 			fp = NULL;
924 			goto dropfrag;
925 		}
926 		mac_ipq_create(m, fp);
927 #endif
928 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
929 		V_nipq++;
930 		fp->ipq_nfrags = 1;
931 		fp->ipq_ttl = IPFRAGTTL;
932 		fp->ipq_p = ip->ip_p;
933 		fp->ipq_id = ip->ip_id;
934 		fp->ipq_src = ip->ip_src;
935 		fp->ipq_dst = ip->ip_dst;
936 		fp->ipq_frags = m;
937 		m->m_nextpkt = NULL;
938 		goto done;
939 	} else {
940 		fp->ipq_nfrags++;
941 #ifdef MAC
942 		mac_ipq_update(m, fp);
943 #endif
944 	}
945 
946 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
947 
948 	/*
949 	 * Handle ECN by comparing this segment with the first one;
950 	 * if CE is set, do not lose CE.
951 	 * drop if CE and not-ECT are mixed for the same packet.
952 	 */
953 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
954 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
955 	if (ecn == IPTOS_ECN_CE) {
956 		if (ecn0 == IPTOS_ECN_NOTECT)
957 			goto dropfrag;
958 		if (ecn0 != IPTOS_ECN_CE)
959 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
960 	}
961 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
962 		goto dropfrag;
963 
964 	/*
965 	 * Find a segment which begins after this one does.
966 	 */
967 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
968 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
969 			break;
970 
971 	/*
972 	 * If there is a preceding segment, it may provide some of
973 	 * our data already.  If so, drop the data from the incoming
974 	 * segment.  If it provides all of our data, drop us, otherwise
975 	 * stick new segment in the proper place.
976 	 *
977 	 * If some of the data is dropped from the preceding
978 	 * segment, then it's checksum is invalidated.
979 	 */
980 	if (p) {
981 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
982 		    ntohs(ip->ip_off);
983 		if (i > 0) {
984 			if (i >= ntohs(ip->ip_len))
985 				goto dropfrag;
986 			m_adj(m, i);
987 			m->m_pkthdr.csum_flags = 0;
988 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
989 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
990 		}
991 		m->m_nextpkt = p->m_nextpkt;
992 		p->m_nextpkt = m;
993 	} else {
994 		m->m_nextpkt = fp->ipq_frags;
995 		fp->ipq_frags = m;
996 	}
997 
998 	/*
999 	 * While we overlap succeeding segments trim them or,
1000 	 * if they are completely covered, dequeue them.
1001 	 */
1002 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1003 	    ntohs(GETIP(q)->ip_off); q = nq) {
1004 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1005 		    ntohs(GETIP(q)->ip_off);
1006 		if (i < ntohs(GETIP(q)->ip_len)) {
1007 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1008 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1009 			m_adj(q, i);
1010 			q->m_pkthdr.csum_flags = 0;
1011 			break;
1012 		}
1013 		nq = q->m_nextpkt;
1014 		m->m_nextpkt = nq;
1015 		IPSTAT_INC(ips_fragdropped);
1016 		fp->ipq_nfrags--;
1017 		m_freem(q);
1018 	}
1019 
1020 	/*
1021 	 * Check for complete reassembly and perform frag per packet
1022 	 * limiting.
1023 	 *
1024 	 * Frag limiting is performed here so that the nth frag has
1025 	 * a chance to complete the packet before we drop the packet.
1026 	 * As a result, n+1 frags are actually allowed per packet, but
1027 	 * only n will ever be stored. (n = maxfragsperpacket.)
1028 	 *
1029 	 */
1030 	next = 0;
1031 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1032 		if (ntohs(GETIP(q)->ip_off) != next) {
1033 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1034 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1035 				ip_freef(head, fp);
1036 			}
1037 			goto done;
1038 		}
1039 		next += ntohs(GETIP(q)->ip_len);
1040 	}
1041 	/* Make sure the last packet didn't have the IP_MF flag */
1042 	if (p->m_flags & M_IP_FRAG) {
1043 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1044 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1045 			ip_freef(head, fp);
1046 		}
1047 		goto done;
1048 	}
1049 
1050 	/*
1051 	 * Reassembly is complete.  Make sure the packet is a sane size.
1052 	 */
1053 	q = fp->ipq_frags;
1054 	ip = GETIP(q);
1055 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1056 		IPSTAT_INC(ips_toolong);
1057 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1058 		ip_freef(head, fp);
1059 		goto done;
1060 	}
1061 
1062 	/*
1063 	 * Concatenate fragments.
1064 	 */
1065 	m = q;
1066 	t = m->m_next;
1067 	m->m_next = NULL;
1068 	m_cat(m, t);
1069 	nq = q->m_nextpkt;
1070 	q->m_nextpkt = NULL;
1071 	for (q = nq; q != NULL; q = nq) {
1072 		nq = q->m_nextpkt;
1073 		q->m_nextpkt = NULL;
1074 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1075 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1076 		m_cat(m, q);
1077 	}
1078 	/*
1079 	 * In order to do checksumming faster we do 'end-around carry' here
1080 	 * (and not in for{} loop), though it implies we are not going to
1081 	 * reassemble more than 64k fragments.
1082 	 */
1083 	m->m_pkthdr.csum_data =
1084 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1085 #ifdef MAC
1086 	mac_ipq_reassemble(fp, m);
1087 	mac_ipq_destroy(fp);
1088 #endif
1089 
1090 	/*
1091 	 * Create header for new ip packet by modifying header of first
1092 	 * packet;  dequeue and discard fragment reassembly header.
1093 	 * Make header visible.
1094 	 */
1095 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1096 	ip->ip_src = fp->ipq_src;
1097 	ip->ip_dst = fp->ipq_dst;
1098 	TAILQ_REMOVE(head, fp, ipq_list);
1099 	V_nipq--;
1100 	uma_zfree(V_ipq_zone, fp);
1101 	m->m_len += (ip->ip_hl << 2);
1102 	m->m_data -= (ip->ip_hl << 2);
1103 	/* some debugging cruft by sklower, below, will go away soon */
1104 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1105 		m_fixhdr(m);
1106 	IPSTAT_INC(ips_reassembled);
1107 	IPQ_UNLOCK();
1108 	return (m);
1109 
1110 dropfrag:
1111 	IPSTAT_INC(ips_fragdropped);
1112 	if (fp != NULL)
1113 		fp->ipq_nfrags--;
1114 	m_freem(m);
1115 done:
1116 	IPQ_UNLOCK();
1117 	return (NULL);
1118 
1119 #undef GETIP
1120 }
1121 
1122 /*
1123  * Free a fragment reassembly header and all
1124  * associated datagrams.
1125  */
1126 static void
1127 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1128 {
1129 	struct mbuf *q;
1130 
1131 	IPQ_LOCK_ASSERT();
1132 
1133 	while (fp->ipq_frags) {
1134 		q = fp->ipq_frags;
1135 		fp->ipq_frags = q->m_nextpkt;
1136 		m_freem(q);
1137 	}
1138 	TAILQ_REMOVE(fhp, fp, ipq_list);
1139 	uma_zfree(V_ipq_zone, fp);
1140 	V_nipq--;
1141 }
1142 
1143 /*
1144  * IP timer processing;
1145  * if a timer expires on a reassembly
1146  * queue, discard it.
1147  */
1148 void
1149 ip_slowtimo(void)
1150 {
1151 	VNET_ITERATOR_DECL(vnet_iter);
1152 	struct ipq *fp;
1153 	int i;
1154 
1155 	VNET_LIST_RLOCK_NOSLEEP();
1156 	IPQ_LOCK();
1157 	VNET_FOREACH(vnet_iter) {
1158 		CURVNET_SET(vnet_iter);
1159 		for (i = 0; i < IPREASS_NHASH; i++) {
1160 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1161 				struct ipq *fpp;
1162 
1163 				fpp = fp;
1164 				fp = TAILQ_NEXT(fp, ipq_list);
1165 				if(--fpp->ipq_ttl == 0) {
1166 					IPSTAT_ADD(ips_fragtimeout,
1167 					    fpp->ipq_nfrags);
1168 					ip_freef(&V_ipq[i], fpp);
1169 				}
1170 			}
1171 		}
1172 		/*
1173 		 * If we are over the maximum number of fragments
1174 		 * (due to the limit being lowered), drain off
1175 		 * enough to get down to the new limit.
1176 		 */
1177 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1178 			for (i = 0; i < IPREASS_NHASH; i++) {
1179 				while (V_nipq > V_maxnipq &&
1180 				    !TAILQ_EMPTY(&V_ipq[i])) {
1181 					IPSTAT_ADD(ips_fragdropped,
1182 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1183 					ip_freef(&V_ipq[i],
1184 					    TAILQ_FIRST(&V_ipq[i]));
1185 				}
1186 			}
1187 		}
1188 		CURVNET_RESTORE();
1189 	}
1190 	IPQ_UNLOCK();
1191 	VNET_LIST_RUNLOCK_NOSLEEP();
1192 }
1193 
1194 /*
1195  * Drain off all datagram fragments.
1196  */
1197 static void
1198 ip_drain_locked(void)
1199 {
1200 	int     i;
1201 
1202 	IPQ_LOCK_ASSERT();
1203 
1204 	for (i = 0; i < IPREASS_NHASH; i++) {
1205 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1206 			IPSTAT_ADD(ips_fragdropped,
1207 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1208 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1209 		}
1210 	}
1211 }
1212 
1213 void
1214 ip_drain(void)
1215 {
1216 	VNET_ITERATOR_DECL(vnet_iter);
1217 
1218 	VNET_LIST_RLOCK_NOSLEEP();
1219 	IPQ_LOCK();
1220 	VNET_FOREACH(vnet_iter) {
1221 		CURVNET_SET(vnet_iter);
1222 		ip_drain_locked();
1223 		CURVNET_RESTORE();
1224 	}
1225 	IPQ_UNLOCK();
1226 	VNET_LIST_RUNLOCK_NOSLEEP();
1227 	in_rtqdrain();
1228 }
1229 
1230 /*
1231  * The protocol to be inserted into ip_protox[] must be already registered
1232  * in inetsw[], either statically or through pf_proto_register().
1233  */
1234 int
1235 ipproto_register(short ipproto)
1236 {
1237 	struct protosw *pr;
1238 
1239 	/* Sanity checks. */
1240 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1241 		return (EPROTONOSUPPORT);
1242 
1243 	/*
1244 	 * The protocol slot must not be occupied by another protocol
1245 	 * already.  An index pointing to IPPROTO_RAW is unused.
1246 	 */
1247 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1248 	if (pr == NULL)
1249 		return (EPFNOSUPPORT);
1250 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1251 		return (EEXIST);
1252 
1253 	/* Find the protocol position in inetsw[] and set the index. */
1254 	for (pr = inetdomain.dom_protosw;
1255 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1256 		if (pr->pr_domain->dom_family == PF_INET &&
1257 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1258 			ip_protox[pr->pr_protocol] = pr - inetsw;
1259 			return (0);
1260 		}
1261 	}
1262 	return (EPROTONOSUPPORT);
1263 }
1264 
1265 int
1266 ipproto_unregister(short ipproto)
1267 {
1268 	struct protosw *pr;
1269 
1270 	/* Sanity checks. */
1271 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1272 		return (EPROTONOSUPPORT);
1273 
1274 	/* Check if the protocol was indeed registered. */
1275 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1276 	if (pr == NULL)
1277 		return (EPFNOSUPPORT);
1278 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1279 		return (ENOENT);
1280 
1281 	/* Reset the protocol slot to IPPROTO_RAW. */
1282 	ip_protox[ipproto] = pr - inetsw;
1283 	return (0);
1284 }
1285 
1286 /*
1287  * Given address of next destination (final or next hop), return (referenced)
1288  * internet address info of interface to be used to get there.
1289  */
1290 struct in_ifaddr *
1291 ip_rtaddr(struct in_addr dst, u_int fibnum)
1292 {
1293 	struct route sro;
1294 	struct sockaddr_in *sin;
1295 	struct in_ifaddr *ia;
1296 
1297 	bzero(&sro, sizeof(sro));
1298 	sin = (struct sockaddr_in *)&sro.ro_dst;
1299 	sin->sin_family = AF_INET;
1300 	sin->sin_len = sizeof(*sin);
1301 	sin->sin_addr = dst;
1302 	in_rtalloc_ign(&sro, 0, fibnum);
1303 
1304 	if (sro.ro_rt == NULL)
1305 		return (NULL);
1306 
1307 	ia = ifatoia(sro.ro_rt->rt_ifa);
1308 	ifa_ref(&ia->ia_ifa);
1309 	RTFREE(sro.ro_rt);
1310 	return (ia);
1311 }
1312 
1313 u_char inetctlerrmap[PRC_NCMDS] = {
1314 	0,		0,		0,		0,
1315 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1316 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1317 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1318 	0,		0,		EHOSTUNREACH,	0,
1319 	ENOPROTOOPT,	ECONNREFUSED
1320 };
1321 
1322 /*
1323  * Forward a packet.  If some error occurs return the sender
1324  * an icmp packet.  Note we can't always generate a meaningful
1325  * icmp message because icmp doesn't have a large enough repertoire
1326  * of codes and types.
1327  *
1328  * If not forwarding, just drop the packet.  This could be confusing
1329  * if ipforwarding was zero but some routing protocol was advancing
1330  * us as a gateway to somewhere.  However, we must let the routing
1331  * protocol deal with that.
1332  *
1333  * The srcrt parameter indicates whether the packet is being forwarded
1334  * via a source route.
1335  */
1336 void
1337 ip_forward(struct mbuf *m, int srcrt)
1338 {
1339 	struct ip *ip = mtod(m, struct ip *);
1340 	struct in_ifaddr *ia;
1341 	struct mbuf *mcopy;
1342 	struct in_addr dest;
1343 	struct route ro;
1344 	int error, type = 0, code = 0, mtu = 0;
1345 
1346 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1347 		IPSTAT_INC(ips_cantforward);
1348 		m_freem(m);
1349 		return;
1350 	}
1351 #ifdef IPSTEALTH
1352 	if (!V_ipstealth) {
1353 #endif
1354 		if (ip->ip_ttl <= IPTTLDEC) {
1355 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1356 			    0, 0);
1357 			return;
1358 		}
1359 #ifdef IPSTEALTH
1360 	}
1361 #endif
1362 
1363 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1364 #ifndef IPSEC
1365 	/*
1366 	 * 'ia' may be NULL if there is no route for this destination.
1367 	 * In case of IPsec, Don't discard it just yet, but pass it to
1368 	 * ip_output in case of outgoing IPsec policy.
1369 	 */
1370 	if (!srcrt && ia == NULL) {
1371 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1372 		return;
1373 	}
1374 #endif
1375 
1376 	/*
1377 	 * Save the IP header and at most 8 bytes of the payload,
1378 	 * in case we need to generate an ICMP message to the src.
1379 	 *
1380 	 * XXX this can be optimized a lot by saving the data in a local
1381 	 * buffer on the stack (72 bytes at most), and only allocating the
1382 	 * mbuf if really necessary. The vast majority of the packets
1383 	 * are forwarded without having to send an ICMP back (either
1384 	 * because unnecessary, or because rate limited), so we are
1385 	 * really we are wasting a lot of work here.
1386 	 *
1387 	 * We don't use m_copy() because it might return a reference
1388 	 * to a shared cluster. Both this function and ip_output()
1389 	 * assume exclusive access to the IP header in `m', so any
1390 	 * data in a cluster may change before we reach icmp_error().
1391 	 */
1392 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1393 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1394 		/*
1395 		 * It's probably ok if the pkthdr dup fails (because
1396 		 * the deep copy of the tag chain failed), but for now
1397 		 * be conservative and just discard the copy since
1398 		 * code below may some day want the tags.
1399 		 */
1400 		m_free(mcopy);
1401 		mcopy = NULL;
1402 	}
1403 	if (mcopy != NULL) {
1404 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1405 		mcopy->m_pkthdr.len = mcopy->m_len;
1406 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1407 	}
1408 
1409 #ifdef IPSTEALTH
1410 	if (!V_ipstealth) {
1411 #endif
1412 		ip->ip_ttl -= IPTTLDEC;
1413 #ifdef IPSTEALTH
1414 	}
1415 #endif
1416 
1417 	/*
1418 	 * If forwarding packet using same interface that it came in on,
1419 	 * perhaps should send a redirect to sender to shortcut a hop.
1420 	 * Only send redirect if source is sending directly to us,
1421 	 * and if packet was not source routed (or has any options).
1422 	 * Also, don't send redirect if forwarding using a default route
1423 	 * or a route modified by a redirect.
1424 	 */
1425 	dest.s_addr = 0;
1426 	if (!srcrt && V_ipsendredirects &&
1427 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1428 		struct sockaddr_in *sin;
1429 		struct rtentry *rt;
1430 
1431 		bzero(&ro, sizeof(ro));
1432 		sin = (struct sockaddr_in *)&ro.ro_dst;
1433 		sin->sin_family = AF_INET;
1434 		sin->sin_len = sizeof(*sin);
1435 		sin->sin_addr = ip->ip_dst;
1436 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1437 
1438 		rt = ro.ro_rt;
1439 
1440 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1441 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1442 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1443 			u_long src = ntohl(ip->ip_src.s_addr);
1444 
1445 			if (RTA(rt) &&
1446 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1447 				if (rt->rt_flags & RTF_GATEWAY)
1448 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1449 				else
1450 					dest.s_addr = ip->ip_dst.s_addr;
1451 				/* Router requirements says to only send host redirects */
1452 				type = ICMP_REDIRECT;
1453 				code = ICMP_REDIRECT_HOST;
1454 			}
1455 		}
1456 		if (rt)
1457 			RTFREE(rt);
1458 	}
1459 
1460 	/*
1461 	 * Try to cache the route MTU from ip_output so we can consider it for
1462 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1463 	 */
1464 	bzero(&ro, sizeof(ro));
1465 
1466 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1467 
1468 	if (error == EMSGSIZE && ro.ro_rt)
1469 		mtu = ro.ro_rt->rt_mtu;
1470 	RO_RTFREE(&ro);
1471 
1472 	if (error)
1473 		IPSTAT_INC(ips_cantforward);
1474 	else {
1475 		IPSTAT_INC(ips_forward);
1476 		if (type)
1477 			IPSTAT_INC(ips_redirectsent);
1478 		else {
1479 			if (mcopy)
1480 				m_freem(mcopy);
1481 			if (ia != NULL)
1482 				ifa_free(&ia->ia_ifa);
1483 			return;
1484 		}
1485 	}
1486 	if (mcopy == NULL) {
1487 		if (ia != NULL)
1488 			ifa_free(&ia->ia_ifa);
1489 		return;
1490 	}
1491 
1492 	switch (error) {
1493 
1494 	case 0:				/* forwarded, but need redirect */
1495 		/* type, code set above */
1496 		break;
1497 
1498 	case ENETUNREACH:
1499 	case EHOSTUNREACH:
1500 	case ENETDOWN:
1501 	case EHOSTDOWN:
1502 	default:
1503 		type = ICMP_UNREACH;
1504 		code = ICMP_UNREACH_HOST;
1505 		break;
1506 
1507 	case EMSGSIZE:
1508 		type = ICMP_UNREACH;
1509 		code = ICMP_UNREACH_NEEDFRAG;
1510 
1511 #ifdef IPSEC
1512 		/*
1513 		 * If IPsec is configured for this path,
1514 		 * override any possibly mtu value set by ip_output.
1515 		 */
1516 		mtu = ip_ipsec_mtu(mcopy, mtu);
1517 #endif /* IPSEC */
1518 		/*
1519 		 * If the MTU was set before make sure we are below the
1520 		 * interface MTU.
1521 		 * If the MTU wasn't set before use the interface mtu or
1522 		 * fall back to the next smaller mtu step compared to the
1523 		 * current packet size.
1524 		 */
1525 		if (mtu != 0) {
1526 			if (ia != NULL)
1527 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1528 		} else {
1529 			if (ia != NULL)
1530 				mtu = ia->ia_ifp->if_mtu;
1531 			else
1532 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1533 		}
1534 		IPSTAT_INC(ips_cantfrag);
1535 		break;
1536 
1537 	case ENOBUFS:
1538 		/*
1539 		 * A router should not generate ICMP_SOURCEQUENCH as
1540 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1541 		 * Source quench could be a big problem under DoS attacks,
1542 		 * or if the underlying interface is rate-limited.
1543 		 * Those who need source quench packets may re-enable them
1544 		 * via the net.inet.ip.sendsourcequench sysctl.
1545 		 */
1546 		if (V_ip_sendsourcequench == 0) {
1547 			m_freem(mcopy);
1548 			if (ia != NULL)
1549 				ifa_free(&ia->ia_ifa);
1550 			return;
1551 		} else {
1552 			type = ICMP_SOURCEQUENCH;
1553 			code = 0;
1554 		}
1555 		break;
1556 
1557 	case EACCES:			/* ipfw denied packet */
1558 		m_freem(mcopy);
1559 		if (ia != NULL)
1560 			ifa_free(&ia->ia_ifa);
1561 		return;
1562 	}
1563 	if (ia != NULL)
1564 		ifa_free(&ia->ia_ifa);
1565 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1566 }
1567 
1568 void
1569 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1570     struct mbuf *m)
1571 {
1572 
1573 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1574 		struct bintime bt;
1575 
1576 		bintime(&bt);
1577 		if (inp->inp_socket->so_options & SO_BINTIME) {
1578 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1579 			    SCM_BINTIME, SOL_SOCKET);
1580 			if (*mp)
1581 				mp = &(*mp)->m_next;
1582 		}
1583 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1584 			struct timeval tv;
1585 
1586 			bintime2timeval(&bt, &tv);
1587 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1588 			    SCM_TIMESTAMP, SOL_SOCKET);
1589 			if (*mp)
1590 				mp = &(*mp)->m_next;
1591 		}
1592 	}
1593 	if (inp->inp_flags & INP_RECVDSTADDR) {
1594 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1595 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1596 		if (*mp)
1597 			mp = &(*mp)->m_next;
1598 	}
1599 	if (inp->inp_flags & INP_RECVTTL) {
1600 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1601 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1602 		if (*mp)
1603 			mp = &(*mp)->m_next;
1604 	}
1605 #ifdef notyet
1606 	/* XXX
1607 	 * Moving these out of udp_input() made them even more broken
1608 	 * than they already were.
1609 	 */
1610 	/* options were tossed already */
1611 	if (inp->inp_flags & INP_RECVOPTS) {
1612 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1613 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1614 		if (*mp)
1615 			mp = &(*mp)->m_next;
1616 	}
1617 	/* ip_srcroute doesn't do what we want here, need to fix */
1618 	if (inp->inp_flags & INP_RECVRETOPTS) {
1619 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1620 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1621 		if (*mp)
1622 			mp = &(*mp)->m_next;
1623 	}
1624 #endif
1625 	if (inp->inp_flags & INP_RECVIF) {
1626 		struct ifnet *ifp;
1627 		struct sdlbuf {
1628 			struct sockaddr_dl sdl;
1629 			u_char	pad[32];
1630 		} sdlbuf;
1631 		struct sockaddr_dl *sdp;
1632 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1633 
1634 		if ((ifp = m->m_pkthdr.rcvif) &&
1635 		    ifp->if_index && ifp->if_index <= V_if_index) {
1636 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1637 			/*
1638 			 * Change our mind and don't try copy.
1639 			 */
1640 			if (sdp->sdl_family != AF_LINK ||
1641 			    sdp->sdl_len > sizeof(sdlbuf)) {
1642 				goto makedummy;
1643 			}
1644 			bcopy(sdp, sdl2, sdp->sdl_len);
1645 		} else {
1646 makedummy:
1647 			sdl2->sdl_len =
1648 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1649 			sdl2->sdl_family = AF_LINK;
1650 			sdl2->sdl_index = 0;
1651 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1652 		}
1653 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1654 		    IP_RECVIF, IPPROTO_IP);
1655 		if (*mp)
1656 			mp = &(*mp)->m_next;
1657 	}
1658 	if (inp->inp_flags & INP_RECVTOS) {
1659 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1660 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1661 		if (*mp)
1662 			mp = &(*mp)->m_next;
1663 	}
1664 }
1665 
1666 /*
1667  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1668  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1669  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1670  * compiled.
1671  */
1672 static VNET_DEFINE(int, ip_rsvp_on);
1673 VNET_DEFINE(struct socket *, ip_rsvpd);
1674 
1675 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1676 
1677 int
1678 ip_rsvp_init(struct socket *so)
1679 {
1680 
1681 	if (so->so_type != SOCK_RAW ||
1682 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1683 		return EOPNOTSUPP;
1684 
1685 	if (V_ip_rsvpd != NULL)
1686 		return EADDRINUSE;
1687 
1688 	V_ip_rsvpd = so;
1689 	/*
1690 	 * This may seem silly, but we need to be sure we don't over-increment
1691 	 * the RSVP counter, in case something slips up.
1692 	 */
1693 	if (!V_ip_rsvp_on) {
1694 		V_ip_rsvp_on = 1;
1695 		V_rsvp_on++;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 int
1702 ip_rsvp_done(void)
1703 {
1704 
1705 	V_ip_rsvpd = NULL;
1706 	/*
1707 	 * This may seem silly, but we need to be sure we don't over-decrement
1708 	 * the RSVP counter, in case something slips up.
1709 	 */
1710 	if (V_ip_rsvp_on) {
1711 		V_ip_rsvp_on = 0;
1712 		V_rsvp_on--;
1713 	}
1714 	return 0;
1715 }
1716 
1717 void
1718 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1719 {
1720 
1721 	if (rsvp_input_p) { /* call the real one if loaded */
1722 		rsvp_input_p(m, off);
1723 		return;
1724 	}
1725 
1726 	/* Can still get packets with rsvp_on = 0 if there is a local member
1727 	 * of the group to which the RSVP packet is addressed.  But in this
1728 	 * case we want to throw the packet away.
1729 	 */
1730 
1731 	if (!V_rsvp_on) {
1732 		m_freem(m);
1733 		return;
1734 	}
1735 
1736 	if (V_ip_rsvpd != NULL) {
1737 		rip_input(m, off);
1738 		return;
1739 	}
1740 	/* Drop the packet */
1741 	m_freem(m);
1742 }
1743