xref: /freebsd/sys/netinet/ip_input.c (revision db901281608f0c69c05dd9ab366155d3225f0fd2)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 
48 #include <stddef.h>
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/domain.h>
55 #include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <sys/time.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/sysctl.h>
61 
62 #include <net/pfil.h>
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <netinet/ipprotosw.h>
80 
81 #include <sys/socketvar.h>
82 
83 #include <netinet/ip_fw.h>
84 
85 #ifdef IPSEC
86 #include <netinet6/ipsec.h>
87 #include <netkey/key.h>
88 #endif
89 
90 #include "faith.h"
91 #if defined(NFAITH) && NFAITH > 0
92 #include <net/if_types.h>
93 #endif
94 
95 #ifdef DUMMYNET
96 #include <netinet/ip_dummynet.h>
97 #endif
98 
99 int rsvp_on = 0;
100 static int ip_rsvp_on;
101 struct socket *ip_rsvpd;
102 
103 int	ipforwarding = 0;
104 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
105     &ipforwarding, 0, "Enable IP forwarding between interfaces");
106 
107 static int	ipsendredirects = 1; /* XXX */
108 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
109     &ipsendredirects, 0, "Enable sending IP redirects");
110 
111 int	ip_defttl = IPDEFTTL;
112 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
113     &ip_defttl, 0, "Maximum TTL on IP packets");
114 
115 static int	ip_dosourceroute = 0;
116 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
117     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
118 
119 static int	ip_acceptsourceroute = 0;
120 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
121     CTLFLAG_RW, &ip_acceptsourceroute, 0,
122     "Enable accepting source routed IP packets");
123 
124 static int	ip_keepfaith = 0;
125 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
126 	&ip_keepfaith,	0,
127 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
128 
129 #ifdef DIAGNOSTIC
130 static int	ipprintfs = 0;
131 #endif
132 
133 extern	struct domain inetdomain;
134 extern	struct ipprotosw inetsw[];
135 u_char	ip_protox[IPPROTO_MAX];
136 static int	ipqmaxlen = IFQ_MAXLEN;
137 struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
138 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
139     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
140 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
141     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
142 
143 struct ipstat ipstat;
144 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
145     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
146 
147 /* Packet reassembly stuff */
148 #define IPREASS_NHASH_LOG2      6
149 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
150 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
151 #define IPREASS_HASH(x,y) \
152 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
153 
154 static struct ipq ipq[IPREASS_NHASH];
155 static int    nipq = 0;         /* total # of reass queues */
156 static int    maxnipq;
157 const  int    ipintrq_present = 1;
158 
159 #ifdef IPCTL_DEFMTU
160 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
161     &ip_mtu, 0, "Default MTU");
162 #endif
163 
164 #ifdef IPSTEALTH
165 static int	ipstealth = 0;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
167     &ipstealth, 0, "");
168 #endif
169 
170 
171 /* Firewall hooks */
172 ip_fw_chk_t *ip_fw_chk_ptr;
173 ip_fw_ctl_t *ip_fw_ctl_ptr;
174 int fw_enable = 1 ;
175 
176 #ifdef DUMMYNET
177 ip_dn_ctl_t *ip_dn_ctl_ptr;
178 #endif
179 
180 
181 /*
182  * We need to save the IP options in case a protocol wants to respond
183  * to an incoming packet over the same route if the packet got here
184  * using IP source routing.  This allows connection establishment and
185  * maintenance when the remote end is on a network that is not known
186  * to us.
187  */
188 static int	ip_nhops = 0;
189 static	struct ip_srcrt {
190 	struct	in_addr dst;			/* final destination */
191 	char	nop;				/* one NOP to align */
192 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
193 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
194 } ip_srcrt;
195 
196 struct sockaddr_in *ip_fw_fwd_addr;
197 
198 static void	save_rte __P((u_char *, struct in_addr));
199 static int	ip_dooptions __P((struct mbuf *));
200 static void	ip_forward __P((struct mbuf *, int));
201 static void	ip_freef __P((struct ipq *));
202 #ifdef IPDIVERT
203 static struct	mbuf *ip_reass __P((struct mbuf *,
204 			struct ipq *, struct ipq *, u_int32_t *, u_int16_t *));
205 #else
206 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
207 #endif
208 static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
209 static void	ipintr __P((void));
210 
211 /*
212  * IP initialization: fill in IP protocol switch table.
213  * All protocols not implemented in kernel go to raw IP protocol handler.
214  */
215 void
216 ip_init()
217 {
218 	register struct ipprotosw *pr;
219 	register int i;
220 
221 	TAILQ_INIT(&in_ifaddrhead);
222 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
223 	if (pr == 0)
224 		panic("ip_init");
225 	for (i = 0; i < IPPROTO_MAX; i++)
226 		ip_protox[i] = pr - inetsw;
227 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
228 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
229 		if (pr->pr_domain->dom_family == PF_INET &&
230 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
231 			ip_protox[pr->pr_protocol] = pr - inetsw;
232 
233 	for (i = 0; i < IPREASS_NHASH; i++)
234 	    ipq[i].next = ipq[i].prev = &ipq[i];
235 
236 	maxnipq = nmbclusters/4;
237 
238 	ip_id = time_second & 0xffff;
239 	ipintrq.ifq_maxlen = ipqmaxlen;
240 
241 	register_netisr(NETISR_IP, ipintr);
242 }
243 
244 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
245 static struct	route ipforward_rt;
246 
247 /*
248  * Ip input routine.  Checksum and byte swap header.  If fragmented
249  * try to reassemble.  Process options.  Pass to next level.
250  */
251 void
252 ip_input(struct mbuf *m)
253 {
254 	struct ip *ip;
255 	struct ipq *fp;
256 	struct in_ifaddr *ia;
257 	int    i, hlen, mff;
258 	u_short sum;
259 	u_int16_t divert_cookie;		/* firewall cookie */
260 #ifdef IPDIVERT
261 	u_int32_t divert_info = 0;		/* packet divert/tee info */
262 #endif
263 	struct ip_fw_chain *rule = NULL;
264 #ifdef PFIL_HOOKS
265 	struct packet_filter_hook *pfh;
266 	struct mbuf *m0;
267 	int rv;
268 #endif /* PFIL_HOOKS */
269 
270 #ifdef IPDIVERT
271 	/* Get and reset firewall cookie */
272 	divert_cookie = ip_divert_cookie;
273 	ip_divert_cookie = 0;
274 #else
275 	divert_cookie = 0;
276 #endif
277 
278 #if defined(IPFIREWALL) && defined(DUMMYNET)
279         /*
280          * dummynet packet are prepended a vestigial mbuf with
281          * m_type = MT_DUMMYNET and m_data pointing to the matching
282          * rule.
283          */
284         if (m->m_type == MT_DUMMYNET) {
285             rule = (struct ip_fw_chain *)(m->m_data) ;
286             m = m->m_next ;
287             ip = mtod(m, struct ip *);
288             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
289             goto iphack ;
290         } else
291             rule = NULL ;
292 #endif
293 
294 #ifdef	DIAGNOSTIC
295 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
296 		panic("ip_input no HDR");
297 #endif
298 	ipstat.ips_total++;
299 
300 	if (m->m_pkthdr.len < sizeof(struct ip))
301 		goto tooshort;
302 
303 	if (m->m_len < sizeof (struct ip) &&
304 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
305 		ipstat.ips_toosmall++;
306 		return;
307 	}
308 	ip = mtod(m, struct ip *);
309 
310 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
311 		ipstat.ips_badvers++;
312 		goto bad;
313 	}
314 
315 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
316 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
317 		ipstat.ips_badhlen++;
318 		goto bad;
319 	}
320 	if (hlen > m->m_len) {
321 		if ((m = m_pullup(m, hlen)) == 0) {
322 			ipstat.ips_badhlen++;
323 			return;
324 		}
325 		ip = mtod(m, struct ip *);
326 	}
327 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
328 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
329 	} else {
330 		if (hlen == sizeof(struct ip)) {
331 			sum = in_cksum_hdr(ip);
332 		} else {
333 			sum = in_cksum(m, hlen);
334 		}
335 	}
336 	if (sum) {
337 		ipstat.ips_badsum++;
338 		goto bad;
339 	}
340 
341 	/*
342 	 * Convert fields to host representation.
343 	 */
344 	NTOHS(ip->ip_len);
345 	if (ip->ip_len < hlen) {
346 		ipstat.ips_badlen++;
347 		goto bad;
348 	}
349 	NTOHS(ip->ip_id);
350 	NTOHS(ip->ip_off);
351 
352 	/*
353 	 * Check that the amount of data in the buffers
354 	 * is as at least much as the IP header would have us expect.
355 	 * Trim mbufs if longer than we expect.
356 	 * Drop packet if shorter than we expect.
357 	 */
358 	if (m->m_pkthdr.len < ip->ip_len) {
359 tooshort:
360 		ipstat.ips_tooshort++;
361 		goto bad;
362 	}
363 	if (m->m_pkthdr.len > ip->ip_len) {
364 		if (m->m_len == m->m_pkthdr.len) {
365 			m->m_len = ip->ip_len;
366 			m->m_pkthdr.len = ip->ip_len;
367 		} else
368 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
369 	}
370 	/*
371 	 * IpHack's section.
372 	 * Right now when no processing on packet has done
373 	 * and it is still fresh out of network we do our black
374 	 * deals with it.
375 	 * - Firewall: deny/allow/divert
376 	 * - Xlate: translate packet's addr/port (NAT).
377 	 * - Pipe: pass pkt through dummynet.
378 	 * - Wrap: fake packet's addr/port <unimpl.>
379 	 * - Encapsulate: put it in another IP and send out. <unimp.>
380  	 */
381 
382 #if defined(IPFIREWALL) && defined(DUMMYNET)
383 iphack:
384 #endif
385 
386 #ifdef PFIL_HOOKS
387 	/*
388 	 * Run through list of hooks for input packets.  If there are any
389 	 * filters which require that additional packets in the flow are
390 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
391 	 * Note that filters must _never_ set this flag, as another filter
392 	 * in the list may have previously cleared it.
393 	 */
394 	m0 = m;
395 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
396 	for (; pfh; pfh = pfh->pfil_link.tqe_next)
397 		if (pfh->pfil_func) {
398 			rv = pfh->pfil_func(ip, hlen,
399 					    m->m_pkthdr.rcvif, 0, &m0);
400 			if (rv)
401 				return;
402 			m = m0;
403 			if (m == NULL)
404 				return;
405 			ip = mtod(m, struct ip *);
406 		}
407 #endif /* PFIL_HOOKS */
408 
409 	if (fw_enable && ip_fw_chk_ptr) {
410 #ifdef IPFIREWALL_FORWARD
411 		/*
412 		 * If we've been forwarded from the output side, then
413 		 * skip the firewall a second time
414 		 */
415 		if (ip_fw_fwd_addr)
416 			goto ours;
417 #endif	/* IPFIREWALL_FORWARD */
418 		/*
419 		 * See the comment in ip_output for the return values
420 		 * produced by the firewall.
421 		 */
422 		i = (*ip_fw_chk_ptr)(&ip,
423 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
424 		if (m == NULL)		/* Packet discarded by firewall */
425 			return;
426 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
427 			goto pass;
428 #ifdef DUMMYNET
429                 if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
430                         /* Send packet to the appropriate pipe */
431                         dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
432 				    0);
433 			return;
434 		}
435 #endif
436 #ifdef IPDIVERT
437 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
438 			/* Divert or tee packet */
439 			divert_info = i;
440 			goto ours;
441 		}
442 #endif
443 #ifdef IPFIREWALL_FORWARD
444 		if (i == 0 && ip_fw_fwd_addr != NULL)
445 			goto pass;
446 #endif
447 		/*
448 		 * if we get here, the packet must be dropped
449 		 */
450 		m_freem(m);
451 		return;
452 	}
453 pass:
454 
455 	/*
456 	 * Process options and, if not destined for us,
457 	 * ship it on.  ip_dooptions returns 1 when an
458 	 * error was detected (causing an icmp message
459 	 * to be sent and the original packet to be freed).
460 	 */
461 	ip_nhops = 0;		/* for source routed packets */
462 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
463 #ifdef IPFIREWALL_FORWARD
464 		ip_fw_fwd_addr = NULL;
465 #endif
466 		return;
467 	}
468 
469         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
470          * matter if it is destined to another node, or whether it is
471          * a multicast one, RSVP wants it! and prevents it from being forwarded
472          * anywhere else. Also checks if the rsvp daemon is running before
473 	 * grabbing the packet.
474          */
475 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
476 		goto ours;
477 
478 	/*
479 	 * Check our list of addresses, to see if the packet is for us.
480 	 * If we don't have any addresses, assume any unicast packet
481 	 * we receive might be for us (and let the upper layers deal
482 	 * with it).
483 	 */
484 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
485 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
486 		goto ours;
487 
488 	for (ia = TAILQ_FIRST(&in_ifaddrhead); ia;
489 					ia = TAILQ_NEXT(ia, ia_link)) {
490 #define	satosin(sa)	((struct sockaddr_in *)(sa))
491 
492 #ifdef BOOTP_COMPAT
493 		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
494 			goto ours;
495 #endif
496 #ifdef IPFIREWALL_FORWARD
497 		/*
498 		 * If the addr to forward to is one of ours, we pretend to
499 		 * be the destination for this packet.
500 		 */
501 		if (ip_fw_fwd_addr == NULL) {
502 			if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
503 				goto ours;
504 		} else if (IA_SIN(ia)->sin_addr.s_addr ==
505 					 ip_fw_fwd_addr->sin_addr.s_addr)
506 			goto ours;
507 #else
508 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
509 			goto ours;
510 #endif
511 		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
512 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
513 			    ip->ip_dst.s_addr)
514 				goto ours;
515 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
516 				goto ours;
517 		}
518 	}
519 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
520 		struct in_multi *inm;
521 		if (ip_mrouter) {
522 			/*
523 			 * If we are acting as a multicast router, all
524 			 * incoming multicast packets are passed to the
525 			 * kernel-level multicast forwarding function.
526 			 * The packet is returned (relatively) intact; if
527 			 * ip_mforward() returns a non-zero value, the packet
528 			 * must be discarded, else it may be accepted below.
529 			 */
530 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
531 				ipstat.ips_cantforward++;
532 				m_freem(m);
533 				return;
534 			}
535 
536 			/*
537 			 * The process-level routing demon needs to receive
538 			 * all multicast IGMP packets, whether or not this
539 			 * host belongs to their destination groups.
540 			 */
541 			if (ip->ip_p == IPPROTO_IGMP)
542 				goto ours;
543 			ipstat.ips_forward++;
544 		}
545 		/*
546 		 * See if we belong to the destination multicast group on the
547 		 * arrival interface.
548 		 */
549 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
550 		if (inm == NULL) {
551 			ipstat.ips_notmember++;
552 			m_freem(m);
553 			return;
554 		}
555 		goto ours;
556 	}
557 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
558 		goto ours;
559 	if (ip->ip_dst.s_addr == INADDR_ANY)
560 		goto ours;
561 
562 #if defined(NFAITH) && 0 < NFAITH
563 	/*
564 	 * FAITH(Firewall Aided Internet Translator)
565 	 */
566 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
567 		if (ip_keepfaith) {
568 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
569 				goto ours;
570 		}
571 		m_freem(m);
572 		return;
573 	}
574 #endif
575 	/*
576 	 * Not for us; forward if possible and desirable.
577 	 */
578 	if (ipforwarding == 0) {
579 		ipstat.ips_cantforward++;
580 		m_freem(m);
581 	} else
582 		ip_forward(m, 0);
583 #ifdef IPFIREWALL_FORWARD
584 	ip_fw_fwd_addr = NULL;
585 #endif
586 	return;
587 
588 ours:
589 
590 	/*
591 	 * If offset or IP_MF are set, must reassemble.
592 	 * Otherwise, nothing need be done.
593 	 * (We could look in the reassembly queue to see
594 	 * if the packet was previously fragmented,
595 	 * but it's not worth the time; just let them time out.)
596 	 */
597 	if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) {
598 
599 #if 0	/*
600 	 * Reassembly should be able to treat a mbuf cluster, for later
601 	 * operation of contiguous protocol headers on the cluster. (KAME)
602 	 */
603 		if (m->m_flags & M_EXT) {		/* XXX */
604 			if ((m = m_pullup(m, hlen)) == 0) {
605 				ipstat.ips_toosmall++;
606 #ifdef IPFIREWALL_FORWARD
607 				ip_fw_fwd_addr = NULL;
608 #endif
609 				return;
610 			}
611 			ip = mtod(m, struct ip *);
612 		}
613 #endif
614 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
615 		/*
616 		 * Look for queue of fragments
617 		 * of this datagram.
618 		 */
619 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
620 			if (ip->ip_id == fp->ipq_id &&
621 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
622 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
623 			    ip->ip_p == fp->ipq_p)
624 				goto found;
625 
626 		fp = 0;
627 
628 		/* check if there's a place for the new queue */
629 		if (nipq > maxnipq) {
630 		    /*
631 		     * drop something from the tail of the current queue
632 		     * before proceeding further
633 		     */
634 		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
635 			for (i = 0; i < IPREASS_NHASH; i++) {
636 			    if (ipq[i].prev != &ipq[i]) {
637 				ip_freef(ipq[i].prev);
638 				break;
639 			    }
640 			}
641 		    } else
642 			ip_freef(ipq[sum].prev);
643 		}
644 found:
645 		/*
646 		 * Adjust ip_len to not reflect header,
647 		 * set ip_mff if more fragments are expected,
648 		 * convert offset of this to bytes.
649 		 */
650 		ip->ip_len -= hlen;
651 		mff = (ip->ip_off & IP_MF) != 0;
652 		if (mff) {
653 		        /*
654 		         * Make sure that fragments have a data length
655 			 * that's a non-zero multiple of 8 bytes.
656 		         */
657 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
658 				ipstat.ips_toosmall++; /* XXX */
659 				goto bad;
660 			}
661 			m->m_flags |= M_FRAG;
662 		}
663 		ip->ip_off <<= 3;
664 
665 		/*
666 		 * If datagram marked as having more fragments
667 		 * or if this is not the first fragment,
668 		 * attempt reassembly; if it succeeds, proceed.
669 		 */
670 		if (mff || ip->ip_off) {
671 			ipstat.ips_fragments++;
672 			m->m_pkthdr.header = ip;
673 #ifdef IPDIVERT
674 			m = ip_reass(m,
675 			    fp, &ipq[sum], &divert_info, &divert_cookie);
676 #else
677 			m = ip_reass(m, fp, &ipq[sum]);
678 #endif
679 			if (m == 0) {
680 #ifdef IPFIREWALL_FORWARD
681 				ip_fw_fwd_addr = NULL;
682 #endif
683 				return;
684 			}
685 			/* Get the length of the reassembled packets header */
686 			hlen = IP_VHL_HL(ip->ip_vhl) << 2;
687 			ipstat.ips_reassembled++;
688 			ip = mtod(m, struct ip *);
689 #ifdef IPDIVERT
690 			/* Restore original checksum before diverting packet */
691 			if (divert_info != 0) {
692 				ip->ip_len += hlen;
693 				HTONS(ip->ip_len);
694 				HTONS(ip->ip_off);
695 				HTONS(ip->ip_id);
696 				ip->ip_sum = 0;
697 				ip->ip_sum = in_cksum_hdr(ip);
698 				NTOHS(ip->ip_id);
699 				NTOHS(ip->ip_off);
700 				NTOHS(ip->ip_len);
701 				ip->ip_len -= hlen;
702 			}
703 #endif
704 		} else
705 			if (fp)
706 				ip_freef(fp);
707 	} else
708 		ip->ip_len -= hlen;
709 
710 #ifdef IPDIVERT
711 	/*
712 	 * Divert or tee packet to the divert protocol if required.
713 	 *
714 	 * If divert_info is zero then cookie should be too, so we shouldn't
715 	 * need to clear them here.  Assume divert_packet() does so also.
716 	 */
717 	if (divert_info != 0) {
718 		struct mbuf *clone = NULL;
719 
720 		/* Clone packet if we're doing a 'tee' */
721 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
722 			clone = m_dup(m, M_DONTWAIT);
723 
724 		/* Restore packet header fields to original values */
725 		ip->ip_len += hlen;
726 		HTONS(ip->ip_len);
727 		HTONS(ip->ip_off);
728 		HTONS(ip->ip_id);
729 
730 		/* Deliver packet to divert input routine */
731 		ip_divert_cookie = divert_cookie;
732 		divert_packet(m, 1, divert_info & 0xffff);
733 		ipstat.ips_delivered++;
734 
735 		/* If 'tee', continue with original packet */
736 		if (clone == NULL)
737 			return;
738 		m = clone;
739 		ip = mtod(m, struct ip *);
740 	}
741 #endif
742 
743 	/*
744 	 * Switch out to protocol's input routine.
745 	 */
746 	ipstat.ips_delivered++;
747     {
748 	int off = hlen, nh = ip->ip_p;
749 
750 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
751 #ifdef	IPFIREWALL_FORWARD
752 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
753 #endif
754 	return;
755     }
756 bad:
757 #ifdef	IPFIREWALL_FORWARD
758 	ip_fw_fwd_addr = NULL;
759 #endif
760 	m_freem(m);
761 }
762 
763 /*
764  * IP software interrupt routine - to go away sometime soon
765  */
766 static void
767 ipintr(void)
768 {
769 	int s;
770 	struct mbuf *m;
771 
772 	while(1) {
773 		s = splimp();
774 		IF_DEQUEUE(&ipintrq, m);
775 		splx(s);
776 		if (m == 0)
777 			return;
778 		ip_input(m);
779 	}
780 }
781 
782 /*
783  * Take incoming datagram fragment and try to reassemble it into
784  * whole datagram.  If a chain for reassembly of this datagram already
785  * exists, then it is given as fp; otherwise have to make a chain.
786  *
787  * When IPDIVERT enabled, keep additional state with each packet that
788  * tells us if we need to divert or tee the packet we're building.
789  */
790 
791 static struct mbuf *
792 #ifdef IPDIVERT
793 ip_reass(m, fp, where, divinfo, divcookie)
794 #else
795 ip_reass(m, fp, where)
796 #endif
797 	register struct mbuf *m;
798 	register struct ipq *fp;
799 	struct   ipq    *where;
800 #ifdef IPDIVERT
801 	u_int32_t *divinfo;
802 	u_int16_t *divcookie;
803 #endif
804 {
805 	struct ip *ip = mtod(m, struct ip *);
806 	register struct mbuf *p = 0, *q, *nq;
807 	struct mbuf *t;
808 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
809 	int i, next;
810 
811 	/*
812 	 * Presence of header sizes in mbufs
813 	 * would confuse code below.
814 	 */
815 	m->m_data += hlen;
816 	m->m_len -= hlen;
817 
818 	/*
819 	 * If first fragment to arrive, create a reassembly queue.
820 	 */
821 	if (fp == 0) {
822 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
823 			goto dropfrag;
824 		fp = mtod(t, struct ipq *);
825 		insque(fp, where);
826 		nipq++;
827 		fp->ipq_ttl = IPFRAGTTL;
828 		fp->ipq_p = ip->ip_p;
829 		fp->ipq_id = ip->ip_id;
830 		fp->ipq_src = ip->ip_src;
831 		fp->ipq_dst = ip->ip_dst;
832 		fp->ipq_frags = m;
833 		m->m_nextpkt = NULL;
834 #ifdef IPDIVERT
835 		fp->ipq_div_info = 0;
836 		fp->ipq_div_cookie = 0;
837 #endif
838 		goto inserted;
839 	}
840 
841 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
842 
843 	/*
844 	 * Find a segment which begins after this one does.
845 	 */
846 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
847 		if (GETIP(q)->ip_off > ip->ip_off)
848 			break;
849 
850 	/*
851 	 * If there is a preceding segment, it may provide some of
852 	 * our data already.  If so, drop the data from the incoming
853 	 * segment.  If it provides all of our data, drop us, otherwise
854 	 * stick new segment in the proper place.
855 	 *
856 	 * If some of the data is dropped from the the preceding
857 	 * segment, then it's checksum is invalidated.
858 	 */
859 	if (p) {
860 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
861 		if (i > 0) {
862 			if (i >= ip->ip_len)
863 				goto dropfrag;
864 			m_adj(m, i);
865 			m->m_pkthdr.csum_flags = 0;
866 			ip->ip_off += i;
867 			ip->ip_len -= i;
868 		}
869 		m->m_nextpkt = p->m_nextpkt;
870 		p->m_nextpkt = m;
871 	} else {
872 		m->m_nextpkt = fp->ipq_frags;
873 		fp->ipq_frags = m;
874 	}
875 
876 	/*
877 	 * While we overlap succeeding segments trim them or,
878 	 * if they are completely covered, dequeue them.
879 	 */
880 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
881 	     q = nq) {
882 		i = (ip->ip_off + ip->ip_len) -
883 		    GETIP(q)->ip_off;
884 		if (i < GETIP(q)->ip_len) {
885 			GETIP(q)->ip_len -= i;
886 			GETIP(q)->ip_off += i;
887 			m_adj(q, i);
888 			q->m_pkthdr.csum_flags = 0;
889 			break;
890 		}
891 		nq = q->m_nextpkt;
892 		m->m_nextpkt = nq;
893 		m_freem(q);
894 	}
895 
896 inserted:
897 
898 #ifdef IPDIVERT
899 	/*
900 	 * Transfer firewall instructions to the fragment structure.
901 	 * Any fragment diverting causes the whole packet to divert.
902 	 */
903 	fp->ipq_div_info = *divinfo;
904 	fp->ipq_div_cookie = *divcookie;
905 	*divinfo = 0;
906 	*divcookie = 0;
907 #endif
908 
909 	/*
910 	 * Check for complete reassembly.
911 	 */
912 	next = 0;
913 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
914 		if (GETIP(q)->ip_off != next)
915 			return (0);
916 		next += GETIP(q)->ip_len;
917 	}
918 	/* Make sure the last packet didn't have the IP_MF flag */
919 	if (p->m_flags & M_FRAG)
920 		return (0);
921 
922 	/*
923 	 * Reassembly is complete.  Make sure the packet is a sane size.
924 	 */
925 	q = fp->ipq_frags;
926 	ip = GETIP(q);
927 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
928 		ipstat.ips_toolong++;
929 		ip_freef(fp);
930 		return (0);
931 	}
932 
933 	/*
934 	 * Concatenate fragments.
935 	 */
936 	m = q;
937 	t = m->m_next;
938 	m->m_next = 0;
939 	m_cat(m, t);
940 	nq = q->m_nextpkt;
941 	q->m_nextpkt = 0;
942 	for (q = nq; q != NULL; q = nq) {
943 		nq = q->m_nextpkt;
944 		q->m_nextpkt = NULL;
945 		m_cat(m, q);
946 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
947 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
948 	}
949 
950 #ifdef IPDIVERT
951 	/*
952 	 * Extract firewall instructions from the fragment structure.
953 	 */
954 	*divinfo = fp->ipq_div_info;
955 	*divcookie = fp->ipq_div_cookie;
956 #endif
957 
958 	/*
959 	 * Create header for new ip packet by
960 	 * modifying header of first packet;
961 	 * dequeue and discard fragment reassembly header.
962 	 * Make header visible.
963 	 */
964 	ip->ip_len = next;
965 	ip->ip_src = fp->ipq_src;
966 	ip->ip_dst = fp->ipq_dst;
967 	remque(fp);
968 	nipq--;
969 	(void) m_free(dtom(fp));
970 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
971 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
972 	/* some debugging cruft by sklower, below, will go away soon */
973 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
974 		register int plen = 0;
975 		for (t = m; t; t = t->m_next)
976 			plen += t->m_len;
977 		m->m_pkthdr.len = plen;
978 	}
979 	return (m);
980 
981 dropfrag:
982 #ifdef IPDIVERT
983 	*divinfo = 0;
984 	*divcookie = 0;
985 #endif
986 	ipstat.ips_fragdropped++;
987 	m_freem(m);
988 	return (0);
989 
990 #undef GETIP
991 }
992 
993 /*
994  * Free a fragment reassembly header and all
995  * associated datagrams.
996  */
997 static void
998 ip_freef(fp)
999 	struct ipq *fp;
1000 {
1001 	register struct mbuf *q;
1002 
1003 	while (fp->ipq_frags) {
1004 		q = fp->ipq_frags;
1005 		fp->ipq_frags = q->m_nextpkt;
1006 		m_freem(q);
1007 	}
1008 	remque(fp);
1009 	(void) m_free(dtom(fp));
1010 	nipq--;
1011 }
1012 
1013 /*
1014  * IP timer processing;
1015  * if a timer expires on a reassembly
1016  * queue, discard it.
1017  */
1018 void
1019 ip_slowtimo()
1020 {
1021 	register struct ipq *fp;
1022 	int s = splnet();
1023 	int i;
1024 
1025 	for (i = 0; i < IPREASS_NHASH; i++) {
1026 		fp = ipq[i].next;
1027 		if (fp == 0)
1028 			continue;
1029 		while (fp != &ipq[i]) {
1030 			--fp->ipq_ttl;
1031 			fp = fp->next;
1032 			if (fp->prev->ipq_ttl == 0) {
1033 				ipstat.ips_fragtimeout++;
1034 				ip_freef(fp->prev);
1035 			}
1036 		}
1037 	}
1038 	ipflow_slowtimo();
1039 	splx(s);
1040 }
1041 
1042 /*
1043  * Drain off all datagram fragments.
1044  */
1045 void
1046 ip_drain()
1047 {
1048 	int     i;
1049 
1050 	for (i = 0; i < IPREASS_NHASH; i++) {
1051 		while (ipq[i].next != &ipq[i]) {
1052 			ipstat.ips_fragdropped++;
1053 			ip_freef(ipq[i].next);
1054 		}
1055 	}
1056 	in_rtqdrain();
1057 }
1058 
1059 /*
1060  * Do option processing on a datagram,
1061  * possibly discarding it if bad options are encountered,
1062  * or forwarding it if source-routed.
1063  * Returns 1 if packet has been forwarded/freed,
1064  * 0 if the packet should be processed further.
1065  */
1066 static int
1067 ip_dooptions(m)
1068 	struct mbuf *m;
1069 {
1070 	register struct ip *ip = mtod(m, struct ip *);
1071 	register u_char *cp;
1072 	register struct ip_timestamp *ipt;
1073 	register struct in_ifaddr *ia;
1074 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1075 	struct in_addr *sin, dst;
1076 	n_time ntime;
1077 
1078 	dst = ip->ip_dst;
1079 	cp = (u_char *)(ip + 1);
1080 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1081 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1082 		opt = cp[IPOPT_OPTVAL];
1083 		if (opt == IPOPT_EOL)
1084 			break;
1085 		if (opt == IPOPT_NOP)
1086 			optlen = 1;
1087 		else {
1088 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1089 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1090 				goto bad;
1091 			}
1092 			optlen = cp[IPOPT_OLEN];
1093 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1094 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1095 				goto bad;
1096 			}
1097 		}
1098 		switch (opt) {
1099 
1100 		default:
1101 			break;
1102 
1103 		/*
1104 		 * Source routing with record.
1105 		 * Find interface with current destination address.
1106 		 * If none on this machine then drop if strictly routed,
1107 		 * or do nothing if loosely routed.
1108 		 * Record interface address and bring up next address
1109 		 * component.  If strictly routed make sure next
1110 		 * address is on directly accessible net.
1111 		 */
1112 		case IPOPT_LSRR:
1113 		case IPOPT_SSRR:
1114 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1115 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1116 				goto bad;
1117 			}
1118 			ipaddr.sin_addr = ip->ip_dst;
1119 			ia = (struct in_ifaddr *)
1120 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1121 			if (ia == 0) {
1122 				if (opt == IPOPT_SSRR) {
1123 					type = ICMP_UNREACH;
1124 					code = ICMP_UNREACH_SRCFAIL;
1125 					goto bad;
1126 				}
1127 				if (!ip_dosourceroute)
1128 					goto nosourcerouting;
1129 				/*
1130 				 * Loose routing, and not at next destination
1131 				 * yet; nothing to do except forward.
1132 				 */
1133 				break;
1134 			}
1135 			off--;			/* 0 origin */
1136 			if (off > optlen - (int)sizeof(struct in_addr)) {
1137 				/*
1138 				 * End of source route.  Should be for us.
1139 				 */
1140 				if (!ip_acceptsourceroute)
1141 					goto nosourcerouting;
1142 				save_rte(cp, ip->ip_src);
1143 				break;
1144 			}
1145 
1146 			if (!ip_dosourceroute) {
1147 				if (ipforwarding) {
1148 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1149 					/*
1150 					 * Acting as a router, so generate ICMP
1151 					 */
1152 nosourcerouting:
1153 					strcpy(buf, inet_ntoa(ip->ip_dst));
1154 					log(LOG_WARNING,
1155 					    "attempted source route from %s to %s\n",
1156 					    inet_ntoa(ip->ip_src), buf);
1157 					type = ICMP_UNREACH;
1158 					code = ICMP_UNREACH_SRCFAIL;
1159 					goto bad;
1160 				} else {
1161 					/*
1162 					 * Not acting as a router, so silently drop.
1163 					 */
1164 					ipstat.ips_cantforward++;
1165 					m_freem(m);
1166 					return (1);
1167 				}
1168 			}
1169 
1170 			/*
1171 			 * locate outgoing interface
1172 			 */
1173 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1174 			    sizeof(ipaddr.sin_addr));
1175 
1176 			if (opt == IPOPT_SSRR) {
1177 #define	INA	struct in_ifaddr *
1178 #define	SA	struct sockaddr *
1179 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1180 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1181 			} else
1182 				ia = ip_rtaddr(ipaddr.sin_addr);
1183 			if (ia == 0) {
1184 				type = ICMP_UNREACH;
1185 				code = ICMP_UNREACH_SRCFAIL;
1186 				goto bad;
1187 			}
1188 			ip->ip_dst = ipaddr.sin_addr;
1189 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1190 			    sizeof(struct in_addr));
1191 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1192 			/*
1193 			 * Let ip_intr's mcast routing check handle mcast pkts
1194 			 */
1195 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1196 			break;
1197 
1198 		case IPOPT_RR:
1199 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1200 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1201 				goto bad;
1202 			}
1203 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1204 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1205 				goto bad;
1206 			}
1207 			/*
1208 			 * If no space remains, ignore.
1209 			 */
1210 			off--;			/* 0 origin */
1211 			if (off > optlen - (int)sizeof(struct in_addr))
1212 				break;
1213 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1214 			    sizeof(ipaddr.sin_addr));
1215 			/*
1216 			 * locate outgoing interface; if we're the destination,
1217 			 * use the incoming interface (should be same).
1218 			 */
1219 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1220 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1221 				type = ICMP_UNREACH;
1222 				code = ICMP_UNREACH_HOST;
1223 				goto bad;
1224 			}
1225 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1226 			    sizeof(struct in_addr));
1227 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1228 			break;
1229 
1230 		case IPOPT_TS:
1231 			code = cp - (u_char *)ip;
1232 			ipt = (struct ip_timestamp *)cp;
1233 			if (ipt->ipt_len < 5)
1234 				goto bad;
1235 			if (ipt->ipt_ptr >
1236 			    ipt->ipt_len - (int)sizeof(int32_t)) {
1237 				if (++ipt->ipt_oflw == 0)
1238 					goto bad;
1239 				break;
1240 			}
1241 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1242 			switch (ipt->ipt_flg) {
1243 
1244 			case IPOPT_TS_TSONLY:
1245 				break;
1246 
1247 			case IPOPT_TS_TSANDADDR:
1248 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1249 				    sizeof(struct in_addr) > ipt->ipt_len)
1250 					goto bad;
1251 				ipaddr.sin_addr = dst;
1252 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1253 							    m->m_pkthdr.rcvif);
1254 				if (ia == 0)
1255 					continue;
1256 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1257 				    sizeof(struct in_addr));
1258 				ipt->ipt_ptr += sizeof(struct in_addr);
1259 				break;
1260 
1261 			case IPOPT_TS_PRESPEC:
1262 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1263 				    sizeof(struct in_addr) > ipt->ipt_len)
1264 					goto bad;
1265 				(void)memcpy(&ipaddr.sin_addr, sin,
1266 				    sizeof(struct in_addr));
1267 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1268 					continue;
1269 				ipt->ipt_ptr += sizeof(struct in_addr);
1270 				break;
1271 
1272 			default:
1273 				goto bad;
1274 			}
1275 			ntime = iptime();
1276 			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1277 			    sizeof(n_time));
1278 			ipt->ipt_ptr += sizeof(n_time);
1279 		}
1280 	}
1281 	if (forward && ipforwarding) {
1282 		ip_forward(m, 1);
1283 		return (1);
1284 	}
1285 	return (0);
1286 bad:
1287 	icmp_error(m, type, code, 0, 0);
1288 	ipstat.ips_badoptions++;
1289 	return (1);
1290 }
1291 
1292 /*
1293  * Given address of next destination (final or next hop),
1294  * return internet address info of interface to be used to get there.
1295  */
1296 static struct in_ifaddr *
1297 ip_rtaddr(dst)
1298 	 struct in_addr dst;
1299 {
1300 	register struct sockaddr_in *sin;
1301 
1302 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1303 
1304 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1305 		if (ipforward_rt.ro_rt) {
1306 			RTFREE(ipforward_rt.ro_rt);
1307 			ipforward_rt.ro_rt = 0;
1308 		}
1309 		sin->sin_family = AF_INET;
1310 		sin->sin_len = sizeof(*sin);
1311 		sin->sin_addr = dst;
1312 
1313 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1314 	}
1315 	if (ipforward_rt.ro_rt == 0)
1316 		return ((struct in_ifaddr *)0);
1317 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1318 }
1319 
1320 /*
1321  * Save incoming source route for use in replies,
1322  * to be picked up later by ip_srcroute if the receiver is interested.
1323  */
1324 void
1325 save_rte(option, dst)
1326 	u_char *option;
1327 	struct in_addr dst;
1328 {
1329 	unsigned olen;
1330 
1331 	olen = option[IPOPT_OLEN];
1332 #ifdef DIAGNOSTIC
1333 	if (ipprintfs)
1334 		printf("save_rte: olen %d\n", olen);
1335 #endif
1336 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1337 		return;
1338 	bcopy(option, ip_srcrt.srcopt, olen);
1339 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1340 	ip_srcrt.dst = dst;
1341 }
1342 
1343 /*
1344  * Retrieve incoming source route for use in replies,
1345  * in the same form used by setsockopt.
1346  * The first hop is placed before the options, will be removed later.
1347  */
1348 struct mbuf *
1349 ip_srcroute()
1350 {
1351 	register struct in_addr *p, *q;
1352 	register struct mbuf *m;
1353 
1354 	if (ip_nhops == 0)
1355 		return ((struct mbuf *)0);
1356 	m = m_get(M_DONTWAIT, MT_HEADER);
1357 	if (m == 0)
1358 		return ((struct mbuf *)0);
1359 
1360 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1361 
1362 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1363 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1364 	    OPTSIZ;
1365 #ifdef DIAGNOSTIC
1366 	if (ipprintfs)
1367 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1368 #endif
1369 
1370 	/*
1371 	 * First save first hop for return route
1372 	 */
1373 	p = &ip_srcrt.route[ip_nhops - 1];
1374 	*(mtod(m, struct in_addr *)) = *p--;
1375 #ifdef DIAGNOSTIC
1376 	if (ipprintfs)
1377 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1378 #endif
1379 
1380 	/*
1381 	 * Copy option fields and padding (nop) to mbuf.
1382 	 */
1383 	ip_srcrt.nop = IPOPT_NOP;
1384 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1385 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1386 	    &ip_srcrt.nop, OPTSIZ);
1387 	q = (struct in_addr *)(mtod(m, caddr_t) +
1388 	    sizeof(struct in_addr) + OPTSIZ);
1389 #undef OPTSIZ
1390 	/*
1391 	 * Record return path as an IP source route,
1392 	 * reversing the path (pointers are now aligned).
1393 	 */
1394 	while (p >= ip_srcrt.route) {
1395 #ifdef DIAGNOSTIC
1396 		if (ipprintfs)
1397 			printf(" %lx", (u_long)ntohl(q->s_addr));
1398 #endif
1399 		*q++ = *p--;
1400 	}
1401 	/*
1402 	 * Last hop goes to final destination.
1403 	 */
1404 	*q = ip_srcrt.dst;
1405 #ifdef DIAGNOSTIC
1406 	if (ipprintfs)
1407 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1408 #endif
1409 	return (m);
1410 }
1411 
1412 /*
1413  * Strip out IP options, at higher
1414  * level protocol in the kernel.
1415  * Second argument is buffer to which options
1416  * will be moved, and return value is their length.
1417  * XXX should be deleted; last arg currently ignored.
1418  */
1419 void
1420 ip_stripoptions(m, mopt)
1421 	register struct mbuf *m;
1422 	struct mbuf *mopt;
1423 {
1424 	register int i;
1425 	struct ip *ip = mtod(m, struct ip *);
1426 	register caddr_t opts;
1427 	int olen;
1428 
1429 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1430 	opts = (caddr_t)(ip + 1);
1431 	i = m->m_len - (sizeof (struct ip) + olen);
1432 	bcopy(opts + olen, opts, (unsigned)i);
1433 	m->m_len -= olen;
1434 	if (m->m_flags & M_PKTHDR)
1435 		m->m_pkthdr.len -= olen;
1436 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1437 }
1438 
1439 u_char inetctlerrmap[PRC_NCMDS] = {
1440 	0,		0,		0,		0,
1441 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1442 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1443 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1444 	0,		0,		0,		0,
1445 	ENOPROTOOPT
1446 };
1447 
1448 /*
1449  * Forward a packet.  If some error occurs return the sender
1450  * an icmp packet.  Note we can't always generate a meaningful
1451  * icmp message because icmp doesn't have a large enough repertoire
1452  * of codes and types.
1453  *
1454  * If not forwarding, just drop the packet.  This could be confusing
1455  * if ipforwarding was zero but some routing protocol was advancing
1456  * us as a gateway to somewhere.  However, we must let the routing
1457  * protocol deal with that.
1458  *
1459  * The srcrt parameter indicates whether the packet is being forwarded
1460  * via a source route.
1461  */
1462 static void
1463 ip_forward(m, srcrt)
1464 	struct mbuf *m;
1465 	int srcrt;
1466 {
1467 	register struct ip *ip = mtod(m, struct ip *);
1468 	register struct sockaddr_in *sin;
1469 	register struct rtentry *rt;
1470 	int error, type = 0, code = 0;
1471 	struct mbuf *mcopy;
1472 	n_long dest;
1473 	struct ifnet *destifp;
1474 #ifdef IPSEC
1475 	struct ifnet dummyifp;
1476 #endif
1477 
1478 	dest = 0;
1479 #ifdef DIAGNOSTIC
1480 	if (ipprintfs)
1481 		printf("forward: src %lx dst %lx ttl %x\n",
1482 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1483 		    ip->ip_ttl);
1484 #endif
1485 
1486 
1487 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1488 		ipstat.ips_cantforward++;
1489 		m_freem(m);
1490 		return;
1491 	}
1492 #ifdef IPSTEALTH
1493 	if (!ipstealth) {
1494 #endif
1495 		if (ip->ip_ttl <= IPTTLDEC) {
1496 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1497 			    dest, 0);
1498 			return;
1499 		}
1500 #ifdef IPSTEALTH
1501 	}
1502 #endif
1503 
1504 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1505 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1506 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1507 		if (ipforward_rt.ro_rt) {
1508 			RTFREE(ipforward_rt.ro_rt);
1509 			ipforward_rt.ro_rt = 0;
1510 		}
1511 		sin->sin_family = AF_INET;
1512 		sin->sin_len = sizeof(*sin);
1513 		sin->sin_addr = ip->ip_dst;
1514 
1515 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1516 		if (ipforward_rt.ro_rt == 0) {
1517 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1518 			return;
1519 		}
1520 		rt = ipforward_rt.ro_rt;
1521 	}
1522 
1523 	/*
1524 	 * Save at most 64 bytes of the packet in case
1525 	 * we need to generate an ICMP message to the src.
1526 	 */
1527 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1528 	if (mcopy && (mcopy->m_flags & M_EXT))
1529 		m_copydata(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1530 
1531 #ifdef IPSTEALTH
1532 	if (!ipstealth) {
1533 #endif
1534 		ip->ip_ttl -= IPTTLDEC;
1535 #ifdef IPSTEALTH
1536 	}
1537 #endif
1538 
1539 	/*
1540 	 * If forwarding packet using same interface that it came in on,
1541 	 * perhaps should send a redirect to sender to shortcut a hop.
1542 	 * Only send redirect if source is sending directly to us,
1543 	 * and if packet was not source routed (or has any options).
1544 	 * Also, don't send redirect if forwarding using a default route
1545 	 * or a route modified by a redirect.
1546 	 */
1547 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1548 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1549 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1550 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1551 	    ipsendredirects && !srcrt) {
1552 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1553 		u_long src = ntohl(ip->ip_src.s_addr);
1554 
1555 		if (RTA(rt) &&
1556 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1557 		    if (rt->rt_flags & RTF_GATEWAY)
1558 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1559 		    else
1560 			dest = ip->ip_dst.s_addr;
1561 		    /* Router requirements says to only send host redirects */
1562 		    type = ICMP_REDIRECT;
1563 		    code = ICMP_REDIRECT_HOST;
1564 #ifdef DIAGNOSTIC
1565 		    if (ipprintfs)
1566 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1567 #endif
1568 		}
1569 	}
1570 
1571 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1572 			  IP_FORWARDING, 0);
1573 	if (error)
1574 		ipstat.ips_cantforward++;
1575 	else {
1576 		ipstat.ips_forward++;
1577 		if (type)
1578 			ipstat.ips_redirectsent++;
1579 		else {
1580 			if (mcopy) {
1581 				ipflow_create(&ipforward_rt, mcopy);
1582 				m_freem(mcopy);
1583 			}
1584 			return;
1585 		}
1586 	}
1587 	if (mcopy == NULL)
1588 		return;
1589 	destifp = NULL;
1590 
1591 	switch (error) {
1592 
1593 	case 0:				/* forwarded, but need redirect */
1594 		/* type, code set above */
1595 		break;
1596 
1597 	case ENETUNREACH:		/* shouldn't happen, checked above */
1598 	case EHOSTUNREACH:
1599 	case ENETDOWN:
1600 	case EHOSTDOWN:
1601 	default:
1602 		type = ICMP_UNREACH;
1603 		code = ICMP_UNREACH_HOST;
1604 		break;
1605 
1606 	case EMSGSIZE:
1607 		type = ICMP_UNREACH;
1608 		code = ICMP_UNREACH_NEEDFRAG;
1609 #ifndef IPSEC
1610 		if (ipforward_rt.ro_rt)
1611 			destifp = ipforward_rt.ro_rt->rt_ifp;
1612 #else
1613 		/*
1614 		 * If the packet is routed over IPsec tunnel, tell the
1615 		 * originator the tunnel MTU.
1616 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1617 		 * XXX quickhack!!!
1618 		 */
1619 		if (ipforward_rt.ro_rt) {
1620 			struct secpolicy *sp = NULL;
1621 			int ipsecerror;
1622 			int ipsechdr;
1623 			struct route *ro;
1624 
1625 			sp = ipsec4_getpolicybyaddr(mcopy,
1626 						    IPSEC_DIR_OUTBOUND,
1627 			                            IP_FORWARDING,
1628 			                            &ipsecerror);
1629 
1630 			if (sp == NULL)
1631 				destifp = ipforward_rt.ro_rt->rt_ifp;
1632 			else {
1633 				/* count IPsec header size */
1634 				ipsechdr = ipsec4_hdrsiz(mcopy,
1635 							 IPSEC_DIR_OUTBOUND,
1636 							 NULL);
1637 
1638 				/*
1639 				 * find the correct route for outer IPv4
1640 				 * header, compute tunnel MTU.
1641 				 *
1642 				 * XXX BUG ALERT
1643 				 * The "dummyifp" code relies upon the fact
1644 				 * that icmp_error() touches only ifp->if_mtu.
1645 				 */
1646 				/*XXX*/
1647 				destifp = NULL;
1648 				if (sp->req != NULL
1649 				 && sp->req->sav != NULL
1650 				 && sp->req->sav->sah != NULL) {
1651 					ro = &sp->req->sav->sah->sa_route;
1652 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1653 						dummyifp.if_mtu =
1654 						    ro->ro_rt->rt_ifp->if_mtu;
1655 						dummyifp.if_mtu -= ipsechdr;
1656 						destifp = &dummyifp;
1657 					}
1658 				}
1659 
1660 				key_freesp(sp);
1661 			}
1662 		}
1663 #endif /*IPSEC*/
1664 		ipstat.ips_cantfrag++;
1665 		break;
1666 
1667 	case ENOBUFS:
1668 		type = ICMP_SOURCEQUENCH;
1669 		code = 0;
1670 		break;
1671 
1672 	case EACCES:			/* ipfw denied packet */
1673 		m_freem(mcopy);
1674 		return;
1675 	}
1676 	if (mcopy->m_flags & M_EXT)
1677 		m_copyback(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1678 	icmp_error(mcopy, type, code, dest, destifp);
1679 }
1680 
1681 void
1682 ip_savecontrol(inp, mp, ip, m)
1683 	register struct inpcb *inp;
1684 	register struct mbuf **mp;
1685 	register struct ip *ip;
1686 	register struct mbuf *m;
1687 {
1688 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1689 		struct timeval tv;
1690 
1691 		microtime(&tv);
1692 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1693 			SCM_TIMESTAMP, SOL_SOCKET);
1694 		if (*mp)
1695 			mp = &(*mp)->m_next;
1696 	}
1697 	if (inp->inp_flags & INP_RECVDSTADDR) {
1698 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1699 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1700 		if (*mp)
1701 			mp = &(*mp)->m_next;
1702 	}
1703 #ifdef notyet
1704 	/* XXX
1705 	 * Moving these out of udp_input() made them even more broken
1706 	 * than they already were.
1707 	 */
1708 	/* options were tossed already */
1709 	if (inp->inp_flags & INP_RECVOPTS) {
1710 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1711 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1712 		if (*mp)
1713 			mp = &(*mp)->m_next;
1714 	}
1715 	/* ip_srcroute doesn't do what we want here, need to fix */
1716 	if (inp->inp_flags & INP_RECVRETOPTS) {
1717 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1718 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1719 		if (*mp)
1720 			mp = &(*mp)->m_next;
1721 	}
1722 #endif
1723 	if (inp->inp_flags & INP_RECVIF) {
1724 		struct ifnet *ifp;
1725 		struct sdlbuf {
1726 			struct sockaddr_dl sdl;
1727 			u_char	pad[32];
1728 		} sdlbuf;
1729 		struct sockaddr_dl *sdp;
1730 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1731 
1732 		if (((ifp = m->m_pkthdr.rcvif))
1733 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1734 			sdp = (struct sockaddr_dl *)(ifnet_addrs
1735 					[ifp->if_index - 1]->ifa_addr);
1736 			/*
1737 			 * Change our mind and don't try copy.
1738 			 */
1739 			if ((sdp->sdl_family != AF_LINK)
1740 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1741 				goto makedummy;
1742 			}
1743 			bcopy(sdp, sdl2, sdp->sdl_len);
1744 		} else {
1745 makedummy:
1746 			sdl2->sdl_len
1747 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1748 			sdl2->sdl_family = AF_LINK;
1749 			sdl2->sdl_index = 0;
1750 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1751 		}
1752 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1753 			IP_RECVIF, IPPROTO_IP);
1754 		if (*mp)
1755 			mp = &(*mp)->m_next;
1756 	}
1757 }
1758 
1759 int
1760 ip_rsvp_init(struct socket *so)
1761 {
1762 	if (so->so_type != SOCK_RAW ||
1763 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1764 	  return EOPNOTSUPP;
1765 
1766 	if (ip_rsvpd != NULL)
1767 	  return EADDRINUSE;
1768 
1769 	ip_rsvpd = so;
1770 	/*
1771 	 * This may seem silly, but we need to be sure we don't over-increment
1772 	 * the RSVP counter, in case something slips up.
1773 	 */
1774 	if (!ip_rsvp_on) {
1775 		ip_rsvp_on = 1;
1776 		rsvp_on++;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 int
1783 ip_rsvp_done(void)
1784 {
1785 	ip_rsvpd = NULL;
1786 	/*
1787 	 * This may seem silly, but we need to be sure we don't over-decrement
1788 	 * the RSVP counter, in case something slips up.
1789 	 */
1790 	if (ip_rsvp_on) {
1791 		ip_rsvp_on = 0;
1792 		rsvp_on--;
1793 	}
1794 	return 0;
1795 }
1796