xref: /freebsd/sys/netinet/ip_input.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/rwlock.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/vnet.h>
65 #include <net/flowtable.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_fw.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #ifdef DEV_CARP
78 #include <netinet/ip_carp.h>
79 #endif
80 #ifdef IPSEC
81 #include <netinet/ip_ipsec.h>
82 #endif /* IPSEC */
83 
84 #include <sys/socketvar.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof(struct ip) == 20);
90 #endif
91 
92 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
93 static VNET_DEFINE(int, ip_checkinterface);
94 static VNET_DEFINE(int, ip_keepfaith);
95 static VNET_DEFINE(int, ip_sendsourcequench);
96 
97 #define	V_ipsendredirects	VNET(ipsendredirects)
98 #define	V_ip_checkinterface	VNET(ip_checkinterface)
99 #define	V_ip_keepfaith		VNET(ip_keepfaith)
100 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
101 
102 VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
103 VNET_DEFINE(int, ip_do_randomid);
104 VNET_DEFINE(int, ipforwarding);
105 
106 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
107 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
108 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
109 VNET_DEFINE(struct ipstat, ipstat);
110 
111 static VNET_DEFINE(int, ip_rsvp_on);
112 VNET_DEFINE(struct socket *, ip_rsvpd);
113 VNET_DEFINE(int, rsvp_on);
114 
115 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
116 
117 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
118 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
119 static VNET_DEFINE(int, maxfragsperpacket);
120 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
121 
122 #define	V_ipq			VNET(ipq)
123 #define	V_maxnipq		VNET(maxnipq)
124 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
125 #define	V_nipq			VNET(nipq)
126 
127 VNET_DEFINE(int, ipstealth);
128 
129 struct	rwlock in_ifaddr_lock;
130 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
131 
132 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
133     &VNET_NAME(ipforwarding), 0,
134     "Enable IP forwarding between interfaces");
135 
136 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
137     &VNET_NAME(ipsendredirects), 0,
138     "Enable sending IP redirects");
139 
140 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
141     &VNET_NAME(ip_defttl), 0,
142     "Maximum TTL on IP packets");
143 
144 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
145     &VNET_NAME(ip_keepfaith), 0,
146     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
147 
148 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
149     &VNET_NAME(ip_sendsourcequench), 0,
150     "Enable the transmission of source quench packets");
151 
152 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
153     &VNET_NAME(ip_do_randomid), 0,
154     "Assign random ip_id values");
155 
156 /*
157  * XXX - Setting ip_checkinterface mostly implements the receive side of
158  * the Strong ES model described in RFC 1122, but since the routing table
159  * and transmit implementation do not implement the Strong ES model,
160  * setting this to 1 results in an odd hybrid.
161  *
162  * XXX - ip_checkinterface currently must be disabled if you use ipnat
163  * to translate the destination address to another local interface.
164  *
165  * XXX - ip_checkinterface must be disabled if you add IP aliases
166  * to the loopback interface instead of the interface where the
167  * packets for those addresses are received.
168  */
169 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
170     &VNET_NAME(ip_checkinterface), 0,
171     "Verify packet arrives on correct interface");
172 
173 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
174 
175 static struct netisr_handler ip_nh = {
176 	.nh_name = "ip",
177 	.nh_handler = ip_input,
178 	.nh_proto = NETISR_IP,
179 	.nh_policy = NETISR_POLICY_FLOW,
180 };
181 
182 extern	struct domain inetdomain;
183 extern	struct protosw inetsw[];
184 u_char	ip_protox[IPPROTO_MAX];
185 
186 SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
187     &VNET_NAME(ipstat), ipstat,
188     "IP statistics (struct ipstat, netinet/ip_var.h)");
189 
190 static VNET_DEFINE(uma_zone_t, ipq_zone);
191 #define	V_ipq_zone		VNET(ipq_zone)
192 
193 static struct mtx ipqlock;
194 
195 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
196 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
197 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
198 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
199 
200 static void	maxnipq_update(void);
201 static void	ipq_zone_change(void *);
202 static void	ip_drain_locked(void);
203 
204 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
205     &VNET_NAME(nipq), 0,
206     "Current number of IPv4 fragment reassembly queue entries");
207 
208 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
209     &VNET_NAME(maxfragsperpacket), 0,
210     "Maximum number of IPv4 fragments allowed per packet");
211 
212 struct callout	ipport_tick_callout;
213 
214 #ifdef IPCTL_DEFMTU
215 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
216     &ip_mtu, 0, "Default MTU");
217 #endif
218 
219 #ifdef IPSTEALTH
220 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
221     &VNET_NAME(ipstealth), 0,
222     "IP stealth mode, no TTL decrementation on forwarding");
223 #endif
224 
225 #ifdef FLOWTABLE
226 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
227 VNET_DEFINE(struct flowtable *, ip_ft);
228 #define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
229 
230 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
231     &VNET_NAME(ip_output_flowtable_size), 2048,
232     "number of entries in the per-cpu output flow caches");
233 #endif
234 
235 VNET_DEFINE(int, fw_one_pass) = 1;
236 
237 static void	ip_freef(struct ipqhead *, struct ipq *);
238 
239 /*
240  * Kernel module interface for updating ipstat.  The argument is an index
241  * into ipstat treated as an array of u_long.  While this encodes the general
242  * layout of ipstat into the caller, it doesn't encode its location, so that
243  * future changes to add, for example, per-CPU stats support won't cause
244  * binary compatibility problems for kernel modules.
245  */
246 void
247 kmod_ipstat_inc(int statnum)
248 {
249 
250 	(*((u_long *)&V_ipstat + statnum))++;
251 }
252 
253 void
254 kmod_ipstat_dec(int statnum)
255 {
256 
257 	(*((u_long *)&V_ipstat + statnum))--;
258 }
259 
260 static int
261 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
262 {
263 	int error, qlimit;
264 
265 	netisr_getqlimit(&ip_nh, &qlimit);
266 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
267 	if (error || !req->newptr)
268 		return (error);
269 	if (qlimit < 1)
270 		return (EINVAL);
271 	return (netisr_setqlimit(&ip_nh, qlimit));
272 }
273 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
274     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
275     "Maximum size of the IP input queue");
276 
277 static int
278 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
279 {
280 	u_int64_t qdrops_long;
281 	int error, qdrops;
282 
283 	netisr_getqdrops(&ip_nh, &qdrops_long);
284 	qdrops = qdrops_long;
285 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
286 	if (error || !req->newptr)
287 		return (error);
288 	if (qdrops != 0)
289 		return (EINVAL);
290 	netisr_clearqdrops(&ip_nh);
291 	return (0);
292 }
293 
294 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
295     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
296     "Number of packets dropped from the IP input queue");
297 
298 /*
299  * IP initialization: fill in IP protocol switch table.
300  * All protocols not implemented in kernel go to raw IP protocol handler.
301  */
302 void
303 ip_init(void)
304 {
305 	struct protosw *pr;
306 	int i;
307 
308 	V_ip_id = time_second & 0xffff;
309 
310 	TAILQ_INIT(&V_in_ifaddrhead);
311 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
312 
313 	/* Initialize IP reassembly queue. */
314 	for (i = 0; i < IPREASS_NHASH; i++)
315 		TAILQ_INIT(&V_ipq[i]);
316 	V_maxnipq = nmbclusters / 32;
317 	V_maxfragsperpacket = 16;
318 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
319 	    NULL, UMA_ALIGN_PTR, 0);
320 	maxnipq_update();
321 
322 	/* Initialize packet filter hooks. */
323 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
324 	V_inet_pfil_hook.ph_af = AF_INET;
325 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
326 		printf("%s: WARNING: unable to register pfil hook, "
327 			"error %d\n", __func__, i);
328 
329 #ifdef FLOWTABLE
330 	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
331 		&V_ip_output_flowtable_size)) {
332 		if (V_ip_output_flowtable_size < 256)
333 			V_ip_output_flowtable_size = 256;
334 		if (!powerof2(V_ip_output_flowtable_size)) {
335 			printf("flowtable must be power of 2 size\n");
336 			V_ip_output_flowtable_size = 2048;
337 		}
338 	} else {
339 		/*
340 		 * round up to the next power of 2
341 		 */
342 		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
343 	}
344 	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
345 #endif
346 
347 	/* Skip initialization of globals for non-default instances. */
348 	if (!IS_DEFAULT_VNET(curvnet))
349 		return;
350 
351 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
352 	if (pr == NULL)
353 		panic("ip_init: PF_INET not found");
354 
355 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
356 	for (i = 0; i < IPPROTO_MAX; i++)
357 		ip_protox[i] = pr - inetsw;
358 	/*
359 	 * Cycle through IP protocols and put them into the appropriate place
360 	 * in ip_protox[].
361 	 */
362 	for (pr = inetdomain.dom_protosw;
363 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
364 		if (pr->pr_domain->dom_family == PF_INET &&
365 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
366 			/* Be careful to only index valid IP protocols. */
367 			if (pr->pr_protocol < IPPROTO_MAX)
368 				ip_protox[pr->pr_protocol] = pr - inetsw;
369 		}
370 
371 	/* Start ipport_tick. */
372 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
373 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
374 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
375 		SHUTDOWN_PRI_DEFAULT);
376 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
377 		NULL, EVENTHANDLER_PRI_ANY);
378 
379 	/* Initialize various other remaining things. */
380 	IPQ_LOCK_INIT();
381 	netisr_register(&ip_nh);
382 }
383 
384 #ifdef VIMAGE
385 void
386 ip_destroy(void)
387 {
388 
389 	/* Cleanup in_ifaddr hash table; should be empty. */
390 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
391 
392 	IPQ_LOCK();
393 	ip_drain_locked();
394 	IPQ_UNLOCK();
395 
396 	uma_zdestroy(V_ipq_zone);
397 }
398 #endif
399 
400 void
401 ip_fini(void *xtp)
402 {
403 
404 	callout_stop(&ipport_tick_callout);
405 }
406 
407 /*
408  * Ip input routine.  Checksum and byte swap header.  If fragmented
409  * try to reassemble.  Process options.  Pass to next level.
410  */
411 void
412 ip_input(struct mbuf *m)
413 {
414 	struct ip *ip = NULL;
415 	struct in_ifaddr *ia = NULL;
416 	struct ifaddr *ifa;
417 	struct ifnet *ifp;
418 	int    checkif, hlen = 0;
419 	u_short sum;
420 	int dchg = 0;				/* dest changed after fw */
421 	struct in_addr odst;			/* original dst address */
422 
423 	M_ASSERTPKTHDR(m);
424 
425 	if (m->m_flags & M_FASTFWD_OURS) {
426 		/*
427 		 * Firewall or NAT changed destination to local.
428 		 * We expect ip_len and ip_off to be in host byte order.
429 		 */
430 		m->m_flags &= ~M_FASTFWD_OURS;
431 		/* Set up some basics that will be used later. */
432 		ip = mtod(m, struct ip *);
433 		hlen = ip->ip_hl << 2;
434 		goto ours;
435 	}
436 
437 	IPSTAT_INC(ips_total);
438 
439 	if (m->m_pkthdr.len < sizeof(struct ip))
440 		goto tooshort;
441 
442 	if (m->m_len < sizeof (struct ip) &&
443 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
444 		IPSTAT_INC(ips_toosmall);
445 		return;
446 	}
447 	ip = mtod(m, struct ip *);
448 
449 	if (ip->ip_v != IPVERSION) {
450 		IPSTAT_INC(ips_badvers);
451 		goto bad;
452 	}
453 
454 	hlen = ip->ip_hl << 2;
455 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
456 		IPSTAT_INC(ips_badhlen);
457 		goto bad;
458 	}
459 	if (hlen > m->m_len) {
460 		if ((m = m_pullup(m, hlen)) == NULL) {
461 			IPSTAT_INC(ips_badhlen);
462 			return;
463 		}
464 		ip = mtod(m, struct ip *);
465 	}
466 
467 	/* 127/8 must not appear on wire - RFC1122 */
468 	ifp = m->m_pkthdr.rcvif;
469 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
470 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
471 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
472 			IPSTAT_INC(ips_badaddr);
473 			goto bad;
474 		}
475 	}
476 
477 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
478 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
479 	} else {
480 		if (hlen == sizeof(struct ip)) {
481 			sum = in_cksum_hdr(ip);
482 		} else {
483 			sum = in_cksum(m, hlen);
484 		}
485 	}
486 	if (sum) {
487 		IPSTAT_INC(ips_badsum);
488 		goto bad;
489 	}
490 
491 #ifdef ALTQ
492 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
493 		/* packet is dropped by traffic conditioner */
494 		return;
495 #endif
496 
497 	/*
498 	 * Convert fields to host representation.
499 	 */
500 	ip->ip_len = ntohs(ip->ip_len);
501 	if (ip->ip_len < hlen) {
502 		IPSTAT_INC(ips_badlen);
503 		goto bad;
504 	}
505 	ip->ip_off = ntohs(ip->ip_off);
506 
507 	/*
508 	 * Check that the amount of data in the buffers
509 	 * is as at least much as the IP header would have us expect.
510 	 * Trim mbufs if longer than we expect.
511 	 * Drop packet if shorter than we expect.
512 	 */
513 	if (m->m_pkthdr.len < ip->ip_len) {
514 tooshort:
515 		IPSTAT_INC(ips_tooshort);
516 		goto bad;
517 	}
518 	if (m->m_pkthdr.len > ip->ip_len) {
519 		if (m->m_len == m->m_pkthdr.len) {
520 			m->m_len = ip->ip_len;
521 			m->m_pkthdr.len = ip->ip_len;
522 		} else
523 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
524 	}
525 #ifdef IPSEC
526 	/*
527 	 * Bypass packet filtering for packets from a tunnel (gif).
528 	 */
529 	if (ip_ipsec_filtertunnel(m))
530 		goto passin;
531 #endif /* IPSEC */
532 
533 	/*
534 	 * Run through list of hooks for input packets.
535 	 *
536 	 * NB: Beware of the destination address changing (e.g.
537 	 *     by NAT rewriting).  When this happens, tell
538 	 *     ip_forward to do the right thing.
539 	 */
540 
541 	/* Jump over all PFIL processing if hooks are not active. */
542 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
543 		goto passin;
544 
545 	odst = ip->ip_dst;
546 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
547 		return;
548 	if (m == NULL)			/* consumed by filter */
549 		return;
550 
551 	ip = mtod(m, struct ip *);
552 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
553 	ifp = m->m_pkthdr.rcvif;
554 
555 #ifdef IPFIREWALL_FORWARD
556 	if (m->m_flags & M_FASTFWD_OURS) {
557 		m->m_flags &= ~M_FASTFWD_OURS;
558 		goto ours;
559 	}
560 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
561 		/*
562 		 * Directly ship the packet on.  This allows forwarding
563 		 * packets originally destined to us to some other directly
564 		 * connected host.
565 		 */
566 		ip_forward(m, dchg);
567 		return;
568 	}
569 #endif /* IPFIREWALL_FORWARD */
570 
571 passin:
572 	/*
573 	 * Process options and, if not destined for us,
574 	 * ship it on.  ip_dooptions returns 1 when an
575 	 * error was detected (causing an icmp message
576 	 * to be sent and the original packet to be freed).
577 	 */
578 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
579 		return;
580 
581         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
582          * matter if it is destined to another node, or whether it is
583          * a multicast one, RSVP wants it! and prevents it from being forwarded
584          * anywhere else. Also checks if the rsvp daemon is running before
585 	 * grabbing the packet.
586          */
587 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
588 		goto ours;
589 
590 	/*
591 	 * Check our list of addresses, to see if the packet is for us.
592 	 * If we don't have any addresses, assume any unicast packet
593 	 * we receive might be for us (and let the upper layers deal
594 	 * with it).
595 	 */
596 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
597 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
598 		goto ours;
599 
600 	/*
601 	 * Enable a consistency check between the destination address
602 	 * and the arrival interface for a unicast packet (the RFC 1122
603 	 * strong ES model) if IP forwarding is disabled and the packet
604 	 * is not locally generated and the packet is not subject to
605 	 * 'ipfw fwd'.
606 	 *
607 	 * XXX - Checking also should be disabled if the destination
608 	 * address is ipnat'ed to a different interface.
609 	 *
610 	 * XXX - Checking is incompatible with IP aliases added
611 	 * to the loopback interface instead of the interface where
612 	 * the packets are received.
613 	 *
614 	 * XXX - This is the case for carp vhost IPs as well so we
615 	 * insert a workaround. If the packet got here, we already
616 	 * checked with carp_iamatch() and carp_forus().
617 	 */
618 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
619 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
620 #ifdef DEV_CARP
621 	    !ifp->if_carp &&
622 #endif
623 	    (dchg == 0);
624 
625 	/*
626 	 * Check for exact addresses in the hash bucket.
627 	 */
628 	/* IN_IFADDR_RLOCK(); */
629 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
630 		/*
631 		 * If the address matches, verify that the packet
632 		 * arrived via the correct interface if checking is
633 		 * enabled.
634 		 */
635 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
636 		    (!checkif || ia->ia_ifp == ifp)) {
637 			ifa_ref(&ia->ia_ifa);
638 			/* IN_IFADDR_RUNLOCK(); */
639 			goto ours;
640 		}
641 	}
642 	/* IN_IFADDR_RUNLOCK(); */
643 
644 	/*
645 	 * Check for broadcast addresses.
646 	 *
647 	 * Only accept broadcast packets that arrive via the matching
648 	 * interface.  Reception of forwarded directed broadcasts would
649 	 * be handled via ip_forward() and ether_output() with the loopback
650 	 * into the stack for SIMPLEX interfaces handled by ether_output().
651 	 */
652 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
653 		IF_ADDR_LOCK(ifp);
654 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
655 			if (ifa->ifa_addr->sa_family != AF_INET)
656 				continue;
657 			ia = ifatoia(ifa);
658 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
659 			    ip->ip_dst.s_addr) {
660 				ifa_ref(ifa);
661 				IF_ADDR_UNLOCK(ifp);
662 				goto ours;
663 			}
664 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
665 				ifa_ref(ifa);
666 				IF_ADDR_UNLOCK(ifp);
667 				goto ours;
668 			}
669 #ifdef BOOTP_COMPAT
670 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
671 				ifa_ref(ifa);
672 				IF_ADDR_UNLOCK(ifp);
673 				goto ours;
674 			}
675 #endif
676 		}
677 		IF_ADDR_UNLOCK(ifp);
678 		ia = NULL;
679 	}
680 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
681 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
682 		IPSTAT_INC(ips_cantforward);
683 		m_freem(m);
684 		return;
685 	}
686 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
687 		if (V_ip_mrouter) {
688 			/*
689 			 * If we are acting as a multicast router, all
690 			 * incoming multicast packets are passed to the
691 			 * kernel-level multicast forwarding function.
692 			 * The packet is returned (relatively) intact; if
693 			 * ip_mforward() returns a non-zero value, the packet
694 			 * must be discarded, else it may be accepted below.
695 			 */
696 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
697 				IPSTAT_INC(ips_cantforward);
698 				m_freem(m);
699 				return;
700 			}
701 
702 			/*
703 			 * The process-level routing daemon needs to receive
704 			 * all multicast IGMP packets, whether or not this
705 			 * host belongs to their destination groups.
706 			 */
707 			if (ip->ip_p == IPPROTO_IGMP)
708 				goto ours;
709 			IPSTAT_INC(ips_forward);
710 		}
711 		/*
712 		 * Assume the packet is for us, to avoid prematurely taking
713 		 * a lock on the in_multi hash. Protocols must perform
714 		 * their own filtering and update statistics accordingly.
715 		 */
716 		goto ours;
717 	}
718 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
719 		goto ours;
720 	if (ip->ip_dst.s_addr == INADDR_ANY)
721 		goto ours;
722 
723 	/*
724 	 * FAITH(Firewall Aided Internet Translator)
725 	 */
726 	if (ifp && ifp->if_type == IFT_FAITH) {
727 		if (V_ip_keepfaith) {
728 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
729 				goto ours;
730 		}
731 		m_freem(m);
732 		return;
733 	}
734 
735 	/*
736 	 * Not for us; forward if possible and desirable.
737 	 */
738 	if (V_ipforwarding == 0) {
739 		IPSTAT_INC(ips_cantforward);
740 		m_freem(m);
741 	} else {
742 #ifdef IPSEC
743 		if (ip_ipsec_fwd(m))
744 			goto bad;
745 #endif /* IPSEC */
746 		ip_forward(m, dchg);
747 	}
748 	return;
749 
750 ours:
751 #ifdef IPSTEALTH
752 	/*
753 	 * IPSTEALTH: Process non-routing options only
754 	 * if the packet is destined for us.
755 	 */
756 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
757 		if (ia != NULL)
758 			ifa_free(&ia->ia_ifa);
759 		return;
760 	}
761 #endif /* IPSTEALTH */
762 
763 	/* Count the packet in the ip address stats */
764 	if (ia != NULL) {
765 		ia->ia_ifa.if_ipackets++;
766 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
767 		ifa_free(&ia->ia_ifa);
768 	}
769 
770 	/*
771 	 * Attempt reassembly; if it succeeds, proceed.
772 	 * ip_reass() will return a different mbuf.
773 	 */
774 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
775 		m = ip_reass(m);
776 		if (m == NULL)
777 			return;
778 		ip = mtod(m, struct ip *);
779 		/* Get the header length of the reassembled packet */
780 		hlen = ip->ip_hl << 2;
781 	}
782 
783 	/*
784 	 * Further protocols expect the packet length to be w/o the
785 	 * IP header.
786 	 */
787 	ip->ip_len -= hlen;
788 
789 #ifdef IPSEC
790 	/*
791 	 * enforce IPsec policy checking if we are seeing last header.
792 	 * note that we do not visit this with protocols with pcb layer
793 	 * code - like udp/tcp/raw ip.
794 	 */
795 	if (ip_ipsec_input(m))
796 		goto bad;
797 #endif /* IPSEC */
798 
799 	/*
800 	 * Switch out to protocol's input routine.
801 	 */
802 	IPSTAT_INC(ips_delivered);
803 
804 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
805 	return;
806 bad:
807 	m_freem(m);
808 }
809 
810 /*
811  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
812  * max has slightly different semantics than the sysctl, for historical
813  * reasons.
814  */
815 static void
816 maxnipq_update(void)
817 {
818 
819 	/*
820 	 * -1 for unlimited allocation.
821 	 */
822 	if (V_maxnipq < 0)
823 		uma_zone_set_max(V_ipq_zone, 0);
824 	/*
825 	 * Positive number for specific bound.
826 	 */
827 	if (V_maxnipq > 0)
828 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
829 	/*
830 	 * Zero specifies no further fragment queue allocation -- set the
831 	 * bound very low, but rely on implementation elsewhere to actually
832 	 * prevent allocation and reclaim current queues.
833 	 */
834 	if (V_maxnipq == 0)
835 		uma_zone_set_max(V_ipq_zone, 1);
836 }
837 
838 static void
839 ipq_zone_change(void *tag)
840 {
841 
842 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
843 		V_maxnipq = nmbclusters / 32;
844 		maxnipq_update();
845 	}
846 }
847 
848 static int
849 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
850 {
851 	int error, i;
852 
853 	i = V_maxnipq;
854 	error = sysctl_handle_int(oidp, &i, 0, req);
855 	if (error || !req->newptr)
856 		return (error);
857 
858 	/*
859 	 * XXXRW: Might be a good idea to sanity check the argument and place
860 	 * an extreme upper bound.
861 	 */
862 	if (i < -1)
863 		return (EINVAL);
864 	V_maxnipq = i;
865 	maxnipq_update();
866 	return (0);
867 }
868 
869 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
870     NULL, 0, sysctl_maxnipq, "I",
871     "Maximum number of IPv4 fragment reassembly queue entries");
872 
873 /*
874  * Take incoming datagram fragment and try to reassemble it into
875  * whole datagram.  If the argument is the first fragment or one
876  * in between the function will return NULL and store the mbuf
877  * in the fragment chain.  If the argument is the last fragment
878  * the packet will be reassembled and the pointer to the new
879  * mbuf returned for further processing.  Only m_tags attached
880  * to the first packet/fragment are preserved.
881  * The IP header is *NOT* adjusted out of iplen.
882  */
883 struct mbuf *
884 ip_reass(struct mbuf *m)
885 {
886 	struct ip *ip;
887 	struct mbuf *p, *q, *nq, *t;
888 	struct ipq *fp = NULL;
889 	struct ipqhead *head;
890 	int i, hlen, next;
891 	u_int8_t ecn, ecn0;
892 	u_short hash;
893 
894 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
895 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
896 		IPSTAT_INC(ips_fragments);
897 		IPSTAT_INC(ips_fragdropped);
898 		m_freem(m);
899 		return (NULL);
900 	}
901 
902 	ip = mtod(m, struct ip *);
903 	hlen = ip->ip_hl << 2;
904 
905 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
906 	head = &V_ipq[hash];
907 	IPQ_LOCK();
908 
909 	/*
910 	 * Look for queue of fragments
911 	 * of this datagram.
912 	 */
913 	TAILQ_FOREACH(fp, head, ipq_list)
914 		if (ip->ip_id == fp->ipq_id &&
915 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
916 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
917 #ifdef MAC
918 		    mac_ipq_match(m, fp) &&
919 #endif
920 		    ip->ip_p == fp->ipq_p)
921 			goto found;
922 
923 	fp = NULL;
924 
925 	/*
926 	 * Attempt to trim the number of allocated fragment queues if it
927 	 * exceeds the administrative limit.
928 	 */
929 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
930 		/*
931 		 * drop something from the tail of the current queue
932 		 * before proceeding further
933 		 */
934 		struct ipq *q = TAILQ_LAST(head, ipqhead);
935 		if (q == NULL) {   /* gak */
936 			for (i = 0; i < IPREASS_NHASH; i++) {
937 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
938 				if (r) {
939 					IPSTAT_ADD(ips_fragtimeout,
940 					    r->ipq_nfrags);
941 					ip_freef(&V_ipq[i], r);
942 					break;
943 				}
944 			}
945 		} else {
946 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
947 			ip_freef(head, q);
948 		}
949 	}
950 
951 found:
952 	/*
953 	 * Adjust ip_len to not reflect header,
954 	 * convert offset of this to bytes.
955 	 */
956 	ip->ip_len -= hlen;
957 	if (ip->ip_off & IP_MF) {
958 		/*
959 		 * Make sure that fragments have a data length
960 		 * that's a non-zero multiple of 8 bytes.
961 		 */
962 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
963 			IPSTAT_INC(ips_toosmall); /* XXX */
964 			goto dropfrag;
965 		}
966 		m->m_flags |= M_FRAG;
967 	} else
968 		m->m_flags &= ~M_FRAG;
969 	ip->ip_off <<= 3;
970 
971 
972 	/*
973 	 * Attempt reassembly; if it succeeds, proceed.
974 	 * ip_reass() will return a different mbuf.
975 	 */
976 	IPSTAT_INC(ips_fragments);
977 	m->m_pkthdr.header = ip;
978 
979 	/* Previous ip_reass() started here. */
980 	/*
981 	 * Presence of header sizes in mbufs
982 	 * would confuse code below.
983 	 */
984 	m->m_data += hlen;
985 	m->m_len -= hlen;
986 
987 	/*
988 	 * If first fragment to arrive, create a reassembly queue.
989 	 */
990 	if (fp == NULL) {
991 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
992 		if (fp == NULL)
993 			goto dropfrag;
994 #ifdef MAC
995 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
996 			uma_zfree(V_ipq_zone, fp);
997 			fp = NULL;
998 			goto dropfrag;
999 		}
1000 		mac_ipq_create(m, fp);
1001 #endif
1002 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1003 		V_nipq++;
1004 		fp->ipq_nfrags = 1;
1005 		fp->ipq_ttl = IPFRAGTTL;
1006 		fp->ipq_p = ip->ip_p;
1007 		fp->ipq_id = ip->ip_id;
1008 		fp->ipq_src = ip->ip_src;
1009 		fp->ipq_dst = ip->ip_dst;
1010 		fp->ipq_frags = m;
1011 		m->m_nextpkt = NULL;
1012 		goto done;
1013 	} else {
1014 		fp->ipq_nfrags++;
1015 #ifdef MAC
1016 		mac_ipq_update(m, fp);
1017 #endif
1018 	}
1019 
1020 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1021 
1022 	/*
1023 	 * Handle ECN by comparing this segment with the first one;
1024 	 * if CE is set, do not lose CE.
1025 	 * drop if CE and not-ECT are mixed for the same packet.
1026 	 */
1027 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1028 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1029 	if (ecn == IPTOS_ECN_CE) {
1030 		if (ecn0 == IPTOS_ECN_NOTECT)
1031 			goto dropfrag;
1032 		if (ecn0 != IPTOS_ECN_CE)
1033 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1034 	}
1035 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1036 		goto dropfrag;
1037 
1038 	/*
1039 	 * Find a segment which begins after this one does.
1040 	 */
1041 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1042 		if (GETIP(q)->ip_off > ip->ip_off)
1043 			break;
1044 
1045 	/*
1046 	 * If there is a preceding segment, it may provide some of
1047 	 * our data already.  If so, drop the data from the incoming
1048 	 * segment.  If it provides all of our data, drop us, otherwise
1049 	 * stick new segment in the proper place.
1050 	 *
1051 	 * If some of the data is dropped from the the preceding
1052 	 * segment, then it's checksum is invalidated.
1053 	 */
1054 	if (p) {
1055 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1056 		if (i > 0) {
1057 			if (i >= ip->ip_len)
1058 				goto dropfrag;
1059 			m_adj(m, i);
1060 			m->m_pkthdr.csum_flags = 0;
1061 			ip->ip_off += i;
1062 			ip->ip_len -= i;
1063 		}
1064 		m->m_nextpkt = p->m_nextpkt;
1065 		p->m_nextpkt = m;
1066 	} else {
1067 		m->m_nextpkt = fp->ipq_frags;
1068 		fp->ipq_frags = m;
1069 	}
1070 
1071 	/*
1072 	 * While we overlap succeeding segments trim them or,
1073 	 * if they are completely covered, dequeue them.
1074 	 */
1075 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1076 	     q = nq) {
1077 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1078 		if (i < GETIP(q)->ip_len) {
1079 			GETIP(q)->ip_len -= i;
1080 			GETIP(q)->ip_off += i;
1081 			m_adj(q, i);
1082 			q->m_pkthdr.csum_flags = 0;
1083 			break;
1084 		}
1085 		nq = q->m_nextpkt;
1086 		m->m_nextpkt = nq;
1087 		IPSTAT_INC(ips_fragdropped);
1088 		fp->ipq_nfrags--;
1089 		m_freem(q);
1090 	}
1091 
1092 	/*
1093 	 * Check for complete reassembly and perform frag per packet
1094 	 * limiting.
1095 	 *
1096 	 * Frag limiting is performed here so that the nth frag has
1097 	 * a chance to complete the packet before we drop the packet.
1098 	 * As a result, n+1 frags are actually allowed per packet, but
1099 	 * only n will ever be stored. (n = maxfragsperpacket.)
1100 	 *
1101 	 */
1102 	next = 0;
1103 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1104 		if (GETIP(q)->ip_off != next) {
1105 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1106 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1107 				ip_freef(head, fp);
1108 			}
1109 			goto done;
1110 		}
1111 		next += GETIP(q)->ip_len;
1112 	}
1113 	/* Make sure the last packet didn't have the IP_MF flag */
1114 	if (p->m_flags & M_FRAG) {
1115 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1116 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1117 			ip_freef(head, fp);
1118 		}
1119 		goto done;
1120 	}
1121 
1122 	/*
1123 	 * Reassembly is complete.  Make sure the packet is a sane size.
1124 	 */
1125 	q = fp->ipq_frags;
1126 	ip = GETIP(q);
1127 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1128 		IPSTAT_INC(ips_toolong);
1129 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1130 		ip_freef(head, fp);
1131 		goto done;
1132 	}
1133 
1134 	/*
1135 	 * Concatenate fragments.
1136 	 */
1137 	m = q;
1138 	t = m->m_next;
1139 	m->m_next = NULL;
1140 	m_cat(m, t);
1141 	nq = q->m_nextpkt;
1142 	q->m_nextpkt = NULL;
1143 	for (q = nq; q != NULL; q = nq) {
1144 		nq = q->m_nextpkt;
1145 		q->m_nextpkt = NULL;
1146 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1147 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1148 		m_cat(m, q);
1149 	}
1150 	/*
1151 	 * In order to do checksumming faster we do 'end-around carry' here
1152 	 * (and not in for{} loop), though it implies we are not going to
1153 	 * reassemble more than 64k fragments.
1154 	 */
1155 	m->m_pkthdr.csum_data =
1156 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1157 #ifdef MAC
1158 	mac_ipq_reassemble(fp, m);
1159 	mac_ipq_destroy(fp);
1160 #endif
1161 
1162 	/*
1163 	 * Create header for new ip packet by modifying header of first
1164 	 * packet;  dequeue and discard fragment reassembly header.
1165 	 * Make header visible.
1166 	 */
1167 	ip->ip_len = (ip->ip_hl << 2) + next;
1168 	ip->ip_src = fp->ipq_src;
1169 	ip->ip_dst = fp->ipq_dst;
1170 	TAILQ_REMOVE(head, fp, ipq_list);
1171 	V_nipq--;
1172 	uma_zfree(V_ipq_zone, fp);
1173 	m->m_len += (ip->ip_hl << 2);
1174 	m->m_data -= (ip->ip_hl << 2);
1175 	/* some debugging cruft by sklower, below, will go away soon */
1176 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1177 		m_fixhdr(m);
1178 	IPSTAT_INC(ips_reassembled);
1179 	IPQ_UNLOCK();
1180 	return (m);
1181 
1182 dropfrag:
1183 	IPSTAT_INC(ips_fragdropped);
1184 	if (fp != NULL)
1185 		fp->ipq_nfrags--;
1186 	m_freem(m);
1187 done:
1188 	IPQ_UNLOCK();
1189 	return (NULL);
1190 
1191 #undef GETIP
1192 }
1193 
1194 /*
1195  * Free a fragment reassembly header and all
1196  * associated datagrams.
1197  */
1198 static void
1199 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1200 {
1201 	struct mbuf *q;
1202 
1203 	IPQ_LOCK_ASSERT();
1204 
1205 	while (fp->ipq_frags) {
1206 		q = fp->ipq_frags;
1207 		fp->ipq_frags = q->m_nextpkt;
1208 		m_freem(q);
1209 	}
1210 	TAILQ_REMOVE(fhp, fp, ipq_list);
1211 	uma_zfree(V_ipq_zone, fp);
1212 	V_nipq--;
1213 }
1214 
1215 /*
1216  * IP timer processing;
1217  * if a timer expires on a reassembly
1218  * queue, discard it.
1219  */
1220 void
1221 ip_slowtimo(void)
1222 {
1223 	VNET_ITERATOR_DECL(vnet_iter);
1224 	struct ipq *fp;
1225 	int i;
1226 
1227 	VNET_LIST_RLOCK_NOSLEEP();
1228 	IPQ_LOCK();
1229 	VNET_FOREACH(vnet_iter) {
1230 		CURVNET_SET(vnet_iter);
1231 		for (i = 0; i < IPREASS_NHASH; i++) {
1232 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1233 				struct ipq *fpp;
1234 
1235 				fpp = fp;
1236 				fp = TAILQ_NEXT(fp, ipq_list);
1237 				if(--fpp->ipq_ttl == 0) {
1238 					IPSTAT_ADD(ips_fragtimeout,
1239 					    fpp->ipq_nfrags);
1240 					ip_freef(&V_ipq[i], fpp);
1241 				}
1242 			}
1243 		}
1244 		/*
1245 		 * If we are over the maximum number of fragments
1246 		 * (due to the limit being lowered), drain off
1247 		 * enough to get down to the new limit.
1248 		 */
1249 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1250 			for (i = 0; i < IPREASS_NHASH; i++) {
1251 				while (V_nipq > V_maxnipq &&
1252 				    !TAILQ_EMPTY(&V_ipq[i])) {
1253 					IPSTAT_ADD(ips_fragdropped,
1254 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1255 					ip_freef(&V_ipq[i],
1256 					    TAILQ_FIRST(&V_ipq[i]));
1257 				}
1258 			}
1259 		}
1260 		CURVNET_RESTORE();
1261 	}
1262 	IPQ_UNLOCK();
1263 	VNET_LIST_RUNLOCK_NOSLEEP();
1264 }
1265 
1266 /*
1267  * Drain off all datagram fragments.
1268  */
1269 static void
1270 ip_drain_locked(void)
1271 {
1272 	int     i;
1273 
1274 	IPQ_LOCK_ASSERT();
1275 
1276 	for (i = 0; i < IPREASS_NHASH; i++) {
1277 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1278 			IPSTAT_ADD(ips_fragdropped,
1279 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1280 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1281 		}
1282 	}
1283 }
1284 
1285 void
1286 ip_drain(void)
1287 {
1288 	VNET_ITERATOR_DECL(vnet_iter);
1289 
1290 	VNET_LIST_RLOCK_NOSLEEP();
1291 	IPQ_LOCK();
1292 	VNET_FOREACH(vnet_iter) {
1293 		CURVNET_SET(vnet_iter);
1294 		ip_drain_locked();
1295 		CURVNET_RESTORE();
1296 	}
1297 	IPQ_UNLOCK();
1298 	VNET_LIST_RUNLOCK_NOSLEEP();
1299 	in_rtqdrain();
1300 }
1301 
1302 /*
1303  * The protocol to be inserted into ip_protox[] must be already registered
1304  * in inetsw[], either statically or through pf_proto_register().
1305  */
1306 int
1307 ipproto_register(u_char ipproto)
1308 {
1309 	struct protosw *pr;
1310 
1311 	/* Sanity checks. */
1312 	if (ipproto == 0)
1313 		return (EPROTONOSUPPORT);
1314 
1315 	/*
1316 	 * The protocol slot must not be occupied by another protocol
1317 	 * already.  An index pointing to IPPROTO_RAW is unused.
1318 	 */
1319 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1320 	if (pr == NULL)
1321 		return (EPFNOSUPPORT);
1322 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1323 		return (EEXIST);
1324 
1325 	/* Find the protocol position in inetsw[] and set the index. */
1326 	for (pr = inetdomain.dom_protosw;
1327 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1328 		if (pr->pr_domain->dom_family == PF_INET &&
1329 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1330 			/* Be careful to only index valid IP protocols. */
1331 			if (pr->pr_protocol < IPPROTO_MAX) {
1332 				ip_protox[pr->pr_protocol] = pr - inetsw;
1333 				return (0);
1334 			} else
1335 				return (EINVAL);
1336 		}
1337 	}
1338 	return (EPROTONOSUPPORT);
1339 }
1340 
1341 int
1342 ipproto_unregister(u_char ipproto)
1343 {
1344 	struct protosw *pr;
1345 
1346 	/* Sanity checks. */
1347 	if (ipproto == 0)
1348 		return (EPROTONOSUPPORT);
1349 
1350 	/* Check if the protocol was indeed registered. */
1351 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1352 	if (pr == NULL)
1353 		return (EPFNOSUPPORT);
1354 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1355 		return (ENOENT);
1356 
1357 	/* Reset the protocol slot to IPPROTO_RAW. */
1358 	ip_protox[ipproto] = pr - inetsw;
1359 	return (0);
1360 }
1361 
1362 /*
1363  * Given address of next destination (final or next hop), return (referenced)
1364  * internet address info of interface to be used to get there.
1365  */
1366 struct in_ifaddr *
1367 ip_rtaddr(struct in_addr dst, u_int fibnum)
1368 {
1369 	struct route sro;
1370 	struct sockaddr_in *sin;
1371 	struct in_ifaddr *ia;
1372 
1373 	bzero(&sro, sizeof(sro));
1374 	sin = (struct sockaddr_in *)&sro.ro_dst;
1375 	sin->sin_family = AF_INET;
1376 	sin->sin_len = sizeof(*sin);
1377 	sin->sin_addr = dst;
1378 	in_rtalloc_ign(&sro, 0, fibnum);
1379 
1380 	if (sro.ro_rt == NULL)
1381 		return (NULL);
1382 
1383 	ia = ifatoia(sro.ro_rt->rt_ifa);
1384 	ifa_ref(&ia->ia_ifa);
1385 	RTFREE(sro.ro_rt);
1386 	return (ia);
1387 }
1388 
1389 u_char inetctlerrmap[PRC_NCMDS] = {
1390 	0,		0,		0,		0,
1391 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1392 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1393 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1394 	0,		0,		EHOSTUNREACH,	0,
1395 	ENOPROTOOPT,	ECONNREFUSED
1396 };
1397 
1398 /*
1399  * Forward a packet.  If some error occurs return the sender
1400  * an icmp packet.  Note we can't always generate a meaningful
1401  * icmp message because icmp doesn't have a large enough repertoire
1402  * of codes and types.
1403  *
1404  * If not forwarding, just drop the packet.  This could be confusing
1405  * if ipforwarding was zero but some routing protocol was advancing
1406  * us as a gateway to somewhere.  However, we must let the routing
1407  * protocol deal with that.
1408  *
1409  * The srcrt parameter indicates whether the packet is being forwarded
1410  * via a source route.
1411  */
1412 void
1413 ip_forward(struct mbuf *m, int srcrt)
1414 {
1415 	struct ip *ip = mtod(m, struct ip *);
1416 	struct in_ifaddr *ia;
1417 	struct mbuf *mcopy;
1418 	struct in_addr dest;
1419 	struct route ro;
1420 	int error, type = 0, code = 0, mtu = 0;
1421 
1422 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1423 		IPSTAT_INC(ips_cantforward);
1424 		m_freem(m);
1425 		return;
1426 	}
1427 #ifdef IPSTEALTH
1428 	if (!V_ipstealth) {
1429 #endif
1430 		if (ip->ip_ttl <= IPTTLDEC) {
1431 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1432 			    0, 0);
1433 			return;
1434 		}
1435 #ifdef IPSTEALTH
1436 	}
1437 #endif
1438 
1439 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1440 #ifndef IPSEC
1441 	/*
1442 	 * 'ia' may be NULL if there is no route for this destination.
1443 	 * In case of IPsec, Don't discard it just yet, but pass it to
1444 	 * ip_output in case of outgoing IPsec policy.
1445 	 */
1446 	if (!srcrt && ia == NULL) {
1447 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1448 		return;
1449 	}
1450 #endif
1451 
1452 	/*
1453 	 * Save the IP header and at most 8 bytes of the payload,
1454 	 * in case we need to generate an ICMP message to the src.
1455 	 *
1456 	 * XXX this can be optimized a lot by saving the data in a local
1457 	 * buffer on the stack (72 bytes at most), and only allocating the
1458 	 * mbuf if really necessary. The vast majority of the packets
1459 	 * are forwarded without having to send an ICMP back (either
1460 	 * because unnecessary, or because rate limited), so we are
1461 	 * really we are wasting a lot of work here.
1462 	 *
1463 	 * We don't use m_copy() because it might return a reference
1464 	 * to a shared cluster. Both this function and ip_output()
1465 	 * assume exclusive access to the IP header in `m', so any
1466 	 * data in a cluster may change before we reach icmp_error().
1467 	 */
1468 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1469 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1470 		/*
1471 		 * It's probably ok if the pkthdr dup fails (because
1472 		 * the deep copy of the tag chain failed), but for now
1473 		 * be conservative and just discard the copy since
1474 		 * code below may some day want the tags.
1475 		 */
1476 		m_free(mcopy);
1477 		mcopy = NULL;
1478 	}
1479 	if (mcopy != NULL) {
1480 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1481 		mcopy->m_pkthdr.len = mcopy->m_len;
1482 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1483 	}
1484 
1485 #ifdef IPSTEALTH
1486 	if (!V_ipstealth) {
1487 #endif
1488 		ip->ip_ttl -= IPTTLDEC;
1489 #ifdef IPSTEALTH
1490 	}
1491 #endif
1492 
1493 	/*
1494 	 * If forwarding packet using same interface that it came in on,
1495 	 * perhaps should send a redirect to sender to shortcut a hop.
1496 	 * Only send redirect if source is sending directly to us,
1497 	 * and if packet was not source routed (or has any options).
1498 	 * Also, don't send redirect if forwarding using a default route
1499 	 * or a route modified by a redirect.
1500 	 */
1501 	dest.s_addr = 0;
1502 	if (!srcrt && V_ipsendredirects &&
1503 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1504 		struct sockaddr_in *sin;
1505 		struct rtentry *rt;
1506 
1507 		bzero(&ro, sizeof(ro));
1508 		sin = (struct sockaddr_in *)&ro.ro_dst;
1509 		sin->sin_family = AF_INET;
1510 		sin->sin_len = sizeof(*sin);
1511 		sin->sin_addr = ip->ip_dst;
1512 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1513 
1514 		rt = ro.ro_rt;
1515 
1516 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1517 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1518 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1519 			u_long src = ntohl(ip->ip_src.s_addr);
1520 
1521 			if (RTA(rt) &&
1522 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1523 				if (rt->rt_flags & RTF_GATEWAY)
1524 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1525 				else
1526 					dest.s_addr = ip->ip_dst.s_addr;
1527 				/* Router requirements says to only send host redirects */
1528 				type = ICMP_REDIRECT;
1529 				code = ICMP_REDIRECT_HOST;
1530 			}
1531 		}
1532 		if (rt)
1533 			RTFREE(rt);
1534 	}
1535 
1536 	/*
1537 	 * Try to cache the route MTU from ip_output so we can consider it for
1538 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1539 	 */
1540 	bzero(&ro, sizeof(ro));
1541 
1542 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1543 
1544 	if (error == EMSGSIZE && ro.ro_rt)
1545 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1546 	if (ro.ro_rt)
1547 		RTFREE(ro.ro_rt);
1548 
1549 	if (error)
1550 		IPSTAT_INC(ips_cantforward);
1551 	else {
1552 		IPSTAT_INC(ips_forward);
1553 		if (type)
1554 			IPSTAT_INC(ips_redirectsent);
1555 		else {
1556 			if (mcopy)
1557 				m_freem(mcopy);
1558 			if (ia != NULL)
1559 				ifa_free(&ia->ia_ifa);
1560 			return;
1561 		}
1562 	}
1563 	if (mcopy == NULL) {
1564 		if (ia != NULL)
1565 			ifa_free(&ia->ia_ifa);
1566 		return;
1567 	}
1568 
1569 	switch (error) {
1570 
1571 	case 0:				/* forwarded, but need redirect */
1572 		/* type, code set above */
1573 		break;
1574 
1575 	case ENETUNREACH:
1576 	case EHOSTUNREACH:
1577 	case ENETDOWN:
1578 	case EHOSTDOWN:
1579 	default:
1580 		type = ICMP_UNREACH;
1581 		code = ICMP_UNREACH_HOST;
1582 		break;
1583 
1584 	case EMSGSIZE:
1585 		type = ICMP_UNREACH;
1586 		code = ICMP_UNREACH_NEEDFRAG;
1587 
1588 #ifdef IPSEC
1589 		/*
1590 		 * If IPsec is configured for this path,
1591 		 * override any possibly mtu value set by ip_output.
1592 		 */
1593 		mtu = ip_ipsec_mtu(mcopy, mtu);
1594 #endif /* IPSEC */
1595 		/*
1596 		 * If the MTU was set before make sure we are below the
1597 		 * interface MTU.
1598 		 * If the MTU wasn't set before use the interface mtu or
1599 		 * fall back to the next smaller mtu step compared to the
1600 		 * current packet size.
1601 		 */
1602 		if (mtu != 0) {
1603 			if (ia != NULL)
1604 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1605 		} else {
1606 			if (ia != NULL)
1607 				mtu = ia->ia_ifp->if_mtu;
1608 			else
1609 				mtu = ip_next_mtu(ip->ip_len, 0);
1610 		}
1611 		IPSTAT_INC(ips_cantfrag);
1612 		break;
1613 
1614 	case ENOBUFS:
1615 		/*
1616 		 * A router should not generate ICMP_SOURCEQUENCH as
1617 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1618 		 * Source quench could be a big problem under DoS attacks,
1619 		 * or if the underlying interface is rate-limited.
1620 		 * Those who need source quench packets may re-enable them
1621 		 * via the net.inet.ip.sendsourcequench sysctl.
1622 		 */
1623 		if (V_ip_sendsourcequench == 0) {
1624 			m_freem(mcopy);
1625 			if (ia != NULL)
1626 				ifa_free(&ia->ia_ifa);
1627 			return;
1628 		} else {
1629 			type = ICMP_SOURCEQUENCH;
1630 			code = 0;
1631 		}
1632 		break;
1633 
1634 	case EACCES:			/* ipfw denied packet */
1635 		m_freem(mcopy);
1636 		if (ia != NULL)
1637 			ifa_free(&ia->ia_ifa);
1638 		return;
1639 	}
1640 	if (ia != NULL)
1641 		ifa_free(&ia->ia_ifa);
1642 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1643 }
1644 
1645 void
1646 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1647     struct mbuf *m)
1648 {
1649 
1650 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1651 		struct bintime bt;
1652 
1653 		bintime(&bt);
1654 		if (inp->inp_socket->so_options & SO_BINTIME) {
1655 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1656 			SCM_BINTIME, SOL_SOCKET);
1657 			if (*mp)
1658 				mp = &(*mp)->m_next;
1659 		}
1660 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1661 			struct timeval tv;
1662 
1663 			bintime2timeval(&bt, &tv);
1664 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1665 				SCM_TIMESTAMP, SOL_SOCKET);
1666 			if (*mp)
1667 				mp = &(*mp)->m_next;
1668 		}
1669 	}
1670 	if (inp->inp_flags & INP_RECVDSTADDR) {
1671 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1672 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1673 		if (*mp)
1674 			mp = &(*mp)->m_next;
1675 	}
1676 	if (inp->inp_flags & INP_RECVTTL) {
1677 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1678 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1679 		if (*mp)
1680 			mp = &(*mp)->m_next;
1681 	}
1682 #ifdef notyet
1683 	/* XXX
1684 	 * Moving these out of udp_input() made them even more broken
1685 	 * than they already were.
1686 	 */
1687 	/* options were tossed already */
1688 	if (inp->inp_flags & INP_RECVOPTS) {
1689 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1690 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1691 		if (*mp)
1692 			mp = &(*mp)->m_next;
1693 	}
1694 	/* ip_srcroute doesn't do what we want here, need to fix */
1695 	if (inp->inp_flags & INP_RECVRETOPTS) {
1696 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1697 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1698 		if (*mp)
1699 			mp = &(*mp)->m_next;
1700 	}
1701 #endif
1702 	if (inp->inp_flags & INP_RECVIF) {
1703 		struct ifnet *ifp;
1704 		struct sdlbuf {
1705 			struct sockaddr_dl sdl;
1706 			u_char	pad[32];
1707 		} sdlbuf;
1708 		struct sockaddr_dl *sdp;
1709 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1710 
1711 		if (((ifp = m->m_pkthdr.rcvif))
1712 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1713 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1714 			/*
1715 			 * Change our mind and don't try copy.
1716 			 */
1717 			if ((sdp->sdl_family != AF_LINK)
1718 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1719 				goto makedummy;
1720 			}
1721 			bcopy(sdp, sdl2, sdp->sdl_len);
1722 		} else {
1723 makedummy:
1724 			sdl2->sdl_len
1725 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1726 			sdl2->sdl_family = AF_LINK;
1727 			sdl2->sdl_index = 0;
1728 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1729 		}
1730 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1731 			IP_RECVIF, IPPROTO_IP);
1732 		if (*mp)
1733 			mp = &(*mp)->m_next;
1734 	}
1735 }
1736 
1737 /*
1738  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1739  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1740  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1741  * compiled.
1742  */
1743 int
1744 ip_rsvp_init(struct socket *so)
1745 {
1746 
1747 	if (so->so_type != SOCK_RAW ||
1748 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1749 		return EOPNOTSUPP;
1750 
1751 	if (V_ip_rsvpd != NULL)
1752 		return EADDRINUSE;
1753 
1754 	V_ip_rsvpd = so;
1755 	/*
1756 	 * This may seem silly, but we need to be sure we don't over-increment
1757 	 * the RSVP counter, in case something slips up.
1758 	 */
1759 	if (!V_ip_rsvp_on) {
1760 		V_ip_rsvp_on = 1;
1761 		V_rsvp_on++;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 int
1768 ip_rsvp_done(void)
1769 {
1770 
1771 	V_ip_rsvpd = NULL;
1772 	/*
1773 	 * This may seem silly, but we need to be sure we don't over-decrement
1774 	 * the RSVP counter, in case something slips up.
1775 	 */
1776 	if (V_ip_rsvp_on) {
1777 		V_ip_rsvp_on = 0;
1778 		V_rsvp_on--;
1779 	}
1780 	return 0;
1781 }
1782 
1783 void
1784 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1785 {
1786 
1787 	if (rsvp_input_p) { /* call the real one if loaded */
1788 		rsvp_input_p(m, off);
1789 		return;
1790 	}
1791 
1792 	/* Can still get packets with rsvp_on = 0 if there is a local member
1793 	 * of the group to which the RSVP packet is addressed.  But in this
1794 	 * case we want to throw the packet away.
1795 	 */
1796 
1797 	if (!V_rsvp_on) {
1798 		m_freem(m);
1799 		return;
1800 	}
1801 
1802 	if (V_ip_rsvpd != NULL) {
1803 		rip_input(m, off);
1804 		return;
1805 	}
1806 	/* Drop the packet */
1807 	m_freem(m);
1808 }
1809