xref: /freebsd/sys/netinet/ip_input.c (revision d5fc25e5d6c52b306312784663ccad85923a9c76)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/rwlock.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 #include <sys/vimage.h>
57 
58 #include <net/pfil.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/route.h>
64 #include <net/netisr.h>
65 #include <net/vnet.h>
66 #include <net/flowtable.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #include <netinet/vinet.h>
78 #ifdef DEV_CARP
79 #include <netinet/ip_carp.h>
80 #endif
81 #ifdef IPSEC
82 #include <netinet/ip_ipsec.h>
83 #endif /* IPSEC */
84 
85 #include <sys/socketvar.h>
86 
87 #include <security/mac/mac_framework.h>
88 
89 #ifdef CTASSERT
90 CTASSERT(sizeof(struct ip) == 20);
91 #endif
92 
93 #ifndef VIMAGE
94 #ifndef VIMAGE_GLOBALS
95 struct vnet_inet vnet_inet_0;
96 #endif
97 #endif
98 
99 #ifdef VIMAGE_GLOBALS
100 static int	ipsendredirects;
101 static int	ip_checkinterface;
102 static int	ip_keepfaith;
103 static int	ip_sendsourcequench;
104 int	ip_defttl;
105 int	ip_do_randomid;
106 int	ipforwarding;
107 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
108 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
109 u_long 	in_ifaddrhmask;				/* mask for hash table */
110 struct ipstat ipstat;
111 static int ip_rsvp_on;
112 struct socket *ip_rsvpd;
113 int	rsvp_on;
114 static struct ipqhead ipq[IPREASS_NHASH];
115 static int	maxnipq;	/* Administrative limit on # reass queues. */
116 static int	maxfragsperpacket;
117 int	ipstealth;
118 static int	nipq;	/* Total # of reass queues */
119 #endif
120 
121 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
122     forwarding, CTLFLAG_RW, ipforwarding, 0,
123     "Enable IP forwarding between interfaces");
124 
125 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
126     redirect, CTLFLAG_RW, ipsendredirects, 0,
127     "Enable sending IP redirects");
128 
129 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
130     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
131 
132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
133     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
134     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
135 
136 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
137     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
138     "Enable the transmission of source quench packets");
139 
140 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
141     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
142 
143 /*
144  * XXX - Setting ip_checkinterface mostly implements the receive side of
145  * the Strong ES model described in RFC 1122, but since the routing table
146  * and transmit implementation do not implement the Strong ES model,
147  * setting this to 1 results in an odd hybrid.
148  *
149  * XXX - ip_checkinterface currently must be disabled if you use ipnat
150  * to translate the destination address to another local interface.
151  *
152  * XXX - ip_checkinterface must be disabled if you add IP aliases
153  * to the loopback interface instead of the interface where the
154  * packets for those addresses are received.
155  */
156 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
157     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
158     "Verify packet arrives on correct interface");
159 
160 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
161 
162 static struct netisr_handler ip_nh = {
163 	.nh_name = "ip",
164 	.nh_handler = ip_input,
165 	.nh_proto = NETISR_IP,
166 	.nh_policy = NETISR_POLICY_FLOW,
167 };
168 
169 extern	struct domain inetdomain;
170 extern	struct protosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 
173 
174 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176 
177 #ifdef VIMAGE_GLOBALS
178 static uma_zone_t ipq_zone;
179 #endif
180 static struct mtx ipqlock;
181 
182 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
183 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
184 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
185 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
186 
187 static void	maxnipq_update(void);
188 static void	ipq_zone_change(void *);
189 
190 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
191     CTLFLAG_RD, nipq, 0,
192     "Current number of IPv4 fragment reassembly queue entries");
193 
194 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
195     CTLFLAG_RW, maxfragsperpacket, 0,
196     "Maximum number of IPv4 fragments allowed per packet");
197 
198 struct callout	ipport_tick_callout;
199 
200 #ifdef IPCTL_DEFMTU
201 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
202     &ip_mtu, 0, "Default MTU");
203 #endif
204 
205 #ifdef IPSTEALTH
206 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
207     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
208 #endif
209 static int ip_output_flowtable_size = 2048;
210 TUNABLE_INT("net.inet.ip.output_flowtable_size", &ip_output_flowtable_size);
211 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, output_flowtable_size,
212     CTLFLAG_RDTUN, ip_output_flowtable_size, 2048,
213     "number of entries in the per-cpu output flow caches");
214 
215 #ifdef VIMAGE_GLOBALS
216 int fw_one_pass;
217 #endif
218 struct flowtable *ip_ft;
219 
220 static void	ip_freef(struct ipqhead *, struct ipq *);
221 
222 #ifndef VIMAGE_GLOBALS
223 static void vnet_inet_register(void);
224 
225 static const vnet_modinfo_t vnet_inet_modinfo = {
226 	.vmi_id		= VNET_MOD_INET,
227 	.vmi_name	= "inet",
228 	.vmi_size	= sizeof(struct vnet_inet)
229 };
230 
231 static void vnet_inet_register()
232 {
233 
234 	vnet_mod_register(&vnet_inet_modinfo);
235 }
236 
237 SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
238 #endif
239 
240 static int
241 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
242 {
243 	int error, qlimit;
244 
245 	netisr_getqlimit(&ip_nh, &qlimit);
246 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
247 	if (error || !req->newptr)
248 		return (error);
249 	if (qlimit < 1)
250 		return (EINVAL);
251 	return (netisr_setqlimit(&ip_nh, qlimit));
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
254     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
255     "Maximum size of the IP input queue");
256 
257 static int
258 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
259 {
260 	u_int64_t qdrops_long;
261 	int error, qdrops;
262 
263 	netisr_getqdrops(&ip_nh, &qdrops_long);
264 	qdrops = qdrops_long;
265 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
266 	if (error || !req->newptr)
267 		return (error);
268 	if (qdrops != 0)
269 		return (EINVAL);
270 	netisr_clearqdrops(&ip_nh);
271 	return (0);
272 }
273 
274 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
275     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
276     "Number of packets dropped from the IP input queue");
277 
278 /*
279  * IP initialization: fill in IP protocol switch table.
280  * All protocols not implemented in kernel go to raw IP protocol handler.
281  */
282 void
283 ip_init(void)
284 {
285 	INIT_VNET_INET(curvnet);
286 	struct protosw *pr;
287 	int i;
288 
289 	V_ipsendredirects = 1; /* XXX */
290 	V_ip_checkinterface = 0;
291 	V_ip_keepfaith = 0;
292 	V_ip_sendsourcequench = 0;
293 	V_rsvp_on = 0;
294 	V_ip_defttl = IPDEFTTL;
295 	V_ip_do_randomid = 0;
296 	V_ip_id = time_second & 0xffff;
297 	V_ipforwarding = 0;
298 	V_ipstealth = 0;
299 	V_nipq = 0;	/* Total # of reass queues */
300 
301 	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
302 	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
303 	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
304 	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
305 	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
306 	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
307 	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
308 	V_ipport_reservedlow = 0;
309 	V_ipport_randomized = 1;	/* user controlled via sysctl */
310 	V_ipport_randomcps = 10;	/* user controlled via sysctl */
311 	V_ipport_randomtime = 45;	/* user controlled via sysctl */
312 	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
313 
314 	V_fw_one_pass = 1;
315 
316 #ifdef NOTYET
317 	/* XXX global static but not instantiated in this file */
318 	V_ipfastforward_active = 0;
319 	V_subnetsarelocal = 0;
320 	V_sameprefixcarponly = 0;
321 #endif
322 
323 	TAILQ_INIT(&V_in_ifaddrhead);
324 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
325 
326 	/* Initialize IP reassembly queue. */
327 	for (i = 0; i < IPREASS_NHASH; i++)
328 		TAILQ_INIT(&V_ipq[i]);
329 	V_maxnipq = nmbclusters / 32;
330 	V_maxfragsperpacket = 16;
331 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
332 	    NULL, UMA_ALIGN_PTR, 0);
333 	maxnipq_update();
334 
335 	/* Skip initialization of globals for non-default instances. */
336 	if (!IS_DEFAULT_VNET(curvnet))
337 		return;
338 
339 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
340 	if (pr == NULL)
341 		panic("ip_init: PF_INET not found");
342 
343 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
344 	for (i = 0; i < IPPROTO_MAX; i++)
345 		ip_protox[i] = pr - inetsw;
346 	/*
347 	 * Cycle through IP protocols and put them into the appropriate place
348 	 * in ip_protox[].
349 	 */
350 	for (pr = inetdomain.dom_protosw;
351 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
352 		if (pr->pr_domain->dom_family == PF_INET &&
353 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
354 			/* Be careful to only index valid IP protocols. */
355 			if (pr->pr_protocol < IPPROTO_MAX)
356 				ip_protox[pr->pr_protocol] = pr - inetsw;
357 		}
358 
359 	/* Initialize packet filter hooks. */
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
363 		printf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 
366 	/* Start ipport_tick. */
367 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
368 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
369 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
370 		SHUTDOWN_PRI_DEFAULT);
371 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
372 		NULL, EVENTHANDLER_PRI_ANY);
373 
374 	/* Initialize various other remaining things. */
375 	IPQ_LOCK_INIT();
376 	netisr_register(&ip_nh);
377 	ip_ft = flowtable_alloc(ip_output_flowtable_size, FL_PCPU);
378 }
379 
380 void
381 ip_fini(void *xtp)
382 {
383 
384 	callout_stop(&ipport_tick_callout);
385 }
386 
387 /*
388  * Ip input routine.  Checksum and byte swap header.  If fragmented
389  * try to reassemble.  Process options.  Pass to next level.
390  */
391 void
392 ip_input(struct mbuf *m)
393 {
394 	INIT_VNET_INET(curvnet);
395 	struct ip *ip = NULL;
396 	struct in_ifaddr *ia = NULL;
397 	struct ifaddr *ifa;
398 	struct ifnet *ifp;
399 	int    checkif, hlen = 0;
400 	u_short sum;
401 	int dchg = 0;				/* dest changed after fw */
402 	struct in_addr odst;			/* original dst address */
403 
404 	M_ASSERTPKTHDR(m);
405 
406 	if (m->m_flags & M_FASTFWD_OURS) {
407 		/*
408 		 * Firewall or NAT changed destination to local.
409 		 * We expect ip_len and ip_off to be in host byte order.
410 		 */
411 		m->m_flags &= ~M_FASTFWD_OURS;
412 		/* Set up some basics that will be used later. */
413 		ip = mtod(m, struct ip *);
414 		hlen = ip->ip_hl << 2;
415 		goto ours;
416 	}
417 
418 	IPSTAT_INC(ips_total);
419 
420 	if (m->m_pkthdr.len < sizeof(struct ip))
421 		goto tooshort;
422 
423 	if (m->m_len < sizeof (struct ip) &&
424 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
425 		IPSTAT_INC(ips_toosmall);
426 		return;
427 	}
428 	ip = mtod(m, struct ip *);
429 
430 	if (ip->ip_v != IPVERSION) {
431 		IPSTAT_INC(ips_badvers);
432 		goto bad;
433 	}
434 
435 	hlen = ip->ip_hl << 2;
436 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
437 		IPSTAT_INC(ips_badhlen);
438 		goto bad;
439 	}
440 	if (hlen > m->m_len) {
441 		if ((m = m_pullup(m, hlen)) == NULL) {
442 			IPSTAT_INC(ips_badhlen);
443 			return;
444 		}
445 		ip = mtod(m, struct ip *);
446 	}
447 
448 	/* 127/8 must not appear on wire - RFC1122 */
449 	ifp = m->m_pkthdr.rcvif;
450 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
451 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
452 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
453 			IPSTAT_INC(ips_badaddr);
454 			goto bad;
455 		}
456 	}
457 
458 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
459 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
460 	} else {
461 		if (hlen == sizeof(struct ip)) {
462 			sum = in_cksum_hdr(ip);
463 		} else {
464 			sum = in_cksum(m, hlen);
465 		}
466 	}
467 	if (sum) {
468 		IPSTAT_INC(ips_badsum);
469 		goto bad;
470 	}
471 
472 #ifdef ALTQ
473 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
474 		/* packet is dropped by traffic conditioner */
475 		return;
476 #endif
477 
478 	/*
479 	 * Convert fields to host representation.
480 	 */
481 	ip->ip_len = ntohs(ip->ip_len);
482 	if (ip->ip_len < hlen) {
483 		IPSTAT_INC(ips_badlen);
484 		goto bad;
485 	}
486 	ip->ip_off = ntohs(ip->ip_off);
487 
488 	/*
489 	 * Check that the amount of data in the buffers
490 	 * is as at least much as the IP header would have us expect.
491 	 * Trim mbufs if longer than we expect.
492 	 * Drop packet if shorter than we expect.
493 	 */
494 	if (m->m_pkthdr.len < ip->ip_len) {
495 tooshort:
496 		IPSTAT_INC(ips_tooshort);
497 		goto bad;
498 	}
499 	if (m->m_pkthdr.len > ip->ip_len) {
500 		if (m->m_len == m->m_pkthdr.len) {
501 			m->m_len = ip->ip_len;
502 			m->m_pkthdr.len = ip->ip_len;
503 		} else
504 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
505 	}
506 #ifdef IPSEC
507 	/*
508 	 * Bypass packet filtering for packets from a tunnel (gif).
509 	 */
510 	if (ip_ipsec_filtertunnel(m))
511 		goto passin;
512 #endif /* IPSEC */
513 
514 	/*
515 	 * Run through list of hooks for input packets.
516 	 *
517 	 * NB: Beware of the destination address changing (e.g.
518 	 *     by NAT rewriting).  When this happens, tell
519 	 *     ip_forward to do the right thing.
520 	 */
521 
522 	/* Jump over all PFIL processing if hooks are not active. */
523 	if (!PFIL_HOOKED(&inet_pfil_hook))
524 		goto passin;
525 
526 	odst = ip->ip_dst;
527 	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
528 		return;
529 	if (m == NULL)			/* consumed by filter */
530 		return;
531 
532 	ip = mtod(m, struct ip *);
533 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
534 	ifp = m->m_pkthdr.rcvif;
535 
536 #ifdef IPFIREWALL_FORWARD
537 	if (m->m_flags & M_FASTFWD_OURS) {
538 		m->m_flags &= ~M_FASTFWD_OURS;
539 		goto ours;
540 	}
541 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
542 		/*
543 		 * Directly ship on the packet.  This allows to forward packets
544 		 * that were destined for us to some other directly connected
545 		 * host.
546 		 */
547 		ip_forward(m, dchg);
548 		return;
549 	}
550 #endif /* IPFIREWALL_FORWARD */
551 
552 passin:
553 	/*
554 	 * Process options and, if not destined for us,
555 	 * ship it on.  ip_dooptions returns 1 when an
556 	 * error was detected (causing an icmp message
557 	 * to be sent and the original packet to be freed).
558 	 */
559 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
560 		return;
561 
562         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
563          * matter if it is destined to another node, or whether it is
564          * a multicast one, RSVP wants it! and prevents it from being forwarded
565          * anywhere else. Also checks if the rsvp daemon is running before
566 	 * grabbing the packet.
567          */
568 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
569 		goto ours;
570 
571 	/*
572 	 * Check our list of addresses, to see if the packet is for us.
573 	 * If we don't have any addresses, assume any unicast packet
574 	 * we receive might be for us (and let the upper layers deal
575 	 * with it).
576 	 */
577 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
578 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
579 		goto ours;
580 
581 	/*
582 	 * Enable a consistency check between the destination address
583 	 * and the arrival interface for a unicast packet (the RFC 1122
584 	 * strong ES model) if IP forwarding is disabled and the packet
585 	 * is not locally generated and the packet is not subject to
586 	 * 'ipfw fwd'.
587 	 *
588 	 * XXX - Checking also should be disabled if the destination
589 	 * address is ipnat'ed to a different interface.
590 	 *
591 	 * XXX - Checking is incompatible with IP aliases added
592 	 * to the loopback interface instead of the interface where
593 	 * the packets are received.
594 	 *
595 	 * XXX - This is the case for carp vhost IPs as well so we
596 	 * insert a workaround. If the packet got here, we already
597 	 * checked with carp_iamatch() and carp_forus().
598 	 */
599 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
600 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
601 #ifdef DEV_CARP
602 	    !ifp->if_carp &&
603 #endif
604 	    (dchg == 0);
605 
606 	/*
607 	 * Check for exact addresses in the hash bucket.
608 	 */
609 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
610 		/*
611 		 * If the address matches, verify that the packet
612 		 * arrived via the correct interface if checking is
613 		 * enabled.
614 		 */
615 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
616 		    (!checkif || ia->ia_ifp == ifp))
617 			goto ours;
618 	}
619 	/*
620 	 * Check for broadcast addresses.
621 	 *
622 	 * Only accept broadcast packets that arrive via the matching
623 	 * interface.  Reception of forwarded directed broadcasts would
624 	 * be handled via ip_forward() and ether_output() with the loopback
625 	 * into the stack for SIMPLEX interfaces handled by ether_output().
626 	 */
627 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
628 		IF_ADDR_LOCK(ifp);
629 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
630 			if (ifa->ifa_addr->sa_family != AF_INET)
631 				continue;
632 			ia = ifatoia(ifa);
633 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
634 			    ip->ip_dst.s_addr) {
635 				IF_ADDR_UNLOCK(ifp);
636 				goto ours;
637 			}
638 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
639 				IF_ADDR_UNLOCK(ifp);
640 				goto ours;
641 			}
642 #ifdef BOOTP_COMPAT
643 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
644 				IF_ADDR_UNLOCK(ifp);
645 				goto ours;
646 			}
647 #endif
648 		}
649 		IF_ADDR_UNLOCK(ifp);
650 	}
651 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
652 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
653 		IPSTAT_INC(ips_cantforward);
654 		m_freem(m);
655 		return;
656 	}
657 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
658 		if (V_ip_mrouter) {
659 			/*
660 			 * If we are acting as a multicast router, all
661 			 * incoming multicast packets are passed to the
662 			 * kernel-level multicast forwarding function.
663 			 * The packet is returned (relatively) intact; if
664 			 * ip_mforward() returns a non-zero value, the packet
665 			 * must be discarded, else it may be accepted below.
666 			 */
667 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
668 				IPSTAT_INC(ips_cantforward);
669 				m_freem(m);
670 				return;
671 			}
672 
673 			/*
674 			 * The process-level routing daemon needs to receive
675 			 * all multicast IGMP packets, whether or not this
676 			 * host belongs to their destination groups.
677 			 */
678 			if (ip->ip_p == IPPROTO_IGMP)
679 				goto ours;
680 			IPSTAT_INC(ips_forward);
681 		}
682 		/*
683 		 * Assume the packet is for us, to avoid prematurely taking
684 		 * a lock on the in_multi hash. Protocols must perform
685 		 * their own filtering and update statistics accordingly.
686 		 */
687 		goto ours;
688 	}
689 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
690 		goto ours;
691 	if (ip->ip_dst.s_addr == INADDR_ANY)
692 		goto ours;
693 
694 	/*
695 	 * FAITH(Firewall Aided Internet Translator)
696 	 */
697 	if (ifp && ifp->if_type == IFT_FAITH) {
698 		if (V_ip_keepfaith) {
699 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
700 				goto ours;
701 		}
702 		m_freem(m);
703 		return;
704 	}
705 
706 	/*
707 	 * Not for us; forward if possible and desirable.
708 	 */
709 	if (V_ipforwarding == 0) {
710 		IPSTAT_INC(ips_cantforward);
711 		m_freem(m);
712 	} else {
713 #ifdef IPSEC
714 		if (ip_ipsec_fwd(m))
715 			goto bad;
716 #endif /* IPSEC */
717 		ip_forward(m, dchg);
718 	}
719 	return;
720 
721 ours:
722 #ifdef IPSTEALTH
723 	/*
724 	 * IPSTEALTH: Process non-routing options only
725 	 * if the packet is destined for us.
726 	 */
727 	if (V_ipstealth && hlen > sizeof (struct ip) &&
728 	    ip_dooptions(m, 1))
729 		return;
730 #endif /* IPSTEALTH */
731 
732 	/* Count the packet in the ip address stats */
733 	if (ia != NULL) {
734 		ia->ia_ifa.if_ipackets++;
735 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
736 	}
737 
738 	/*
739 	 * Attempt reassembly; if it succeeds, proceed.
740 	 * ip_reass() will return a different mbuf.
741 	 */
742 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
743 		m = ip_reass(m);
744 		if (m == NULL)
745 			return;
746 		ip = mtod(m, struct ip *);
747 		/* Get the header length of the reassembled packet */
748 		hlen = ip->ip_hl << 2;
749 	}
750 
751 	/*
752 	 * Further protocols expect the packet length to be w/o the
753 	 * IP header.
754 	 */
755 	ip->ip_len -= hlen;
756 
757 #ifdef IPSEC
758 	/*
759 	 * enforce IPsec policy checking if we are seeing last header.
760 	 * note that we do not visit this with protocols with pcb layer
761 	 * code - like udp/tcp/raw ip.
762 	 */
763 	if (ip_ipsec_input(m))
764 		goto bad;
765 #endif /* IPSEC */
766 
767 	/*
768 	 * Switch out to protocol's input routine.
769 	 */
770 	IPSTAT_INC(ips_delivered);
771 
772 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
773 	return;
774 bad:
775 	m_freem(m);
776 }
777 
778 /*
779  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
780  * max has slightly different semantics than the sysctl, for historical
781  * reasons.
782  */
783 static void
784 maxnipq_update(void)
785 {
786 	INIT_VNET_INET(curvnet);
787 
788 	/*
789 	 * -1 for unlimited allocation.
790 	 */
791 	if (V_maxnipq < 0)
792 		uma_zone_set_max(V_ipq_zone, 0);
793 	/*
794 	 * Positive number for specific bound.
795 	 */
796 	if (V_maxnipq > 0)
797 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
798 	/*
799 	 * Zero specifies no further fragment queue allocation -- set the
800 	 * bound very low, but rely on implementation elsewhere to actually
801 	 * prevent allocation and reclaim current queues.
802 	 */
803 	if (V_maxnipq == 0)
804 		uma_zone_set_max(V_ipq_zone, 1);
805 }
806 
807 static void
808 ipq_zone_change(void *tag)
809 {
810 	INIT_VNET_INET(curvnet);
811 
812 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
813 		V_maxnipq = nmbclusters / 32;
814 		maxnipq_update();
815 	}
816 }
817 
818 static int
819 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
820 {
821 	INIT_VNET_INET(curvnet);
822 	int error, i;
823 
824 	i = V_maxnipq;
825 	error = sysctl_handle_int(oidp, &i, 0, req);
826 	if (error || !req->newptr)
827 		return (error);
828 
829 	/*
830 	 * XXXRW: Might be a good idea to sanity check the argument and place
831 	 * an extreme upper bound.
832 	 */
833 	if (i < -1)
834 		return (EINVAL);
835 	V_maxnipq = i;
836 	maxnipq_update();
837 	return (0);
838 }
839 
840 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
841     NULL, 0, sysctl_maxnipq, "I",
842     "Maximum number of IPv4 fragment reassembly queue entries");
843 
844 /*
845  * Take incoming datagram fragment and try to reassemble it into
846  * whole datagram.  If the argument is the first fragment or one
847  * in between the function will return NULL and store the mbuf
848  * in the fragment chain.  If the argument is the last fragment
849  * the packet will be reassembled and the pointer to the new
850  * mbuf returned for further processing.  Only m_tags attached
851  * to the first packet/fragment are preserved.
852  * The IP header is *NOT* adjusted out of iplen.
853  */
854 struct mbuf *
855 ip_reass(struct mbuf *m)
856 {
857 	INIT_VNET_INET(curvnet);
858 	struct ip *ip;
859 	struct mbuf *p, *q, *nq, *t;
860 	struct ipq *fp = NULL;
861 	struct ipqhead *head;
862 	int i, hlen, next;
863 	u_int8_t ecn, ecn0;
864 	u_short hash;
865 
866 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
867 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
868 		IPSTAT_INC(ips_fragments);
869 		IPSTAT_INC(ips_fragdropped);
870 		m_freem(m);
871 		return (NULL);
872 	}
873 
874 	ip = mtod(m, struct ip *);
875 	hlen = ip->ip_hl << 2;
876 
877 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
878 	head = &V_ipq[hash];
879 	IPQ_LOCK();
880 
881 	/*
882 	 * Look for queue of fragments
883 	 * of this datagram.
884 	 */
885 	TAILQ_FOREACH(fp, head, ipq_list)
886 		if (ip->ip_id == fp->ipq_id &&
887 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
888 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
889 #ifdef MAC
890 		    mac_ipq_match(m, fp) &&
891 #endif
892 		    ip->ip_p == fp->ipq_p)
893 			goto found;
894 
895 	fp = NULL;
896 
897 	/*
898 	 * Attempt to trim the number of allocated fragment queues if it
899 	 * exceeds the administrative limit.
900 	 */
901 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
902 		/*
903 		 * drop something from the tail of the current queue
904 		 * before proceeding further
905 		 */
906 		struct ipq *q = TAILQ_LAST(head, ipqhead);
907 		if (q == NULL) {   /* gak */
908 			for (i = 0; i < IPREASS_NHASH; i++) {
909 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
910 				if (r) {
911 					IPSTAT_ADD(ips_fragtimeout,
912 					    r->ipq_nfrags);
913 					ip_freef(&V_ipq[i], r);
914 					break;
915 				}
916 			}
917 		} else {
918 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
919 			ip_freef(head, q);
920 		}
921 	}
922 
923 found:
924 	/*
925 	 * Adjust ip_len to not reflect header,
926 	 * convert offset of this to bytes.
927 	 */
928 	ip->ip_len -= hlen;
929 	if (ip->ip_off & IP_MF) {
930 		/*
931 		 * Make sure that fragments have a data length
932 		 * that's a non-zero multiple of 8 bytes.
933 		 */
934 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
935 			IPSTAT_INC(ips_toosmall); /* XXX */
936 			goto dropfrag;
937 		}
938 		m->m_flags |= M_FRAG;
939 	} else
940 		m->m_flags &= ~M_FRAG;
941 	ip->ip_off <<= 3;
942 
943 
944 	/*
945 	 * Attempt reassembly; if it succeeds, proceed.
946 	 * ip_reass() will return a different mbuf.
947 	 */
948 	IPSTAT_INC(ips_fragments);
949 	m->m_pkthdr.header = ip;
950 
951 	/* Previous ip_reass() started here. */
952 	/*
953 	 * Presence of header sizes in mbufs
954 	 * would confuse code below.
955 	 */
956 	m->m_data += hlen;
957 	m->m_len -= hlen;
958 
959 	/*
960 	 * If first fragment to arrive, create a reassembly queue.
961 	 */
962 	if (fp == NULL) {
963 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
964 		if (fp == NULL)
965 			goto dropfrag;
966 #ifdef MAC
967 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
968 			uma_zfree(V_ipq_zone, fp);
969 			fp = NULL;
970 			goto dropfrag;
971 		}
972 		mac_ipq_create(m, fp);
973 #endif
974 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
975 		V_nipq++;
976 		fp->ipq_nfrags = 1;
977 		fp->ipq_ttl = IPFRAGTTL;
978 		fp->ipq_p = ip->ip_p;
979 		fp->ipq_id = ip->ip_id;
980 		fp->ipq_src = ip->ip_src;
981 		fp->ipq_dst = ip->ip_dst;
982 		fp->ipq_frags = m;
983 		m->m_nextpkt = NULL;
984 		goto done;
985 	} else {
986 		fp->ipq_nfrags++;
987 #ifdef MAC
988 		mac_ipq_update(m, fp);
989 #endif
990 	}
991 
992 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
993 
994 	/*
995 	 * Handle ECN by comparing this segment with the first one;
996 	 * if CE is set, do not lose CE.
997 	 * drop if CE and not-ECT are mixed for the same packet.
998 	 */
999 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1000 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1001 	if (ecn == IPTOS_ECN_CE) {
1002 		if (ecn0 == IPTOS_ECN_NOTECT)
1003 			goto dropfrag;
1004 		if (ecn0 != IPTOS_ECN_CE)
1005 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1006 	}
1007 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1008 		goto dropfrag;
1009 
1010 	/*
1011 	 * Find a segment which begins after this one does.
1012 	 */
1013 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1014 		if (GETIP(q)->ip_off > ip->ip_off)
1015 			break;
1016 
1017 	/*
1018 	 * If there is a preceding segment, it may provide some of
1019 	 * our data already.  If so, drop the data from the incoming
1020 	 * segment.  If it provides all of our data, drop us, otherwise
1021 	 * stick new segment in the proper place.
1022 	 *
1023 	 * If some of the data is dropped from the the preceding
1024 	 * segment, then it's checksum is invalidated.
1025 	 */
1026 	if (p) {
1027 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1028 		if (i > 0) {
1029 			if (i >= ip->ip_len)
1030 				goto dropfrag;
1031 			m_adj(m, i);
1032 			m->m_pkthdr.csum_flags = 0;
1033 			ip->ip_off += i;
1034 			ip->ip_len -= i;
1035 		}
1036 		m->m_nextpkt = p->m_nextpkt;
1037 		p->m_nextpkt = m;
1038 	} else {
1039 		m->m_nextpkt = fp->ipq_frags;
1040 		fp->ipq_frags = m;
1041 	}
1042 
1043 	/*
1044 	 * While we overlap succeeding segments trim them or,
1045 	 * if they are completely covered, dequeue them.
1046 	 */
1047 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1048 	     q = nq) {
1049 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1050 		if (i < GETIP(q)->ip_len) {
1051 			GETIP(q)->ip_len -= i;
1052 			GETIP(q)->ip_off += i;
1053 			m_adj(q, i);
1054 			q->m_pkthdr.csum_flags = 0;
1055 			break;
1056 		}
1057 		nq = q->m_nextpkt;
1058 		m->m_nextpkt = nq;
1059 		IPSTAT_INC(ips_fragdropped);
1060 		fp->ipq_nfrags--;
1061 		m_freem(q);
1062 	}
1063 
1064 	/*
1065 	 * Check for complete reassembly and perform frag per packet
1066 	 * limiting.
1067 	 *
1068 	 * Frag limiting is performed here so that the nth frag has
1069 	 * a chance to complete the packet before we drop the packet.
1070 	 * As a result, n+1 frags are actually allowed per packet, but
1071 	 * only n will ever be stored. (n = maxfragsperpacket.)
1072 	 *
1073 	 */
1074 	next = 0;
1075 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1076 		if (GETIP(q)->ip_off != next) {
1077 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1078 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1079 				ip_freef(head, fp);
1080 			}
1081 			goto done;
1082 		}
1083 		next += GETIP(q)->ip_len;
1084 	}
1085 	/* Make sure the last packet didn't have the IP_MF flag */
1086 	if (p->m_flags & M_FRAG) {
1087 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1088 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1089 			ip_freef(head, fp);
1090 		}
1091 		goto done;
1092 	}
1093 
1094 	/*
1095 	 * Reassembly is complete.  Make sure the packet is a sane size.
1096 	 */
1097 	q = fp->ipq_frags;
1098 	ip = GETIP(q);
1099 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1100 		IPSTAT_INC(ips_toolong);
1101 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1102 		ip_freef(head, fp);
1103 		goto done;
1104 	}
1105 
1106 	/*
1107 	 * Concatenate fragments.
1108 	 */
1109 	m = q;
1110 	t = m->m_next;
1111 	m->m_next = NULL;
1112 	m_cat(m, t);
1113 	nq = q->m_nextpkt;
1114 	q->m_nextpkt = NULL;
1115 	for (q = nq; q != NULL; q = nq) {
1116 		nq = q->m_nextpkt;
1117 		q->m_nextpkt = NULL;
1118 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1119 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1120 		m_cat(m, q);
1121 	}
1122 	/*
1123 	 * In order to do checksumming faster we do 'end-around carry' here
1124 	 * (and not in for{} loop), though it implies we are not going to
1125 	 * reassemble more than 64k fragments.
1126 	 */
1127 	m->m_pkthdr.csum_data =
1128 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1129 #ifdef MAC
1130 	mac_ipq_reassemble(fp, m);
1131 	mac_ipq_destroy(fp);
1132 #endif
1133 
1134 	/*
1135 	 * Create header for new ip packet by modifying header of first
1136 	 * packet;  dequeue and discard fragment reassembly header.
1137 	 * Make header visible.
1138 	 */
1139 	ip->ip_len = (ip->ip_hl << 2) + next;
1140 	ip->ip_src = fp->ipq_src;
1141 	ip->ip_dst = fp->ipq_dst;
1142 	TAILQ_REMOVE(head, fp, ipq_list);
1143 	V_nipq--;
1144 	uma_zfree(V_ipq_zone, fp);
1145 	m->m_len += (ip->ip_hl << 2);
1146 	m->m_data -= (ip->ip_hl << 2);
1147 	/* some debugging cruft by sklower, below, will go away soon */
1148 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1149 		m_fixhdr(m);
1150 	IPSTAT_INC(ips_reassembled);
1151 	IPQ_UNLOCK();
1152 	return (m);
1153 
1154 dropfrag:
1155 	IPSTAT_INC(ips_fragdropped);
1156 	if (fp != NULL)
1157 		fp->ipq_nfrags--;
1158 	m_freem(m);
1159 done:
1160 	IPQ_UNLOCK();
1161 	return (NULL);
1162 
1163 #undef GETIP
1164 }
1165 
1166 /*
1167  * Free a fragment reassembly header and all
1168  * associated datagrams.
1169  */
1170 static void
1171 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1172 {
1173 	INIT_VNET_INET(curvnet);
1174 	struct mbuf *q;
1175 
1176 	IPQ_LOCK_ASSERT();
1177 
1178 	while (fp->ipq_frags) {
1179 		q = fp->ipq_frags;
1180 		fp->ipq_frags = q->m_nextpkt;
1181 		m_freem(q);
1182 	}
1183 	TAILQ_REMOVE(fhp, fp, ipq_list);
1184 	uma_zfree(V_ipq_zone, fp);
1185 	V_nipq--;
1186 }
1187 
1188 /*
1189  * IP timer processing;
1190  * if a timer expires on a reassembly
1191  * queue, discard it.
1192  */
1193 void
1194 ip_slowtimo(void)
1195 {
1196 	VNET_ITERATOR_DECL(vnet_iter);
1197 	struct ipq *fp;
1198 	int i;
1199 
1200 	IPQ_LOCK();
1201 	VNET_LIST_RLOCK();
1202 	VNET_FOREACH(vnet_iter) {
1203 		CURVNET_SET(vnet_iter);
1204 		INIT_VNET_INET(vnet_iter);
1205 		for (i = 0; i < IPREASS_NHASH; i++) {
1206 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1207 				struct ipq *fpp;
1208 
1209 				fpp = fp;
1210 				fp = TAILQ_NEXT(fp, ipq_list);
1211 				if(--fpp->ipq_ttl == 0) {
1212 					IPSTAT_ADD(ips_fragtimeout,
1213 					    fpp->ipq_nfrags);
1214 					ip_freef(&V_ipq[i], fpp);
1215 				}
1216 			}
1217 		}
1218 		/*
1219 		 * If we are over the maximum number of fragments
1220 		 * (due to the limit being lowered), drain off
1221 		 * enough to get down to the new limit.
1222 		 */
1223 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1224 			for (i = 0; i < IPREASS_NHASH; i++) {
1225 				while (V_nipq > V_maxnipq &&
1226 				    !TAILQ_EMPTY(&V_ipq[i])) {
1227 					IPSTAT_ADD(ips_fragdropped,
1228 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1229 					ip_freef(&V_ipq[i],
1230 					    TAILQ_FIRST(&V_ipq[i]));
1231 				}
1232 			}
1233 		}
1234 		CURVNET_RESTORE();
1235 	}
1236 	VNET_LIST_RUNLOCK();
1237 	IPQ_UNLOCK();
1238 }
1239 
1240 /*
1241  * Drain off all datagram fragments.
1242  */
1243 void
1244 ip_drain(void)
1245 {
1246 	VNET_ITERATOR_DECL(vnet_iter);
1247 	int     i;
1248 
1249 	IPQ_LOCK();
1250 	VNET_LIST_RLOCK();
1251 	VNET_FOREACH(vnet_iter) {
1252 		CURVNET_SET(vnet_iter);
1253 		INIT_VNET_INET(vnet_iter);
1254 		for (i = 0; i < IPREASS_NHASH; i++) {
1255 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1256 				IPSTAT_ADD(ips_fragdropped,
1257 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1258 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1259 			}
1260 		}
1261 		CURVNET_RESTORE();
1262 	}
1263 	VNET_LIST_RUNLOCK();
1264 	IPQ_UNLOCK();
1265 	in_rtqdrain();
1266 }
1267 
1268 /*
1269  * The protocol to be inserted into ip_protox[] must be already registered
1270  * in inetsw[], either statically or through pf_proto_register().
1271  */
1272 int
1273 ipproto_register(u_char ipproto)
1274 {
1275 	struct protosw *pr;
1276 
1277 	/* Sanity checks. */
1278 	if (ipproto == 0)
1279 		return (EPROTONOSUPPORT);
1280 
1281 	/*
1282 	 * The protocol slot must not be occupied by another protocol
1283 	 * already.  An index pointing to IPPROTO_RAW is unused.
1284 	 */
1285 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1286 	if (pr == NULL)
1287 		return (EPFNOSUPPORT);
1288 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1289 		return (EEXIST);
1290 
1291 	/* Find the protocol position in inetsw[] and set the index. */
1292 	for (pr = inetdomain.dom_protosw;
1293 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1294 		if (pr->pr_domain->dom_family == PF_INET &&
1295 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1296 			/* Be careful to only index valid IP protocols. */
1297 			if (pr->pr_protocol < IPPROTO_MAX) {
1298 				ip_protox[pr->pr_protocol] = pr - inetsw;
1299 				return (0);
1300 			} else
1301 				return (EINVAL);
1302 		}
1303 	}
1304 	return (EPROTONOSUPPORT);
1305 }
1306 
1307 int
1308 ipproto_unregister(u_char ipproto)
1309 {
1310 	struct protosw *pr;
1311 
1312 	/* Sanity checks. */
1313 	if (ipproto == 0)
1314 		return (EPROTONOSUPPORT);
1315 
1316 	/* Check if the protocol was indeed registered. */
1317 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1318 	if (pr == NULL)
1319 		return (EPFNOSUPPORT);
1320 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1321 		return (ENOENT);
1322 
1323 	/* Reset the protocol slot to IPPROTO_RAW. */
1324 	ip_protox[ipproto] = pr - inetsw;
1325 	return (0);
1326 }
1327 
1328 /*
1329  * Given address of next destination (final or next hop),
1330  * return internet address info of interface to be used to get there.
1331  */
1332 struct in_ifaddr *
1333 ip_rtaddr(struct in_addr dst, u_int fibnum)
1334 {
1335 	struct route sro;
1336 	struct sockaddr_in *sin;
1337 	struct in_ifaddr *ifa;
1338 
1339 	bzero(&sro, sizeof(sro));
1340 	sin = (struct sockaddr_in *)&sro.ro_dst;
1341 	sin->sin_family = AF_INET;
1342 	sin->sin_len = sizeof(*sin);
1343 	sin->sin_addr = dst;
1344 	in_rtalloc_ign(&sro, 0, fibnum);
1345 
1346 	if (sro.ro_rt == NULL)
1347 		return (NULL);
1348 
1349 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1350 	RTFREE(sro.ro_rt);
1351 	return (ifa);
1352 }
1353 
1354 u_char inetctlerrmap[PRC_NCMDS] = {
1355 	0,		0,		0,		0,
1356 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1357 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1358 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1359 	0,		0,		EHOSTUNREACH,	0,
1360 	ENOPROTOOPT,	ECONNREFUSED
1361 };
1362 
1363 /*
1364  * Forward a packet.  If some error occurs return the sender
1365  * an icmp packet.  Note we can't always generate a meaningful
1366  * icmp message because icmp doesn't have a large enough repertoire
1367  * of codes and types.
1368  *
1369  * If not forwarding, just drop the packet.  This could be confusing
1370  * if ipforwarding was zero but some routing protocol was advancing
1371  * us as a gateway to somewhere.  However, we must let the routing
1372  * protocol deal with that.
1373  *
1374  * The srcrt parameter indicates whether the packet is being forwarded
1375  * via a source route.
1376  */
1377 void
1378 ip_forward(struct mbuf *m, int srcrt)
1379 {
1380 	INIT_VNET_INET(curvnet);
1381 	struct ip *ip = mtod(m, struct ip *);
1382 	struct in_ifaddr *ia;
1383 	struct mbuf *mcopy;
1384 	struct in_addr dest;
1385 	struct route ro;
1386 	int error, type = 0, code = 0, mtu = 0;
1387 
1388 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1389 		IPSTAT_INC(ips_cantforward);
1390 		m_freem(m);
1391 		return;
1392 	}
1393 #ifdef IPSTEALTH
1394 	if (!V_ipstealth) {
1395 #endif
1396 		if (ip->ip_ttl <= IPTTLDEC) {
1397 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1398 			    0, 0);
1399 			return;
1400 		}
1401 #ifdef IPSTEALTH
1402 	}
1403 #endif
1404 
1405 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1406 #ifndef IPSEC
1407 	/*
1408 	 * 'ia' may be NULL if there is no route for this destination.
1409 	 * In case of IPsec, Don't discard it just yet, but pass it to
1410 	 * ip_output in case of outgoing IPsec policy.
1411 	 */
1412 	if (!srcrt && ia == NULL) {
1413 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1414 		return;
1415 	}
1416 #endif
1417 
1418 	/*
1419 	 * Save the IP header and at most 8 bytes of the payload,
1420 	 * in case we need to generate an ICMP message to the src.
1421 	 *
1422 	 * XXX this can be optimized a lot by saving the data in a local
1423 	 * buffer on the stack (72 bytes at most), and only allocating the
1424 	 * mbuf if really necessary. The vast majority of the packets
1425 	 * are forwarded without having to send an ICMP back (either
1426 	 * because unnecessary, or because rate limited), so we are
1427 	 * really we are wasting a lot of work here.
1428 	 *
1429 	 * We don't use m_copy() because it might return a reference
1430 	 * to a shared cluster. Both this function and ip_output()
1431 	 * assume exclusive access to the IP header in `m', so any
1432 	 * data in a cluster may change before we reach icmp_error().
1433 	 */
1434 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1435 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1436 		/*
1437 		 * It's probably ok if the pkthdr dup fails (because
1438 		 * the deep copy of the tag chain failed), but for now
1439 		 * be conservative and just discard the copy since
1440 		 * code below may some day want the tags.
1441 		 */
1442 		m_free(mcopy);
1443 		mcopy = NULL;
1444 	}
1445 	if (mcopy != NULL) {
1446 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1447 		mcopy->m_pkthdr.len = mcopy->m_len;
1448 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1449 	}
1450 
1451 #ifdef IPSTEALTH
1452 	if (!V_ipstealth) {
1453 #endif
1454 		ip->ip_ttl -= IPTTLDEC;
1455 #ifdef IPSTEALTH
1456 	}
1457 #endif
1458 
1459 	/*
1460 	 * If forwarding packet using same interface that it came in on,
1461 	 * perhaps should send a redirect to sender to shortcut a hop.
1462 	 * Only send redirect if source is sending directly to us,
1463 	 * and if packet was not source routed (or has any options).
1464 	 * Also, don't send redirect if forwarding using a default route
1465 	 * or a route modified by a redirect.
1466 	 */
1467 	dest.s_addr = 0;
1468 	if (!srcrt && V_ipsendredirects &&
1469 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1470 		struct sockaddr_in *sin;
1471 		struct rtentry *rt;
1472 
1473 		bzero(&ro, sizeof(ro));
1474 		sin = (struct sockaddr_in *)&ro.ro_dst;
1475 		sin->sin_family = AF_INET;
1476 		sin->sin_len = sizeof(*sin);
1477 		sin->sin_addr = ip->ip_dst;
1478 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1479 
1480 		rt = ro.ro_rt;
1481 
1482 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1483 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1484 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1485 			u_long src = ntohl(ip->ip_src.s_addr);
1486 
1487 			if (RTA(rt) &&
1488 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1489 				if (rt->rt_flags & RTF_GATEWAY)
1490 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1491 				else
1492 					dest.s_addr = ip->ip_dst.s_addr;
1493 				/* Router requirements says to only send host redirects */
1494 				type = ICMP_REDIRECT;
1495 				code = ICMP_REDIRECT_HOST;
1496 			}
1497 		}
1498 		if (rt)
1499 			RTFREE(rt);
1500 	}
1501 
1502 	/*
1503 	 * Try to cache the route MTU from ip_output so we can consider it for
1504 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1505 	 */
1506 	bzero(&ro, sizeof(ro));
1507 
1508 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1509 
1510 	if (error == EMSGSIZE && ro.ro_rt)
1511 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1512 	if (ro.ro_rt)
1513 		RTFREE(ro.ro_rt);
1514 
1515 	if (error)
1516 		IPSTAT_INC(ips_cantforward);
1517 	else {
1518 		IPSTAT_INC(ips_forward);
1519 		if (type)
1520 			IPSTAT_INC(ips_redirectsent);
1521 		else {
1522 			if (mcopy)
1523 				m_freem(mcopy);
1524 			return;
1525 		}
1526 	}
1527 	if (mcopy == NULL)
1528 		return;
1529 
1530 	switch (error) {
1531 
1532 	case 0:				/* forwarded, but need redirect */
1533 		/* type, code set above */
1534 		break;
1535 
1536 	case ENETUNREACH:
1537 	case EHOSTUNREACH:
1538 	case ENETDOWN:
1539 	case EHOSTDOWN:
1540 	default:
1541 		type = ICMP_UNREACH;
1542 		code = ICMP_UNREACH_HOST;
1543 		break;
1544 
1545 	case EMSGSIZE:
1546 		type = ICMP_UNREACH;
1547 		code = ICMP_UNREACH_NEEDFRAG;
1548 
1549 #ifdef IPSEC
1550 		/*
1551 		 * If IPsec is configured for this path,
1552 		 * override any possibly mtu value set by ip_output.
1553 		 */
1554 		mtu = ip_ipsec_mtu(m, mtu);
1555 #endif /* IPSEC */
1556 		/*
1557 		 * If the MTU was set before make sure we are below the
1558 		 * interface MTU.
1559 		 * If the MTU wasn't set before use the interface mtu or
1560 		 * fall back to the next smaller mtu step compared to the
1561 		 * current packet size.
1562 		 */
1563 		if (mtu != 0) {
1564 			if (ia != NULL)
1565 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1566 		} else {
1567 			if (ia != NULL)
1568 				mtu = ia->ia_ifp->if_mtu;
1569 			else
1570 				mtu = ip_next_mtu(ip->ip_len, 0);
1571 		}
1572 		IPSTAT_INC(ips_cantfrag);
1573 		break;
1574 
1575 	case ENOBUFS:
1576 		/*
1577 		 * A router should not generate ICMP_SOURCEQUENCH as
1578 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1579 		 * Source quench could be a big problem under DoS attacks,
1580 		 * or if the underlying interface is rate-limited.
1581 		 * Those who need source quench packets may re-enable them
1582 		 * via the net.inet.ip.sendsourcequench sysctl.
1583 		 */
1584 		if (V_ip_sendsourcequench == 0) {
1585 			m_freem(mcopy);
1586 			return;
1587 		} else {
1588 			type = ICMP_SOURCEQUENCH;
1589 			code = 0;
1590 		}
1591 		break;
1592 
1593 	case EACCES:			/* ipfw denied packet */
1594 		m_freem(mcopy);
1595 		return;
1596 	}
1597 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1598 }
1599 
1600 void
1601 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1602     struct mbuf *m)
1603 {
1604 	INIT_VNET_NET(inp->inp_vnet);
1605 
1606 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1607 		struct bintime bt;
1608 
1609 		bintime(&bt);
1610 		if (inp->inp_socket->so_options & SO_BINTIME) {
1611 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1612 			SCM_BINTIME, SOL_SOCKET);
1613 			if (*mp)
1614 				mp = &(*mp)->m_next;
1615 		}
1616 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1617 			struct timeval tv;
1618 
1619 			bintime2timeval(&bt, &tv);
1620 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1621 				SCM_TIMESTAMP, SOL_SOCKET);
1622 			if (*mp)
1623 				mp = &(*mp)->m_next;
1624 		}
1625 	}
1626 	if (inp->inp_flags & INP_RECVDSTADDR) {
1627 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1628 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1629 		if (*mp)
1630 			mp = &(*mp)->m_next;
1631 	}
1632 	if (inp->inp_flags & INP_RECVTTL) {
1633 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1634 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1635 		if (*mp)
1636 			mp = &(*mp)->m_next;
1637 	}
1638 #ifdef notyet
1639 	/* XXX
1640 	 * Moving these out of udp_input() made them even more broken
1641 	 * than they already were.
1642 	 */
1643 	/* options were tossed already */
1644 	if (inp->inp_flags & INP_RECVOPTS) {
1645 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1646 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1647 		if (*mp)
1648 			mp = &(*mp)->m_next;
1649 	}
1650 	/* ip_srcroute doesn't do what we want here, need to fix */
1651 	if (inp->inp_flags & INP_RECVRETOPTS) {
1652 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1653 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1654 		if (*mp)
1655 			mp = &(*mp)->m_next;
1656 	}
1657 #endif
1658 	if (inp->inp_flags & INP_RECVIF) {
1659 		struct ifnet *ifp;
1660 		struct sdlbuf {
1661 			struct sockaddr_dl sdl;
1662 			u_char	pad[32];
1663 		} sdlbuf;
1664 		struct sockaddr_dl *sdp;
1665 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1666 
1667 		if (((ifp = m->m_pkthdr.rcvif))
1668 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1669 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1670 			/*
1671 			 * Change our mind and don't try copy.
1672 			 */
1673 			if ((sdp->sdl_family != AF_LINK)
1674 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1675 				goto makedummy;
1676 			}
1677 			bcopy(sdp, sdl2, sdp->sdl_len);
1678 		} else {
1679 makedummy:
1680 			sdl2->sdl_len
1681 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1682 			sdl2->sdl_family = AF_LINK;
1683 			sdl2->sdl_index = 0;
1684 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1685 		}
1686 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1687 			IP_RECVIF, IPPROTO_IP);
1688 		if (*mp)
1689 			mp = &(*mp)->m_next;
1690 	}
1691 }
1692 
1693 /*
1694  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1695  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1696  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1697  * compiled.
1698  */
1699 int
1700 ip_rsvp_init(struct socket *so)
1701 {
1702 	INIT_VNET_INET(so->so_vnet);
1703 
1704 	if (so->so_type != SOCK_RAW ||
1705 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1706 		return EOPNOTSUPP;
1707 
1708 	if (V_ip_rsvpd != NULL)
1709 		return EADDRINUSE;
1710 
1711 	V_ip_rsvpd = so;
1712 	/*
1713 	 * This may seem silly, but we need to be sure we don't over-increment
1714 	 * the RSVP counter, in case something slips up.
1715 	 */
1716 	if (!V_ip_rsvp_on) {
1717 		V_ip_rsvp_on = 1;
1718 		V_rsvp_on++;
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 int
1725 ip_rsvp_done(void)
1726 {
1727 	INIT_VNET_INET(curvnet);
1728 
1729 	V_ip_rsvpd = NULL;
1730 	/*
1731 	 * This may seem silly, but we need to be sure we don't over-decrement
1732 	 * the RSVP counter, in case something slips up.
1733 	 */
1734 	if (V_ip_rsvp_on) {
1735 		V_ip_rsvp_on = 0;
1736 		V_rsvp_on--;
1737 	}
1738 	return 0;
1739 }
1740 
1741 void
1742 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1743 {
1744 	INIT_VNET_INET(curvnet);
1745 
1746 	if (rsvp_input_p) { /* call the real one if loaded */
1747 		rsvp_input_p(m, off);
1748 		return;
1749 	}
1750 
1751 	/* Can still get packets with rsvp_on = 0 if there is a local member
1752 	 * of the group to which the RSVP packet is addressed.  But in this
1753 	 * case we want to throw the packet away.
1754 	 */
1755 
1756 	if (!V_rsvp_on) {
1757 		m_freem(m);
1758 		return;
1759 	}
1760 
1761 	if (V_ip_rsvpd != NULL) {
1762 		rip_input(m, off);
1763 		return;
1764 	}
1765 	/* Drop the packet */
1766 	m_freem(m);
1767 }
1768