1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/pfil.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_var.h> 64 #include <net/if_dl.h> 65 #include <net/route.h> 66 #include <net/netisr.h> 67 #include <net/rss_config.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_pcb.h> 76 #include <netinet/ip_var.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_options.h> 80 #include <machine/in_cksum.h> 81 #include <netinet/ip_carp.h> 82 #include <netinet/in_rss.h> 83 84 #include <netipsec/ipsec_support.h> 85 86 #include <sys/socketvar.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #ifdef CTASSERT 91 CTASSERT(sizeof(struct ip) == 20); 92 #endif 93 94 /* IP reassembly functions are defined in ip_reass.c. */ 95 extern void ipreass_init(void); 96 extern void ipreass_drain(void); 97 extern void ipreass_slowtimo(void); 98 #ifdef VIMAGE 99 extern void ipreass_destroy(void); 100 #endif 101 102 struct rmlock in_ifaddr_lock; 103 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 VNET_DEFINE_STATIC(int, ipsendredirects) = 1; /* XXX */ 113 #define V_ipsendredirects VNET(ipsendredirects) 114 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 115 &VNET_NAME(ipsendredirects), 0, 116 "Enable sending IP redirects"); 117 118 /* 119 * XXX - Setting ip_checkinterface mostly implements the receive side of 120 * the Strong ES model described in RFC 1122, but since the routing table 121 * and transmit implementation do not implement the Strong ES model, 122 * setting this to 1 results in an odd hybrid. 123 * 124 * XXX - ip_checkinterface currently must be disabled if you use ipnat 125 * to translate the destination address to another local interface. 126 * 127 * XXX - ip_checkinterface must be disabled if you add IP aliases 128 * to the loopback interface instead of the interface where the 129 * packets for those addresses are received. 130 */ 131 VNET_DEFINE_STATIC(int, ip_checkinterface); 132 #define V_ip_checkinterface VNET(ip_checkinterface) 133 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 134 &VNET_NAME(ip_checkinterface), 0, 135 "Verify packet arrives on correct interface"); 136 137 VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */ 138 139 static struct netisr_handler ip_nh = { 140 .nh_name = "ip", 141 .nh_handler = ip_input, 142 .nh_proto = NETISR_IP, 143 #ifdef RSS 144 .nh_m2cpuid = rss_soft_m2cpuid_v4, 145 .nh_policy = NETISR_POLICY_CPU, 146 .nh_dispatch = NETISR_DISPATCH_HYBRID, 147 #else 148 .nh_policy = NETISR_POLICY_FLOW, 149 #endif 150 }; 151 152 #ifdef RSS 153 /* 154 * Directly dispatched frames are currently assumed 155 * to have a flowid already calculated. 156 * 157 * It should likely have something that assert it 158 * actually has valid flow details. 159 */ 160 static struct netisr_handler ip_direct_nh = { 161 .nh_name = "ip_direct", 162 .nh_handler = ip_direct_input, 163 .nh_proto = NETISR_IP_DIRECT, 164 .nh_m2cpuid = rss_soft_m2cpuid_v4, 165 .nh_policy = NETISR_POLICY_CPU, 166 .nh_dispatch = NETISR_DISPATCH_HYBRID, 167 }; 168 #endif 169 170 extern struct domain inetdomain; 171 extern struct protosw inetsw[]; 172 u_char ip_protox[IPPROTO_MAX]; 173 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 174 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 175 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 176 177 #ifdef IPCTL_DEFMTU 178 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 179 &ip_mtu, 0, "Default MTU"); 180 #endif 181 182 #ifdef IPSTEALTH 183 VNET_DEFINE(int, ipstealth); 184 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 185 &VNET_NAME(ipstealth), 0, 186 "IP stealth mode, no TTL decrementation on forwarding"); 187 #endif 188 189 /* 190 * IP statistics are stored in the "array" of counter(9)s. 191 */ 192 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 193 VNET_PCPUSTAT_SYSINIT(ipstat); 194 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 195 "IP statistics (struct ipstat, netinet/ip_var.h)"); 196 197 #ifdef VIMAGE 198 VNET_PCPUSTAT_SYSUNINIT(ipstat); 199 #endif /* VIMAGE */ 200 201 /* 202 * Kernel module interface for updating ipstat. The argument is an index 203 * into ipstat treated as an array. 204 */ 205 void 206 kmod_ipstat_inc(int statnum) 207 { 208 209 counter_u64_add(VNET(ipstat)[statnum], 1); 210 } 211 212 void 213 kmod_ipstat_dec(int statnum) 214 { 215 216 counter_u64_add(VNET(ipstat)[statnum], -1); 217 } 218 219 static int 220 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 221 { 222 int error, qlimit; 223 224 netisr_getqlimit(&ip_nh, &qlimit); 225 error = sysctl_handle_int(oidp, &qlimit, 0, req); 226 if (error || !req->newptr) 227 return (error); 228 if (qlimit < 1) 229 return (EINVAL); 230 return (netisr_setqlimit(&ip_nh, qlimit)); 231 } 232 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 233 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", 234 "Maximum size of the IP input queue"); 235 236 static int 237 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 238 { 239 u_int64_t qdrops_long; 240 int error, qdrops; 241 242 netisr_getqdrops(&ip_nh, &qdrops_long); 243 qdrops = qdrops_long; 244 error = sysctl_handle_int(oidp, &qdrops, 0, req); 245 if (error || !req->newptr) 246 return (error); 247 if (qdrops != 0) 248 return (EINVAL); 249 netisr_clearqdrops(&ip_nh); 250 return (0); 251 } 252 253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 254 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I", 255 "Number of packets dropped from the IP input queue"); 256 257 #ifdef RSS 258 static int 259 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 260 { 261 int error, qlimit; 262 263 netisr_getqlimit(&ip_direct_nh, &qlimit); 264 error = sysctl_handle_int(oidp, &qlimit, 0, req); 265 if (error || !req->newptr) 266 return (error); 267 if (qlimit < 1) 268 return (EINVAL); 269 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 270 } 271 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 272 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 273 "I", "Maximum size of the IP direct input queue"); 274 275 static int 276 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 277 { 278 u_int64_t qdrops_long; 279 int error, qdrops; 280 281 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 282 qdrops = qdrops_long; 283 error = sysctl_handle_int(oidp, &qdrops, 0, req); 284 if (error || !req->newptr) 285 return (error); 286 if (qdrops != 0) 287 return (EINVAL); 288 netisr_clearqdrops(&ip_direct_nh); 289 return (0); 290 } 291 292 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 293 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", 294 "Number of packets dropped from the IP direct input queue"); 295 #endif /* RSS */ 296 297 /* 298 * IP initialization: fill in IP protocol switch table. 299 * All protocols not implemented in kernel go to raw IP protocol handler. 300 */ 301 void 302 ip_init(void) 303 { 304 struct protosw *pr; 305 int i; 306 307 CK_STAILQ_INIT(&V_in_ifaddrhead); 308 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 309 310 /* Initialize IP reassembly queue. */ 311 ipreass_init(); 312 313 /* Initialize packet filter hooks. */ 314 V_inet_pfil_hook.ph_type = PFIL_TYPE_AF; 315 V_inet_pfil_hook.ph_af = AF_INET; 316 if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0) 317 printf("%s: WARNING: unable to register pfil hook, " 318 "error %d\n", __func__, i); 319 320 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 321 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 322 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 323 printf("%s: WARNING: unable to register input helper hook\n", 324 __func__); 325 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 326 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 327 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 328 printf("%s: WARNING: unable to register output helper hook\n", 329 __func__); 330 331 /* Skip initialization of globals for non-default instances. */ 332 #ifdef VIMAGE 333 if (!IS_DEFAULT_VNET(curvnet)) { 334 netisr_register_vnet(&ip_nh); 335 #ifdef RSS 336 netisr_register_vnet(&ip_direct_nh); 337 #endif 338 return; 339 } 340 #endif 341 342 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 343 if (pr == NULL) 344 panic("ip_init: PF_INET not found"); 345 346 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 347 for (i = 0; i < IPPROTO_MAX; i++) 348 ip_protox[i] = pr - inetsw; 349 /* 350 * Cycle through IP protocols and put them into the appropriate place 351 * in ip_protox[]. 352 */ 353 for (pr = inetdomain.dom_protosw; 354 pr < inetdomain.dom_protoswNPROTOSW; pr++) 355 if (pr->pr_domain->dom_family == PF_INET && 356 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 357 /* Be careful to only index valid IP protocols. */ 358 if (pr->pr_protocol < IPPROTO_MAX) 359 ip_protox[pr->pr_protocol] = pr - inetsw; 360 } 361 362 netisr_register(&ip_nh); 363 #ifdef RSS 364 netisr_register(&ip_direct_nh); 365 #endif 366 } 367 368 #ifdef VIMAGE 369 static void 370 ip_destroy(void *unused __unused) 371 { 372 struct ifnet *ifp; 373 int error; 374 375 #ifdef RSS 376 netisr_unregister_vnet(&ip_direct_nh); 377 #endif 378 netisr_unregister_vnet(&ip_nh); 379 380 if ((error = pfil_head_unregister(&V_inet_pfil_hook)) != 0) 381 printf("%s: WARNING: unable to unregister pfil hook, " 382 "error %d\n", __func__, error); 383 384 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 385 if (error != 0) { 386 printf("%s: WARNING: unable to deregister input helper hook " 387 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 388 "error %d returned\n", __func__, error); 389 } 390 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 391 if (error != 0) { 392 printf("%s: WARNING: unable to deregister output helper hook " 393 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 394 "error %d returned\n", __func__, error); 395 } 396 397 /* Remove the IPv4 addresses from all interfaces. */ 398 in_ifscrub_all(); 399 400 /* Make sure the IPv4 routes are gone as well. */ 401 IFNET_RLOCK(); 402 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 403 rt_flushifroutes_af(ifp, AF_INET); 404 IFNET_RUNLOCK(); 405 406 /* Destroy IP reassembly queue. */ 407 ipreass_destroy(); 408 409 /* Cleanup in_ifaddr hash table; should be empty. */ 410 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 411 } 412 413 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 414 #endif 415 416 #ifdef RSS 417 /* 418 * IP direct input routine. 419 * 420 * This is called when reinjecting completed fragments where 421 * all of the previous checking and book-keeping has been done. 422 */ 423 void 424 ip_direct_input(struct mbuf *m) 425 { 426 struct ip *ip; 427 int hlen; 428 429 ip = mtod(m, struct ip *); 430 hlen = ip->ip_hl << 2; 431 432 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 433 if (IPSEC_ENABLED(ipv4)) { 434 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 435 return; 436 } 437 #endif /* IPSEC */ 438 IPSTAT_INC(ips_delivered); 439 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 440 return; 441 } 442 #endif 443 444 /* 445 * Ip input routine. Checksum and byte swap header. If fragmented 446 * try to reassemble. Process options. Pass to next level. 447 */ 448 void 449 ip_input(struct mbuf *m) 450 { 451 struct ip *ip = NULL; 452 struct in_ifaddr *ia = NULL; 453 struct ifaddr *ifa; 454 struct ifnet *ifp; 455 int checkif, hlen = 0; 456 uint16_t sum, ip_len; 457 int dchg = 0; /* dest changed after fw */ 458 struct in_addr odst; /* original dst address */ 459 460 M_ASSERTPKTHDR(m); 461 462 if (m->m_flags & M_FASTFWD_OURS) { 463 m->m_flags &= ~M_FASTFWD_OURS; 464 /* Set up some basics that will be used later. */ 465 ip = mtod(m, struct ip *); 466 hlen = ip->ip_hl << 2; 467 ip_len = ntohs(ip->ip_len); 468 goto ours; 469 } 470 471 IPSTAT_INC(ips_total); 472 473 if (m->m_pkthdr.len < sizeof(struct ip)) 474 goto tooshort; 475 476 if (m->m_len < sizeof (struct ip) && 477 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 478 IPSTAT_INC(ips_toosmall); 479 return; 480 } 481 ip = mtod(m, struct ip *); 482 483 if (ip->ip_v != IPVERSION) { 484 IPSTAT_INC(ips_badvers); 485 goto bad; 486 } 487 488 hlen = ip->ip_hl << 2; 489 if (hlen < sizeof(struct ip)) { /* minimum header length */ 490 IPSTAT_INC(ips_badhlen); 491 goto bad; 492 } 493 if (hlen > m->m_len) { 494 if ((m = m_pullup(m, hlen)) == NULL) { 495 IPSTAT_INC(ips_badhlen); 496 return; 497 } 498 ip = mtod(m, struct ip *); 499 } 500 501 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 502 503 /* 127/8 must not appear on wire - RFC1122 */ 504 ifp = m->m_pkthdr.rcvif; 505 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 506 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 507 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 508 IPSTAT_INC(ips_badaddr); 509 goto bad; 510 } 511 } 512 513 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 514 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 515 } else { 516 if (hlen == sizeof(struct ip)) { 517 sum = in_cksum_hdr(ip); 518 } else { 519 sum = in_cksum(m, hlen); 520 } 521 } 522 if (sum) { 523 IPSTAT_INC(ips_badsum); 524 goto bad; 525 } 526 527 #ifdef ALTQ 528 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 529 /* packet is dropped by traffic conditioner */ 530 return; 531 #endif 532 533 ip_len = ntohs(ip->ip_len); 534 if (ip_len < hlen) { 535 IPSTAT_INC(ips_badlen); 536 goto bad; 537 } 538 539 /* 540 * Check that the amount of data in the buffers 541 * is as at least much as the IP header would have us expect. 542 * Trim mbufs if longer than we expect. 543 * Drop packet if shorter than we expect. 544 */ 545 if (m->m_pkthdr.len < ip_len) { 546 tooshort: 547 IPSTAT_INC(ips_tooshort); 548 goto bad; 549 } 550 if (m->m_pkthdr.len > ip_len) { 551 if (m->m_len == m->m_pkthdr.len) { 552 m->m_len = ip_len; 553 m->m_pkthdr.len = ip_len; 554 } else 555 m_adj(m, ip_len - m->m_pkthdr.len); 556 } 557 558 /* 559 * Try to forward the packet, but if we fail continue. 560 * ip_tryforward() does not generate redirects, so fall 561 * through to normal processing if redirects are required. 562 * ip_tryforward() does inbound and outbound packet firewall 563 * processing. If firewall has decided that destination becomes 564 * our local address, it sets M_FASTFWD_OURS flag. In this 565 * case skip another inbound firewall processing and update 566 * ip pointer. 567 */ 568 if (V_ipforwarding != 0 && V_ipsendredirects == 0 569 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 570 && (!IPSEC_ENABLED(ipv4) || 571 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 572 #endif 573 ) { 574 if ((m = ip_tryforward(m)) == NULL) 575 return; 576 if (m->m_flags & M_FASTFWD_OURS) { 577 m->m_flags &= ~M_FASTFWD_OURS; 578 ip = mtod(m, struct ip *); 579 goto ours; 580 } 581 } 582 583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 584 /* 585 * Bypass packet filtering for packets previously handled by IPsec. 586 */ 587 if (IPSEC_ENABLED(ipv4) && 588 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 589 goto passin; 590 #endif 591 592 /* 593 * Run through list of hooks for input packets. 594 * 595 * NB: Beware of the destination address changing (e.g. 596 * by NAT rewriting). When this happens, tell 597 * ip_forward to do the right thing. 598 */ 599 600 /* Jump over all PFIL processing if hooks are not active. */ 601 if (!PFIL_HOOKED(&V_inet_pfil_hook)) 602 goto passin; 603 604 odst = ip->ip_dst; 605 if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, 0, NULL) != 0) 606 return; 607 if (m == NULL) /* consumed by filter */ 608 return; 609 610 ip = mtod(m, struct ip *); 611 dchg = (odst.s_addr != ip->ip_dst.s_addr); 612 ifp = m->m_pkthdr.rcvif; 613 614 if (m->m_flags & M_FASTFWD_OURS) { 615 m->m_flags &= ~M_FASTFWD_OURS; 616 goto ours; 617 } 618 if (m->m_flags & M_IP_NEXTHOP) { 619 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 620 /* 621 * Directly ship the packet on. This allows 622 * forwarding packets originally destined to us 623 * to some other directly connected host. 624 */ 625 ip_forward(m, 1); 626 return; 627 } 628 } 629 passin: 630 631 /* 632 * Process options and, if not destined for us, 633 * ship it on. ip_dooptions returns 1 when an 634 * error was detected (causing an icmp message 635 * to be sent and the original packet to be freed). 636 */ 637 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 638 return; 639 640 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 641 * matter if it is destined to another node, or whether it is 642 * a multicast one, RSVP wants it! and prevents it from being forwarded 643 * anywhere else. Also checks if the rsvp daemon is running before 644 * grabbing the packet. 645 */ 646 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 647 goto ours; 648 649 /* 650 * Check our list of addresses, to see if the packet is for us. 651 * If we don't have any addresses, assume any unicast packet 652 * we receive might be for us (and let the upper layers deal 653 * with it). 654 */ 655 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 656 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 657 goto ours; 658 659 /* 660 * Enable a consistency check between the destination address 661 * and the arrival interface for a unicast packet (the RFC 1122 662 * strong ES model) if IP forwarding is disabled and the packet 663 * is not locally generated and the packet is not subject to 664 * 'ipfw fwd'. 665 * 666 * XXX - Checking also should be disabled if the destination 667 * address is ipnat'ed to a different interface. 668 * 669 * XXX - Checking is incompatible with IP aliases added 670 * to the loopback interface instead of the interface where 671 * the packets are received. 672 * 673 * XXX - This is the case for carp vhost IPs as well so we 674 * insert a workaround. If the packet got here, we already 675 * checked with carp_iamatch() and carp_forus(). 676 */ 677 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 678 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 679 ifp->if_carp == NULL && (dchg == 0); 680 681 /* 682 * Check for exact addresses in the hash bucket. 683 */ 684 /* IN_IFADDR_RLOCK(); */ 685 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 686 /* 687 * If the address matches, verify that the packet 688 * arrived via the correct interface if checking is 689 * enabled. 690 */ 691 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 692 (!checkif || ia->ia_ifp == ifp)) { 693 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 694 counter_u64_add(ia->ia_ifa.ifa_ibytes, 695 m->m_pkthdr.len); 696 /* IN_IFADDR_RUNLOCK(); */ 697 goto ours; 698 } 699 } 700 /* IN_IFADDR_RUNLOCK(); */ 701 702 /* 703 * Check for broadcast addresses. 704 * 705 * Only accept broadcast packets that arrive via the matching 706 * interface. Reception of forwarded directed broadcasts would 707 * be handled via ip_forward() and ether_output() with the loopback 708 * into the stack for SIMPLEX interfaces handled by ether_output(). 709 */ 710 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 711 IF_ADDR_RLOCK(ifp); 712 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 713 if (ifa->ifa_addr->sa_family != AF_INET) 714 continue; 715 ia = ifatoia(ifa); 716 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 717 ip->ip_dst.s_addr) { 718 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 719 counter_u64_add(ia->ia_ifa.ifa_ibytes, 720 m->m_pkthdr.len); 721 IF_ADDR_RUNLOCK(ifp); 722 goto ours; 723 } 724 #ifdef BOOTP_COMPAT 725 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 726 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 727 counter_u64_add(ia->ia_ifa.ifa_ibytes, 728 m->m_pkthdr.len); 729 IF_ADDR_RUNLOCK(ifp); 730 goto ours; 731 } 732 #endif 733 } 734 IF_ADDR_RUNLOCK(ifp); 735 ia = NULL; 736 } 737 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 738 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 739 IPSTAT_INC(ips_cantforward); 740 m_freem(m); 741 return; 742 } 743 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 744 if (V_ip_mrouter) { 745 /* 746 * If we are acting as a multicast router, all 747 * incoming multicast packets are passed to the 748 * kernel-level multicast forwarding function. 749 * The packet is returned (relatively) intact; if 750 * ip_mforward() returns a non-zero value, the packet 751 * must be discarded, else it may be accepted below. 752 */ 753 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 754 IPSTAT_INC(ips_cantforward); 755 m_freem(m); 756 return; 757 } 758 759 /* 760 * The process-level routing daemon needs to receive 761 * all multicast IGMP packets, whether or not this 762 * host belongs to their destination groups. 763 */ 764 if (ip->ip_p == IPPROTO_IGMP) 765 goto ours; 766 IPSTAT_INC(ips_forward); 767 } 768 /* 769 * Assume the packet is for us, to avoid prematurely taking 770 * a lock on the in_multi hash. Protocols must perform 771 * their own filtering and update statistics accordingly. 772 */ 773 goto ours; 774 } 775 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 776 goto ours; 777 if (ip->ip_dst.s_addr == INADDR_ANY) 778 goto ours; 779 780 /* 781 * Not for us; forward if possible and desirable. 782 */ 783 if (V_ipforwarding == 0) { 784 IPSTAT_INC(ips_cantforward); 785 m_freem(m); 786 } else { 787 ip_forward(m, dchg); 788 } 789 return; 790 791 ours: 792 #ifdef IPSTEALTH 793 /* 794 * IPSTEALTH: Process non-routing options only 795 * if the packet is destined for us. 796 */ 797 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 798 return; 799 #endif /* IPSTEALTH */ 800 801 /* 802 * Attempt reassembly; if it succeeds, proceed. 803 * ip_reass() will return a different mbuf. 804 */ 805 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 806 /* XXXGL: shouldn't we save & set m_flags? */ 807 m = ip_reass(m); 808 if (m == NULL) 809 return; 810 ip = mtod(m, struct ip *); 811 /* Get the header length of the reassembled packet */ 812 hlen = ip->ip_hl << 2; 813 } 814 815 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 816 if (IPSEC_ENABLED(ipv4)) { 817 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 818 return; 819 } 820 #endif /* IPSEC */ 821 822 /* 823 * Switch out to protocol's input routine. 824 */ 825 IPSTAT_INC(ips_delivered); 826 827 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 828 return; 829 bad: 830 m_freem(m); 831 } 832 833 /* 834 * IP timer processing; 835 * if a timer expires on a reassembly 836 * queue, discard it. 837 */ 838 void 839 ip_slowtimo(void) 840 { 841 VNET_ITERATOR_DECL(vnet_iter); 842 843 VNET_LIST_RLOCK_NOSLEEP(); 844 VNET_FOREACH(vnet_iter) { 845 CURVNET_SET(vnet_iter); 846 ipreass_slowtimo(); 847 CURVNET_RESTORE(); 848 } 849 VNET_LIST_RUNLOCK_NOSLEEP(); 850 } 851 852 void 853 ip_drain(void) 854 { 855 VNET_ITERATOR_DECL(vnet_iter); 856 857 VNET_LIST_RLOCK_NOSLEEP(); 858 VNET_FOREACH(vnet_iter) { 859 CURVNET_SET(vnet_iter); 860 ipreass_drain(); 861 CURVNET_RESTORE(); 862 } 863 VNET_LIST_RUNLOCK_NOSLEEP(); 864 } 865 866 /* 867 * The protocol to be inserted into ip_protox[] must be already registered 868 * in inetsw[], either statically or through pf_proto_register(). 869 */ 870 int 871 ipproto_register(short ipproto) 872 { 873 struct protosw *pr; 874 875 /* Sanity checks. */ 876 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 877 return (EPROTONOSUPPORT); 878 879 /* 880 * The protocol slot must not be occupied by another protocol 881 * already. An index pointing to IPPROTO_RAW is unused. 882 */ 883 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 884 if (pr == NULL) 885 return (EPFNOSUPPORT); 886 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 887 return (EEXIST); 888 889 /* Find the protocol position in inetsw[] and set the index. */ 890 for (pr = inetdomain.dom_protosw; 891 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 892 if (pr->pr_domain->dom_family == PF_INET && 893 pr->pr_protocol && pr->pr_protocol == ipproto) { 894 ip_protox[pr->pr_protocol] = pr - inetsw; 895 return (0); 896 } 897 } 898 return (EPROTONOSUPPORT); 899 } 900 901 int 902 ipproto_unregister(short ipproto) 903 { 904 struct protosw *pr; 905 906 /* Sanity checks. */ 907 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 908 return (EPROTONOSUPPORT); 909 910 /* Check if the protocol was indeed registered. */ 911 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 912 if (pr == NULL) 913 return (EPFNOSUPPORT); 914 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 915 return (ENOENT); 916 917 /* Reset the protocol slot to IPPROTO_RAW. */ 918 ip_protox[ipproto] = pr - inetsw; 919 return (0); 920 } 921 922 u_char inetctlerrmap[PRC_NCMDS] = { 923 0, 0, 0, 0, 924 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 925 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 926 EMSGSIZE, EHOSTUNREACH, 0, 0, 927 0, 0, EHOSTUNREACH, 0, 928 ENOPROTOOPT, ECONNREFUSED 929 }; 930 931 /* 932 * Forward a packet. If some error occurs return the sender 933 * an icmp packet. Note we can't always generate a meaningful 934 * icmp message because icmp doesn't have a large enough repertoire 935 * of codes and types. 936 * 937 * If not forwarding, just drop the packet. This could be confusing 938 * if ipforwarding was zero but some routing protocol was advancing 939 * us as a gateway to somewhere. However, we must let the routing 940 * protocol deal with that. 941 * 942 * The srcrt parameter indicates whether the packet is being forwarded 943 * via a source route. 944 */ 945 void 946 ip_forward(struct mbuf *m, int srcrt) 947 { 948 struct ip *ip = mtod(m, struct ip *); 949 struct in_ifaddr *ia; 950 struct mbuf *mcopy; 951 struct sockaddr_in *sin; 952 struct in_addr dest; 953 struct route ro; 954 int error, type = 0, code = 0, mtu = 0; 955 956 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 957 IPSTAT_INC(ips_cantforward); 958 m_freem(m); 959 return; 960 } 961 if ( 962 #ifdef IPSTEALTH 963 V_ipstealth == 0 && 964 #endif 965 ip->ip_ttl <= IPTTLDEC) { 966 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 967 return; 968 } 969 970 bzero(&ro, sizeof(ro)); 971 sin = (struct sockaddr_in *)&ro.ro_dst; 972 sin->sin_family = AF_INET; 973 sin->sin_len = sizeof(*sin); 974 sin->sin_addr = ip->ip_dst; 975 #ifdef RADIX_MPATH 976 rtalloc_mpath_fib(&ro, 977 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 978 M_GETFIB(m)); 979 #else 980 in_rtalloc_ign(&ro, 0, M_GETFIB(m)); 981 #endif 982 NET_EPOCH_ENTER(); 983 if (ro.ro_rt != NULL) { 984 ia = ifatoia(ro.ro_rt->rt_ifa); 985 } else 986 ia = NULL; 987 /* 988 * Save the IP header and at most 8 bytes of the payload, 989 * in case we need to generate an ICMP message to the src. 990 * 991 * XXX this can be optimized a lot by saving the data in a local 992 * buffer on the stack (72 bytes at most), and only allocating the 993 * mbuf if really necessary. The vast majority of the packets 994 * are forwarded without having to send an ICMP back (either 995 * because unnecessary, or because rate limited), so we are 996 * really we are wasting a lot of work here. 997 * 998 * We don't use m_copym() because it might return a reference 999 * to a shared cluster. Both this function and ip_output() 1000 * assume exclusive access to the IP header in `m', so any 1001 * data in a cluster may change before we reach icmp_error(). 1002 */ 1003 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1004 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1005 /* 1006 * It's probably ok if the pkthdr dup fails (because 1007 * the deep copy of the tag chain failed), but for now 1008 * be conservative and just discard the copy since 1009 * code below may some day want the tags. 1010 */ 1011 m_free(mcopy); 1012 mcopy = NULL; 1013 } 1014 if (mcopy != NULL) { 1015 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1016 mcopy->m_pkthdr.len = mcopy->m_len; 1017 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1018 } 1019 #ifdef IPSTEALTH 1020 if (V_ipstealth == 0) 1021 #endif 1022 ip->ip_ttl -= IPTTLDEC; 1023 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1024 if (IPSEC_ENABLED(ipv4)) { 1025 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1026 /* mbuf consumed by IPsec */ 1027 m_freem(mcopy); 1028 if (error != EINPROGRESS) 1029 IPSTAT_INC(ips_cantforward); 1030 goto out; 1031 } 1032 /* No IPsec processing required */ 1033 } 1034 #endif /* IPSEC */ 1035 /* 1036 * If forwarding packet using same interface that it came in on, 1037 * perhaps should send a redirect to sender to shortcut a hop. 1038 * Only send redirect if source is sending directly to us, 1039 * and if packet was not source routed (or has any options). 1040 * Also, don't send redirect if forwarding using a default route 1041 * or a route modified by a redirect. 1042 */ 1043 dest.s_addr = 0; 1044 if (!srcrt && V_ipsendredirects && 1045 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1046 struct rtentry *rt; 1047 1048 rt = ro.ro_rt; 1049 1050 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1051 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1052 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1053 u_long src = ntohl(ip->ip_src.s_addr); 1054 1055 if (RTA(rt) && 1056 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1057 if (rt->rt_flags & RTF_GATEWAY) 1058 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1059 else 1060 dest.s_addr = ip->ip_dst.s_addr; 1061 /* Router requirements says to only send host redirects */ 1062 type = ICMP_REDIRECT; 1063 code = ICMP_REDIRECT_HOST; 1064 } 1065 } 1066 } 1067 1068 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1069 1070 if (error == EMSGSIZE && ro.ro_rt) 1071 mtu = ro.ro_rt->rt_mtu; 1072 RO_RTFREE(&ro); 1073 1074 if (error) 1075 IPSTAT_INC(ips_cantforward); 1076 else { 1077 IPSTAT_INC(ips_forward); 1078 if (type) 1079 IPSTAT_INC(ips_redirectsent); 1080 else { 1081 if (mcopy) 1082 m_freem(mcopy); 1083 goto out; 1084 } 1085 } 1086 if (mcopy == NULL) 1087 goto out; 1088 1089 1090 switch (error) { 1091 1092 case 0: /* forwarded, but need redirect */ 1093 /* type, code set above */ 1094 break; 1095 1096 case ENETUNREACH: 1097 case EHOSTUNREACH: 1098 case ENETDOWN: 1099 case EHOSTDOWN: 1100 default: 1101 type = ICMP_UNREACH; 1102 code = ICMP_UNREACH_HOST; 1103 break; 1104 1105 case EMSGSIZE: 1106 type = ICMP_UNREACH; 1107 code = ICMP_UNREACH_NEEDFRAG; 1108 /* 1109 * If the MTU was set before make sure we are below the 1110 * interface MTU. 1111 * If the MTU wasn't set before use the interface mtu or 1112 * fall back to the next smaller mtu step compared to the 1113 * current packet size. 1114 */ 1115 if (mtu != 0) { 1116 if (ia != NULL) 1117 mtu = min(mtu, ia->ia_ifp->if_mtu); 1118 } else { 1119 if (ia != NULL) 1120 mtu = ia->ia_ifp->if_mtu; 1121 else 1122 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1123 } 1124 IPSTAT_INC(ips_cantfrag); 1125 break; 1126 1127 case ENOBUFS: 1128 case EACCES: /* ipfw denied packet */ 1129 m_freem(mcopy); 1130 goto out; 1131 } 1132 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1133 out: 1134 NET_EPOCH_EXIT(); 1135 } 1136 1137 #define CHECK_SO_CT(sp, ct) \ 1138 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1139 1140 void 1141 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1142 struct mbuf *m) 1143 { 1144 bool stamped; 1145 1146 stamped = false; 1147 if ((inp->inp_socket->so_options & SO_BINTIME) || 1148 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1149 struct bintime boottimebin, bt; 1150 struct timespec ts1; 1151 1152 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1153 M_TSTMP)) { 1154 mbuf_tstmp2timespec(m, &ts1); 1155 timespec2bintime(&ts1, &bt); 1156 getboottimebin(&boottimebin); 1157 bintime_add(&bt, &boottimebin); 1158 } else { 1159 bintime(&bt); 1160 } 1161 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1162 SCM_BINTIME, SOL_SOCKET); 1163 if (*mp != NULL) { 1164 mp = &(*mp)->m_next; 1165 stamped = true; 1166 } 1167 } 1168 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1169 struct bintime boottimebin, bt1; 1170 struct timespec ts1;; 1171 struct timeval tv; 1172 1173 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1174 M_TSTMP)) { 1175 mbuf_tstmp2timespec(m, &ts1); 1176 timespec2bintime(&ts1, &bt1); 1177 getboottimebin(&boottimebin); 1178 bintime_add(&bt1, &boottimebin); 1179 bintime2timeval(&bt1, &tv); 1180 } else { 1181 microtime(&tv); 1182 } 1183 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1184 SCM_TIMESTAMP, SOL_SOCKET); 1185 if (*mp != NULL) { 1186 mp = &(*mp)->m_next; 1187 stamped = true; 1188 } 1189 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1190 struct bintime boottimebin; 1191 struct timespec ts, ts1; 1192 1193 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1194 M_TSTMP)) { 1195 mbuf_tstmp2timespec(m, &ts); 1196 getboottimebin(&boottimebin); 1197 bintime2timespec(&boottimebin, &ts1); 1198 timespecadd(&ts, &ts1, &ts); 1199 } else { 1200 nanotime(&ts); 1201 } 1202 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1203 SCM_REALTIME, SOL_SOCKET); 1204 if (*mp != NULL) { 1205 mp = &(*mp)->m_next; 1206 stamped = true; 1207 } 1208 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1209 struct timespec ts; 1210 1211 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1212 M_TSTMP)) 1213 mbuf_tstmp2timespec(m, &ts); 1214 else 1215 nanouptime(&ts); 1216 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1217 SCM_MONOTONIC, SOL_SOCKET); 1218 if (*mp != NULL) { 1219 mp = &(*mp)->m_next; 1220 stamped = true; 1221 } 1222 } 1223 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1224 M_TSTMP)) { 1225 struct sock_timestamp_info sti; 1226 1227 bzero(&sti, sizeof(sti)); 1228 sti.st_info_flags = ST_INFO_HW; 1229 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1230 sti.st_info_flags |= ST_INFO_HW_HPREC; 1231 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1232 SOL_SOCKET); 1233 if (*mp != NULL) 1234 mp = &(*mp)->m_next; 1235 } 1236 if (inp->inp_flags & INP_RECVDSTADDR) { 1237 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1238 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1239 if (*mp) 1240 mp = &(*mp)->m_next; 1241 } 1242 if (inp->inp_flags & INP_RECVTTL) { 1243 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1244 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1245 if (*mp) 1246 mp = &(*mp)->m_next; 1247 } 1248 #ifdef notyet 1249 /* XXX 1250 * Moving these out of udp_input() made them even more broken 1251 * than they already were. 1252 */ 1253 /* options were tossed already */ 1254 if (inp->inp_flags & INP_RECVOPTS) { 1255 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1256 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1257 if (*mp) 1258 mp = &(*mp)->m_next; 1259 } 1260 /* ip_srcroute doesn't do what we want here, need to fix */ 1261 if (inp->inp_flags & INP_RECVRETOPTS) { 1262 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1263 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1264 if (*mp) 1265 mp = &(*mp)->m_next; 1266 } 1267 #endif 1268 if (inp->inp_flags & INP_RECVIF) { 1269 struct ifnet *ifp; 1270 struct sdlbuf { 1271 struct sockaddr_dl sdl; 1272 u_char pad[32]; 1273 } sdlbuf; 1274 struct sockaddr_dl *sdp; 1275 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1276 1277 if ((ifp = m->m_pkthdr.rcvif) && 1278 ifp->if_index && ifp->if_index <= V_if_index) { 1279 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1280 /* 1281 * Change our mind and don't try copy. 1282 */ 1283 if (sdp->sdl_family != AF_LINK || 1284 sdp->sdl_len > sizeof(sdlbuf)) { 1285 goto makedummy; 1286 } 1287 bcopy(sdp, sdl2, sdp->sdl_len); 1288 } else { 1289 makedummy: 1290 sdl2->sdl_len = 1291 offsetof(struct sockaddr_dl, sdl_data[0]); 1292 sdl2->sdl_family = AF_LINK; 1293 sdl2->sdl_index = 0; 1294 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1295 } 1296 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1297 IP_RECVIF, IPPROTO_IP); 1298 if (*mp) 1299 mp = &(*mp)->m_next; 1300 } 1301 if (inp->inp_flags & INP_RECVTOS) { 1302 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1303 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1304 if (*mp) 1305 mp = &(*mp)->m_next; 1306 } 1307 1308 if (inp->inp_flags2 & INP_RECVFLOWID) { 1309 uint32_t flowid, flow_type; 1310 1311 flowid = m->m_pkthdr.flowid; 1312 flow_type = M_HASHTYPE_GET(m); 1313 1314 /* 1315 * XXX should handle the failure of one or the 1316 * other - don't populate both? 1317 */ 1318 *mp = sbcreatecontrol((caddr_t) &flowid, 1319 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1320 if (*mp) 1321 mp = &(*mp)->m_next; 1322 *mp = sbcreatecontrol((caddr_t) &flow_type, 1323 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1324 if (*mp) 1325 mp = &(*mp)->m_next; 1326 } 1327 1328 #ifdef RSS 1329 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1330 uint32_t flowid, flow_type; 1331 uint32_t rss_bucketid; 1332 1333 flowid = m->m_pkthdr.flowid; 1334 flow_type = M_HASHTYPE_GET(m); 1335 1336 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1337 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1338 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1339 if (*mp) 1340 mp = &(*mp)->m_next; 1341 } 1342 } 1343 #endif 1344 } 1345 1346 /* 1347 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1348 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1349 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1350 * compiled. 1351 */ 1352 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1353 VNET_DEFINE(struct socket *, ip_rsvpd); 1354 1355 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1356 1357 int 1358 ip_rsvp_init(struct socket *so) 1359 { 1360 1361 if (so->so_type != SOCK_RAW || 1362 so->so_proto->pr_protocol != IPPROTO_RSVP) 1363 return EOPNOTSUPP; 1364 1365 if (V_ip_rsvpd != NULL) 1366 return EADDRINUSE; 1367 1368 V_ip_rsvpd = so; 1369 /* 1370 * This may seem silly, but we need to be sure we don't over-increment 1371 * the RSVP counter, in case something slips up. 1372 */ 1373 if (!V_ip_rsvp_on) { 1374 V_ip_rsvp_on = 1; 1375 V_rsvp_on++; 1376 } 1377 1378 return 0; 1379 } 1380 1381 int 1382 ip_rsvp_done(void) 1383 { 1384 1385 V_ip_rsvpd = NULL; 1386 /* 1387 * This may seem silly, but we need to be sure we don't over-decrement 1388 * the RSVP counter, in case something slips up. 1389 */ 1390 if (V_ip_rsvp_on) { 1391 V_ip_rsvp_on = 0; 1392 V_rsvp_on--; 1393 } 1394 return 0; 1395 } 1396 1397 int 1398 rsvp_input(struct mbuf **mp, int *offp, int proto) 1399 { 1400 struct mbuf *m; 1401 1402 m = *mp; 1403 *mp = NULL; 1404 1405 if (rsvp_input_p) { /* call the real one if loaded */ 1406 *mp = m; 1407 rsvp_input_p(mp, offp, proto); 1408 return (IPPROTO_DONE); 1409 } 1410 1411 /* Can still get packets with rsvp_on = 0 if there is a local member 1412 * of the group to which the RSVP packet is addressed. But in this 1413 * case we want to throw the packet away. 1414 */ 1415 1416 if (!V_rsvp_on) { 1417 m_freem(m); 1418 return (IPPROTO_DONE); 1419 } 1420 1421 if (V_ip_rsvpd != NULL) { 1422 *mp = m; 1423 rip_input(mp, offp, proto); 1424 return (IPPROTO_DONE); 1425 } 1426 /* Drop the packet */ 1427 m_freem(m); 1428 return (IPPROTO_DONE); 1429 } 1430