1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 86 #include <netipsec/ipsec_support.h> 87 88 #include <sys/socketvar.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #ifdef CTASSERT 93 CTASSERT(sizeof(struct ip) == 20); 94 #endif 95 96 /* IP reassembly functions are defined in ip_reass.c. */ 97 extern void ipreass_init(void); 98 extern void ipreass_drain(void); 99 extern void ipreass_slowtimo(void); 100 #ifdef VIMAGE 101 extern void ipreass_destroy(void); 102 #endif 103 104 struct rmlock in_ifaddr_lock; 105 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 106 107 VNET_DEFINE(int, rsvp_on); 108 109 VNET_DEFINE(int, ipforwarding); 110 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 111 &VNET_NAME(ipforwarding), 0, 112 "Enable IP forwarding between interfaces"); 113 114 /* 115 * Respond with an ICMP host redirect when we forward a packet out of 116 * the same interface on which it was received. See RFC 792. 117 */ 118 VNET_DEFINE(int, ipsendredirects) = 1; 119 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(ipsendredirects), 0, 121 "Enable sending IP redirects"); 122 123 /* 124 * XXX - Setting ip_checkinterface mostly implements the receive side of 125 * the Strong ES model described in RFC 1122, but since the routing table 126 * and transmit implementation do not implement the Strong ES model, 127 * setting this to 1 results in an odd hybrid. 128 * 129 * XXX - ip_checkinterface currently must be disabled if you use ipnat 130 * to translate the destination address to another local interface. 131 * 132 * XXX - ip_checkinterface must be disabled if you add IP aliases 133 * to the loopback interface instead of the interface where the 134 * packets for those addresses are received. 135 */ 136 VNET_DEFINE_STATIC(int, ip_checkinterface); 137 #define V_ip_checkinterface VNET(ip_checkinterface) 138 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 139 &VNET_NAME(ip_checkinterface), 0, 140 "Verify packet arrives on correct interface"); 141 142 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 143 144 static struct netisr_handler ip_nh = { 145 .nh_name = "ip", 146 .nh_handler = ip_input, 147 .nh_proto = NETISR_IP, 148 #ifdef RSS 149 .nh_m2cpuid = rss_soft_m2cpuid_v4, 150 .nh_policy = NETISR_POLICY_CPU, 151 .nh_dispatch = NETISR_DISPATCH_HYBRID, 152 #else 153 .nh_policy = NETISR_POLICY_FLOW, 154 #endif 155 }; 156 157 #ifdef RSS 158 /* 159 * Directly dispatched frames are currently assumed 160 * to have a flowid already calculated. 161 * 162 * It should likely have something that assert it 163 * actually has valid flow details. 164 */ 165 static struct netisr_handler ip_direct_nh = { 166 .nh_name = "ip_direct", 167 .nh_handler = ip_direct_input, 168 .nh_proto = NETISR_IP_DIRECT, 169 .nh_m2cpuid = rss_soft_m2cpuid_v4, 170 .nh_policy = NETISR_POLICY_CPU, 171 .nh_dispatch = NETISR_DISPATCH_HYBRID, 172 }; 173 #endif 174 175 extern struct domain inetdomain; 176 extern struct protosw inetsw[]; 177 u_char ip_protox[IPPROTO_MAX]; 178 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 179 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 180 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 181 182 #ifdef IPCTL_DEFMTU 183 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 184 &ip_mtu, 0, "Default MTU"); 185 #endif 186 187 #ifdef IPSTEALTH 188 VNET_DEFINE(int, ipstealth); 189 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 190 &VNET_NAME(ipstealth), 0, 191 "IP stealth mode, no TTL decrementation on forwarding"); 192 #endif 193 194 /* 195 * IP statistics are stored in the "array" of counter(9)s. 196 */ 197 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 198 VNET_PCPUSTAT_SYSINIT(ipstat); 199 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 200 "IP statistics (struct ipstat, netinet/ip_var.h)"); 201 202 #ifdef VIMAGE 203 VNET_PCPUSTAT_SYSUNINIT(ipstat); 204 #endif /* VIMAGE */ 205 206 /* 207 * Kernel module interface for updating ipstat. The argument is an index 208 * into ipstat treated as an array. 209 */ 210 void 211 kmod_ipstat_inc(int statnum) 212 { 213 214 counter_u64_add(VNET(ipstat)[statnum], 1); 215 } 216 217 void 218 kmod_ipstat_dec(int statnum) 219 { 220 221 counter_u64_add(VNET(ipstat)[statnum], -1); 222 } 223 224 static int 225 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 226 { 227 int error, qlimit; 228 229 netisr_getqlimit(&ip_nh, &qlimit); 230 error = sysctl_handle_int(oidp, &qlimit, 0, req); 231 if (error || !req->newptr) 232 return (error); 233 if (qlimit < 1) 234 return (EINVAL); 235 return (netisr_setqlimit(&ip_nh, qlimit)); 236 } 237 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 238 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 239 sysctl_netinet_intr_queue_maxlen, "I", 240 "Maximum size of the IP input queue"); 241 242 static int 243 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 244 { 245 u_int64_t qdrops_long; 246 int error, qdrops; 247 248 netisr_getqdrops(&ip_nh, &qdrops_long); 249 qdrops = qdrops_long; 250 error = sysctl_handle_int(oidp, &qdrops, 0, req); 251 if (error || !req->newptr) 252 return (error); 253 if (qdrops != 0) 254 return (EINVAL); 255 netisr_clearqdrops(&ip_nh); 256 return (0); 257 } 258 259 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 260 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 261 0, 0, sysctl_netinet_intr_queue_drops, "I", 262 "Number of packets dropped from the IP input queue"); 263 264 #ifdef RSS 265 static int 266 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 267 { 268 int error, qlimit; 269 270 netisr_getqlimit(&ip_direct_nh, &qlimit); 271 error = sysctl_handle_int(oidp, &qlimit, 0, req); 272 if (error || !req->newptr) 273 return (error); 274 if (qlimit < 1) 275 return (EINVAL); 276 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 277 } 278 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 279 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 280 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 281 "I", "Maximum size of the IP direct input queue"); 282 283 static int 284 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 285 { 286 u_int64_t qdrops_long; 287 int error, qdrops; 288 289 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 290 qdrops = qdrops_long; 291 error = sysctl_handle_int(oidp, &qdrops, 0, req); 292 if (error || !req->newptr) 293 return (error); 294 if (qdrops != 0) 295 return (EINVAL); 296 netisr_clearqdrops(&ip_direct_nh); 297 return (0); 298 } 299 300 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 301 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 302 sysctl_netinet_intr_direct_queue_drops, "I", 303 "Number of packets dropped from the IP direct input queue"); 304 #endif /* RSS */ 305 306 /* 307 * IP initialization: fill in IP protocol switch table. 308 * All protocols not implemented in kernel go to raw IP protocol handler. 309 */ 310 void 311 ip_init(void) 312 { 313 struct pfil_head_args args; 314 struct protosw *pr; 315 int i; 316 317 CK_STAILQ_INIT(&V_in_ifaddrhead); 318 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 319 320 /* Initialize IP reassembly queue. */ 321 ipreass_init(); 322 323 /* Initialize packet filter hooks. */ 324 args.pa_version = PFIL_VERSION; 325 args.pa_flags = PFIL_IN | PFIL_OUT; 326 args.pa_type = PFIL_TYPE_IP4; 327 args.pa_headname = PFIL_INET_NAME; 328 V_inet_pfil_head = pfil_head_register(&args); 329 330 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 331 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 332 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 333 printf("%s: WARNING: unable to register input helper hook\n", 334 __func__); 335 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 336 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 337 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 338 printf("%s: WARNING: unable to register output helper hook\n", 339 __func__); 340 341 /* Skip initialization of globals for non-default instances. */ 342 #ifdef VIMAGE 343 if (!IS_DEFAULT_VNET(curvnet)) { 344 netisr_register_vnet(&ip_nh); 345 #ifdef RSS 346 netisr_register_vnet(&ip_direct_nh); 347 #endif 348 return; 349 } 350 #endif 351 352 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 353 if (pr == NULL) 354 panic("ip_init: PF_INET not found"); 355 356 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 357 for (i = 0; i < IPPROTO_MAX; i++) 358 ip_protox[i] = pr - inetsw; 359 /* 360 * Cycle through IP protocols and put them into the appropriate place 361 * in ip_protox[]. 362 */ 363 for (pr = inetdomain.dom_protosw; 364 pr < inetdomain.dom_protoswNPROTOSW; pr++) 365 if (pr->pr_domain->dom_family == PF_INET && 366 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 367 /* Be careful to only index valid IP protocols. */ 368 if (pr->pr_protocol < IPPROTO_MAX) 369 ip_protox[pr->pr_protocol] = pr - inetsw; 370 } 371 372 netisr_register(&ip_nh); 373 #ifdef RSS 374 netisr_register(&ip_direct_nh); 375 #endif 376 } 377 378 #ifdef VIMAGE 379 static void 380 ip_destroy(void *unused __unused) 381 { 382 struct ifnet *ifp; 383 int error; 384 385 #ifdef RSS 386 netisr_unregister_vnet(&ip_direct_nh); 387 #endif 388 netisr_unregister_vnet(&ip_nh); 389 390 pfil_head_unregister(V_inet_pfil_head); 391 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 392 if (error != 0) { 393 printf("%s: WARNING: unable to deregister input helper hook " 394 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 395 "error %d returned\n", __func__, error); 396 } 397 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 398 if (error != 0) { 399 printf("%s: WARNING: unable to deregister output helper hook " 400 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 401 "error %d returned\n", __func__, error); 402 } 403 404 /* Remove the IPv4 addresses from all interfaces. */ 405 in_ifscrub_all(); 406 407 /* Make sure the IPv4 routes are gone as well. */ 408 IFNET_RLOCK(); 409 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 410 rt_flushifroutes_af(ifp, AF_INET); 411 IFNET_RUNLOCK(); 412 413 /* Destroy IP reassembly queue. */ 414 ipreass_destroy(); 415 416 /* Cleanup in_ifaddr hash table; should be empty. */ 417 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 418 } 419 420 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 421 #endif 422 423 #ifdef RSS 424 /* 425 * IP direct input routine. 426 * 427 * This is called when reinjecting completed fragments where 428 * all of the previous checking and book-keeping has been done. 429 */ 430 void 431 ip_direct_input(struct mbuf *m) 432 { 433 struct ip *ip; 434 int hlen; 435 436 ip = mtod(m, struct ip *); 437 hlen = ip->ip_hl << 2; 438 439 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 440 if (IPSEC_ENABLED(ipv4)) { 441 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 442 return; 443 } 444 #endif /* IPSEC */ 445 IPSTAT_INC(ips_delivered); 446 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 447 return; 448 } 449 #endif 450 451 /* 452 * Ip input routine. Checksum and byte swap header. If fragmented 453 * try to reassemble. Process options. Pass to next level. 454 */ 455 void 456 ip_input(struct mbuf *m) 457 { 458 struct rm_priotracker in_ifa_tracker; 459 struct ip *ip = NULL; 460 struct in_ifaddr *ia = NULL; 461 struct ifaddr *ifa; 462 struct ifnet *ifp; 463 int checkif, hlen = 0; 464 uint16_t sum, ip_len; 465 int dchg = 0; /* dest changed after fw */ 466 struct in_addr odst; /* original dst address */ 467 468 M_ASSERTPKTHDR(m); 469 NET_EPOCH_ASSERT(); 470 471 if (m->m_flags & M_FASTFWD_OURS) { 472 m->m_flags &= ~M_FASTFWD_OURS; 473 /* Set up some basics that will be used later. */ 474 ip = mtod(m, struct ip *); 475 hlen = ip->ip_hl << 2; 476 ip_len = ntohs(ip->ip_len); 477 goto ours; 478 } 479 480 IPSTAT_INC(ips_total); 481 482 if (m->m_pkthdr.len < sizeof(struct ip)) 483 goto tooshort; 484 485 if (m->m_len < sizeof (struct ip) && 486 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 487 IPSTAT_INC(ips_toosmall); 488 return; 489 } 490 ip = mtod(m, struct ip *); 491 492 if (ip->ip_v != IPVERSION) { 493 IPSTAT_INC(ips_badvers); 494 goto bad; 495 } 496 497 hlen = ip->ip_hl << 2; 498 if (hlen < sizeof(struct ip)) { /* minimum header length */ 499 IPSTAT_INC(ips_badhlen); 500 goto bad; 501 } 502 if (hlen > m->m_len) { 503 if ((m = m_pullup(m, hlen)) == NULL) { 504 IPSTAT_INC(ips_badhlen); 505 return; 506 } 507 ip = mtod(m, struct ip *); 508 } 509 510 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 511 512 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 513 ifp = m->m_pkthdr.rcvif; 514 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 515 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 516 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 517 IPSTAT_INC(ips_badaddr); 518 goto bad; 519 } 520 } 521 522 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 523 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 524 } else { 525 if (hlen == sizeof(struct ip)) { 526 sum = in_cksum_hdr(ip); 527 } else { 528 sum = in_cksum(m, hlen); 529 } 530 } 531 if (sum) { 532 IPSTAT_INC(ips_badsum); 533 goto bad; 534 } 535 536 #ifdef ALTQ 537 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 538 /* packet is dropped by traffic conditioner */ 539 return; 540 #endif 541 542 ip_len = ntohs(ip->ip_len); 543 if (ip_len < hlen) { 544 IPSTAT_INC(ips_badlen); 545 goto bad; 546 } 547 548 /* 549 * Check that the amount of data in the buffers 550 * is as at least much as the IP header would have us expect. 551 * Trim mbufs if longer than we expect. 552 * Drop packet if shorter than we expect. 553 */ 554 if (m->m_pkthdr.len < ip_len) { 555 tooshort: 556 IPSTAT_INC(ips_tooshort); 557 goto bad; 558 } 559 if (m->m_pkthdr.len > ip_len) { 560 if (m->m_len == m->m_pkthdr.len) { 561 m->m_len = ip_len; 562 m->m_pkthdr.len = ip_len; 563 } else 564 m_adj(m, ip_len - m->m_pkthdr.len); 565 } 566 567 /* 568 * Try to forward the packet, but if we fail continue. 569 * ip_tryforward() does not generate redirects, so fall 570 * through to normal processing if redirects are required. 571 * ip_tryforward() does inbound and outbound packet firewall 572 * processing. If firewall has decided that destination becomes 573 * our local address, it sets M_FASTFWD_OURS flag. In this 574 * case skip another inbound firewall processing and update 575 * ip pointer. 576 */ 577 if (V_ipforwarding != 0 578 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 579 && (!IPSEC_ENABLED(ipv4) || 580 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 581 #endif 582 ) { 583 if ((m = ip_tryforward(m)) == NULL) 584 return; 585 if (m->m_flags & M_FASTFWD_OURS) { 586 m->m_flags &= ~M_FASTFWD_OURS; 587 ip = mtod(m, struct ip *); 588 goto ours; 589 } 590 } 591 592 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 593 /* 594 * Bypass packet filtering for packets previously handled by IPsec. 595 */ 596 if (IPSEC_ENABLED(ipv4) && 597 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 598 goto passin; 599 #endif 600 601 /* 602 * Run through list of hooks for input packets. 603 * 604 * NB: Beware of the destination address changing (e.g. 605 * by NAT rewriting). When this happens, tell 606 * ip_forward to do the right thing. 607 */ 608 609 /* Jump over all PFIL processing if hooks are not active. */ 610 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 611 goto passin; 612 613 odst = ip->ip_dst; 614 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 615 PFIL_PASS) 616 return; 617 if (m == NULL) /* consumed by filter */ 618 return; 619 620 ip = mtod(m, struct ip *); 621 dchg = (odst.s_addr != ip->ip_dst.s_addr); 622 ifp = m->m_pkthdr.rcvif; 623 624 if (m->m_flags & M_FASTFWD_OURS) { 625 m->m_flags &= ~M_FASTFWD_OURS; 626 goto ours; 627 } 628 if (m->m_flags & M_IP_NEXTHOP) { 629 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 630 /* 631 * Directly ship the packet on. This allows 632 * forwarding packets originally destined to us 633 * to some other directly connected host. 634 */ 635 ip_forward(m, 1); 636 return; 637 } 638 } 639 passin: 640 641 /* 642 * Process options and, if not destined for us, 643 * ship it on. ip_dooptions returns 1 when an 644 * error was detected (causing an icmp message 645 * to be sent and the original packet to be freed). 646 */ 647 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 648 return; 649 650 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 651 * matter if it is destined to another node, or whether it is 652 * a multicast one, RSVP wants it! and prevents it from being forwarded 653 * anywhere else. Also checks if the rsvp daemon is running before 654 * grabbing the packet. 655 */ 656 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 657 goto ours; 658 659 /* 660 * Check our list of addresses, to see if the packet is for us. 661 * If we don't have any addresses, assume any unicast packet 662 * we receive might be for us (and let the upper layers deal 663 * with it). 664 */ 665 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 666 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 667 goto ours; 668 669 /* 670 * Enable a consistency check between the destination address 671 * and the arrival interface for a unicast packet (the RFC 1122 672 * strong ES model) if IP forwarding is disabled and the packet 673 * is not locally generated and the packet is not subject to 674 * 'ipfw fwd'. 675 * 676 * XXX - Checking also should be disabled if the destination 677 * address is ipnat'ed to a different interface. 678 * 679 * XXX - Checking is incompatible with IP aliases added 680 * to the loopback interface instead of the interface where 681 * the packets are received. 682 * 683 * XXX - This is the case for carp vhost IPs as well so we 684 * insert a workaround. If the packet got here, we already 685 * checked with carp_iamatch() and carp_forus(). 686 */ 687 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 688 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 689 ifp->if_carp == NULL && (dchg == 0); 690 691 /* 692 * Check for exact addresses in the hash bucket. 693 */ 694 IN_IFADDR_RLOCK(&in_ifa_tracker); 695 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 696 /* 697 * If the address matches, verify that the packet 698 * arrived via the correct interface if checking is 699 * enabled. 700 */ 701 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 702 (!checkif || ia->ia_ifp == ifp)) { 703 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 704 counter_u64_add(ia->ia_ifa.ifa_ibytes, 705 m->m_pkthdr.len); 706 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 707 goto ours; 708 } 709 } 710 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 711 712 /* 713 * Check for broadcast addresses. 714 * 715 * Only accept broadcast packets that arrive via the matching 716 * interface. Reception of forwarded directed broadcasts would 717 * be handled via ip_forward() and ether_output() with the loopback 718 * into the stack for SIMPLEX interfaces handled by ether_output(). 719 */ 720 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 721 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 722 if (ifa->ifa_addr->sa_family != AF_INET) 723 continue; 724 ia = ifatoia(ifa); 725 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 726 ip->ip_dst.s_addr) { 727 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 728 counter_u64_add(ia->ia_ifa.ifa_ibytes, 729 m->m_pkthdr.len); 730 goto ours; 731 } 732 #ifdef BOOTP_COMPAT 733 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 734 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 735 counter_u64_add(ia->ia_ifa.ifa_ibytes, 736 m->m_pkthdr.len); 737 goto ours; 738 } 739 #endif 740 } 741 ia = NULL; 742 } 743 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 744 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 745 IPSTAT_INC(ips_cantforward); 746 m_freem(m); 747 return; 748 } 749 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 750 if (V_ip_mrouter) { 751 /* 752 * If we are acting as a multicast router, all 753 * incoming multicast packets are passed to the 754 * kernel-level multicast forwarding function. 755 * The packet is returned (relatively) intact; if 756 * ip_mforward() returns a non-zero value, the packet 757 * must be discarded, else it may be accepted below. 758 */ 759 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 760 IPSTAT_INC(ips_cantforward); 761 m_freem(m); 762 return; 763 } 764 765 /* 766 * The process-level routing daemon needs to receive 767 * all multicast IGMP packets, whether or not this 768 * host belongs to their destination groups. 769 */ 770 if (ip->ip_p == IPPROTO_IGMP) 771 goto ours; 772 IPSTAT_INC(ips_forward); 773 } 774 /* 775 * Assume the packet is for us, to avoid prematurely taking 776 * a lock on the in_multi hash. Protocols must perform 777 * their own filtering and update statistics accordingly. 778 */ 779 goto ours; 780 } 781 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 782 goto ours; 783 if (ip->ip_dst.s_addr == INADDR_ANY) 784 goto ours; 785 786 /* 787 * Not for us; forward if possible and desirable. 788 */ 789 if (V_ipforwarding == 0) { 790 IPSTAT_INC(ips_cantforward); 791 m_freem(m); 792 } else { 793 ip_forward(m, dchg); 794 } 795 return; 796 797 ours: 798 #ifdef IPSTEALTH 799 /* 800 * IPSTEALTH: Process non-routing options only 801 * if the packet is destined for us. 802 */ 803 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 804 return; 805 #endif /* IPSTEALTH */ 806 807 /* 808 * Attempt reassembly; if it succeeds, proceed. 809 * ip_reass() will return a different mbuf. 810 */ 811 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 812 /* XXXGL: shouldn't we save & set m_flags? */ 813 m = ip_reass(m); 814 if (m == NULL) 815 return; 816 ip = mtod(m, struct ip *); 817 /* Get the header length of the reassembled packet */ 818 hlen = ip->ip_hl << 2; 819 } 820 821 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 822 if (IPSEC_ENABLED(ipv4)) { 823 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 824 return; 825 } 826 #endif /* IPSEC */ 827 828 /* 829 * Switch out to protocol's input routine. 830 */ 831 IPSTAT_INC(ips_delivered); 832 833 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 834 return; 835 bad: 836 m_freem(m); 837 } 838 839 /* 840 * IP timer processing; 841 * if a timer expires on a reassembly 842 * queue, discard it. 843 */ 844 void 845 ip_slowtimo(void) 846 { 847 VNET_ITERATOR_DECL(vnet_iter); 848 849 VNET_LIST_RLOCK_NOSLEEP(); 850 VNET_FOREACH(vnet_iter) { 851 CURVNET_SET(vnet_iter); 852 ipreass_slowtimo(); 853 CURVNET_RESTORE(); 854 } 855 VNET_LIST_RUNLOCK_NOSLEEP(); 856 } 857 858 void 859 ip_drain(void) 860 { 861 VNET_ITERATOR_DECL(vnet_iter); 862 863 VNET_LIST_RLOCK_NOSLEEP(); 864 VNET_FOREACH(vnet_iter) { 865 CURVNET_SET(vnet_iter); 866 ipreass_drain(); 867 CURVNET_RESTORE(); 868 } 869 VNET_LIST_RUNLOCK_NOSLEEP(); 870 } 871 872 /* 873 * The protocol to be inserted into ip_protox[] must be already registered 874 * in inetsw[], either statically or through pf_proto_register(). 875 */ 876 int 877 ipproto_register(short ipproto) 878 { 879 struct protosw *pr; 880 881 /* Sanity checks. */ 882 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 883 return (EPROTONOSUPPORT); 884 885 /* 886 * The protocol slot must not be occupied by another protocol 887 * already. An index pointing to IPPROTO_RAW is unused. 888 */ 889 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 890 if (pr == NULL) 891 return (EPFNOSUPPORT); 892 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 893 return (EEXIST); 894 895 /* Find the protocol position in inetsw[] and set the index. */ 896 for (pr = inetdomain.dom_protosw; 897 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 898 if (pr->pr_domain->dom_family == PF_INET && 899 pr->pr_protocol && pr->pr_protocol == ipproto) { 900 ip_protox[pr->pr_protocol] = pr - inetsw; 901 return (0); 902 } 903 } 904 return (EPROTONOSUPPORT); 905 } 906 907 int 908 ipproto_unregister(short ipproto) 909 { 910 struct protosw *pr; 911 912 /* Sanity checks. */ 913 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 914 return (EPROTONOSUPPORT); 915 916 /* Check if the protocol was indeed registered. */ 917 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 918 if (pr == NULL) 919 return (EPFNOSUPPORT); 920 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 921 return (ENOENT); 922 923 /* Reset the protocol slot to IPPROTO_RAW. */ 924 ip_protox[ipproto] = pr - inetsw; 925 return (0); 926 } 927 928 u_char inetctlerrmap[PRC_NCMDS] = { 929 0, 0, 0, 0, 930 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 931 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 932 EMSGSIZE, EHOSTUNREACH, 0, 0, 933 0, 0, EHOSTUNREACH, 0, 934 ENOPROTOOPT, ECONNREFUSED 935 }; 936 937 /* 938 * Forward a packet. If some error occurs return the sender 939 * an icmp packet. Note we can't always generate a meaningful 940 * icmp message because icmp doesn't have a large enough repertoire 941 * of codes and types. 942 * 943 * If not forwarding, just drop the packet. This could be confusing 944 * if ipforwarding was zero but some routing protocol was advancing 945 * us as a gateway to somewhere. However, we must let the routing 946 * protocol deal with that. 947 * 948 * The srcrt parameter indicates whether the packet is being forwarded 949 * via a source route. 950 */ 951 void 952 ip_forward(struct mbuf *m, int srcrt) 953 { 954 struct ip *ip = mtod(m, struct ip *); 955 struct in_ifaddr *ia; 956 struct mbuf *mcopy; 957 struct sockaddr_in *sin; 958 struct in_addr dest; 959 struct route ro; 960 uint32_t flowid; 961 int error, type = 0, code = 0, mtu = 0; 962 963 NET_EPOCH_ASSERT(); 964 965 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 966 IPSTAT_INC(ips_cantforward); 967 m_freem(m); 968 return; 969 } 970 if ( 971 #ifdef IPSTEALTH 972 V_ipstealth == 0 && 973 #endif 974 ip->ip_ttl <= IPTTLDEC) { 975 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 976 return; 977 } 978 979 bzero(&ro, sizeof(ro)); 980 sin = (struct sockaddr_in *)&ro.ro_dst; 981 sin->sin_family = AF_INET; 982 sin->sin_len = sizeof(*sin); 983 sin->sin_addr = ip->ip_dst; 984 flowid = m->m_pkthdr.flowid; 985 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 986 if (ro.ro_nh != NULL) { 987 ia = ifatoia(ro.ro_nh->nh_ifa); 988 } else 989 ia = NULL; 990 /* 991 * Save the IP header and at most 8 bytes of the payload, 992 * in case we need to generate an ICMP message to the src. 993 * 994 * XXX this can be optimized a lot by saving the data in a local 995 * buffer on the stack (72 bytes at most), and only allocating the 996 * mbuf if really necessary. The vast majority of the packets 997 * are forwarded without having to send an ICMP back (either 998 * because unnecessary, or because rate limited), so we are 999 * really we are wasting a lot of work here. 1000 * 1001 * We don't use m_copym() because it might return a reference 1002 * to a shared cluster. Both this function and ip_output() 1003 * assume exclusive access to the IP header in `m', so any 1004 * data in a cluster may change before we reach icmp_error(). 1005 */ 1006 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1007 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1008 /* 1009 * It's probably ok if the pkthdr dup fails (because 1010 * the deep copy of the tag chain failed), but for now 1011 * be conservative and just discard the copy since 1012 * code below may some day want the tags. 1013 */ 1014 m_free(mcopy); 1015 mcopy = NULL; 1016 } 1017 if (mcopy != NULL) { 1018 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1019 mcopy->m_pkthdr.len = mcopy->m_len; 1020 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1021 } 1022 #ifdef IPSTEALTH 1023 if (V_ipstealth == 0) 1024 #endif 1025 ip->ip_ttl -= IPTTLDEC; 1026 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1027 if (IPSEC_ENABLED(ipv4)) { 1028 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1029 /* mbuf consumed by IPsec */ 1030 RO_NHFREE(&ro); 1031 m_freem(mcopy); 1032 if (error != EINPROGRESS) 1033 IPSTAT_INC(ips_cantforward); 1034 return; 1035 } 1036 /* No IPsec processing required */ 1037 } 1038 #endif /* IPSEC */ 1039 /* 1040 * If forwarding packet using same interface that it came in on, 1041 * perhaps should send a redirect to sender to shortcut a hop. 1042 * Only send redirect if source is sending directly to us, 1043 * and if packet was not source routed (or has any options). 1044 * Also, don't send redirect if forwarding using a default route 1045 * or a route modified by a redirect. 1046 */ 1047 dest.s_addr = 0; 1048 if (!srcrt && V_ipsendredirects && 1049 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1050 struct nhop_object *nh; 1051 1052 nh = ro.ro_nh; 1053 1054 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1055 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1056 u_long src = ntohl(ip->ip_src.s_addr); 1057 1058 if (nh_ia != NULL && 1059 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1060 if (nh->nh_flags & NHF_GATEWAY) 1061 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1062 else 1063 dest.s_addr = ip->ip_dst.s_addr; 1064 /* Router requirements says to only send host redirects */ 1065 type = ICMP_REDIRECT; 1066 code = ICMP_REDIRECT_HOST; 1067 } 1068 } 1069 } 1070 1071 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1072 1073 if (error == EMSGSIZE && ro.ro_nh) 1074 mtu = ro.ro_nh->nh_mtu; 1075 RO_NHFREE(&ro); 1076 1077 if (error) 1078 IPSTAT_INC(ips_cantforward); 1079 else { 1080 IPSTAT_INC(ips_forward); 1081 if (type) 1082 IPSTAT_INC(ips_redirectsent); 1083 else { 1084 if (mcopy) 1085 m_freem(mcopy); 1086 return; 1087 } 1088 } 1089 if (mcopy == NULL) 1090 return; 1091 1092 switch (error) { 1093 case 0: /* forwarded, but need redirect */ 1094 /* type, code set above */ 1095 break; 1096 1097 case ENETUNREACH: 1098 case EHOSTUNREACH: 1099 case ENETDOWN: 1100 case EHOSTDOWN: 1101 default: 1102 type = ICMP_UNREACH; 1103 code = ICMP_UNREACH_HOST; 1104 break; 1105 1106 case EMSGSIZE: 1107 type = ICMP_UNREACH; 1108 code = ICMP_UNREACH_NEEDFRAG; 1109 /* 1110 * If the MTU was set before make sure we are below the 1111 * interface MTU. 1112 * If the MTU wasn't set before use the interface mtu or 1113 * fall back to the next smaller mtu step compared to the 1114 * current packet size. 1115 */ 1116 if (mtu != 0) { 1117 if (ia != NULL) 1118 mtu = min(mtu, ia->ia_ifp->if_mtu); 1119 } else { 1120 if (ia != NULL) 1121 mtu = ia->ia_ifp->if_mtu; 1122 else 1123 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1124 } 1125 IPSTAT_INC(ips_cantfrag); 1126 break; 1127 1128 case ENOBUFS: 1129 case EACCES: /* ipfw denied packet */ 1130 m_freem(mcopy); 1131 return; 1132 } 1133 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1134 } 1135 1136 #define CHECK_SO_CT(sp, ct) \ 1137 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1138 1139 void 1140 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1141 struct mbuf *m) 1142 { 1143 bool stamped; 1144 1145 stamped = false; 1146 if ((inp->inp_socket->so_options & SO_BINTIME) || 1147 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1148 struct bintime boottimebin, bt; 1149 struct timespec ts1; 1150 1151 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1152 M_TSTMP)) { 1153 mbuf_tstmp2timespec(m, &ts1); 1154 timespec2bintime(&ts1, &bt); 1155 getboottimebin(&boottimebin); 1156 bintime_add(&bt, &boottimebin); 1157 } else { 1158 bintime(&bt); 1159 } 1160 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1161 SCM_BINTIME, SOL_SOCKET); 1162 if (*mp != NULL) { 1163 mp = &(*mp)->m_next; 1164 stamped = true; 1165 } 1166 } 1167 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1168 struct bintime boottimebin, bt1; 1169 struct timespec ts1; 1170 struct timeval tv; 1171 1172 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1173 M_TSTMP)) { 1174 mbuf_tstmp2timespec(m, &ts1); 1175 timespec2bintime(&ts1, &bt1); 1176 getboottimebin(&boottimebin); 1177 bintime_add(&bt1, &boottimebin); 1178 bintime2timeval(&bt1, &tv); 1179 } else { 1180 microtime(&tv); 1181 } 1182 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1183 SCM_TIMESTAMP, SOL_SOCKET); 1184 if (*mp != NULL) { 1185 mp = &(*mp)->m_next; 1186 stamped = true; 1187 } 1188 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1189 struct bintime boottimebin; 1190 struct timespec ts, ts1; 1191 1192 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1193 M_TSTMP)) { 1194 mbuf_tstmp2timespec(m, &ts); 1195 getboottimebin(&boottimebin); 1196 bintime2timespec(&boottimebin, &ts1); 1197 timespecadd(&ts, &ts1, &ts); 1198 } else { 1199 nanotime(&ts); 1200 } 1201 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1202 SCM_REALTIME, SOL_SOCKET); 1203 if (*mp != NULL) { 1204 mp = &(*mp)->m_next; 1205 stamped = true; 1206 } 1207 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1208 struct timespec ts; 1209 1210 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1211 M_TSTMP)) 1212 mbuf_tstmp2timespec(m, &ts); 1213 else 1214 nanouptime(&ts); 1215 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1216 SCM_MONOTONIC, SOL_SOCKET); 1217 if (*mp != NULL) { 1218 mp = &(*mp)->m_next; 1219 stamped = true; 1220 } 1221 } 1222 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1223 M_TSTMP)) { 1224 struct sock_timestamp_info sti; 1225 1226 bzero(&sti, sizeof(sti)); 1227 sti.st_info_flags = ST_INFO_HW; 1228 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1229 sti.st_info_flags |= ST_INFO_HW_HPREC; 1230 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1231 SOL_SOCKET); 1232 if (*mp != NULL) 1233 mp = &(*mp)->m_next; 1234 } 1235 if (inp->inp_flags & INP_RECVDSTADDR) { 1236 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1237 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1238 if (*mp) 1239 mp = &(*mp)->m_next; 1240 } 1241 if (inp->inp_flags & INP_RECVTTL) { 1242 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1243 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1244 if (*mp) 1245 mp = &(*mp)->m_next; 1246 } 1247 #ifdef notyet 1248 /* XXX 1249 * Moving these out of udp_input() made them even more broken 1250 * than they already were. 1251 */ 1252 /* options were tossed already */ 1253 if (inp->inp_flags & INP_RECVOPTS) { 1254 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1255 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1256 if (*mp) 1257 mp = &(*mp)->m_next; 1258 } 1259 /* ip_srcroute doesn't do what we want here, need to fix */ 1260 if (inp->inp_flags & INP_RECVRETOPTS) { 1261 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1262 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1263 if (*mp) 1264 mp = &(*mp)->m_next; 1265 } 1266 #endif 1267 if (inp->inp_flags & INP_RECVIF) { 1268 struct ifnet *ifp; 1269 struct sdlbuf { 1270 struct sockaddr_dl sdl; 1271 u_char pad[32]; 1272 } sdlbuf; 1273 struct sockaddr_dl *sdp; 1274 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1275 1276 if ((ifp = m->m_pkthdr.rcvif) && 1277 ifp->if_index && ifp->if_index <= V_if_index) { 1278 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1279 /* 1280 * Change our mind and don't try copy. 1281 */ 1282 if (sdp->sdl_family != AF_LINK || 1283 sdp->sdl_len > sizeof(sdlbuf)) { 1284 goto makedummy; 1285 } 1286 bcopy(sdp, sdl2, sdp->sdl_len); 1287 } else { 1288 makedummy: 1289 sdl2->sdl_len = 1290 offsetof(struct sockaddr_dl, sdl_data[0]); 1291 sdl2->sdl_family = AF_LINK; 1292 sdl2->sdl_index = 0; 1293 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1294 } 1295 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1296 IP_RECVIF, IPPROTO_IP); 1297 if (*mp) 1298 mp = &(*mp)->m_next; 1299 } 1300 if (inp->inp_flags & INP_RECVTOS) { 1301 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1302 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1303 if (*mp) 1304 mp = &(*mp)->m_next; 1305 } 1306 1307 if (inp->inp_flags2 & INP_RECVFLOWID) { 1308 uint32_t flowid, flow_type; 1309 1310 flowid = m->m_pkthdr.flowid; 1311 flow_type = M_HASHTYPE_GET(m); 1312 1313 /* 1314 * XXX should handle the failure of one or the 1315 * other - don't populate both? 1316 */ 1317 *mp = sbcreatecontrol((caddr_t) &flowid, 1318 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1319 if (*mp) 1320 mp = &(*mp)->m_next; 1321 *mp = sbcreatecontrol((caddr_t) &flow_type, 1322 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1323 if (*mp) 1324 mp = &(*mp)->m_next; 1325 } 1326 1327 #ifdef RSS 1328 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1329 uint32_t flowid, flow_type; 1330 uint32_t rss_bucketid; 1331 1332 flowid = m->m_pkthdr.flowid; 1333 flow_type = M_HASHTYPE_GET(m); 1334 1335 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1336 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1337 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1338 if (*mp) 1339 mp = &(*mp)->m_next; 1340 } 1341 } 1342 #endif 1343 } 1344 1345 /* 1346 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1347 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1348 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1349 * compiled. 1350 */ 1351 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1352 VNET_DEFINE(struct socket *, ip_rsvpd); 1353 1354 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1355 1356 int 1357 ip_rsvp_init(struct socket *so) 1358 { 1359 1360 if (so->so_type != SOCK_RAW || 1361 so->so_proto->pr_protocol != IPPROTO_RSVP) 1362 return EOPNOTSUPP; 1363 1364 if (V_ip_rsvpd != NULL) 1365 return EADDRINUSE; 1366 1367 V_ip_rsvpd = so; 1368 /* 1369 * This may seem silly, but we need to be sure we don't over-increment 1370 * the RSVP counter, in case something slips up. 1371 */ 1372 if (!V_ip_rsvp_on) { 1373 V_ip_rsvp_on = 1; 1374 V_rsvp_on++; 1375 } 1376 1377 return 0; 1378 } 1379 1380 int 1381 ip_rsvp_done(void) 1382 { 1383 1384 V_ip_rsvpd = NULL; 1385 /* 1386 * This may seem silly, but we need to be sure we don't over-decrement 1387 * the RSVP counter, in case something slips up. 1388 */ 1389 if (V_ip_rsvp_on) { 1390 V_ip_rsvp_on = 0; 1391 V_rsvp_on--; 1392 } 1393 return 0; 1394 } 1395 1396 int 1397 rsvp_input(struct mbuf **mp, int *offp, int proto) 1398 { 1399 struct mbuf *m; 1400 1401 m = *mp; 1402 *mp = NULL; 1403 1404 if (rsvp_input_p) { /* call the real one if loaded */ 1405 *mp = m; 1406 rsvp_input_p(mp, offp, proto); 1407 return (IPPROTO_DONE); 1408 } 1409 1410 /* Can still get packets with rsvp_on = 0 if there is a local member 1411 * of the group to which the RSVP packet is addressed. But in this 1412 * case we want to throw the packet away. 1413 */ 1414 1415 if (!V_rsvp_on) { 1416 m_freem(m); 1417 return (IPPROTO_DONE); 1418 } 1419 1420 if (V_ip_rsvpd != NULL) { 1421 *mp = m; 1422 rip_input(mp, offp, proto); 1423 return (IPPROTO_DONE); 1424 } 1425 /* Drop the packet */ 1426 m_freem(m); 1427 return (IPPROTO_DONE); 1428 } 1429