xref: /freebsd/sys/netinet/ip_input.c (revision cf02bf2407cb217c99cc82f78b7a2e7f0703c9ee)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipfilter.h"
38 #include "opt_ipstealth.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_pfil_hooks.h"
42 #include "opt_random_ip_id.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/mac.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <machine/in_cksum.h>
73 
74 #include <sys/socketvar.h>
75 
76 #include <netinet/ip_fw.h>
77 #include <netinet/ip_divert.h>
78 #include <netinet/ip_dummynet.h>
79 
80 #ifdef IPSEC
81 #include <netinet6/ipsec.h>
82 #include <netkey/key.h>
83 #endif
84 
85 #ifdef FAST_IPSEC
86 #include <netipsec/ipsec.h>
87 #include <netipsec/key.h>
88 #endif
89 
90 int rsvp_on = 0;
91 
92 int	ipforwarding = 0;
93 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94     &ipforwarding, 0, "Enable IP forwarding between interfaces");
95 
96 static int	ipsendredirects = 1; /* XXX */
97 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98     &ipsendredirects, 0, "Enable sending IP redirects");
99 
100 int	ip_defttl = IPDEFTTL;
101 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102     &ip_defttl, 0, "Maximum TTL on IP packets");
103 
104 static int	ip_dosourceroute = 0;
105 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107 
108 static int	ip_acceptsourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110     CTLFLAG_RW, &ip_acceptsourceroute, 0,
111     "Enable accepting source routed IP packets");
112 
113 int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114 SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115     &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int    nipq = 0;         /* total # of reass queues */
123 static int    maxnipq;
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&maxnipq, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int    maxfragsperpacket;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130 	&maxfragsperpacket, 0,
131 	"Maximum number of IPv4 fragments allowed per packet");
132 
133 static int	ip_sendsourcequench = 0;
134 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135 	&ip_sendsourcequench, 0,
136 	"Enable the transmission of source quench packets");
137 
138 /*
139  * XXX - Setting ip_checkinterface mostly implements the receive side of
140  * the Strong ES model described in RFC 1122, but since the routing table
141  * and transmit implementation do not implement the Strong ES model,
142  * setting this to 1 results in an odd hybrid.
143  *
144  * XXX - ip_checkinterface currently must be disabled if you use ipnat
145  * to translate the destination address to another local interface.
146  *
147  * XXX - ip_checkinterface must be disabled if you add IP aliases
148  * to the loopback interface instead of the interface where the
149  * packets for those addresses are received.
150  */
151 static int	ip_checkinterface = 1;
152 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154 
155 #ifdef DIAGNOSTIC
156 static int	ipprintfs = 0;
157 #endif
158 #ifdef PFIL_HOOKS
159 struct pfil_head inet_pfil_hook;
160 #endif
161 
162 static struct	ifqueue ipintrq;
163 static int	ipqmaxlen = IFQ_MAXLEN;
164 
165 extern	struct domain inetdomain;
166 extern	struct protosw inetsw[];
167 u_char	ip_protox[IPPROTO_MAX];
168 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
169 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
170 u_long 	in_ifaddrhmask;				/* mask for hash table */
171 
172 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
176 
177 struct ipstat ipstat;
178 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180 
181 /* Packet reassembly stuff */
182 #define IPREASS_NHASH_LOG2      6
183 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
184 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
185 #define IPREASS_HASH(x,y) \
186 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
187 
188 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
189 struct mtx ipqlock;
190 
191 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
192 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
193 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
194 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
195 
196 #ifdef IPCTL_DEFMTU
197 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198     &ip_mtu, 0, "Default MTU");
199 #endif
200 
201 #ifdef IPSTEALTH
202 int	ipstealth = 0;
203 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204     &ipstealth, 0, "");
205 #endif
206 
207 
208 /* Firewall hooks */
209 ip_fw_chk_t *ip_fw_chk_ptr;
210 int fw_enable = 1 ;
211 int fw_one_pass = 1;
212 
213 /* Dummynet hooks */
214 ip_dn_io_t *ip_dn_io_ptr;
215 
216 /*
217  * XXX this is ugly -- the following two global variables are
218  * used to store packet state while it travels through the stack.
219  * Note that the code even makes assumptions on the size and
220  * alignment of fields inside struct ip_srcrt so e.g. adding some
221  * fields will break the code. This needs to be fixed.
222  *
223  * We need to save the IP options in case a protocol wants to respond
224  * to an incoming packet over the same route if the packet got here
225  * using IP source routing.  This allows connection establishment and
226  * maintenance when the remote end is on a network that is not known
227  * to us.
228  */
229 static int	ip_nhops = 0;
230 static	struct ip_srcrt {
231 	struct	in_addr dst;			/* final destination */
232 	char	nop;				/* one NOP to align */
233 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235 } ip_srcrt;
236 
237 static void	save_rte(u_char *, struct in_addr);
238 static int	ip_dooptions(struct mbuf *m, int,
239 			struct sockaddr_in *next_hop);
240 static void	ip_forward(struct mbuf *m, int srcrt,
241 			struct sockaddr_in *next_hop);
242 static void	ip_freef(struct ipqhead *, struct ipq *);
243 static struct	mbuf *ip_reass(struct mbuf *);
244 
245 /*
246  * IP initialization: fill in IP protocol switch table.
247  * All protocols not implemented in kernel go to raw IP protocol handler.
248  */
249 void
250 ip_init()
251 {
252 	register struct protosw *pr;
253 	register int i;
254 
255 	TAILQ_INIT(&in_ifaddrhead);
256 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
257 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
258 	if (pr == 0)
259 		panic("ip_init");
260 	for (i = 0; i < IPPROTO_MAX; i++)
261 		ip_protox[i] = pr - inetsw;
262 	for (pr = inetdomain.dom_protosw;
263 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
264 		if (pr->pr_domain->dom_family == PF_INET &&
265 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
266 			ip_protox[pr->pr_protocol] = pr - inetsw;
267 
268 #ifdef PFIL_HOOKS
269 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
270 	inet_pfil_hook.ph_af = AF_INET;
271 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
272 		printf("%s: WARNING: unable to register pfil hook, "
273 			"error %d\n", __func__, i);
274 #endif /* PFIL_HOOKS */
275 
276 	IPQ_LOCK_INIT();
277 	for (i = 0; i < IPREASS_NHASH; i++)
278 	    TAILQ_INIT(&ipq[i]);
279 
280 	maxnipq = nmbclusters / 32;
281 	maxfragsperpacket = 16;
282 
283 #ifndef RANDOM_IP_ID
284 	ip_id = time_second & 0xffff;
285 #endif
286 	ipintrq.ifq_maxlen = ipqmaxlen;
287 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
288 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
289 }
290 
291 /*
292  * Ip input routine.  Checksum and byte swap header.  If fragmented
293  * try to reassemble.  Process options.  Pass to next level.
294  */
295 void
296 ip_input(struct mbuf *m)
297 {
298 	struct ip *ip = NULL;
299 	struct in_ifaddr *ia = NULL;
300 	struct ifaddr *ifa;
301 	int    i, checkif, hlen = 0;
302 	u_short sum;
303 	struct in_addr pkt_dst;
304 #ifdef IPDIVERT
305 	u_int32_t divert_info;			/* packet divert/tee info */
306 #endif
307 	struct ip_fw_args args;
308 	int dchg = 0;				/* dest changed after fw */
309 #ifdef PFIL_HOOKS
310 	struct in_addr odst;			/* original dst address */
311 #endif
312 #ifdef FAST_IPSEC
313 	struct m_tag *mtag;
314 	struct tdb_ident *tdbi;
315 	struct secpolicy *sp;
316 	int s, error;
317 #endif /* FAST_IPSEC */
318 
319 	args.eh = NULL;
320 	args.oif = NULL;
321 
322   	M_ASSERTPKTHDR(m);
323 
324 	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
325 	args.rule = ip_dn_claim_rule(m);
326 
327 	if (m->m_flags & M_FASTFWD_OURS) {
328 		/* ip_fastforward firewall changed dest to local */
329 		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
330   		goto ours;
331   	}
332 
333   	if (args.rule) {	/* dummynet already filtered us */
334   		ip = mtod(m, struct ip *);
335   		hlen = ip->ip_hl << 2;
336 		goto iphack ;
337 	}
338 
339 	ipstat.ips_total++;
340 
341 	if (m->m_pkthdr.len < sizeof(struct ip))
342 		goto tooshort;
343 
344 	if (m->m_len < sizeof (struct ip) &&
345 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
346 		ipstat.ips_toosmall++;
347 		return;
348 	}
349 	ip = mtod(m, struct ip *);
350 
351 	if (ip->ip_v != IPVERSION) {
352 		ipstat.ips_badvers++;
353 		goto bad;
354 	}
355 
356 	hlen = ip->ip_hl << 2;
357 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
358 		ipstat.ips_badhlen++;
359 		goto bad;
360 	}
361 	if (hlen > m->m_len) {
362 		if ((m = m_pullup(m, hlen)) == 0) {
363 			ipstat.ips_badhlen++;
364 			return;
365 		}
366 		ip = mtod(m, struct ip *);
367 	}
368 
369 	/* 127/8 must not appear on wire - RFC1122 */
370 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
371 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
372 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
373 			ipstat.ips_badaddr++;
374 			goto bad;
375 		}
376 	}
377 
378 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
379 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
380 	} else {
381 		if (hlen == sizeof(struct ip)) {
382 			sum = in_cksum_hdr(ip);
383 		} else {
384 			sum = in_cksum(m, hlen);
385 		}
386 	}
387 	if (sum) {
388 		ipstat.ips_badsum++;
389 		goto bad;
390 	}
391 
392 #ifdef ALTQ
393 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
394 		/* packet is dropped by traffic conditioner */
395 		return;
396 #endif
397 
398 	/*
399 	 * Convert fields to host representation.
400 	 */
401 	ip->ip_len = ntohs(ip->ip_len);
402 	if (ip->ip_len < hlen) {
403 		ipstat.ips_badlen++;
404 		goto bad;
405 	}
406 	ip->ip_off = ntohs(ip->ip_off);
407 
408 	/*
409 	 * Check that the amount of data in the buffers
410 	 * is as at least much as the IP header would have us expect.
411 	 * Trim mbufs if longer than we expect.
412 	 * Drop packet if shorter than we expect.
413 	 */
414 	if (m->m_pkthdr.len < ip->ip_len) {
415 tooshort:
416 		ipstat.ips_tooshort++;
417 		goto bad;
418 	}
419 	if (m->m_pkthdr.len > ip->ip_len) {
420 		if (m->m_len == m->m_pkthdr.len) {
421 			m->m_len = ip->ip_len;
422 			m->m_pkthdr.len = ip->ip_len;
423 		} else
424 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
425 	}
426 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
427 	/*
428 	 * Bypass packet filtering for packets from a tunnel (gif).
429 	 */
430 	if (ipsec_getnhist(m))
431 		goto pass;
432 #endif
433 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
434 	/*
435 	 * Bypass packet filtering for packets from a tunnel (gif).
436 	 */
437 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
438 		goto pass;
439 #endif
440 
441 	/*
442 	 * IpHack's section.
443 	 * Right now when no processing on packet has done
444 	 * and it is still fresh out of network we do our black
445 	 * deals with it.
446 	 * - Firewall: deny/allow/divert
447 	 * - Xlate: translate packet's addr/port (NAT).
448 	 * - Pipe: pass pkt through dummynet.
449 	 * - Wrap: fake packet's addr/port <unimpl.>
450 	 * - Encapsulate: put it in another IP and send out. <unimp.>
451  	 */
452 
453 iphack:
454 
455 #ifdef PFIL_HOOKS
456 	/*
457 	 * Run through list of hooks for input packets.
458 	 *
459 	 * NB: Beware of the destination address changing (e.g.
460 	 *     by NAT rewriting).  When this happens, tell
461 	 *     ip_forward to do the right thing.
462 	 */
463 	odst = ip->ip_dst;
464 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
465 	    PFIL_IN) != 0)
466 		return;
467 	if (m == NULL)			/* consumed by filter */
468 		return;
469 	ip = mtod(m, struct ip *);
470 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
471 #endif /* PFIL_HOOKS */
472 
473 	if (fw_enable && IPFW_LOADED) {
474 		/*
475 		 * If we've been forwarded from the output side, then
476 		 * skip the firewall a second time
477 		 */
478 		if (args.next_hop)
479 			goto ours;
480 
481 		args.m = m;
482 		i = ip_fw_chk_ptr(&args);
483 		m = args.m;
484 
485 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
486 			if (m)
487 				m_freem(m);
488 			return;
489 		}
490 		ip = mtod(m, struct ip *); /* just in case m changed */
491 		if (i == 0 && args.next_hop == NULL)	/* common case */
492 			goto pass;
493                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
494 			/* Send packet to the appropriate pipe */
495 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
496 			return;
497 		}
498 #ifdef IPDIVERT
499 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
500 			/* Divert or tee packet */
501 			goto ours;
502 		}
503 #endif
504 		if (i == 0 && args.next_hop != NULL)
505 			goto pass;
506 		/*
507 		 * if we get here, the packet must be dropped
508 		 */
509 		m_freem(m);
510 		return;
511 	}
512 pass:
513 
514 	/*
515 	 * Process options and, if not destined for us,
516 	 * ship it on.  ip_dooptions returns 1 when an
517 	 * error was detected (causing an icmp message
518 	 * to be sent and the original packet to be freed).
519 	 */
520 	ip_nhops = 0;		/* for source routed packets */
521 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
522 		return;
523 
524         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
525          * matter if it is destined to another node, or whether it is
526          * a multicast one, RSVP wants it! and prevents it from being forwarded
527          * anywhere else. Also checks if the rsvp daemon is running before
528 	 * grabbing the packet.
529          */
530 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
531 		goto ours;
532 
533 	/*
534 	 * Check our list of addresses, to see if the packet is for us.
535 	 * If we don't have any addresses, assume any unicast packet
536 	 * we receive might be for us (and let the upper layers deal
537 	 * with it).
538 	 */
539 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
540 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
541 		goto ours;
542 
543 	/*
544 	 * Cache the destination address of the packet; this may be
545 	 * changed by use of 'ipfw fwd'.
546 	 */
547 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
548 
549 	/*
550 	 * Enable a consistency check between the destination address
551 	 * and the arrival interface for a unicast packet (the RFC 1122
552 	 * strong ES model) if IP forwarding is disabled and the packet
553 	 * is not locally generated and the packet is not subject to
554 	 * 'ipfw fwd'.
555 	 *
556 	 * XXX - Checking also should be disabled if the destination
557 	 * address is ipnat'ed to a different interface.
558 	 *
559 	 * XXX - Checking is incompatible with IP aliases added
560 	 * to the loopback interface instead of the interface where
561 	 * the packets are received.
562 	 */
563 	checkif = ip_checkinterface && (ipforwarding == 0) &&
564 	    m->m_pkthdr.rcvif != NULL &&
565 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
566 	    (args.next_hop == NULL) && (dchg == 0);
567 
568 	/*
569 	 * Check for exact addresses in the hash bucket.
570 	 */
571 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
572 		/*
573 		 * If the address matches, verify that the packet
574 		 * arrived via the correct interface if checking is
575 		 * enabled.
576 		 */
577 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
578 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
579 			goto ours;
580 	}
581 	/*
582 	 * Check for broadcast addresses.
583 	 *
584 	 * Only accept broadcast packets that arrive via the matching
585 	 * interface.  Reception of forwarded directed broadcasts would
586 	 * be handled via ip_forward() and ether_output() with the loopback
587 	 * into the stack for SIMPLEX interfaces handled by ether_output().
588 	 */
589 	if (m->m_pkthdr.rcvif != NULL &&
590 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
591 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
592 			if (ifa->ifa_addr->sa_family != AF_INET)
593 				continue;
594 			ia = ifatoia(ifa);
595 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
596 			    pkt_dst.s_addr)
597 				goto ours;
598 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
599 				goto ours;
600 #ifdef BOOTP_COMPAT
601 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
602 				goto ours;
603 #endif
604 		}
605 	}
606 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
607 		struct in_multi *inm;
608 		if (ip_mrouter) {
609 			/*
610 			 * If we are acting as a multicast router, all
611 			 * incoming multicast packets are passed to the
612 			 * kernel-level multicast forwarding function.
613 			 * The packet is returned (relatively) intact; if
614 			 * ip_mforward() returns a non-zero value, the packet
615 			 * must be discarded, else it may be accepted below.
616 			 */
617 			if (ip_mforward &&
618 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
619 				ipstat.ips_cantforward++;
620 				m_freem(m);
621 				return;
622 			}
623 
624 			/*
625 			 * The process-level routing daemon needs to receive
626 			 * all multicast IGMP packets, whether or not this
627 			 * host belongs to their destination groups.
628 			 */
629 			if (ip->ip_p == IPPROTO_IGMP)
630 				goto ours;
631 			ipstat.ips_forward++;
632 		}
633 		/*
634 		 * See if we belong to the destination multicast group on the
635 		 * arrival interface.
636 		 */
637 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
638 		if (inm == NULL) {
639 			ipstat.ips_notmember++;
640 			m_freem(m);
641 			return;
642 		}
643 		goto ours;
644 	}
645 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
646 		goto ours;
647 	if (ip->ip_dst.s_addr == INADDR_ANY)
648 		goto ours;
649 
650 	/*
651 	 * FAITH(Firewall Aided Internet Translator)
652 	 */
653 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
654 		if (ip_keepfaith) {
655 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
656 				goto ours;
657 		}
658 		m_freem(m);
659 		return;
660 	}
661 
662 	/*
663 	 * Not for us; forward if possible and desirable.
664 	 */
665 	if (ipforwarding == 0) {
666 		ipstat.ips_cantforward++;
667 		m_freem(m);
668 	} else {
669 #ifdef IPSEC
670 		/*
671 		 * Enforce inbound IPsec SPD.
672 		 */
673 		if (ipsec4_in_reject(m, NULL)) {
674 			ipsecstat.in_polvio++;
675 			goto bad;
676 		}
677 #endif /* IPSEC */
678 #ifdef FAST_IPSEC
679 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
680 		s = splnet();
681 		if (mtag != NULL) {
682 			tdbi = (struct tdb_ident *)(mtag + 1);
683 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
684 		} else {
685 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
686 						   IP_FORWARDING, &error);
687 		}
688 		if (sp == NULL) {	/* NB: can happen if error */
689 			splx(s);
690 			/*XXX error stat???*/
691 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
692 			goto bad;
693 		}
694 
695 		/*
696 		 * Check security policy against packet attributes.
697 		 */
698 		error = ipsec_in_reject(sp, m);
699 		KEY_FREESP(&sp);
700 		splx(s);
701 		if (error) {
702 			ipstat.ips_cantforward++;
703 			goto bad;
704 		}
705 #endif /* FAST_IPSEC */
706 		ip_forward(m, dchg, args.next_hop);
707 	}
708 	return;
709 
710 ours:
711 #ifdef IPSTEALTH
712 	/*
713 	 * IPSTEALTH: Process non-routing options only
714 	 * if the packet is destined for us.
715 	 */
716 	if (ipstealth && hlen > sizeof (struct ip) &&
717 	    ip_dooptions(m, 1, args.next_hop))
718 		return;
719 #endif /* IPSTEALTH */
720 
721 	/* Count the packet in the ip address stats */
722 	if (ia != NULL) {
723 		ia->ia_ifa.if_ipackets++;
724 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
725 	}
726 
727 	/*
728 	 * Attempt reassembly; if it succeeds, proceed.
729 	 * ip_reass() will return a different mbuf.
730 	 */
731 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
732 		m = ip_reass(m);
733 		if (m == NULL)
734 			return;
735 		ip = mtod(m, struct ip *);
736 		/* Get the header length of the reassembled packet */
737 		hlen = ip->ip_hl << 2;
738 #ifdef IPDIVERT
739 		/* Restore original checksum before diverting packet */
740 		if (divert_find_info(m) != 0) {
741 			ip->ip_len = htons(ip->ip_len);
742 			ip->ip_off = htons(ip->ip_off);
743 			ip->ip_sum = 0;
744 			if (hlen == sizeof(struct ip))
745 				ip->ip_sum = in_cksum_hdr(ip);
746 			else
747 				ip->ip_sum = in_cksum(m, hlen);
748 			ip->ip_off = ntohs(ip->ip_off);
749 			ip->ip_len = ntohs(ip->ip_len);
750 		}
751 #endif
752 	}
753 
754 	/*
755 	 * Further protocols expect the packet length to be w/o the
756 	 * IP header.
757 	 */
758 	ip->ip_len -= hlen;
759 
760 #ifdef IPDIVERT
761 	/*
762 	 * Divert or tee packet to the divert protocol if required.
763 	 */
764 	divert_info = divert_find_info(m);
765 	if (divert_info != 0) {
766 		struct mbuf *clone;
767 
768 		/* Clone packet if we're doing a 'tee' */
769 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
770 			clone = divert_clone(m);
771 		else
772 			clone = NULL;
773 
774 		/* Restore packet header fields to original values */
775 		ip->ip_len += hlen;
776 		ip->ip_len = htons(ip->ip_len);
777 		ip->ip_off = htons(ip->ip_off);
778 
779 		/* Deliver packet to divert input routine */
780 		divert_packet(m, 1);
781 		ipstat.ips_delivered++;
782 
783 		/* If 'tee', continue with original packet */
784 		if (clone == NULL)
785 			return;
786 		m = clone;
787 		ip = mtod(m, struct ip *);
788 		ip->ip_len += hlen;
789 		/*
790 		 * Jump backwards to complete processing of the
791 		 * packet.  We do not need to clear args.next_hop
792 		 * as that will not be used again and the cloned packet
793 		 * doesn't contain a divert packet tag so we won't
794 		 * re-entry this block.
795 		 */
796 		goto pass;
797 	}
798 #endif
799 
800 #ifdef IPSEC
801 	/*
802 	 * enforce IPsec policy checking if we are seeing last header.
803 	 * note that we do not visit this with protocols with pcb layer
804 	 * code - like udp/tcp/raw ip.
805 	 */
806 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
807 	    ipsec4_in_reject(m, NULL)) {
808 		ipsecstat.in_polvio++;
809 		goto bad;
810 	}
811 #endif
812 #if FAST_IPSEC
813 	/*
814 	 * enforce IPsec policy checking if we are seeing last header.
815 	 * note that we do not visit this with protocols with pcb layer
816 	 * code - like udp/tcp/raw ip.
817 	 */
818 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
819 		/*
820 		 * Check if the packet has already had IPsec processing
821 		 * done.  If so, then just pass it along.  This tag gets
822 		 * set during AH, ESP, etc. input handling, before the
823 		 * packet is returned to the ip input queue for delivery.
824 		 */
825 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
826 		s = splnet();
827 		if (mtag != NULL) {
828 			tdbi = (struct tdb_ident *)(mtag + 1);
829 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
830 		} else {
831 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
832 						   IP_FORWARDING, &error);
833 		}
834 		if (sp != NULL) {
835 			/*
836 			 * Check security policy against packet attributes.
837 			 */
838 			error = ipsec_in_reject(sp, m);
839 			KEY_FREESP(&sp);
840 		} else {
841 			/* XXX error stat??? */
842 			error = EINVAL;
843 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
844 			goto bad;
845 		}
846 		splx(s);
847 		if (error)
848 			goto bad;
849 	}
850 #endif /* FAST_IPSEC */
851 
852 	/*
853 	 * Switch out to protocol's input routine.
854 	 */
855 	ipstat.ips_delivered++;
856 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
857 		/* attach next hop info for TCP */
858 		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
859 		    sizeof(struct sockaddr_in *), M_NOWAIT);
860 		if (mtag == NULL)
861 			goto bad;
862 		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
863 		m_tag_prepend(m, mtag);
864 	}
865 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
866 	return;
867 bad:
868 	m_freem(m);
869 }
870 
871 /*
872  * Take incoming datagram fragment and try to reassemble it into
873  * whole datagram.  If the argument is the first fragment or one
874  * in between the function will return NULL and store the mbuf
875  * in the fragment chain.  If the argument is the last fragment
876  * the packet will be reassembled and the pointer to the new
877  * mbuf returned for further processing.  Only m_tags attached
878  * to the first packet/fragment are preserved.
879  * The IP header is *NOT* adjusted out of iplen.
880  */
881 
882 struct mbuf *
883 ip_reass(struct mbuf *m)
884 {
885 	struct ip *ip;
886 	struct mbuf *p, *q, *nq, *t;
887 	struct ipq *fp = NULL;
888 	struct ipqhead *head;
889 	int i, hlen, next;
890 	u_int8_t ecn, ecn0;
891 	u_short hash;
892 
893 	/* If maxnipq is 0, never accept fragments. */
894 	if (maxnipq == 0) {
895 		ipstat.ips_fragments++;
896 		ipstat.ips_fragdropped++;
897 		goto dropfrag;
898 	}
899 
900 	ip = mtod(m, struct ip *);
901 	hlen = ip->ip_hl << 2;
902 
903 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
904 	head = &ipq[hash];
905 	IPQ_LOCK();
906 
907 	/*
908 	 * Look for queue of fragments
909 	 * of this datagram.
910 	 */
911 	TAILQ_FOREACH(fp, head, ipq_list)
912 		if (ip->ip_id == fp->ipq_id &&
913 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
914 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
915 #ifdef MAC
916 		    mac_fragment_match(m, fp) &&
917 #endif
918 		    ip->ip_p == fp->ipq_p)
919 			goto found;
920 
921 	fp = NULL;
922 
923 	/*
924 	 * Enforce upper bound on number of fragmented packets
925 	 * for which we attempt reassembly;
926 	 * If maxnipq is -1, accept all fragments without limitation.
927 	 */
928 	if ((nipq > maxnipq) && (maxnipq > 0)) {
929 		/*
930 		 * drop something from the tail of the current queue
931 		 * before proceeding further
932 		 */
933 		struct ipq *q = TAILQ_LAST(head, ipqhead);
934 		if (q == NULL) {   /* gak */
935 			for (i = 0; i < IPREASS_NHASH; i++) {
936 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
937 				if (r) {
938 					ipstat.ips_fragtimeout += r->ipq_nfrags;
939 					ip_freef(&ipq[i], r);
940 					break;
941 				}
942 			}
943 		} else {
944 			ipstat.ips_fragtimeout += q->ipq_nfrags;
945 			ip_freef(head, q);
946 		}
947 	}
948 
949 found:
950 	/*
951 	 * Adjust ip_len to not reflect header,
952 	 * convert offset of this to bytes.
953 	 */
954 	ip->ip_len -= hlen;
955 	if (ip->ip_off & IP_MF) {
956 		/*
957 		 * Make sure that fragments have a data length
958 		 * that's a non-zero multiple of 8 bytes.
959 		 */
960 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
961 			IPQ_UNLOCK();
962 			ipstat.ips_toosmall++; /* XXX */
963 			goto dropfrag;
964 		}
965 		m->m_flags |= M_FRAG;
966 	} else
967 		m->m_flags &= ~M_FRAG;
968 	ip->ip_off <<= 3;
969 
970 
971 	/*
972 	 * Attempt reassembly; if it succeeds, proceed.
973 	 * ip_reass() will return a different mbuf.
974 	 */
975 	ipstat.ips_fragments++;
976 	m->m_pkthdr.header = ip;
977 
978 	/* Previous ip_reass() started here. */
979 	/*
980 	 * Presence of header sizes in mbufs
981 	 * would confuse code below.
982 	 */
983 	m->m_data += hlen;
984 	m->m_len -= hlen;
985 
986 	/*
987 	 * If first fragment to arrive, create a reassembly queue.
988 	 */
989 	if (fp == NULL) {
990 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
991 			goto dropfrag;
992 		fp = mtod(t, struct ipq *);
993 #ifdef MAC
994 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
995 			m_free(t);
996 			goto dropfrag;
997 		}
998 		mac_create_ipq(m, fp);
999 #endif
1000 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1001 		nipq++;
1002 		fp->ipq_nfrags = 1;
1003 		fp->ipq_ttl = IPFRAGTTL;
1004 		fp->ipq_p = ip->ip_p;
1005 		fp->ipq_id = ip->ip_id;
1006 		fp->ipq_src = ip->ip_src;
1007 		fp->ipq_dst = ip->ip_dst;
1008 		fp->ipq_frags = m;
1009 		m->m_nextpkt = NULL;
1010 		goto inserted;
1011 	} else {
1012 		fp->ipq_nfrags++;
1013 #ifdef MAC
1014 		mac_update_ipq(m, fp);
1015 #endif
1016 	}
1017 
1018 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1019 
1020 	/*
1021 	 * Handle ECN by comparing this segment with the first one;
1022 	 * if CE is set, do not lose CE.
1023 	 * drop if CE and not-ECT are mixed for the same packet.
1024 	 */
1025 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1026 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1027 	if (ecn == IPTOS_ECN_CE) {
1028 		if (ecn0 == IPTOS_ECN_NOTECT)
1029 			goto dropfrag;
1030 		if (ecn0 != IPTOS_ECN_CE)
1031 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1032 	}
1033 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1034 		goto dropfrag;
1035 
1036 	/*
1037 	 * Find a segment which begins after this one does.
1038 	 */
1039 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1040 		if (GETIP(q)->ip_off > ip->ip_off)
1041 			break;
1042 
1043 	/*
1044 	 * If there is a preceding segment, it may provide some of
1045 	 * our data already.  If so, drop the data from the incoming
1046 	 * segment.  If it provides all of our data, drop us, otherwise
1047 	 * stick new segment in the proper place.
1048 	 *
1049 	 * If some of the data is dropped from the the preceding
1050 	 * segment, then it's checksum is invalidated.
1051 	 */
1052 	if (p) {
1053 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1054 		if (i > 0) {
1055 			if (i >= ip->ip_len)
1056 				goto dropfrag;
1057 			m_adj(m, i);
1058 			m->m_pkthdr.csum_flags = 0;
1059 			ip->ip_off += i;
1060 			ip->ip_len -= i;
1061 		}
1062 		m->m_nextpkt = p->m_nextpkt;
1063 		p->m_nextpkt = m;
1064 	} else {
1065 		m->m_nextpkt = fp->ipq_frags;
1066 		fp->ipq_frags = m;
1067 	}
1068 
1069 	/*
1070 	 * While we overlap succeeding segments trim them or,
1071 	 * if they are completely covered, dequeue them.
1072 	 */
1073 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1074 	     q = nq) {
1075 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1076 		if (i < GETIP(q)->ip_len) {
1077 			GETIP(q)->ip_len -= i;
1078 			GETIP(q)->ip_off += i;
1079 			m_adj(q, i);
1080 			q->m_pkthdr.csum_flags = 0;
1081 			break;
1082 		}
1083 		nq = q->m_nextpkt;
1084 		m->m_nextpkt = nq;
1085 		ipstat.ips_fragdropped++;
1086 		fp->ipq_nfrags--;
1087 		m_freem(q);
1088 	}
1089 
1090 inserted:
1091 
1092 #ifdef IPDIVERT
1093 	if (ip->ip_off != 0) {
1094 		/*
1095 		 * Strip any divert information; only the info
1096 		 * on the first fragment is used/kept.
1097 		 */
1098 		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1099 		if (mtag)
1100 			m_tag_delete(m, mtag);
1101 	}
1102 #endif
1103 
1104 	/*
1105 	 * Check for complete reassembly and perform frag per packet
1106 	 * limiting.
1107 	 *
1108 	 * Frag limiting is performed here so that the nth frag has
1109 	 * a chance to complete the packet before we drop the packet.
1110 	 * As a result, n+1 frags are actually allowed per packet, but
1111 	 * only n will ever be stored. (n = maxfragsperpacket.)
1112 	 *
1113 	 */
1114 	next = 0;
1115 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1116 		if (GETIP(q)->ip_off != next) {
1117 			if (fp->ipq_nfrags > maxfragsperpacket) {
1118 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1119 				ip_freef(head, fp);
1120 			}
1121 			goto done;
1122 		}
1123 		next += GETIP(q)->ip_len;
1124 	}
1125 	/* Make sure the last packet didn't have the IP_MF flag */
1126 	if (p->m_flags & M_FRAG) {
1127 		if (fp->ipq_nfrags > maxfragsperpacket) {
1128 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1129 			ip_freef(head, fp);
1130 		}
1131 		goto done;
1132 	}
1133 
1134 	/*
1135 	 * Reassembly is complete.  Make sure the packet is a sane size.
1136 	 */
1137 	q = fp->ipq_frags;
1138 	ip = GETIP(q);
1139 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1140 		ipstat.ips_toolong++;
1141 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1142 		ip_freef(head, fp);
1143 		goto done;
1144 	}
1145 
1146 	/*
1147 	 * Concatenate fragments.
1148 	 */
1149 	m = q;
1150 	t = m->m_next;
1151 	m->m_next = 0;
1152 	m_cat(m, t);
1153 	nq = q->m_nextpkt;
1154 	q->m_nextpkt = 0;
1155 	for (q = nq; q != NULL; q = nq) {
1156 		nq = q->m_nextpkt;
1157 		q->m_nextpkt = NULL;
1158 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1159 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1160 		m_cat(m, q);
1161 	}
1162 #ifdef MAC
1163 	mac_create_datagram_from_ipq(fp, m);
1164 	mac_destroy_ipq(fp);
1165 #endif
1166 
1167 	/*
1168 	 * Create header for new ip packet by modifying header of first
1169 	 * packet;  dequeue and discard fragment reassembly header.
1170 	 * Make header visible.
1171 	 */
1172 	ip->ip_len = (ip->ip_hl << 2) + next;
1173 	ip->ip_src = fp->ipq_src;
1174 	ip->ip_dst = fp->ipq_dst;
1175 	TAILQ_REMOVE(head, fp, ipq_list);
1176 	nipq--;
1177 	(void) m_free(dtom(fp));
1178 	m->m_len += (ip->ip_hl << 2);
1179 	m->m_data -= (ip->ip_hl << 2);
1180 	/* some debugging cruft by sklower, below, will go away soon */
1181 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1182 		m_fixhdr(m);
1183 	ipstat.ips_reassembled++;
1184 	IPQ_UNLOCK();
1185 	return (m);
1186 
1187 dropfrag:
1188 	ipstat.ips_fragdropped++;
1189 	if (fp != NULL)
1190 		fp->ipq_nfrags--;
1191 	m_freem(m);
1192 done:
1193 	IPQ_UNLOCK();
1194 	return (NULL);
1195 
1196 #undef GETIP
1197 }
1198 
1199 /*
1200  * Free a fragment reassembly header and all
1201  * associated datagrams.
1202  */
1203 static void
1204 ip_freef(fhp, fp)
1205 	struct ipqhead *fhp;
1206 	struct ipq *fp;
1207 {
1208 	register struct mbuf *q;
1209 
1210 	IPQ_LOCK_ASSERT();
1211 
1212 	while (fp->ipq_frags) {
1213 		q = fp->ipq_frags;
1214 		fp->ipq_frags = q->m_nextpkt;
1215 		m_freem(q);
1216 	}
1217 	TAILQ_REMOVE(fhp, fp, ipq_list);
1218 	(void) m_free(dtom(fp));
1219 	nipq--;
1220 }
1221 
1222 /*
1223  * IP timer processing;
1224  * if a timer expires on a reassembly
1225  * queue, discard it.
1226  */
1227 void
1228 ip_slowtimo()
1229 {
1230 	register struct ipq *fp;
1231 	int s = splnet();
1232 	int i;
1233 
1234 	IPQ_LOCK();
1235 	for (i = 0; i < IPREASS_NHASH; i++) {
1236 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1237 			struct ipq *fpp;
1238 
1239 			fpp = fp;
1240 			fp = TAILQ_NEXT(fp, ipq_list);
1241 			if(--fpp->ipq_ttl == 0) {
1242 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1243 				ip_freef(&ipq[i], fpp);
1244 			}
1245 		}
1246 	}
1247 	/*
1248 	 * If we are over the maximum number of fragments
1249 	 * (due to the limit being lowered), drain off
1250 	 * enough to get down to the new limit.
1251 	 */
1252 	if (maxnipq >= 0 && nipq > maxnipq) {
1253 		for (i = 0; i < IPREASS_NHASH; i++) {
1254 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1255 				ipstat.ips_fragdropped +=
1256 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1257 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1258 			}
1259 		}
1260 	}
1261 	IPQ_UNLOCK();
1262 	splx(s);
1263 }
1264 
1265 /*
1266  * Drain off all datagram fragments.
1267  */
1268 void
1269 ip_drain()
1270 {
1271 	int     i;
1272 
1273 	IPQ_LOCK();
1274 	for (i = 0; i < IPREASS_NHASH; i++) {
1275 		while(!TAILQ_EMPTY(&ipq[i])) {
1276 			ipstat.ips_fragdropped +=
1277 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1278 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1279 		}
1280 	}
1281 	IPQ_UNLOCK();
1282 	in_rtqdrain();
1283 }
1284 
1285 /*
1286  * Do option processing on a datagram,
1287  * possibly discarding it if bad options are encountered,
1288  * or forwarding it if source-routed.
1289  * The pass argument is used when operating in the IPSTEALTH
1290  * mode to tell what options to process:
1291  * [LS]SRR (pass 0) or the others (pass 1).
1292  * The reason for as many as two passes is that when doing IPSTEALTH,
1293  * non-routing options should be processed only if the packet is for us.
1294  * Returns 1 if packet has been forwarded/freed,
1295  * 0 if the packet should be processed further.
1296  */
1297 static int
1298 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1299 {
1300 	struct ip *ip = mtod(m, struct ip *);
1301 	u_char *cp;
1302 	struct in_ifaddr *ia;
1303 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1304 	struct in_addr *sin, dst;
1305 	n_time ntime;
1306 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1307 
1308 	/* ignore or reject packets with IP options */
1309 	if (ip_doopts == 0)
1310 		return 0;
1311 	else if (ip_doopts == 2) {
1312 		type = ICMP_UNREACH;
1313 		code = ICMP_UNREACH_FILTER_PROHIB;
1314 		goto bad;
1315 	}
1316 
1317 	dst = ip->ip_dst;
1318 	cp = (u_char *)(ip + 1);
1319 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1320 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1321 		opt = cp[IPOPT_OPTVAL];
1322 		if (opt == IPOPT_EOL)
1323 			break;
1324 		if (opt == IPOPT_NOP)
1325 			optlen = 1;
1326 		else {
1327 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1328 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1329 				goto bad;
1330 			}
1331 			optlen = cp[IPOPT_OLEN];
1332 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1333 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1334 				goto bad;
1335 			}
1336 		}
1337 		switch (opt) {
1338 
1339 		default:
1340 			break;
1341 
1342 		/*
1343 		 * Source routing with record.
1344 		 * Find interface with current destination address.
1345 		 * If none on this machine then drop if strictly routed,
1346 		 * or do nothing if loosely routed.
1347 		 * Record interface address and bring up next address
1348 		 * component.  If strictly routed make sure next
1349 		 * address is on directly accessible net.
1350 		 */
1351 		case IPOPT_LSRR:
1352 		case IPOPT_SSRR:
1353 #ifdef IPSTEALTH
1354 			if (ipstealth && pass > 0)
1355 				break;
1356 #endif
1357 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1358 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1359 				goto bad;
1360 			}
1361 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1362 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1363 				goto bad;
1364 			}
1365 			ipaddr.sin_addr = ip->ip_dst;
1366 			ia = (struct in_ifaddr *)
1367 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1368 			if (ia == 0) {
1369 				if (opt == IPOPT_SSRR) {
1370 					type = ICMP_UNREACH;
1371 					code = ICMP_UNREACH_SRCFAIL;
1372 					goto bad;
1373 				}
1374 				if (!ip_dosourceroute)
1375 					goto nosourcerouting;
1376 				/*
1377 				 * Loose routing, and not at next destination
1378 				 * yet; nothing to do except forward.
1379 				 */
1380 				break;
1381 			}
1382 			off--;			/* 0 origin */
1383 			if (off > optlen - (int)sizeof(struct in_addr)) {
1384 				/*
1385 				 * End of source route.  Should be for us.
1386 				 */
1387 				if (!ip_acceptsourceroute)
1388 					goto nosourcerouting;
1389 				save_rte(cp, ip->ip_src);
1390 				break;
1391 			}
1392 #ifdef IPSTEALTH
1393 			if (ipstealth)
1394 				goto dropit;
1395 #endif
1396 			if (!ip_dosourceroute) {
1397 				if (ipforwarding) {
1398 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1399 					/*
1400 					 * Acting as a router, so generate ICMP
1401 					 */
1402 nosourcerouting:
1403 					strcpy(buf, inet_ntoa(ip->ip_dst));
1404 					log(LOG_WARNING,
1405 					    "attempted source route from %s to %s\n",
1406 					    inet_ntoa(ip->ip_src), buf);
1407 					type = ICMP_UNREACH;
1408 					code = ICMP_UNREACH_SRCFAIL;
1409 					goto bad;
1410 				} else {
1411 					/*
1412 					 * Not acting as a router, so silently drop.
1413 					 */
1414 #ifdef IPSTEALTH
1415 dropit:
1416 #endif
1417 					ipstat.ips_cantforward++;
1418 					m_freem(m);
1419 					return (1);
1420 				}
1421 			}
1422 
1423 			/*
1424 			 * locate outgoing interface
1425 			 */
1426 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1427 			    sizeof(ipaddr.sin_addr));
1428 
1429 			if (opt == IPOPT_SSRR) {
1430 #define	INA	struct in_ifaddr *
1431 #define	SA	struct sockaddr *
1432 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1433 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1434 			} else
1435 				ia = ip_rtaddr(ipaddr.sin_addr);
1436 			if (ia == 0) {
1437 				type = ICMP_UNREACH;
1438 				code = ICMP_UNREACH_SRCFAIL;
1439 				goto bad;
1440 			}
1441 			ip->ip_dst = ipaddr.sin_addr;
1442 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1443 			    sizeof(struct in_addr));
1444 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1445 			/*
1446 			 * Let ip_intr's mcast routing check handle mcast pkts
1447 			 */
1448 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1449 			break;
1450 
1451 		case IPOPT_RR:
1452 #ifdef IPSTEALTH
1453 			if (ipstealth && pass == 0)
1454 				break;
1455 #endif
1456 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1457 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1458 				goto bad;
1459 			}
1460 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1461 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1462 				goto bad;
1463 			}
1464 			/*
1465 			 * If no space remains, ignore.
1466 			 */
1467 			off--;			/* 0 origin */
1468 			if (off > optlen - (int)sizeof(struct in_addr))
1469 				break;
1470 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1471 			    sizeof(ipaddr.sin_addr));
1472 			/*
1473 			 * locate outgoing interface; if we're the destination,
1474 			 * use the incoming interface (should be same).
1475 			 */
1476 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1477 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1478 				type = ICMP_UNREACH;
1479 				code = ICMP_UNREACH_HOST;
1480 				goto bad;
1481 			}
1482 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1483 			    sizeof(struct in_addr));
1484 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1485 			break;
1486 
1487 		case IPOPT_TS:
1488 #ifdef IPSTEALTH
1489 			if (ipstealth && pass == 0)
1490 				break;
1491 #endif
1492 			code = cp - (u_char *)ip;
1493 			if (optlen < 4 || optlen > 40) {
1494 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495 				goto bad;
1496 			}
1497 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1498 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499 				goto bad;
1500 			}
1501 			if (off > optlen - (int)sizeof(int32_t)) {
1502 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1503 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1504 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1505 					goto bad;
1506 				}
1507 				break;
1508 			}
1509 			off--;				/* 0 origin */
1510 			sin = (struct in_addr *)(cp + off);
1511 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1512 
1513 			case IPOPT_TS_TSONLY:
1514 				break;
1515 
1516 			case IPOPT_TS_TSANDADDR:
1517 				if (off + sizeof(n_time) +
1518 				    sizeof(struct in_addr) > optlen) {
1519 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1520 					goto bad;
1521 				}
1522 				ipaddr.sin_addr = dst;
1523 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1524 							    m->m_pkthdr.rcvif);
1525 				if (ia == 0)
1526 					continue;
1527 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1528 				    sizeof(struct in_addr));
1529 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1530 				off += sizeof(struct in_addr);
1531 				break;
1532 
1533 			case IPOPT_TS_PRESPEC:
1534 				if (off + sizeof(n_time) +
1535 				    sizeof(struct in_addr) > optlen) {
1536 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1537 					goto bad;
1538 				}
1539 				(void)memcpy(&ipaddr.sin_addr, sin,
1540 				    sizeof(struct in_addr));
1541 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1542 					continue;
1543 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1544 				off += sizeof(struct in_addr);
1545 				break;
1546 
1547 			default:
1548 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1549 				goto bad;
1550 			}
1551 			ntime = iptime();
1552 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1553 			cp[IPOPT_OFFSET] += sizeof(n_time);
1554 		}
1555 	}
1556 	if (forward && ipforwarding) {
1557 		ip_forward(m, 1, next_hop);
1558 		return (1);
1559 	}
1560 	return (0);
1561 bad:
1562 	icmp_error(m, type, code, 0, 0);
1563 	ipstat.ips_badoptions++;
1564 	return (1);
1565 }
1566 
1567 /*
1568  * Given address of next destination (final or next hop),
1569  * return internet address info of interface to be used to get there.
1570  */
1571 struct in_ifaddr *
1572 ip_rtaddr(dst)
1573 	struct in_addr dst;
1574 {
1575 	struct route sro;
1576 	struct sockaddr_in *sin;
1577 	struct in_ifaddr *ifa;
1578 
1579 	bzero(&sro, sizeof(sro));
1580 	sin = (struct sockaddr_in *)&sro.ro_dst;
1581 	sin->sin_family = AF_INET;
1582 	sin->sin_len = sizeof(*sin);
1583 	sin->sin_addr = dst;
1584 	rtalloc_ign(&sro, RTF_CLONING);
1585 
1586 	if (sro.ro_rt == NULL)
1587 		return ((struct in_ifaddr *)0);
1588 
1589 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1590 	RTFREE(sro.ro_rt);
1591 	return ifa;
1592 }
1593 
1594 /*
1595  * Save incoming source route for use in replies,
1596  * to be picked up later by ip_srcroute if the receiver is interested.
1597  */
1598 static void
1599 save_rte(option, dst)
1600 	u_char *option;
1601 	struct in_addr dst;
1602 {
1603 	unsigned olen;
1604 
1605 	olen = option[IPOPT_OLEN];
1606 #ifdef DIAGNOSTIC
1607 	if (ipprintfs)
1608 		printf("save_rte: olen %d\n", olen);
1609 #endif
1610 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1611 		return;
1612 	bcopy(option, ip_srcrt.srcopt, olen);
1613 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1614 	ip_srcrt.dst = dst;
1615 }
1616 
1617 /*
1618  * Retrieve incoming source route for use in replies,
1619  * in the same form used by setsockopt.
1620  * The first hop is placed before the options, will be removed later.
1621  */
1622 struct mbuf *
1623 ip_srcroute()
1624 {
1625 	register struct in_addr *p, *q;
1626 	register struct mbuf *m;
1627 
1628 	if (ip_nhops == 0)
1629 		return ((struct mbuf *)0);
1630 	m = m_get(M_DONTWAIT, MT_HEADER);
1631 	if (m == 0)
1632 		return ((struct mbuf *)0);
1633 
1634 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1635 
1636 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1637 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1638 	    OPTSIZ;
1639 #ifdef DIAGNOSTIC
1640 	if (ipprintfs)
1641 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1642 #endif
1643 
1644 	/*
1645 	 * First save first hop for return route
1646 	 */
1647 	p = &ip_srcrt.route[ip_nhops - 1];
1648 	*(mtod(m, struct in_addr *)) = *p--;
1649 #ifdef DIAGNOSTIC
1650 	if (ipprintfs)
1651 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1652 #endif
1653 
1654 	/*
1655 	 * Copy option fields and padding (nop) to mbuf.
1656 	 */
1657 	ip_srcrt.nop = IPOPT_NOP;
1658 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1659 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1660 	    &ip_srcrt.nop, OPTSIZ);
1661 	q = (struct in_addr *)(mtod(m, caddr_t) +
1662 	    sizeof(struct in_addr) + OPTSIZ);
1663 #undef OPTSIZ
1664 	/*
1665 	 * Record return path as an IP source route,
1666 	 * reversing the path (pointers are now aligned).
1667 	 */
1668 	while (p >= ip_srcrt.route) {
1669 #ifdef DIAGNOSTIC
1670 		if (ipprintfs)
1671 			printf(" %lx", (u_long)ntohl(q->s_addr));
1672 #endif
1673 		*q++ = *p--;
1674 	}
1675 	/*
1676 	 * Last hop goes to final destination.
1677 	 */
1678 	*q = ip_srcrt.dst;
1679 #ifdef DIAGNOSTIC
1680 	if (ipprintfs)
1681 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1682 #endif
1683 	return (m);
1684 }
1685 
1686 /*
1687  * Strip out IP options, at higher
1688  * level protocol in the kernel.
1689  * Second argument is buffer to which options
1690  * will be moved, and return value is their length.
1691  * XXX should be deleted; last arg currently ignored.
1692  */
1693 void
1694 ip_stripoptions(m, mopt)
1695 	register struct mbuf *m;
1696 	struct mbuf *mopt;
1697 {
1698 	register int i;
1699 	struct ip *ip = mtod(m, struct ip *);
1700 	register caddr_t opts;
1701 	int olen;
1702 
1703 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1704 	opts = (caddr_t)(ip + 1);
1705 	i = m->m_len - (sizeof (struct ip) + olen);
1706 	bcopy(opts + olen, opts, (unsigned)i);
1707 	m->m_len -= olen;
1708 	if (m->m_flags & M_PKTHDR)
1709 		m->m_pkthdr.len -= olen;
1710 	ip->ip_v = IPVERSION;
1711 	ip->ip_hl = sizeof(struct ip) >> 2;
1712 }
1713 
1714 u_char inetctlerrmap[PRC_NCMDS] = {
1715 	0,		0,		0,		0,
1716 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1717 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1718 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1719 	0,		0,		EHOSTUNREACH,	0,
1720 	ENOPROTOOPT,	ECONNREFUSED
1721 };
1722 
1723 /*
1724  * Forward a packet.  If some error occurs return the sender
1725  * an icmp packet.  Note we can't always generate a meaningful
1726  * icmp message because icmp doesn't have a large enough repertoire
1727  * of codes and types.
1728  *
1729  * If not forwarding, just drop the packet.  This could be confusing
1730  * if ipforwarding was zero but some routing protocol was advancing
1731  * us as a gateway to somewhere.  However, we must let the routing
1732  * protocol deal with that.
1733  *
1734  * The srcrt parameter indicates whether the packet is being forwarded
1735  * via a source route.
1736  */
1737 static void
1738 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1739 {
1740 	struct ip *ip = mtod(m, struct ip *);
1741 	struct in_ifaddr *ia;
1742 	int error, type = 0, code = 0;
1743 	struct mbuf *mcopy;
1744 	n_long dest;
1745 	struct in_addr pkt_dst;
1746 	struct ifnet *destifp;
1747 #if defined(IPSEC) || defined(FAST_IPSEC)
1748 	struct ifnet dummyifp;
1749 #endif
1750 
1751 	/*
1752 	 * Cache the destination address of the packet; this may be
1753 	 * changed by use of 'ipfw fwd'.
1754 	 */
1755 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1756 
1757 #ifdef DIAGNOSTIC
1758 	if (ipprintfs)
1759 		printf("forward: src %lx dst %lx ttl %x\n",
1760 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1761 		    ip->ip_ttl);
1762 #endif
1763 
1764 
1765 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1766 		ipstat.ips_cantforward++;
1767 		m_freem(m);
1768 		return;
1769 	}
1770 #ifdef IPSTEALTH
1771 	if (!ipstealth) {
1772 #endif
1773 		if (ip->ip_ttl <= IPTTLDEC) {
1774 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1775 			    0, 0);
1776 			return;
1777 		}
1778 #ifdef IPSTEALTH
1779 	}
1780 #endif
1781 
1782 	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1783 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1784 		return;
1785 	}
1786 
1787 	/*
1788 	 * Save the IP header and at most 8 bytes of the payload,
1789 	 * in case we need to generate an ICMP message to the src.
1790 	 *
1791 	 * XXX this can be optimized a lot by saving the data in a local
1792 	 * buffer on the stack (72 bytes at most), and only allocating the
1793 	 * mbuf if really necessary. The vast majority of the packets
1794 	 * are forwarded without having to send an ICMP back (either
1795 	 * because unnecessary, or because rate limited), so we are
1796 	 * really we are wasting a lot of work here.
1797 	 *
1798 	 * We don't use m_copy() because it might return a reference
1799 	 * to a shared cluster. Both this function and ip_output()
1800 	 * assume exclusive access to the IP header in `m', so any
1801 	 * data in a cluster may change before we reach icmp_error().
1802 	 */
1803 	MGET(mcopy, M_DONTWAIT, m->m_type);
1804 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1805 		/*
1806 		 * It's probably ok if the pkthdr dup fails (because
1807 		 * the deep copy of the tag chain failed), but for now
1808 		 * be conservative and just discard the copy since
1809 		 * code below may some day want the tags.
1810 		 */
1811 		m_free(mcopy);
1812 		mcopy = NULL;
1813 	}
1814 	if (mcopy != NULL) {
1815 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1816 		    (int)ip->ip_len);
1817 		mcopy->m_pkthdr.len = mcopy->m_len;
1818 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1819 	}
1820 
1821 #ifdef IPSTEALTH
1822 	if (!ipstealth) {
1823 #endif
1824 		ip->ip_ttl -= IPTTLDEC;
1825 #ifdef IPSTEALTH
1826 	}
1827 #endif
1828 
1829 	/*
1830 	 * If forwarding packet using same interface that it came in on,
1831 	 * perhaps should send a redirect to sender to shortcut a hop.
1832 	 * Only send redirect if source is sending directly to us,
1833 	 * and if packet was not source routed (or has any options).
1834 	 * Also, don't send redirect if forwarding using a default route
1835 	 * or a route modified by a redirect.
1836 	 */
1837 	dest = 0;
1838 	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1839 		struct sockaddr_in *sin;
1840 		struct route ro;
1841 		struct rtentry *rt;
1842 
1843 		bzero(&ro, sizeof(ro));
1844 		sin = (struct sockaddr_in *)&ro.ro_dst;
1845 		sin->sin_family = AF_INET;
1846 		sin->sin_len = sizeof(*sin);
1847 		sin->sin_addr = pkt_dst;
1848 		rtalloc_ign(&ro, RTF_CLONING);
1849 
1850 		rt = ro.ro_rt;
1851 
1852 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1853 		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1854 		    ipsendredirects && !srcrt && !next_hop) {
1855 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1856 			u_long src = ntohl(ip->ip_src.s_addr);
1857 
1858 			if (RTA(rt) &&
1859 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1860 				if (rt->rt_flags & RTF_GATEWAY)
1861 					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1862 				else
1863 					dest = pkt_dst.s_addr;
1864 				/* Router requirements says to only send host redirects */
1865 				type = ICMP_REDIRECT;
1866 				code = ICMP_REDIRECT_HOST;
1867 #ifdef DIAGNOSTIC
1868 				if (ipprintfs)
1869 					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1870 #endif
1871 			}
1872 		}
1873 		if (rt)
1874 			RTFREE(rt);
1875 	}
1876 
1877 	if (next_hop) {
1878 		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1879 		    sizeof(struct sockaddr_in *), M_NOWAIT);
1880 		if (mtag == NULL) {
1881 			m_freem(m);
1882 			return;
1883 		}
1884 		*(struct sockaddr_in **)(mtag+1) = next_hop;
1885 		m_tag_prepend(m, mtag);
1886 	}
1887 	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1888 	if (error)
1889 		ipstat.ips_cantforward++;
1890 	else {
1891 		ipstat.ips_forward++;
1892 		if (type)
1893 			ipstat.ips_redirectsent++;
1894 		else {
1895 			if (mcopy)
1896 				m_freem(mcopy);
1897 			return;
1898 		}
1899 	}
1900 	if (mcopy == NULL)
1901 		return;
1902 	destifp = NULL;
1903 
1904 	switch (error) {
1905 
1906 	case 0:				/* forwarded, but need redirect */
1907 		/* type, code set above */
1908 		break;
1909 
1910 	case ENETUNREACH:		/* shouldn't happen, checked above */
1911 	case EHOSTUNREACH:
1912 	case ENETDOWN:
1913 	case EHOSTDOWN:
1914 	default:
1915 		type = ICMP_UNREACH;
1916 		code = ICMP_UNREACH_HOST;
1917 		break;
1918 
1919 	case EMSGSIZE:
1920 		type = ICMP_UNREACH;
1921 		code = ICMP_UNREACH_NEEDFRAG;
1922 #if defined(IPSEC) || defined(FAST_IPSEC)
1923 		/*
1924 		 * If the packet is routed over IPsec tunnel, tell the
1925 		 * originator the tunnel MTU.
1926 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1927 		 * XXX quickhack!!!
1928 		 */
1929 		{
1930 			struct secpolicy *sp = NULL;
1931 			int ipsecerror;
1932 			int ipsechdr;
1933 			struct route *ro;
1934 
1935 #ifdef IPSEC
1936 			sp = ipsec4_getpolicybyaddr(mcopy,
1937 						    IPSEC_DIR_OUTBOUND,
1938 						    IP_FORWARDING,
1939 						    &ipsecerror);
1940 #else /* FAST_IPSEC */
1941 			sp = ipsec_getpolicybyaddr(mcopy,
1942 						   IPSEC_DIR_OUTBOUND,
1943 						   IP_FORWARDING,
1944 						   &ipsecerror);
1945 #endif
1946 			if (sp != NULL) {
1947 				/* count IPsec header size */
1948 				ipsechdr = ipsec4_hdrsiz(mcopy,
1949 							 IPSEC_DIR_OUTBOUND,
1950 							 NULL);
1951 
1952 				/*
1953 				 * find the correct route for outer IPv4
1954 				 * header, compute tunnel MTU.
1955 				 *
1956 				 * XXX BUG ALERT
1957 				 * The "dummyifp" code relies upon the fact
1958 				 * that icmp_error() touches only ifp->if_mtu.
1959 				 */
1960 				/*XXX*/
1961 				destifp = NULL;
1962 				if (sp->req != NULL
1963 				 && sp->req->sav != NULL
1964 				 && sp->req->sav->sah != NULL) {
1965 					ro = &sp->req->sav->sah->sa_route;
1966 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1967 						dummyifp.if_mtu =
1968 						    ro->ro_rt->rt_rmx.rmx_mtu ?
1969 						    ro->ro_rt->rt_rmx.rmx_mtu :
1970 						    ro->ro_rt->rt_ifp->if_mtu;
1971 						dummyifp.if_mtu -= ipsechdr;
1972 						destifp = &dummyifp;
1973 					}
1974 				}
1975 
1976 #ifdef IPSEC
1977 				key_freesp(sp);
1978 #else /* FAST_IPSEC */
1979 				KEY_FREESP(&sp);
1980 #endif
1981 				ipstat.ips_cantfrag++;
1982 				break;
1983 			} else
1984 #endif /*IPSEC || FAST_IPSEC*/
1985 		destifp = ia->ia_ifp;
1986 #if defined(IPSEC) || defined(FAST_IPSEC)
1987 		}
1988 #endif /*IPSEC || FAST_IPSEC*/
1989 		ipstat.ips_cantfrag++;
1990 		break;
1991 
1992 	case ENOBUFS:
1993 		/*
1994 		 * A router should not generate ICMP_SOURCEQUENCH as
1995 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1996 		 * Source quench could be a big problem under DoS attacks,
1997 		 * or if the underlying interface is rate-limited.
1998 		 * Those who need source quench packets may re-enable them
1999 		 * via the net.inet.ip.sendsourcequench sysctl.
2000 		 */
2001 		if (ip_sendsourcequench == 0) {
2002 			m_freem(mcopy);
2003 			return;
2004 		} else {
2005 			type = ICMP_SOURCEQUENCH;
2006 			code = 0;
2007 		}
2008 		break;
2009 
2010 	case EACCES:			/* ipfw denied packet */
2011 		m_freem(mcopy);
2012 		return;
2013 	}
2014 	icmp_error(mcopy, type, code, dest, destifp);
2015 }
2016 
2017 void
2018 ip_savecontrol(inp, mp, ip, m)
2019 	register struct inpcb *inp;
2020 	register struct mbuf **mp;
2021 	register struct ip *ip;
2022 	register struct mbuf *m;
2023 {
2024 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2025 		struct bintime bt;
2026 
2027 		bintime(&bt);
2028 		if (inp->inp_socket->so_options & SO_BINTIME) {
2029 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2030 			SCM_BINTIME, SOL_SOCKET);
2031 			if (*mp)
2032 				mp = &(*mp)->m_next;
2033 		}
2034 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2035 			struct timeval tv;
2036 
2037 			bintime2timeval(&bt, &tv);
2038 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2039 				SCM_TIMESTAMP, SOL_SOCKET);
2040 			if (*mp)
2041 				mp = &(*mp)->m_next;
2042 		}
2043 	}
2044 	if (inp->inp_flags & INP_RECVDSTADDR) {
2045 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2046 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2047 		if (*mp)
2048 			mp = &(*mp)->m_next;
2049 	}
2050 	if (inp->inp_flags & INP_RECVTTL) {
2051 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2052 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2053 		if (*mp)
2054 			mp = &(*mp)->m_next;
2055 	}
2056 #ifdef notyet
2057 	/* XXX
2058 	 * Moving these out of udp_input() made them even more broken
2059 	 * than they already were.
2060 	 */
2061 	/* options were tossed already */
2062 	if (inp->inp_flags & INP_RECVOPTS) {
2063 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2064 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2065 		if (*mp)
2066 			mp = &(*mp)->m_next;
2067 	}
2068 	/* ip_srcroute doesn't do what we want here, need to fix */
2069 	if (inp->inp_flags & INP_RECVRETOPTS) {
2070 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2071 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2072 		if (*mp)
2073 			mp = &(*mp)->m_next;
2074 	}
2075 #endif
2076 	if (inp->inp_flags & INP_RECVIF) {
2077 		struct ifnet *ifp;
2078 		struct sdlbuf {
2079 			struct sockaddr_dl sdl;
2080 			u_char	pad[32];
2081 		} sdlbuf;
2082 		struct sockaddr_dl *sdp;
2083 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2084 
2085 		if (((ifp = m->m_pkthdr.rcvif))
2086 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2087 			sdp = (struct sockaddr_dl *)
2088 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2089 			/*
2090 			 * Change our mind and don't try copy.
2091 			 */
2092 			if ((sdp->sdl_family != AF_LINK)
2093 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2094 				goto makedummy;
2095 			}
2096 			bcopy(sdp, sdl2, sdp->sdl_len);
2097 		} else {
2098 makedummy:
2099 			sdl2->sdl_len
2100 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2101 			sdl2->sdl_family = AF_LINK;
2102 			sdl2->sdl_index = 0;
2103 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2104 		}
2105 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2106 			IP_RECVIF, IPPROTO_IP);
2107 		if (*mp)
2108 			mp = &(*mp)->m_next;
2109 	}
2110 }
2111 
2112 /*
2113  * XXX these routines are called from the upper part of the kernel.
2114  * They need to be locked when we remove Giant.
2115  *
2116  * They could also be moved to ip_mroute.c, since all the RSVP
2117  *  handling is done there already.
2118  */
2119 static int ip_rsvp_on;
2120 struct socket *ip_rsvpd;
2121 int
2122 ip_rsvp_init(struct socket *so)
2123 {
2124 	if (so->so_type != SOCK_RAW ||
2125 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2126 		return EOPNOTSUPP;
2127 
2128 	if (ip_rsvpd != NULL)
2129 		return EADDRINUSE;
2130 
2131 	ip_rsvpd = so;
2132 	/*
2133 	 * This may seem silly, but we need to be sure we don't over-increment
2134 	 * the RSVP counter, in case something slips up.
2135 	 */
2136 	if (!ip_rsvp_on) {
2137 		ip_rsvp_on = 1;
2138 		rsvp_on++;
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 int
2145 ip_rsvp_done(void)
2146 {
2147 	ip_rsvpd = NULL;
2148 	/*
2149 	 * This may seem silly, but we need to be sure we don't over-decrement
2150 	 * the RSVP counter, in case something slips up.
2151 	 */
2152 	if (ip_rsvp_on) {
2153 		ip_rsvp_on = 0;
2154 		rsvp_on--;
2155 	}
2156 	return 0;
2157 }
2158 
2159 void
2160 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2161 {
2162 	if (rsvp_input_p) { /* call the real one if loaded */
2163 		rsvp_input_p(m, off);
2164 		return;
2165 	}
2166 
2167 	/* Can still get packets with rsvp_on = 0 if there is a local member
2168 	 * of the group to which the RSVP packet is addressed.  But in this
2169 	 * case we want to throw the packet away.
2170 	 */
2171 
2172 	if (!rsvp_on) {
2173 		m_freem(m);
2174 		return;
2175 	}
2176 
2177 	if (ip_rsvpd != NULL) {
2178 		rip_input(m, off);
2179 		return;
2180 	}
2181 	/* Drop the packet */
2182 	m_freem(m);
2183 }
2184