1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/netisr.h> 67 #include <net/rss_config.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_pcb.h> 76 #include <netinet/ip_var.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_options.h> 80 #include <machine/in_cksum.h> 81 #include <netinet/ip_carp.h> 82 #include <netinet/in_rss.h> 83 84 #include <netipsec/ipsec_support.h> 85 86 #include <sys/socketvar.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #ifdef CTASSERT 91 CTASSERT(sizeof(struct ip) == 20); 92 #endif 93 94 /* IP reassembly functions are defined in ip_reass.c. */ 95 extern void ipreass_init(void); 96 extern void ipreass_drain(void); 97 extern void ipreass_slowtimo(void); 98 #ifdef VIMAGE 99 extern void ipreass_destroy(void); 100 #endif 101 102 struct rmlock in_ifaddr_lock; 103 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 VNET_DEFINE_STATIC(int, ipsendredirects) = 1; /* XXX */ 113 #define V_ipsendredirects VNET(ipsendredirects) 114 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 115 &VNET_NAME(ipsendredirects), 0, 116 "Enable sending IP redirects"); 117 118 /* 119 * XXX - Setting ip_checkinterface mostly implements the receive side of 120 * the Strong ES model described in RFC 1122, but since the routing table 121 * and transmit implementation do not implement the Strong ES model, 122 * setting this to 1 results in an odd hybrid. 123 * 124 * XXX - ip_checkinterface currently must be disabled if you use ipnat 125 * to translate the destination address to another local interface. 126 * 127 * XXX - ip_checkinterface must be disabled if you add IP aliases 128 * to the loopback interface instead of the interface where the 129 * packets for those addresses are received. 130 */ 131 VNET_DEFINE_STATIC(int, ip_checkinterface); 132 #define V_ip_checkinterface VNET(ip_checkinterface) 133 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 134 &VNET_NAME(ip_checkinterface), 0, 135 "Verify packet arrives on correct interface"); 136 137 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 138 139 static struct netisr_handler ip_nh = { 140 .nh_name = "ip", 141 .nh_handler = ip_input, 142 .nh_proto = NETISR_IP, 143 #ifdef RSS 144 .nh_m2cpuid = rss_soft_m2cpuid_v4, 145 .nh_policy = NETISR_POLICY_CPU, 146 .nh_dispatch = NETISR_DISPATCH_HYBRID, 147 #else 148 .nh_policy = NETISR_POLICY_FLOW, 149 #endif 150 }; 151 152 #ifdef RSS 153 /* 154 * Directly dispatched frames are currently assumed 155 * to have a flowid already calculated. 156 * 157 * It should likely have something that assert it 158 * actually has valid flow details. 159 */ 160 static struct netisr_handler ip_direct_nh = { 161 .nh_name = "ip_direct", 162 .nh_handler = ip_direct_input, 163 .nh_proto = NETISR_IP_DIRECT, 164 .nh_m2cpuid = rss_soft_m2cpuid_v4, 165 .nh_policy = NETISR_POLICY_CPU, 166 .nh_dispatch = NETISR_DISPATCH_HYBRID, 167 }; 168 #endif 169 170 extern struct domain inetdomain; 171 extern struct protosw inetsw[]; 172 u_char ip_protox[IPPROTO_MAX]; 173 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 174 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 175 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 176 177 #ifdef IPCTL_DEFMTU 178 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 179 &ip_mtu, 0, "Default MTU"); 180 #endif 181 182 #ifdef IPSTEALTH 183 VNET_DEFINE(int, ipstealth); 184 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 185 &VNET_NAME(ipstealth), 0, 186 "IP stealth mode, no TTL decrementation on forwarding"); 187 #endif 188 189 /* 190 * IP statistics are stored in the "array" of counter(9)s. 191 */ 192 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 193 VNET_PCPUSTAT_SYSINIT(ipstat); 194 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 195 "IP statistics (struct ipstat, netinet/ip_var.h)"); 196 197 #ifdef VIMAGE 198 VNET_PCPUSTAT_SYSUNINIT(ipstat); 199 #endif /* VIMAGE */ 200 201 /* 202 * Kernel module interface for updating ipstat. The argument is an index 203 * into ipstat treated as an array. 204 */ 205 void 206 kmod_ipstat_inc(int statnum) 207 { 208 209 counter_u64_add(VNET(ipstat)[statnum], 1); 210 } 211 212 void 213 kmod_ipstat_dec(int statnum) 214 { 215 216 counter_u64_add(VNET(ipstat)[statnum], -1); 217 } 218 219 static int 220 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 221 { 222 int error, qlimit; 223 224 netisr_getqlimit(&ip_nh, &qlimit); 225 error = sysctl_handle_int(oidp, &qlimit, 0, req); 226 if (error || !req->newptr) 227 return (error); 228 if (qlimit < 1) 229 return (EINVAL); 230 return (netisr_setqlimit(&ip_nh, qlimit)); 231 } 232 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 233 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 234 sysctl_netinet_intr_queue_maxlen, "I", 235 "Maximum size of the IP input queue"); 236 237 static int 238 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 239 { 240 u_int64_t qdrops_long; 241 int error, qdrops; 242 243 netisr_getqdrops(&ip_nh, &qdrops_long); 244 qdrops = qdrops_long; 245 error = sysctl_handle_int(oidp, &qdrops, 0, req); 246 if (error || !req->newptr) 247 return (error); 248 if (qdrops != 0) 249 return (EINVAL); 250 netisr_clearqdrops(&ip_nh); 251 return (0); 252 } 253 254 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 255 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 256 0, 0, sysctl_netinet_intr_queue_drops, "I", 257 "Number of packets dropped from the IP input queue"); 258 259 #ifdef RSS 260 static int 261 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 262 { 263 int error, qlimit; 264 265 netisr_getqlimit(&ip_direct_nh, &qlimit); 266 error = sysctl_handle_int(oidp, &qlimit, 0, req); 267 if (error || !req->newptr) 268 return (error); 269 if (qlimit < 1) 270 return (EINVAL); 271 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 272 } 273 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 274 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 275 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 276 "I", "Maximum size of the IP direct input queue"); 277 278 static int 279 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 280 { 281 u_int64_t qdrops_long; 282 int error, qdrops; 283 284 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 285 qdrops = qdrops_long; 286 error = sysctl_handle_int(oidp, &qdrops, 0, req); 287 if (error || !req->newptr) 288 return (error); 289 if (qdrops != 0) 290 return (EINVAL); 291 netisr_clearqdrops(&ip_direct_nh); 292 return (0); 293 } 294 295 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 296 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 297 sysctl_netinet_intr_direct_queue_drops, "I", 298 "Number of packets dropped from the IP direct input queue"); 299 #endif /* RSS */ 300 301 /* 302 * IP initialization: fill in IP protocol switch table. 303 * All protocols not implemented in kernel go to raw IP protocol handler. 304 */ 305 void 306 ip_init(void) 307 { 308 struct pfil_head_args args; 309 struct protosw *pr; 310 int i; 311 312 CK_STAILQ_INIT(&V_in_ifaddrhead); 313 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 314 315 /* Initialize IP reassembly queue. */ 316 ipreass_init(); 317 318 /* Initialize packet filter hooks. */ 319 args.pa_version = PFIL_VERSION; 320 args.pa_flags = PFIL_IN | PFIL_OUT; 321 args.pa_type = PFIL_TYPE_IP4; 322 args.pa_headname = PFIL_INET_NAME; 323 V_inet_pfil_head = pfil_head_register(&args); 324 325 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 326 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 327 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 328 printf("%s: WARNING: unable to register input helper hook\n", 329 __func__); 330 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 331 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 332 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 333 printf("%s: WARNING: unable to register output helper hook\n", 334 __func__); 335 336 /* Skip initialization of globals for non-default instances. */ 337 #ifdef VIMAGE 338 if (!IS_DEFAULT_VNET(curvnet)) { 339 netisr_register_vnet(&ip_nh); 340 #ifdef RSS 341 netisr_register_vnet(&ip_direct_nh); 342 #endif 343 return; 344 } 345 #endif 346 347 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 348 if (pr == NULL) 349 panic("ip_init: PF_INET not found"); 350 351 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 352 for (i = 0; i < IPPROTO_MAX; i++) 353 ip_protox[i] = pr - inetsw; 354 /* 355 * Cycle through IP protocols and put them into the appropriate place 356 * in ip_protox[]. 357 */ 358 for (pr = inetdomain.dom_protosw; 359 pr < inetdomain.dom_protoswNPROTOSW; pr++) 360 if (pr->pr_domain->dom_family == PF_INET && 361 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 362 /* Be careful to only index valid IP protocols. */ 363 if (pr->pr_protocol < IPPROTO_MAX) 364 ip_protox[pr->pr_protocol] = pr - inetsw; 365 } 366 367 netisr_register(&ip_nh); 368 #ifdef RSS 369 netisr_register(&ip_direct_nh); 370 #endif 371 } 372 373 #ifdef VIMAGE 374 static void 375 ip_destroy(void *unused __unused) 376 { 377 struct ifnet *ifp; 378 int error; 379 380 #ifdef RSS 381 netisr_unregister_vnet(&ip_direct_nh); 382 #endif 383 netisr_unregister_vnet(&ip_nh); 384 385 pfil_head_unregister(V_inet_pfil_head); 386 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 387 if (error != 0) { 388 printf("%s: WARNING: unable to deregister input helper hook " 389 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 390 "error %d returned\n", __func__, error); 391 } 392 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 393 if (error != 0) { 394 printf("%s: WARNING: unable to deregister output helper hook " 395 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 396 "error %d returned\n", __func__, error); 397 } 398 399 /* Remove the IPv4 addresses from all interfaces. */ 400 in_ifscrub_all(); 401 402 /* Make sure the IPv4 routes are gone as well. */ 403 IFNET_RLOCK(); 404 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 405 rt_flushifroutes_af(ifp, AF_INET); 406 IFNET_RUNLOCK(); 407 408 /* Destroy IP reassembly queue. */ 409 ipreass_destroy(); 410 411 /* Cleanup in_ifaddr hash table; should be empty. */ 412 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 413 } 414 415 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 416 #endif 417 418 #ifdef RSS 419 /* 420 * IP direct input routine. 421 * 422 * This is called when reinjecting completed fragments where 423 * all of the previous checking and book-keeping has been done. 424 */ 425 void 426 ip_direct_input(struct mbuf *m) 427 { 428 struct ip *ip; 429 int hlen; 430 431 ip = mtod(m, struct ip *); 432 hlen = ip->ip_hl << 2; 433 434 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 435 if (IPSEC_ENABLED(ipv4)) { 436 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 437 return; 438 } 439 #endif /* IPSEC */ 440 IPSTAT_INC(ips_delivered); 441 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 442 return; 443 } 444 #endif 445 446 /* 447 * Ip input routine. Checksum and byte swap header. If fragmented 448 * try to reassemble. Process options. Pass to next level. 449 */ 450 void 451 ip_input(struct mbuf *m) 452 { 453 struct rm_priotracker in_ifa_tracker; 454 struct ip *ip = NULL; 455 struct in_ifaddr *ia = NULL; 456 struct ifaddr *ifa; 457 struct ifnet *ifp; 458 int checkif, hlen = 0; 459 uint16_t sum, ip_len; 460 int dchg = 0; /* dest changed after fw */ 461 struct in_addr odst; /* original dst address */ 462 463 M_ASSERTPKTHDR(m); 464 NET_EPOCH_ASSERT(); 465 466 if (m->m_flags & M_FASTFWD_OURS) { 467 m->m_flags &= ~M_FASTFWD_OURS; 468 /* Set up some basics that will be used later. */ 469 ip = mtod(m, struct ip *); 470 hlen = ip->ip_hl << 2; 471 ip_len = ntohs(ip->ip_len); 472 goto ours; 473 } 474 475 IPSTAT_INC(ips_total); 476 477 if (m->m_pkthdr.len < sizeof(struct ip)) 478 goto tooshort; 479 480 if (m->m_len < sizeof (struct ip) && 481 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 482 IPSTAT_INC(ips_toosmall); 483 return; 484 } 485 ip = mtod(m, struct ip *); 486 487 if (ip->ip_v != IPVERSION) { 488 IPSTAT_INC(ips_badvers); 489 goto bad; 490 } 491 492 hlen = ip->ip_hl << 2; 493 if (hlen < sizeof(struct ip)) { /* minimum header length */ 494 IPSTAT_INC(ips_badhlen); 495 goto bad; 496 } 497 if (hlen > m->m_len) { 498 if ((m = m_pullup(m, hlen)) == NULL) { 499 IPSTAT_INC(ips_badhlen); 500 return; 501 } 502 ip = mtod(m, struct ip *); 503 } 504 505 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 506 507 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 508 ifp = m->m_pkthdr.rcvif; 509 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 510 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 511 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 512 IPSTAT_INC(ips_badaddr); 513 goto bad; 514 } 515 } 516 517 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 518 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 519 } else { 520 if (hlen == sizeof(struct ip)) { 521 sum = in_cksum_hdr(ip); 522 } else { 523 sum = in_cksum(m, hlen); 524 } 525 } 526 if (sum) { 527 IPSTAT_INC(ips_badsum); 528 goto bad; 529 } 530 531 #ifdef ALTQ 532 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 533 /* packet is dropped by traffic conditioner */ 534 return; 535 #endif 536 537 ip_len = ntohs(ip->ip_len); 538 if (ip_len < hlen) { 539 IPSTAT_INC(ips_badlen); 540 goto bad; 541 } 542 543 /* 544 * Check that the amount of data in the buffers 545 * is as at least much as the IP header would have us expect. 546 * Trim mbufs if longer than we expect. 547 * Drop packet if shorter than we expect. 548 */ 549 if (m->m_pkthdr.len < ip_len) { 550 tooshort: 551 IPSTAT_INC(ips_tooshort); 552 goto bad; 553 } 554 if (m->m_pkthdr.len > ip_len) { 555 if (m->m_len == m->m_pkthdr.len) { 556 m->m_len = ip_len; 557 m->m_pkthdr.len = ip_len; 558 } else 559 m_adj(m, ip_len - m->m_pkthdr.len); 560 } 561 562 /* 563 * Try to forward the packet, but if we fail continue. 564 * ip_tryforward() does not generate redirects, so fall 565 * through to normal processing if redirects are required. 566 * ip_tryforward() does inbound and outbound packet firewall 567 * processing. If firewall has decided that destination becomes 568 * our local address, it sets M_FASTFWD_OURS flag. In this 569 * case skip another inbound firewall processing and update 570 * ip pointer. 571 */ 572 if (V_ipforwarding != 0 && V_ipsendredirects == 0 573 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 574 && (!IPSEC_ENABLED(ipv4) || 575 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 576 #endif 577 ) { 578 if ((m = ip_tryforward(m)) == NULL) 579 return; 580 if (m->m_flags & M_FASTFWD_OURS) { 581 m->m_flags &= ~M_FASTFWD_OURS; 582 ip = mtod(m, struct ip *); 583 goto ours; 584 } 585 } 586 587 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 588 /* 589 * Bypass packet filtering for packets previously handled by IPsec. 590 */ 591 if (IPSEC_ENABLED(ipv4) && 592 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 593 goto passin; 594 #endif 595 596 /* 597 * Run through list of hooks for input packets. 598 * 599 * NB: Beware of the destination address changing (e.g. 600 * by NAT rewriting). When this happens, tell 601 * ip_forward to do the right thing. 602 */ 603 604 /* Jump over all PFIL processing if hooks are not active. */ 605 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 606 goto passin; 607 608 odst = ip->ip_dst; 609 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 610 PFIL_PASS) 611 return; 612 if (m == NULL) /* consumed by filter */ 613 return; 614 615 ip = mtod(m, struct ip *); 616 dchg = (odst.s_addr != ip->ip_dst.s_addr); 617 ifp = m->m_pkthdr.rcvif; 618 619 if (m->m_flags & M_FASTFWD_OURS) { 620 m->m_flags &= ~M_FASTFWD_OURS; 621 goto ours; 622 } 623 if (m->m_flags & M_IP_NEXTHOP) { 624 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 625 /* 626 * Directly ship the packet on. This allows 627 * forwarding packets originally destined to us 628 * to some other directly connected host. 629 */ 630 ip_forward(m, 1); 631 return; 632 } 633 } 634 passin: 635 636 /* 637 * Process options and, if not destined for us, 638 * ship it on. ip_dooptions returns 1 when an 639 * error was detected (causing an icmp message 640 * to be sent and the original packet to be freed). 641 */ 642 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 643 return; 644 645 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 646 * matter if it is destined to another node, or whether it is 647 * a multicast one, RSVP wants it! and prevents it from being forwarded 648 * anywhere else. Also checks if the rsvp daemon is running before 649 * grabbing the packet. 650 */ 651 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 652 goto ours; 653 654 /* 655 * Check our list of addresses, to see if the packet is for us. 656 * If we don't have any addresses, assume any unicast packet 657 * we receive might be for us (and let the upper layers deal 658 * with it). 659 */ 660 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 661 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 662 goto ours; 663 664 /* 665 * Enable a consistency check between the destination address 666 * and the arrival interface for a unicast packet (the RFC 1122 667 * strong ES model) if IP forwarding is disabled and the packet 668 * is not locally generated and the packet is not subject to 669 * 'ipfw fwd'. 670 * 671 * XXX - Checking also should be disabled if the destination 672 * address is ipnat'ed to a different interface. 673 * 674 * XXX - Checking is incompatible with IP aliases added 675 * to the loopback interface instead of the interface where 676 * the packets are received. 677 * 678 * XXX - This is the case for carp vhost IPs as well so we 679 * insert a workaround. If the packet got here, we already 680 * checked with carp_iamatch() and carp_forus(). 681 */ 682 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 683 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 684 ifp->if_carp == NULL && (dchg == 0); 685 686 /* 687 * Check for exact addresses in the hash bucket. 688 */ 689 IN_IFADDR_RLOCK(&in_ifa_tracker); 690 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 691 /* 692 * If the address matches, verify that the packet 693 * arrived via the correct interface if checking is 694 * enabled. 695 */ 696 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 697 (!checkif || ia->ia_ifp == ifp)) { 698 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 699 counter_u64_add(ia->ia_ifa.ifa_ibytes, 700 m->m_pkthdr.len); 701 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 702 goto ours; 703 } 704 } 705 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 706 707 /* 708 * Check for broadcast addresses. 709 * 710 * Only accept broadcast packets that arrive via the matching 711 * interface. Reception of forwarded directed broadcasts would 712 * be handled via ip_forward() and ether_output() with the loopback 713 * into the stack for SIMPLEX interfaces handled by ether_output(). 714 */ 715 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 716 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 717 if (ifa->ifa_addr->sa_family != AF_INET) 718 continue; 719 ia = ifatoia(ifa); 720 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 721 ip->ip_dst.s_addr) { 722 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 723 counter_u64_add(ia->ia_ifa.ifa_ibytes, 724 m->m_pkthdr.len); 725 goto ours; 726 } 727 #ifdef BOOTP_COMPAT 728 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 729 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 730 counter_u64_add(ia->ia_ifa.ifa_ibytes, 731 m->m_pkthdr.len); 732 goto ours; 733 } 734 #endif 735 } 736 ia = NULL; 737 } 738 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 739 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 740 IPSTAT_INC(ips_cantforward); 741 m_freem(m); 742 return; 743 } 744 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 745 if (V_ip_mrouter) { 746 /* 747 * If we are acting as a multicast router, all 748 * incoming multicast packets are passed to the 749 * kernel-level multicast forwarding function. 750 * The packet is returned (relatively) intact; if 751 * ip_mforward() returns a non-zero value, the packet 752 * must be discarded, else it may be accepted below. 753 */ 754 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 755 IPSTAT_INC(ips_cantforward); 756 m_freem(m); 757 return; 758 } 759 760 /* 761 * The process-level routing daemon needs to receive 762 * all multicast IGMP packets, whether or not this 763 * host belongs to their destination groups. 764 */ 765 if (ip->ip_p == IPPROTO_IGMP) 766 goto ours; 767 IPSTAT_INC(ips_forward); 768 } 769 /* 770 * Assume the packet is for us, to avoid prematurely taking 771 * a lock on the in_multi hash. Protocols must perform 772 * their own filtering and update statistics accordingly. 773 */ 774 goto ours; 775 } 776 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 777 goto ours; 778 if (ip->ip_dst.s_addr == INADDR_ANY) 779 goto ours; 780 781 /* 782 * Not for us; forward if possible and desirable. 783 */ 784 if (V_ipforwarding == 0) { 785 IPSTAT_INC(ips_cantforward); 786 m_freem(m); 787 } else { 788 ip_forward(m, dchg); 789 } 790 return; 791 792 ours: 793 #ifdef IPSTEALTH 794 /* 795 * IPSTEALTH: Process non-routing options only 796 * if the packet is destined for us. 797 */ 798 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 799 return; 800 #endif /* IPSTEALTH */ 801 802 /* 803 * Attempt reassembly; if it succeeds, proceed. 804 * ip_reass() will return a different mbuf. 805 */ 806 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 807 /* XXXGL: shouldn't we save & set m_flags? */ 808 m = ip_reass(m); 809 if (m == NULL) 810 return; 811 ip = mtod(m, struct ip *); 812 /* Get the header length of the reassembled packet */ 813 hlen = ip->ip_hl << 2; 814 } 815 816 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 817 if (IPSEC_ENABLED(ipv4)) { 818 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 819 return; 820 } 821 #endif /* IPSEC */ 822 823 /* 824 * Switch out to protocol's input routine. 825 */ 826 IPSTAT_INC(ips_delivered); 827 828 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 829 return; 830 bad: 831 m_freem(m); 832 } 833 834 /* 835 * IP timer processing; 836 * if a timer expires on a reassembly 837 * queue, discard it. 838 */ 839 void 840 ip_slowtimo(void) 841 { 842 VNET_ITERATOR_DECL(vnet_iter); 843 844 VNET_LIST_RLOCK_NOSLEEP(); 845 VNET_FOREACH(vnet_iter) { 846 CURVNET_SET(vnet_iter); 847 ipreass_slowtimo(); 848 CURVNET_RESTORE(); 849 } 850 VNET_LIST_RUNLOCK_NOSLEEP(); 851 } 852 853 void 854 ip_drain(void) 855 { 856 VNET_ITERATOR_DECL(vnet_iter); 857 858 VNET_LIST_RLOCK_NOSLEEP(); 859 VNET_FOREACH(vnet_iter) { 860 CURVNET_SET(vnet_iter); 861 ipreass_drain(); 862 CURVNET_RESTORE(); 863 } 864 VNET_LIST_RUNLOCK_NOSLEEP(); 865 } 866 867 /* 868 * The protocol to be inserted into ip_protox[] must be already registered 869 * in inetsw[], either statically or through pf_proto_register(). 870 */ 871 int 872 ipproto_register(short ipproto) 873 { 874 struct protosw *pr; 875 876 /* Sanity checks. */ 877 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 878 return (EPROTONOSUPPORT); 879 880 /* 881 * The protocol slot must not be occupied by another protocol 882 * already. An index pointing to IPPROTO_RAW is unused. 883 */ 884 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 885 if (pr == NULL) 886 return (EPFNOSUPPORT); 887 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 888 return (EEXIST); 889 890 /* Find the protocol position in inetsw[] and set the index. */ 891 for (pr = inetdomain.dom_protosw; 892 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 893 if (pr->pr_domain->dom_family == PF_INET && 894 pr->pr_protocol && pr->pr_protocol == ipproto) { 895 ip_protox[pr->pr_protocol] = pr - inetsw; 896 return (0); 897 } 898 } 899 return (EPROTONOSUPPORT); 900 } 901 902 int 903 ipproto_unregister(short ipproto) 904 { 905 struct protosw *pr; 906 907 /* Sanity checks. */ 908 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 909 return (EPROTONOSUPPORT); 910 911 /* Check if the protocol was indeed registered. */ 912 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 913 if (pr == NULL) 914 return (EPFNOSUPPORT); 915 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 916 return (ENOENT); 917 918 /* Reset the protocol slot to IPPROTO_RAW. */ 919 ip_protox[ipproto] = pr - inetsw; 920 return (0); 921 } 922 923 u_char inetctlerrmap[PRC_NCMDS] = { 924 0, 0, 0, 0, 925 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 926 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 927 EMSGSIZE, EHOSTUNREACH, 0, 0, 928 0, 0, EHOSTUNREACH, 0, 929 ENOPROTOOPT, ECONNREFUSED 930 }; 931 932 /* 933 * Forward a packet. If some error occurs return the sender 934 * an icmp packet. Note we can't always generate a meaningful 935 * icmp message because icmp doesn't have a large enough repertoire 936 * of codes and types. 937 * 938 * If not forwarding, just drop the packet. This could be confusing 939 * if ipforwarding was zero but some routing protocol was advancing 940 * us as a gateway to somewhere. However, we must let the routing 941 * protocol deal with that. 942 * 943 * The srcrt parameter indicates whether the packet is being forwarded 944 * via a source route. 945 */ 946 void 947 ip_forward(struct mbuf *m, int srcrt) 948 { 949 struct ip *ip = mtod(m, struct ip *); 950 struct in_ifaddr *ia; 951 struct mbuf *mcopy; 952 struct sockaddr_in *sin; 953 struct in_addr dest; 954 struct route ro; 955 int error, type = 0, code = 0, mtu = 0; 956 957 NET_EPOCH_ASSERT(); 958 959 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 960 IPSTAT_INC(ips_cantforward); 961 m_freem(m); 962 return; 963 } 964 if ( 965 #ifdef IPSTEALTH 966 V_ipstealth == 0 && 967 #endif 968 ip->ip_ttl <= IPTTLDEC) { 969 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 970 return; 971 } 972 973 bzero(&ro, sizeof(ro)); 974 sin = (struct sockaddr_in *)&ro.ro_dst; 975 sin->sin_family = AF_INET; 976 sin->sin_len = sizeof(*sin); 977 sin->sin_addr = ip->ip_dst; 978 #ifdef RADIX_MPATH 979 rtalloc_mpath_fib(&ro, 980 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 981 M_GETFIB(m)); 982 #else 983 in_rtalloc_ign(&ro, 0, M_GETFIB(m)); 984 #endif 985 if (ro.ro_rt != NULL) { 986 ia = ifatoia(ro.ro_rt->rt_ifa); 987 } else 988 ia = NULL; 989 /* 990 * Save the IP header and at most 8 bytes of the payload, 991 * in case we need to generate an ICMP message to the src. 992 * 993 * XXX this can be optimized a lot by saving the data in a local 994 * buffer on the stack (72 bytes at most), and only allocating the 995 * mbuf if really necessary. The vast majority of the packets 996 * are forwarded without having to send an ICMP back (either 997 * because unnecessary, or because rate limited), so we are 998 * really we are wasting a lot of work here. 999 * 1000 * We don't use m_copym() because it might return a reference 1001 * to a shared cluster. Both this function and ip_output() 1002 * assume exclusive access to the IP header in `m', so any 1003 * data in a cluster may change before we reach icmp_error(). 1004 */ 1005 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1006 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1007 /* 1008 * It's probably ok if the pkthdr dup fails (because 1009 * the deep copy of the tag chain failed), but for now 1010 * be conservative and just discard the copy since 1011 * code below may some day want the tags. 1012 */ 1013 m_free(mcopy); 1014 mcopy = NULL; 1015 } 1016 if (mcopy != NULL) { 1017 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1018 mcopy->m_pkthdr.len = mcopy->m_len; 1019 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1020 } 1021 #ifdef IPSTEALTH 1022 if (V_ipstealth == 0) 1023 #endif 1024 ip->ip_ttl -= IPTTLDEC; 1025 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1026 if (IPSEC_ENABLED(ipv4)) { 1027 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1028 /* mbuf consumed by IPsec */ 1029 m_freem(mcopy); 1030 if (error != EINPROGRESS) 1031 IPSTAT_INC(ips_cantforward); 1032 return; 1033 } 1034 /* No IPsec processing required */ 1035 } 1036 #endif /* IPSEC */ 1037 /* 1038 * If forwarding packet using same interface that it came in on, 1039 * perhaps should send a redirect to sender to shortcut a hop. 1040 * Only send redirect if source is sending directly to us, 1041 * and if packet was not source routed (or has any options). 1042 * Also, don't send redirect if forwarding using a default route 1043 * or a route modified by a redirect. 1044 */ 1045 dest.s_addr = 0; 1046 if (!srcrt && V_ipsendredirects && 1047 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1048 struct rtentry *rt; 1049 1050 rt = ro.ro_rt; 1051 1052 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1053 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1054 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1055 u_long src = ntohl(ip->ip_src.s_addr); 1056 1057 if (RTA(rt) && 1058 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1059 if (rt->rt_flags & RTF_GATEWAY) 1060 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1061 else 1062 dest.s_addr = ip->ip_dst.s_addr; 1063 /* Router requirements says to only send host redirects */ 1064 type = ICMP_REDIRECT; 1065 code = ICMP_REDIRECT_HOST; 1066 } 1067 } 1068 } 1069 1070 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1071 1072 if (error == EMSGSIZE && ro.ro_rt) 1073 mtu = ro.ro_rt->rt_mtu; 1074 RO_RTFREE(&ro); 1075 1076 if (error) 1077 IPSTAT_INC(ips_cantforward); 1078 else { 1079 IPSTAT_INC(ips_forward); 1080 if (type) 1081 IPSTAT_INC(ips_redirectsent); 1082 else { 1083 if (mcopy) 1084 m_freem(mcopy); 1085 return; 1086 } 1087 } 1088 if (mcopy == NULL) 1089 return; 1090 1091 1092 switch (error) { 1093 1094 case 0: /* forwarded, but need redirect */ 1095 /* type, code set above */ 1096 break; 1097 1098 case ENETUNREACH: 1099 case EHOSTUNREACH: 1100 case ENETDOWN: 1101 case EHOSTDOWN: 1102 default: 1103 type = ICMP_UNREACH; 1104 code = ICMP_UNREACH_HOST; 1105 break; 1106 1107 case EMSGSIZE: 1108 type = ICMP_UNREACH; 1109 code = ICMP_UNREACH_NEEDFRAG; 1110 /* 1111 * If the MTU was set before make sure we are below the 1112 * interface MTU. 1113 * If the MTU wasn't set before use the interface mtu or 1114 * fall back to the next smaller mtu step compared to the 1115 * current packet size. 1116 */ 1117 if (mtu != 0) { 1118 if (ia != NULL) 1119 mtu = min(mtu, ia->ia_ifp->if_mtu); 1120 } else { 1121 if (ia != NULL) 1122 mtu = ia->ia_ifp->if_mtu; 1123 else 1124 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1125 } 1126 IPSTAT_INC(ips_cantfrag); 1127 break; 1128 1129 case ENOBUFS: 1130 case EACCES: /* ipfw denied packet */ 1131 m_freem(mcopy); 1132 return; 1133 } 1134 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1135 } 1136 1137 #define CHECK_SO_CT(sp, ct) \ 1138 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1139 1140 void 1141 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1142 struct mbuf *m) 1143 { 1144 bool stamped; 1145 1146 stamped = false; 1147 if ((inp->inp_socket->so_options & SO_BINTIME) || 1148 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1149 struct bintime boottimebin, bt; 1150 struct timespec ts1; 1151 1152 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1153 M_TSTMP)) { 1154 mbuf_tstmp2timespec(m, &ts1); 1155 timespec2bintime(&ts1, &bt); 1156 getboottimebin(&boottimebin); 1157 bintime_add(&bt, &boottimebin); 1158 } else { 1159 bintime(&bt); 1160 } 1161 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1162 SCM_BINTIME, SOL_SOCKET); 1163 if (*mp != NULL) { 1164 mp = &(*mp)->m_next; 1165 stamped = true; 1166 } 1167 } 1168 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1169 struct bintime boottimebin, bt1; 1170 struct timespec ts1; 1171 struct timeval tv; 1172 1173 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1174 M_TSTMP)) { 1175 mbuf_tstmp2timespec(m, &ts1); 1176 timespec2bintime(&ts1, &bt1); 1177 getboottimebin(&boottimebin); 1178 bintime_add(&bt1, &boottimebin); 1179 bintime2timeval(&bt1, &tv); 1180 } else { 1181 microtime(&tv); 1182 } 1183 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1184 SCM_TIMESTAMP, SOL_SOCKET); 1185 if (*mp != NULL) { 1186 mp = &(*mp)->m_next; 1187 stamped = true; 1188 } 1189 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1190 struct bintime boottimebin; 1191 struct timespec ts, ts1; 1192 1193 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1194 M_TSTMP)) { 1195 mbuf_tstmp2timespec(m, &ts); 1196 getboottimebin(&boottimebin); 1197 bintime2timespec(&boottimebin, &ts1); 1198 timespecadd(&ts, &ts1, &ts); 1199 } else { 1200 nanotime(&ts); 1201 } 1202 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1203 SCM_REALTIME, SOL_SOCKET); 1204 if (*mp != NULL) { 1205 mp = &(*mp)->m_next; 1206 stamped = true; 1207 } 1208 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1209 struct timespec ts; 1210 1211 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1212 M_TSTMP)) 1213 mbuf_tstmp2timespec(m, &ts); 1214 else 1215 nanouptime(&ts); 1216 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1217 SCM_MONOTONIC, SOL_SOCKET); 1218 if (*mp != NULL) { 1219 mp = &(*mp)->m_next; 1220 stamped = true; 1221 } 1222 } 1223 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1224 M_TSTMP)) { 1225 struct sock_timestamp_info sti; 1226 1227 bzero(&sti, sizeof(sti)); 1228 sti.st_info_flags = ST_INFO_HW; 1229 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1230 sti.st_info_flags |= ST_INFO_HW_HPREC; 1231 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1232 SOL_SOCKET); 1233 if (*mp != NULL) 1234 mp = &(*mp)->m_next; 1235 } 1236 if (inp->inp_flags & INP_RECVDSTADDR) { 1237 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1238 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1239 if (*mp) 1240 mp = &(*mp)->m_next; 1241 } 1242 if (inp->inp_flags & INP_RECVTTL) { 1243 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1244 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1245 if (*mp) 1246 mp = &(*mp)->m_next; 1247 } 1248 #ifdef notyet 1249 /* XXX 1250 * Moving these out of udp_input() made them even more broken 1251 * than they already were. 1252 */ 1253 /* options were tossed already */ 1254 if (inp->inp_flags & INP_RECVOPTS) { 1255 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1256 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1257 if (*mp) 1258 mp = &(*mp)->m_next; 1259 } 1260 /* ip_srcroute doesn't do what we want here, need to fix */ 1261 if (inp->inp_flags & INP_RECVRETOPTS) { 1262 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1263 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1264 if (*mp) 1265 mp = &(*mp)->m_next; 1266 } 1267 #endif 1268 if (inp->inp_flags & INP_RECVIF) { 1269 struct ifnet *ifp; 1270 struct sdlbuf { 1271 struct sockaddr_dl sdl; 1272 u_char pad[32]; 1273 } sdlbuf; 1274 struct sockaddr_dl *sdp; 1275 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1276 1277 if ((ifp = m->m_pkthdr.rcvif) && 1278 ifp->if_index && ifp->if_index <= V_if_index) { 1279 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1280 /* 1281 * Change our mind and don't try copy. 1282 */ 1283 if (sdp->sdl_family != AF_LINK || 1284 sdp->sdl_len > sizeof(sdlbuf)) { 1285 goto makedummy; 1286 } 1287 bcopy(sdp, sdl2, sdp->sdl_len); 1288 } else { 1289 makedummy: 1290 sdl2->sdl_len = 1291 offsetof(struct sockaddr_dl, sdl_data[0]); 1292 sdl2->sdl_family = AF_LINK; 1293 sdl2->sdl_index = 0; 1294 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1295 } 1296 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1297 IP_RECVIF, IPPROTO_IP); 1298 if (*mp) 1299 mp = &(*mp)->m_next; 1300 } 1301 if (inp->inp_flags & INP_RECVTOS) { 1302 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1303 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1304 if (*mp) 1305 mp = &(*mp)->m_next; 1306 } 1307 1308 if (inp->inp_flags2 & INP_RECVFLOWID) { 1309 uint32_t flowid, flow_type; 1310 1311 flowid = m->m_pkthdr.flowid; 1312 flow_type = M_HASHTYPE_GET(m); 1313 1314 /* 1315 * XXX should handle the failure of one or the 1316 * other - don't populate both? 1317 */ 1318 *mp = sbcreatecontrol((caddr_t) &flowid, 1319 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1320 if (*mp) 1321 mp = &(*mp)->m_next; 1322 *mp = sbcreatecontrol((caddr_t) &flow_type, 1323 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1324 if (*mp) 1325 mp = &(*mp)->m_next; 1326 } 1327 1328 #ifdef RSS 1329 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1330 uint32_t flowid, flow_type; 1331 uint32_t rss_bucketid; 1332 1333 flowid = m->m_pkthdr.flowid; 1334 flow_type = M_HASHTYPE_GET(m); 1335 1336 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1337 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1338 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1339 if (*mp) 1340 mp = &(*mp)->m_next; 1341 } 1342 } 1343 #endif 1344 } 1345 1346 /* 1347 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1348 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1349 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1350 * compiled. 1351 */ 1352 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1353 VNET_DEFINE(struct socket *, ip_rsvpd); 1354 1355 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1356 1357 int 1358 ip_rsvp_init(struct socket *so) 1359 { 1360 1361 if (so->so_type != SOCK_RAW || 1362 so->so_proto->pr_protocol != IPPROTO_RSVP) 1363 return EOPNOTSUPP; 1364 1365 if (V_ip_rsvpd != NULL) 1366 return EADDRINUSE; 1367 1368 V_ip_rsvpd = so; 1369 /* 1370 * This may seem silly, but we need to be sure we don't over-increment 1371 * the RSVP counter, in case something slips up. 1372 */ 1373 if (!V_ip_rsvp_on) { 1374 V_ip_rsvp_on = 1; 1375 V_rsvp_on++; 1376 } 1377 1378 return 0; 1379 } 1380 1381 int 1382 ip_rsvp_done(void) 1383 { 1384 1385 V_ip_rsvpd = NULL; 1386 /* 1387 * This may seem silly, but we need to be sure we don't over-decrement 1388 * the RSVP counter, in case something slips up. 1389 */ 1390 if (V_ip_rsvp_on) { 1391 V_ip_rsvp_on = 0; 1392 V_rsvp_on--; 1393 } 1394 return 0; 1395 } 1396 1397 int 1398 rsvp_input(struct mbuf **mp, int *offp, int proto) 1399 { 1400 struct mbuf *m; 1401 1402 m = *mp; 1403 *mp = NULL; 1404 1405 if (rsvp_input_p) { /* call the real one if loaded */ 1406 *mp = m; 1407 rsvp_input_p(mp, offp, proto); 1408 return (IPPROTO_DONE); 1409 } 1410 1411 /* Can still get packets with rsvp_on = 0 if there is a local member 1412 * of the group to which the RSVP packet is addressed. But in this 1413 * case we want to throw the packet away. 1414 */ 1415 1416 if (!V_rsvp_on) { 1417 m_freem(m); 1418 return (IPPROTO_DONE); 1419 } 1420 1421 if (V_ip_rsvpd != NULL) { 1422 *mp = m; 1423 rip_input(mp, offp, proto); 1424 return (IPPROTO_DONE); 1425 } 1426 /* Drop the packet */ 1427 m_freem(m); 1428 return (IPPROTO_DONE); 1429 } 1430