xref: /freebsd/sys/netinet/ip_input.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipstealth.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_carp.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mac.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/pfil.h>
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/netisr.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <machine/in_cksum.h>
70 #ifdef DEV_CARP
71 #include <netinet/ip_carp.h>
72 #endif
73 
74 #include <sys/socketvar.h>
75 
76 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
77 #include <netinet/ip_fw.h>
78 #include <netinet/ip_dummynet.h>
79 
80 #ifdef IPSEC
81 #include <netinet6/ipsec.h>
82 #include <netkey/key.h>
83 #endif
84 
85 #ifdef FAST_IPSEC
86 #include <netipsec/ipsec.h>
87 #include <netipsec/key.h>
88 #endif
89 
90 int rsvp_on = 0;
91 
92 int	ipforwarding = 0;
93 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94     &ipforwarding, 0, "Enable IP forwarding between interfaces");
95 
96 static int	ipsendredirects = 1; /* XXX */
97 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98     &ipsendredirects, 0, "Enable sending IP redirects");
99 
100 int	ip_defttl = IPDEFTTL;
101 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102     &ip_defttl, 0, "Maximum TTL on IP packets");
103 
104 static int	ip_dosourceroute = 0;
105 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107 
108 static int	ip_acceptsourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110     CTLFLAG_RW, &ip_acceptsourceroute, 0,
111     "Enable accepting source routed IP packets");
112 
113 int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114 SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115     &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int    nipq = 0;         /* total # of reass queues */
123 static int    maxnipq;
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&maxnipq, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int    maxfragsperpacket;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130 	&maxfragsperpacket, 0,
131 	"Maximum number of IPv4 fragments allowed per packet");
132 
133 static int	ip_sendsourcequench = 0;
134 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135 	&ip_sendsourcequench, 0,
136 	"Enable the transmission of source quench packets");
137 
138 int	ip_do_randomid = 0;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
140 	&ip_do_randomid, 0,
141 	"Assign random ip_id values");
142 
143 /*
144  * XXX - Setting ip_checkinterface mostly implements the receive side of
145  * the Strong ES model described in RFC 1122, but since the routing table
146  * and transmit implementation do not implement the Strong ES model,
147  * setting this to 1 results in an odd hybrid.
148  *
149  * XXX - ip_checkinterface currently must be disabled if you use ipnat
150  * to translate the destination address to another local interface.
151  *
152  * XXX - ip_checkinterface must be disabled if you add IP aliases
153  * to the loopback interface instead of the interface where the
154  * packets for those addresses are received.
155  */
156 static int	ip_checkinterface = 0;
157 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
158     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
159 
160 #ifdef DIAGNOSTIC
161 static int	ipprintfs = 0;
162 #endif
163 
164 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
165 
166 static struct	ifqueue ipintrq;
167 static int	ipqmaxlen = IFQ_MAXLEN;
168 
169 extern	struct domain inetdomain;
170 extern	struct protosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
173 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
174 u_long 	in_ifaddrhmask;				/* mask for hash table */
175 
176 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
177     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
178 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
179     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
180 
181 struct ipstat ipstat;
182 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
183     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
184 
185 /* Packet reassembly stuff */
186 #define IPREASS_NHASH_LOG2      6
187 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
188 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
189 #define IPREASS_HASH(x,y) \
190 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
191 
192 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
193 struct mtx ipqlock;
194 struct callout ipport_tick_callout;
195 
196 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
197 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
198 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
199 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
200 
201 #ifdef IPCTL_DEFMTU
202 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
203     &ip_mtu, 0, "Default MTU");
204 #endif
205 
206 #ifdef IPSTEALTH
207 int	ipstealth = 0;
208 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
209     &ipstealth, 0, "");
210 #endif
211 
212 /*
213  * ipfw_ether and ipfw_bridge hooks.
214  * XXX: Temporary until those are converted to pfil_hooks as well.
215  */
216 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
217 ip_dn_io_t *ip_dn_io_ptr = NULL;
218 int fw_enable = 1;
219 int fw_one_pass = 1;
220 
221 /*
222  * XXX this is ugly.  IP options source routing magic.
223  */
224 struct ipoptrt {
225 	struct	in_addr dst;			/* final destination */
226 	char	nop;				/* one NOP to align */
227 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
228 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
229 };
230 
231 struct ipopt_tag {
232 	struct	m_tag tag;
233 	int	ip_nhops;
234 	struct	ipoptrt ip_srcrt;
235 };
236 
237 static void	save_rte(struct mbuf *, u_char *, struct in_addr);
238 static int	ip_dooptions(struct mbuf *m, int);
239 static void	ip_forward(struct mbuf *m, int srcrt);
240 static void	ip_freef(struct ipqhead *, struct ipq *);
241 
242 /*
243  * IP initialization: fill in IP protocol switch table.
244  * All protocols not implemented in kernel go to raw IP protocol handler.
245  */
246 void
247 ip_init()
248 {
249 	register struct protosw *pr;
250 	register int i;
251 
252 	TAILQ_INIT(&in_ifaddrhead);
253 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
254 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
255 	if (pr == NULL)
256 		panic("ip_init: PF_INET not found");
257 
258 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
259 	for (i = 0; i < IPPROTO_MAX; i++)
260 		ip_protox[i] = pr - inetsw;
261 	/*
262 	 * Cycle through IP protocols and put them into the appropriate place
263 	 * in ip_protox[].
264 	 */
265 	for (pr = inetdomain.dom_protosw;
266 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
267 		if (pr->pr_domain->dom_family == PF_INET &&
268 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
269 			/* Be careful to only index valid IP protocols. */
270 			if (pr->pr_protocol < IPPROTO_MAX)
271 				ip_protox[pr->pr_protocol] = pr - inetsw;
272 		}
273 
274 	/* Initialize packet filter hooks. */
275 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
276 	inet_pfil_hook.ph_af = AF_INET;
277 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
278 		printf("%s: WARNING: unable to register pfil hook, "
279 			"error %d\n", __func__, i);
280 
281 	/* Initialize IP reassembly queue. */
282 	IPQ_LOCK_INIT();
283 	for (i = 0; i < IPREASS_NHASH; i++)
284 	    TAILQ_INIT(&ipq[i]);
285 	maxnipq = nmbclusters / 32;
286 	maxfragsperpacket = 16;
287 
288 	/* Start ipport_tick. */
289 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
290 	ipport_tick(NULL);
291 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
292 		SHUTDOWN_PRI_DEFAULT);
293 
294 	/* Initialize various other remaining things. */
295 	ip_id = time_second & 0xffff;
296 	ipintrq.ifq_maxlen = ipqmaxlen;
297 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
298 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
299 }
300 
301 void ip_fini(xtp)
302 	void *xtp;
303 {
304 	callout_stop(&ipport_tick_callout);
305 }
306 
307 /*
308  * Ip input routine.  Checksum and byte swap header.  If fragmented
309  * try to reassemble.  Process options.  Pass to next level.
310  */
311 void
312 ip_input(struct mbuf *m)
313 {
314 	struct ip *ip = NULL;
315 	struct in_ifaddr *ia = NULL;
316 	struct ifaddr *ifa;
317 	int    checkif, hlen = 0;
318 	u_short sum;
319 	int dchg = 0;				/* dest changed after fw */
320 	struct in_addr odst;			/* original dst address */
321 #ifdef FAST_IPSEC
322 	struct m_tag *mtag;
323 	struct tdb_ident *tdbi;
324 	struct secpolicy *sp;
325 	int s, error;
326 #endif /* FAST_IPSEC */
327 
328   	M_ASSERTPKTHDR(m);
329 
330 	if (m->m_flags & M_FASTFWD_OURS) {
331 		/*
332 		 * Firewall or NAT changed destination to local.
333 		 * We expect ip_len and ip_off to be in host byte order.
334 		 */
335 		m->m_flags &= ~M_FASTFWD_OURS;
336 		/* Set up some basics that will be used later. */
337 		ip = mtod(m, struct ip *);
338 		hlen = ip->ip_hl << 2;
339   		goto ours;
340   	}
341 
342 	ipstat.ips_total++;
343 
344 	if (m->m_pkthdr.len < sizeof(struct ip))
345 		goto tooshort;
346 
347 	if (m->m_len < sizeof (struct ip) &&
348 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
349 		ipstat.ips_toosmall++;
350 		return;
351 	}
352 	ip = mtod(m, struct ip *);
353 
354 	if (ip->ip_v != IPVERSION) {
355 		ipstat.ips_badvers++;
356 		goto bad;
357 	}
358 
359 	hlen = ip->ip_hl << 2;
360 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
361 		ipstat.ips_badhlen++;
362 		goto bad;
363 	}
364 	if (hlen > m->m_len) {
365 		if ((m = m_pullup(m, hlen)) == NULL) {
366 			ipstat.ips_badhlen++;
367 			return;
368 		}
369 		ip = mtod(m, struct ip *);
370 	}
371 
372 	/* 127/8 must not appear on wire - RFC1122 */
373 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
374 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
375 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
376 			ipstat.ips_badaddr++;
377 			goto bad;
378 		}
379 	}
380 
381 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
382 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
383 	} else {
384 		if (hlen == sizeof(struct ip)) {
385 			sum = in_cksum_hdr(ip);
386 		} else {
387 			sum = in_cksum(m, hlen);
388 		}
389 	}
390 	if (sum) {
391 		ipstat.ips_badsum++;
392 		goto bad;
393 	}
394 
395 #ifdef ALTQ
396 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
397 		/* packet is dropped by traffic conditioner */
398 		return;
399 #endif
400 
401 	/*
402 	 * Convert fields to host representation.
403 	 */
404 	ip->ip_len = ntohs(ip->ip_len);
405 	if (ip->ip_len < hlen) {
406 		ipstat.ips_badlen++;
407 		goto bad;
408 	}
409 	ip->ip_off = ntohs(ip->ip_off);
410 
411 	/*
412 	 * Check that the amount of data in the buffers
413 	 * is as at least much as the IP header would have us expect.
414 	 * Trim mbufs if longer than we expect.
415 	 * Drop packet if shorter than we expect.
416 	 */
417 	if (m->m_pkthdr.len < ip->ip_len) {
418 tooshort:
419 		ipstat.ips_tooshort++;
420 		goto bad;
421 	}
422 	if (m->m_pkthdr.len > ip->ip_len) {
423 		if (m->m_len == m->m_pkthdr.len) {
424 			m->m_len = ip->ip_len;
425 			m->m_pkthdr.len = ip->ip_len;
426 		} else
427 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
428 	}
429 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
430 	/*
431 	 * Bypass packet filtering for packets from a tunnel (gif).
432 	 */
433 	if (ipsec_getnhist(m))
434 		goto passin;
435 #endif
436 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
437 	/*
438 	 * Bypass packet filtering for packets from a tunnel (gif).
439 	 */
440 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
441 		goto passin;
442 #endif
443 
444 	/*
445 	 * Run through list of hooks for input packets.
446 	 *
447 	 * NB: Beware of the destination address changing (e.g.
448 	 *     by NAT rewriting).  When this happens, tell
449 	 *     ip_forward to do the right thing.
450 	 */
451 
452 	/* Jump over all PFIL processing if hooks are not active. */
453 	if (inet_pfil_hook.ph_busy_count == -1)
454 		goto passin;
455 
456 	odst = ip->ip_dst;
457 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
458 	    PFIL_IN, NULL) != 0)
459 		return;
460 	if (m == NULL)			/* consumed by filter */
461 		return;
462 
463 	ip = mtod(m, struct ip *);
464 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
465 
466 #ifdef IPFIREWALL_FORWARD
467 	if (m->m_flags & M_FASTFWD_OURS) {
468 		m->m_flags &= ~M_FASTFWD_OURS;
469 		goto ours;
470 	}
471 #ifndef IPFIREWALL_FORWARD_EXTENDED
472 	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
473 #else
474 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
475 		/*
476 		 * Directly ship on the packet.  This allows to forward packets
477 		 * that were destined for us to some other directly connected
478 		 * host.
479 		 */
480 		ip_forward(m, dchg);
481 		return;
482 	}
483 #endif /* IPFIREWALL_FORWARD_EXTENDED */
484 #endif /* IPFIREWALL_FORWARD */
485 
486 passin:
487 	/*
488 	 * Process options and, if not destined for us,
489 	 * ship it on.  ip_dooptions returns 1 when an
490 	 * error was detected (causing an icmp message
491 	 * to be sent and the original packet to be freed).
492 	 */
493 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
494 		return;
495 
496         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
497          * matter if it is destined to another node, or whether it is
498          * a multicast one, RSVP wants it! and prevents it from being forwarded
499          * anywhere else. Also checks if the rsvp daemon is running before
500 	 * grabbing the packet.
501          */
502 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
503 		goto ours;
504 
505 	/*
506 	 * Check our list of addresses, to see if the packet is for us.
507 	 * If we don't have any addresses, assume any unicast packet
508 	 * we receive might be for us (and let the upper layers deal
509 	 * with it).
510 	 */
511 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
512 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
513 		goto ours;
514 
515 	/*
516 	 * Enable a consistency check between the destination address
517 	 * and the arrival interface for a unicast packet (the RFC 1122
518 	 * strong ES model) if IP forwarding is disabled and the packet
519 	 * is not locally generated and the packet is not subject to
520 	 * 'ipfw fwd'.
521 	 *
522 	 * XXX - Checking also should be disabled if the destination
523 	 * address is ipnat'ed to a different interface.
524 	 *
525 	 * XXX - Checking is incompatible with IP aliases added
526 	 * to the loopback interface instead of the interface where
527 	 * the packets are received.
528 	 *
529 	 * XXX - This is the case for carp vhost IPs as well so we
530 	 * insert a workaround. If the packet got here, we already
531 	 * checked with carp_iamatch() and carp_forus().
532 	 */
533 	checkif = ip_checkinterface && (ipforwarding == 0) &&
534 	    m->m_pkthdr.rcvif != NULL &&
535 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
536 #ifdef DEV_CARP
537 	    !m->m_pkthdr.rcvif->if_carp &&
538 #endif
539 	    (dchg == 0);
540 
541 	/*
542 	 * Check for exact addresses in the hash bucket.
543 	 */
544 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
545 		/*
546 		 * If the address matches, verify that the packet
547 		 * arrived via the correct interface if checking is
548 		 * enabled.
549 		 */
550 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
551 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
552 			goto ours;
553 	}
554 	/*
555 	 * Check for broadcast addresses.
556 	 *
557 	 * Only accept broadcast packets that arrive via the matching
558 	 * interface.  Reception of forwarded directed broadcasts would
559 	 * be handled via ip_forward() and ether_output() with the loopback
560 	 * into the stack for SIMPLEX interfaces handled by ether_output().
561 	 */
562 	if (m->m_pkthdr.rcvif != NULL &&
563 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
564 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
565 			if (ifa->ifa_addr->sa_family != AF_INET)
566 				continue;
567 			ia = ifatoia(ifa);
568 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
569 			    ip->ip_dst.s_addr)
570 				goto ours;
571 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
572 				goto ours;
573 #ifdef BOOTP_COMPAT
574 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
575 				goto ours;
576 #endif
577 		}
578 	}
579 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
580 		struct in_multi *inm;
581 		if (ip_mrouter) {
582 			/*
583 			 * If we are acting as a multicast router, all
584 			 * incoming multicast packets are passed to the
585 			 * kernel-level multicast forwarding function.
586 			 * The packet is returned (relatively) intact; if
587 			 * ip_mforward() returns a non-zero value, the packet
588 			 * must be discarded, else it may be accepted below.
589 			 */
590 			if (ip_mforward &&
591 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
592 				ipstat.ips_cantforward++;
593 				m_freem(m);
594 				return;
595 			}
596 
597 			/*
598 			 * The process-level routing daemon needs to receive
599 			 * all multicast IGMP packets, whether or not this
600 			 * host belongs to their destination groups.
601 			 */
602 			if (ip->ip_p == IPPROTO_IGMP)
603 				goto ours;
604 			ipstat.ips_forward++;
605 		}
606 		/*
607 		 * See if we belong to the destination multicast group on the
608 		 * arrival interface.
609 		 */
610 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
611 		if (inm == NULL) {
612 			ipstat.ips_notmember++;
613 			m_freem(m);
614 			return;
615 		}
616 		goto ours;
617 	}
618 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
619 		goto ours;
620 	if (ip->ip_dst.s_addr == INADDR_ANY)
621 		goto ours;
622 
623 	/*
624 	 * FAITH(Firewall Aided Internet Translator)
625 	 */
626 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
627 		if (ip_keepfaith) {
628 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
629 				goto ours;
630 		}
631 		m_freem(m);
632 		return;
633 	}
634 
635 	/*
636 	 * Not for us; forward if possible and desirable.
637 	 */
638 	if (ipforwarding == 0) {
639 		ipstat.ips_cantforward++;
640 		m_freem(m);
641 	} else {
642 #ifdef IPSEC
643 		/*
644 		 * Enforce inbound IPsec SPD.
645 		 */
646 		if (ipsec4_in_reject(m, NULL)) {
647 			ipsecstat.in_polvio++;
648 			goto bad;
649 		}
650 #endif /* IPSEC */
651 #ifdef FAST_IPSEC
652 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
653 		s = splnet();
654 		if (mtag != NULL) {
655 			tdbi = (struct tdb_ident *)(mtag + 1);
656 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
657 		} else {
658 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
659 						   IP_FORWARDING, &error);
660 		}
661 		if (sp == NULL) {	/* NB: can happen if error */
662 			splx(s);
663 			/*XXX error stat???*/
664 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
665 			goto bad;
666 		}
667 
668 		/*
669 		 * Check security policy against packet attributes.
670 		 */
671 		error = ipsec_in_reject(sp, m);
672 		KEY_FREESP(&sp);
673 		splx(s);
674 		if (error) {
675 			ipstat.ips_cantforward++;
676 			goto bad;
677 		}
678 #endif /* FAST_IPSEC */
679 		ip_forward(m, dchg);
680 	}
681 	return;
682 
683 ours:
684 #ifdef IPSTEALTH
685 	/*
686 	 * IPSTEALTH: Process non-routing options only
687 	 * if the packet is destined for us.
688 	 */
689 	if (ipstealth && hlen > sizeof (struct ip) &&
690 	    ip_dooptions(m, 1))
691 		return;
692 #endif /* IPSTEALTH */
693 
694 	/* Count the packet in the ip address stats */
695 	if (ia != NULL) {
696 		ia->ia_ifa.if_ipackets++;
697 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
698 	}
699 
700 	/*
701 	 * Attempt reassembly; if it succeeds, proceed.
702 	 * ip_reass() will return a different mbuf.
703 	 */
704 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
705 		m = ip_reass(m);
706 		if (m == NULL)
707 			return;
708 		ip = mtod(m, struct ip *);
709 		/* Get the header length of the reassembled packet */
710 		hlen = ip->ip_hl << 2;
711 	}
712 
713 	/*
714 	 * Further protocols expect the packet length to be w/o the
715 	 * IP header.
716 	 */
717 	ip->ip_len -= hlen;
718 
719 #ifdef IPSEC
720 	/*
721 	 * enforce IPsec policy checking if we are seeing last header.
722 	 * note that we do not visit this with protocols with pcb layer
723 	 * code - like udp/tcp/raw ip.
724 	 */
725 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
726 	    ipsec4_in_reject(m, NULL)) {
727 		ipsecstat.in_polvio++;
728 		goto bad;
729 	}
730 #endif
731 #if FAST_IPSEC
732 	/*
733 	 * enforce IPsec policy checking if we are seeing last header.
734 	 * note that we do not visit this with protocols with pcb layer
735 	 * code - like udp/tcp/raw ip.
736 	 */
737 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
738 		/*
739 		 * Check if the packet has already had IPsec processing
740 		 * done.  If so, then just pass it along.  This tag gets
741 		 * set during AH, ESP, etc. input handling, before the
742 		 * packet is returned to the ip input queue for delivery.
743 		 */
744 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
745 		s = splnet();
746 		if (mtag != NULL) {
747 			tdbi = (struct tdb_ident *)(mtag + 1);
748 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
749 		} else {
750 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
751 						   IP_FORWARDING, &error);
752 		}
753 		if (sp != NULL) {
754 			/*
755 			 * Check security policy against packet attributes.
756 			 */
757 			error = ipsec_in_reject(sp, m);
758 			KEY_FREESP(&sp);
759 		} else {
760 			/* XXX error stat??? */
761 			error = EINVAL;
762 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
763 			goto bad;
764 		}
765 		splx(s);
766 		if (error)
767 			goto bad;
768 	}
769 #endif /* FAST_IPSEC */
770 
771 	/*
772 	 * Switch out to protocol's input routine.
773 	 */
774 	ipstat.ips_delivered++;
775 
776 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
777 	return;
778 bad:
779 	m_freem(m);
780 }
781 
782 /*
783  * Take incoming datagram fragment and try to reassemble it into
784  * whole datagram.  If the argument is the first fragment or one
785  * in between the function will return NULL and store the mbuf
786  * in the fragment chain.  If the argument is the last fragment
787  * the packet will be reassembled and the pointer to the new
788  * mbuf returned for further processing.  Only m_tags attached
789  * to the first packet/fragment are preserved.
790  * The IP header is *NOT* adjusted out of iplen.
791  */
792 
793 struct mbuf *
794 ip_reass(struct mbuf *m)
795 {
796 	struct ip *ip;
797 	struct mbuf *p, *q, *nq, *t;
798 	struct ipq *fp = NULL;
799 	struct ipqhead *head;
800 	int i, hlen, next;
801 	u_int8_t ecn, ecn0;
802 	u_short hash;
803 
804 	/* If maxnipq is 0, never accept fragments. */
805 	if (maxnipq == 0) {
806 		ipstat.ips_fragments++;
807 		ipstat.ips_fragdropped++;
808 		m_freem(m);
809 		return (NULL);
810 	}
811 
812 	ip = mtod(m, struct ip *);
813 	hlen = ip->ip_hl << 2;
814 
815 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
816 	head = &ipq[hash];
817 	IPQ_LOCK();
818 
819 	/*
820 	 * Look for queue of fragments
821 	 * of this datagram.
822 	 */
823 	TAILQ_FOREACH(fp, head, ipq_list)
824 		if (ip->ip_id == fp->ipq_id &&
825 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
826 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
827 #ifdef MAC
828 		    mac_fragment_match(m, fp) &&
829 #endif
830 		    ip->ip_p == fp->ipq_p)
831 			goto found;
832 
833 	fp = NULL;
834 
835 	/*
836 	 * Enforce upper bound on number of fragmented packets
837 	 * for which we attempt reassembly;
838 	 * If maxnipq is -1, accept all fragments without limitation.
839 	 */
840 	if ((nipq > maxnipq) && (maxnipq > 0)) {
841 		/*
842 		 * drop something from the tail of the current queue
843 		 * before proceeding further
844 		 */
845 		struct ipq *q = TAILQ_LAST(head, ipqhead);
846 		if (q == NULL) {   /* gak */
847 			for (i = 0; i < IPREASS_NHASH; i++) {
848 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
849 				if (r) {
850 					ipstat.ips_fragtimeout += r->ipq_nfrags;
851 					ip_freef(&ipq[i], r);
852 					break;
853 				}
854 			}
855 		} else {
856 			ipstat.ips_fragtimeout += q->ipq_nfrags;
857 			ip_freef(head, q);
858 		}
859 	}
860 
861 found:
862 	/*
863 	 * Adjust ip_len to not reflect header,
864 	 * convert offset of this to bytes.
865 	 */
866 	ip->ip_len -= hlen;
867 	if (ip->ip_off & IP_MF) {
868 		/*
869 		 * Make sure that fragments have a data length
870 		 * that's a non-zero multiple of 8 bytes.
871 		 */
872 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
873 			ipstat.ips_toosmall++; /* XXX */
874 			goto dropfrag;
875 		}
876 		m->m_flags |= M_FRAG;
877 	} else
878 		m->m_flags &= ~M_FRAG;
879 	ip->ip_off <<= 3;
880 
881 
882 	/*
883 	 * Attempt reassembly; if it succeeds, proceed.
884 	 * ip_reass() will return a different mbuf.
885 	 */
886 	ipstat.ips_fragments++;
887 	m->m_pkthdr.header = ip;
888 
889 	/* Previous ip_reass() started here. */
890 	/*
891 	 * Presence of header sizes in mbufs
892 	 * would confuse code below.
893 	 */
894 	m->m_data += hlen;
895 	m->m_len -= hlen;
896 
897 	/*
898 	 * If first fragment to arrive, create a reassembly queue.
899 	 */
900 	if (fp == NULL) {
901 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
902 			goto dropfrag;
903 		fp = mtod(t, struct ipq *);
904 #ifdef MAC
905 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
906 			m_free(t);
907 			goto dropfrag;
908 		}
909 		mac_create_ipq(m, fp);
910 #endif
911 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
912 		nipq++;
913 		fp->ipq_nfrags = 1;
914 		fp->ipq_ttl = IPFRAGTTL;
915 		fp->ipq_p = ip->ip_p;
916 		fp->ipq_id = ip->ip_id;
917 		fp->ipq_src = ip->ip_src;
918 		fp->ipq_dst = ip->ip_dst;
919 		fp->ipq_frags = m;
920 		m->m_nextpkt = NULL;
921 		goto inserted;
922 	} else {
923 		fp->ipq_nfrags++;
924 #ifdef MAC
925 		mac_update_ipq(m, fp);
926 #endif
927 	}
928 
929 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
930 
931 	/*
932 	 * Handle ECN by comparing this segment with the first one;
933 	 * if CE is set, do not lose CE.
934 	 * drop if CE and not-ECT are mixed for the same packet.
935 	 */
936 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
937 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
938 	if (ecn == IPTOS_ECN_CE) {
939 		if (ecn0 == IPTOS_ECN_NOTECT)
940 			goto dropfrag;
941 		if (ecn0 != IPTOS_ECN_CE)
942 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
943 	}
944 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
945 		goto dropfrag;
946 
947 	/*
948 	 * Find a segment which begins after this one does.
949 	 */
950 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
951 		if (GETIP(q)->ip_off > ip->ip_off)
952 			break;
953 
954 	/*
955 	 * If there is a preceding segment, it may provide some of
956 	 * our data already.  If so, drop the data from the incoming
957 	 * segment.  If it provides all of our data, drop us, otherwise
958 	 * stick new segment in the proper place.
959 	 *
960 	 * If some of the data is dropped from the the preceding
961 	 * segment, then it's checksum is invalidated.
962 	 */
963 	if (p) {
964 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
965 		if (i > 0) {
966 			if (i >= ip->ip_len)
967 				goto dropfrag;
968 			m_adj(m, i);
969 			m->m_pkthdr.csum_flags = 0;
970 			ip->ip_off += i;
971 			ip->ip_len -= i;
972 		}
973 		m->m_nextpkt = p->m_nextpkt;
974 		p->m_nextpkt = m;
975 	} else {
976 		m->m_nextpkt = fp->ipq_frags;
977 		fp->ipq_frags = m;
978 	}
979 
980 	/*
981 	 * While we overlap succeeding segments trim them or,
982 	 * if they are completely covered, dequeue them.
983 	 */
984 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
985 	     q = nq) {
986 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
987 		if (i < GETIP(q)->ip_len) {
988 			GETIP(q)->ip_len -= i;
989 			GETIP(q)->ip_off += i;
990 			m_adj(q, i);
991 			q->m_pkthdr.csum_flags = 0;
992 			break;
993 		}
994 		nq = q->m_nextpkt;
995 		m->m_nextpkt = nq;
996 		ipstat.ips_fragdropped++;
997 		fp->ipq_nfrags--;
998 		m_freem(q);
999 	}
1000 
1001 inserted:
1002 
1003 	/*
1004 	 * Check for complete reassembly and perform frag per packet
1005 	 * limiting.
1006 	 *
1007 	 * Frag limiting is performed here so that the nth frag has
1008 	 * a chance to complete the packet before we drop the packet.
1009 	 * As a result, n+1 frags are actually allowed per packet, but
1010 	 * only n will ever be stored. (n = maxfragsperpacket.)
1011 	 *
1012 	 */
1013 	next = 0;
1014 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1015 		if (GETIP(q)->ip_off != next) {
1016 			if (fp->ipq_nfrags > maxfragsperpacket) {
1017 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1018 				ip_freef(head, fp);
1019 			}
1020 			goto done;
1021 		}
1022 		next += GETIP(q)->ip_len;
1023 	}
1024 	/* Make sure the last packet didn't have the IP_MF flag */
1025 	if (p->m_flags & M_FRAG) {
1026 		if (fp->ipq_nfrags > maxfragsperpacket) {
1027 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1028 			ip_freef(head, fp);
1029 		}
1030 		goto done;
1031 	}
1032 
1033 	/*
1034 	 * Reassembly is complete.  Make sure the packet is a sane size.
1035 	 */
1036 	q = fp->ipq_frags;
1037 	ip = GETIP(q);
1038 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1039 		ipstat.ips_toolong++;
1040 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1041 		ip_freef(head, fp);
1042 		goto done;
1043 	}
1044 
1045 	/*
1046 	 * Concatenate fragments.
1047 	 */
1048 	m = q;
1049 	t = m->m_next;
1050 	m->m_next = NULL;
1051 	m_cat(m, t);
1052 	nq = q->m_nextpkt;
1053 	q->m_nextpkt = NULL;
1054 	for (q = nq; q != NULL; q = nq) {
1055 		nq = q->m_nextpkt;
1056 		q->m_nextpkt = NULL;
1057 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1058 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1059 		m_cat(m, q);
1060 	}
1061 #ifdef MAC
1062 	mac_create_datagram_from_ipq(fp, m);
1063 	mac_destroy_ipq(fp);
1064 #endif
1065 
1066 	/*
1067 	 * Create header for new ip packet by modifying header of first
1068 	 * packet;  dequeue and discard fragment reassembly header.
1069 	 * Make header visible.
1070 	 */
1071 	ip->ip_len = (ip->ip_hl << 2) + next;
1072 	ip->ip_src = fp->ipq_src;
1073 	ip->ip_dst = fp->ipq_dst;
1074 	TAILQ_REMOVE(head, fp, ipq_list);
1075 	nipq--;
1076 	(void) m_free(dtom(fp));
1077 	m->m_len += (ip->ip_hl << 2);
1078 	m->m_data -= (ip->ip_hl << 2);
1079 	/* some debugging cruft by sklower, below, will go away soon */
1080 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1081 		m_fixhdr(m);
1082 	ipstat.ips_reassembled++;
1083 	IPQ_UNLOCK();
1084 	return (m);
1085 
1086 dropfrag:
1087 	ipstat.ips_fragdropped++;
1088 	if (fp != NULL)
1089 		fp->ipq_nfrags--;
1090 	m_freem(m);
1091 done:
1092 	IPQ_UNLOCK();
1093 	return (NULL);
1094 
1095 #undef GETIP
1096 }
1097 
1098 /*
1099  * Free a fragment reassembly header and all
1100  * associated datagrams.
1101  */
1102 static void
1103 ip_freef(fhp, fp)
1104 	struct ipqhead *fhp;
1105 	struct ipq *fp;
1106 {
1107 	register struct mbuf *q;
1108 
1109 	IPQ_LOCK_ASSERT();
1110 
1111 	while (fp->ipq_frags) {
1112 		q = fp->ipq_frags;
1113 		fp->ipq_frags = q->m_nextpkt;
1114 		m_freem(q);
1115 	}
1116 	TAILQ_REMOVE(fhp, fp, ipq_list);
1117 	(void) m_free(dtom(fp));
1118 	nipq--;
1119 }
1120 
1121 /*
1122  * IP timer processing;
1123  * if a timer expires on a reassembly
1124  * queue, discard it.
1125  */
1126 void
1127 ip_slowtimo()
1128 {
1129 	register struct ipq *fp;
1130 	int s = splnet();
1131 	int i;
1132 
1133 	IPQ_LOCK();
1134 	for (i = 0; i < IPREASS_NHASH; i++) {
1135 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1136 			struct ipq *fpp;
1137 
1138 			fpp = fp;
1139 			fp = TAILQ_NEXT(fp, ipq_list);
1140 			if(--fpp->ipq_ttl == 0) {
1141 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1142 				ip_freef(&ipq[i], fpp);
1143 			}
1144 		}
1145 	}
1146 	/*
1147 	 * If we are over the maximum number of fragments
1148 	 * (due to the limit being lowered), drain off
1149 	 * enough to get down to the new limit.
1150 	 */
1151 	if (maxnipq >= 0 && nipq > maxnipq) {
1152 		for (i = 0; i < IPREASS_NHASH; i++) {
1153 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1154 				ipstat.ips_fragdropped +=
1155 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1156 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1157 			}
1158 		}
1159 	}
1160 	IPQ_UNLOCK();
1161 	splx(s);
1162 }
1163 
1164 /*
1165  * Drain off all datagram fragments.
1166  */
1167 void
1168 ip_drain()
1169 {
1170 	int     i;
1171 
1172 	IPQ_LOCK();
1173 	for (i = 0; i < IPREASS_NHASH; i++) {
1174 		while(!TAILQ_EMPTY(&ipq[i])) {
1175 			ipstat.ips_fragdropped +=
1176 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1177 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1178 		}
1179 	}
1180 	IPQ_UNLOCK();
1181 	in_rtqdrain();
1182 }
1183 
1184 /*
1185  * The protocol to be inserted into ip_protox[] must be already registered
1186  * in inetsw[], either statically or through pf_proto_register().
1187  */
1188 int
1189 ipproto_register(u_char ipproto)
1190 {
1191 	struct protosw *pr;
1192 
1193 	/* Sanity checks. */
1194 	if (ipproto == 0)
1195 		return (EPROTONOSUPPORT);
1196 
1197 	/*
1198 	 * The protocol slot must not be occupied by another protocol
1199 	 * already.  An index pointing to IPPROTO_RAW is unused.
1200 	 */
1201 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1202 	if (pr == NULL)
1203 		return (EPFNOSUPPORT);
1204 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1205 		return (EEXIST);
1206 
1207 	/* Find the protocol position in inetsw[] and set the index. */
1208 	for (pr = inetdomain.dom_protosw;
1209 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1210 		if (pr->pr_domain->dom_family == PF_INET &&
1211 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1212 			/* Be careful to only index valid IP protocols. */
1213 			if (pr->pr_protocol < IPPROTO_MAX) {
1214 				ip_protox[pr->pr_protocol] = pr - inetsw;
1215 				return (0);
1216 			} else
1217 				return (EINVAL);
1218 		}
1219 	}
1220 	return (EPROTONOSUPPORT);
1221 }
1222 
1223 int
1224 ipproto_unregister(u_char ipproto)
1225 {
1226 	struct protosw *pr;
1227 
1228 	/* Sanity checks. */
1229 	if (ipproto == 0)
1230 		return (EPROTONOSUPPORT);
1231 
1232 	/* Check if the protocol was indeed registered. */
1233 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1234 	if (pr == NULL)
1235 		return (EPFNOSUPPORT);
1236 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1237 		return (ENOENT);
1238 
1239 	/* Reset the protocol slot to IPPROTO_RAW. */
1240 	ip_protox[ipproto] = pr - inetsw;
1241 	return (0);
1242 }
1243 
1244 
1245 /*
1246  * Do option processing on a datagram,
1247  * possibly discarding it if bad options are encountered,
1248  * or forwarding it if source-routed.
1249  * The pass argument is used when operating in the IPSTEALTH
1250  * mode to tell what options to process:
1251  * [LS]SRR (pass 0) or the others (pass 1).
1252  * The reason for as many as two passes is that when doing IPSTEALTH,
1253  * non-routing options should be processed only if the packet is for us.
1254  * Returns 1 if packet has been forwarded/freed,
1255  * 0 if the packet should be processed further.
1256  */
1257 static int
1258 ip_dooptions(struct mbuf *m, int pass)
1259 {
1260 	struct ip *ip = mtod(m, struct ip *);
1261 	u_char *cp;
1262 	struct in_ifaddr *ia;
1263 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1264 	struct in_addr *sin, dst;
1265 	n_time ntime;
1266 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1267 
1268 	/* ignore or reject packets with IP options */
1269 	if (ip_doopts == 0)
1270 		return 0;
1271 	else if (ip_doopts == 2) {
1272 		type = ICMP_UNREACH;
1273 		code = ICMP_UNREACH_FILTER_PROHIB;
1274 		goto bad;
1275 	}
1276 
1277 	dst = ip->ip_dst;
1278 	cp = (u_char *)(ip + 1);
1279 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1280 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1281 		opt = cp[IPOPT_OPTVAL];
1282 		if (opt == IPOPT_EOL)
1283 			break;
1284 		if (opt == IPOPT_NOP)
1285 			optlen = 1;
1286 		else {
1287 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1288 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1289 				goto bad;
1290 			}
1291 			optlen = cp[IPOPT_OLEN];
1292 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1293 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1294 				goto bad;
1295 			}
1296 		}
1297 		switch (opt) {
1298 
1299 		default:
1300 			break;
1301 
1302 		/*
1303 		 * Source routing with record.
1304 		 * Find interface with current destination address.
1305 		 * If none on this machine then drop if strictly routed,
1306 		 * or do nothing if loosely routed.
1307 		 * Record interface address and bring up next address
1308 		 * component.  If strictly routed make sure next
1309 		 * address is on directly accessible net.
1310 		 */
1311 		case IPOPT_LSRR:
1312 		case IPOPT_SSRR:
1313 #ifdef IPSTEALTH
1314 			if (ipstealth && pass > 0)
1315 				break;
1316 #endif
1317 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1318 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1319 				goto bad;
1320 			}
1321 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1322 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1323 				goto bad;
1324 			}
1325 			ipaddr.sin_addr = ip->ip_dst;
1326 			ia = (struct in_ifaddr *)
1327 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1328 			if (ia == NULL) {
1329 				if (opt == IPOPT_SSRR) {
1330 					type = ICMP_UNREACH;
1331 					code = ICMP_UNREACH_SRCFAIL;
1332 					goto bad;
1333 				}
1334 				if (!ip_dosourceroute)
1335 					goto nosourcerouting;
1336 				/*
1337 				 * Loose routing, and not at next destination
1338 				 * yet; nothing to do except forward.
1339 				 */
1340 				break;
1341 			}
1342 			off--;			/* 0 origin */
1343 			if (off > optlen - (int)sizeof(struct in_addr)) {
1344 				/*
1345 				 * End of source route.  Should be for us.
1346 				 */
1347 				if (!ip_acceptsourceroute)
1348 					goto nosourcerouting;
1349 				save_rte(m, cp, ip->ip_src);
1350 				break;
1351 			}
1352 #ifdef IPSTEALTH
1353 			if (ipstealth)
1354 				goto dropit;
1355 #endif
1356 			if (!ip_dosourceroute) {
1357 				if (ipforwarding) {
1358 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1359 					/*
1360 					 * Acting as a router, so generate ICMP
1361 					 */
1362 nosourcerouting:
1363 					strcpy(buf, inet_ntoa(ip->ip_dst));
1364 					log(LOG_WARNING,
1365 					    "attempted source route from %s to %s\n",
1366 					    inet_ntoa(ip->ip_src), buf);
1367 					type = ICMP_UNREACH;
1368 					code = ICMP_UNREACH_SRCFAIL;
1369 					goto bad;
1370 				} else {
1371 					/*
1372 					 * Not acting as a router, so silently drop.
1373 					 */
1374 #ifdef IPSTEALTH
1375 dropit:
1376 #endif
1377 					ipstat.ips_cantforward++;
1378 					m_freem(m);
1379 					return (1);
1380 				}
1381 			}
1382 
1383 			/*
1384 			 * locate outgoing interface
1385 			 */
1386 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1387 			    sizeof(ipaddr.sin_addr));
1388 
1389 			if (opt == IPOPT_SSRR) {
1390 #define	INA	struct in_ifaddr *
1391 #define	SA	struct sockaddr *
1392 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1393 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1394 			} else
1395 				ia = ip_rtaddr(ipaddr.sin_addr);
1396 			if (ia == NULL) {
1397 				type = ICMP_UNREACH;
1398 				code = ICMP_UNREACH_SRCFAIL;
1399 				goto bad;
1400 			}
1401 			ip->ip_dst = ipaddr.sin_addr;
1402 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1403 			    sizeof(struct in_addr));
1404 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1405 			/*
1406 			 * Let ip_intr's mcast routing check handle mcast pkts
1407 			 */
1408 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1409 			break;
1410 
1411 		case IPOPT_RR:
1412 #ifdef IPSTEALTH
1413 			if (ipstealth && pass == 0)
1414 				break;
1415 #endif
1416 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1417 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1418 				goto bad;
1419 			}
1420 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1421 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1422 				goto bad;
1423 			}
1424 			/*
1425 			 * If no space remains, ignore.
1426 			 */
1427 			off--;			/* 0 origin */
1428 			if (off > optlen - (int)sizeof(struct in_addr))
1429 				break;
1430 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1431 			    sizeof(ipaddr.sin_addr));
1432 			/*
1433 			 * locate outgoing interface; if we're the destination,
1434 			 * use the incoming interface (should be same).
1435 			 */
1436 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1437 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1438 				type = ICMP_UNREACH;
1439 				code = ICMP_UNREACH_HOST;
1440 				goto bad;
1441 			}
1442 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1443 			    sizeof(struct in_addr));
1444 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1445 			break;
1446 
1447 		case IPOPT_TS:
1448 #ifdef IPSTEALTH
1449 			if (ipstealth && pass == 0)
1450 				break;
1451 #endif
1452 			code = cp - (u_char *)ip;
1453 			if (optlen < 4 || optlen > 40) {
1454 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455 				goto bad;
1456 			}
1457 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1458 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1459 				goto bad;
1460 			}
1461 			if (off > optlen - (int)sizeof(int32_t)) {
1462 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1463 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1464 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1465 					goto bad;
1466 				}
1467 				break;
1468 			}
1469 			off--;				/* 0 origin */
1470 			sin = (struct in_addr *)(cp + off);
1471 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1472 
1473 			case IPOPT_TS_TSONLY:
1474 				break;
1475 
1476 			case IPOPT_TS_TSANDADDR:
1477 				if (off + sizeof(n_time) +
1478 				    sizeof(struct in_addr) > optlen) {
1479 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1480 					goto bad;
1481 				}
1482 				ipaddr.sin_addr = dst;
1483 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1484 							    m->m_pkthdr.rcvif);
1485 				if (ia == NULL)
1486 					continue;
1487 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1488 				    sizeof(struct in_addr));
1489 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1490 				off += sizeof(struct in_addr);
1491 				break;
1492 
1493 			case IPOPT_TS_PRESPEC:
1494 				if (off + sizeof(n_time) +
1495 				    sizeof(struct in_addr) > optlen) {
1496 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1497 					goto bad;
1498 				}
1499 				(void)memcpy(&ipaddr.sin_addr, sin,
1500 				    sizeof(struct in_addr));
1501 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1502 					continue;
1503 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1504 				off += sizeof(struct in_addr);
1505 				break;
1506 
1507 			default:
1508 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1509 				goto bad;
1510 			}
1511 			ntime = iptime();
1512 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1513 			cp[IPOPT_OFFSET] += sizeof(n_time);
1514 		}
1515 	}
1516 	if (forward && ipforwarding) {
1517 		ip_forward(m, 1);
1518 		return (1);
1519 	}
1520 	return (0);
1521 bad:
1522 	icmp_error(m, type, code, 0, 0);
1523 	ipstat.ips_badoptions++;
1524 	return (1);
1525 }
1526 
1527 /*
1528  * Given address of next destination (final or next hop),
1529  * return internet address info of interface to be used to get there.
1530  */
1531 struct in_ifaddr *
1532 ip_rtaddr(dst)
1533 	struct in_addr dst;
1534 {
1535 	struct route sro;
1536 	struct sockaddr_in *sin;
1537 	struct in_ifaddr *ifa;
1538 
1539 	bzero(&sro, sizeof(sro));
1540 	sin = (struct sockaddr_in *)&sro.ro_dst;
1541 	sin->sin_family = AF_INET;
1542 	sin->sin_len = sizeof(*sin);
1543 	sin->sin_addr = dst;
1544 	rtalloc_ign(&sro, RTF_CLONING);
1545 
1546 	if (sro.ro_rt == NULL)
1547 		return (NULL);
1548 
1549 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1550 	RTFREE(sro.ro_rt);
1551 	return (ifa);
1552 }
1553 
1554 /*
1555  * Save incoming source route for use in replies,
1556  * to be picked up later by ip_srcroute if the receiver is interested.
1557  */
1558 static void
1559 save_rte(m, option, dst)
1560 	struct mbuf *m;
1561 	u_char *option;
1562 	struct in_addr dst;
1563 {
1564 	unsigned olen;
1565 	struct ipopt_tag *opts;
1566 
1567 	opts = (struct ipopt_tag *)m_tag_get(PACKET_TAG_IPOPTIONS,
1568 					sizeof(struct ipopt_tag), M_NOWAIT);
1569 	if (opts == NULL)
1570 		return;
1571 
1572 	olen = option[IPOPT_OLEN];
1573 #ifdef DIAGNOSTIC
1574 	if (ipprintfs)
1575 		printf("save_rte: olen %d\n", olen);
1576 #endif
1577 	if (olen > sizeof(opts->ip_srcrt) - (1 + sizeof(dst))) {
1578 		m_tag_free((struct m_tag *)opts);
1579 		return;
1580 	}
1581 	bcopy(option, opts->ip_srcrt.srcopt, olen);
1582 	opts->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1583 	opts->ip_srcrt.dst = dst;
1584 	m_tag_prepend(m, (struct m_tag *)opts);
1585 }
1586 
1587 /*
1588  * Retrieve incoming source route for use in replies,
1589  * in the same form used by setsockopt.
1590  * The first hop is placed before the options, will be removed later.
1591  */
1592 struct mbuf *
1593 ip_srcroute(m0)
1594 	struct mbuf *m0;
1595 {
1596 	register struct in_addr *p, *q;
1597 	register struct mbuf *m;
1598 	struct ipopt_tag *opts;
1599 
1600 	opts = (struct ipopt_tag *)m_tag_find(m0, PACKET_TAG_IPOPTIONS, NULL);
1601 	if (opts == NULL)
1602 		return (NULL);
1603 
1604 	if (opts->ip_nhops == 0)
1605 		return (NULL);
1606 	m = m_get(M_DONTWAIT, MT_HEADER);
1607 	if (m == NULL)
1608 		return (NULL);
1609 
1610 #define OPTSIZ	(sizeof(opts->ip_srcrt.nop) + sizeof(opts->ip_srcrt.srcopt))
1611 
1612 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1613 	m->m_len = opts->ip_nhops * sizeof(struct in_addr) +
1614 	    sizeof(struct in_addr) + OPTSIZ;
1615 #ifdef DIAGNOSTIC
1616 	if (ipprintfs)
1617 		printf("ip_srcroute: nhops %d mlen %d", opts->ip_nhops, m->m_len);
1618 #endif
1619 
1620 	/*
1621 	 * First save first hop for return route
1622 	 */
1623 	p = &(opts->ip_srcrt.route[opts->ip_nhops - 1]);
1624 	*(mtod(m, struct in_addr *)) = *p--;
1625 #ifdef DIAGNOSTIC
1626 	if (ipprintfs)
1627 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1628 #endif
1629 
1630 	/*
1631 	 * Copy option fields and padding (nop) to mbuf.
1632 	 */
1633 	opts->ip_srcrt.nop = IPOPT_NOP;
1634 	opts->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1635 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1636 	    &(opts->ip_srcrt.nop), OPTSIZ);
1637 	q = (struct in_addr *)(mtod(m, caddr_t) +
1638 	    sizeof(struct in_addr) + OPTSIZ);
1639 #undef OPTSIZ
1640 	/*
1641 	 * Record return path as an IP source route,
1642 	 * reversing the path (pointers are now aligned).
1643 	 */
1644 	while (p >= opts->ip_srcrt.route) {
1645 #ifdef DIAGNOSTIC
1646 		if (ipprintfs)
1647 			printf(" %lx", (u_long)ntohl(q->s_addr));
1648 #endif
1649 		*q++ = *p--;
1650 	}
1651 	/*
1652 	 * Last hop goes to final destination.
1653 	 */
1654 	*q = opts->ip_srcrt.dst;
1655 #ifdef DIAGNOSTIC
1656 	if (ipprintfs)
1657 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1658 #endif
1659 	m_tag_delete(m0, (struct m_tag *)opts);
1660 	return (m);
1661 }
1662 
1663 /*
1664  * Strip out IP options, at higher
1665  * level protocol in the kernel.
1666  * Second argument is buffer to which options
1667  * will be moved, and return value is their length.
1668  * XXX should be deleted; last arg currently ignored.
1669  */
1670 void
1671 ip_stripoptions(m, mopt)
1672 	register struct mbuf *m;
1673 	struct mbuf *mopt;
1674 {
1675 	register int i;
1676 	struct ip *ip = mtod(m, struct ip *);
1677 	register caddr_t opts;
1678 	int olen;
1679 
1680 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1681 	opts = (caddr_t)(ip + 1);
1682 	i = m->m_len - (sizeof (struct ip) + olen);
1683 	bcopy(opts + olen, opts, (unsigned)i);
1684 	m->m_len -= olen;
1685 	if (m->m_flags & M_PKTHDR)
1686 		m->m_pkthdr.len -= olen;
1687 	ip->ip_v = IPVERSION;
1688 	ip->ip_hl = sizeof(struct ip) >> 2;
1689 }
1690 
1691 u_char inetctlerrmap[PRC_NCMDS] = {
1692 	0,		0,		0,		0,
1693 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1694 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1695 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1696 	0,		0,		EHOSTUNREACH,	0,
1697 	ENOPROTOOPT,	ECONNREFUSED
1698 };
1699 
1700 /*
1701  * Forward a packet.  If some error occurs return the sender
1702  * an icmp packet.  Note we can't always generate a meaningful
1703  * icmp message because icmp doesn't have a large enough repertoire
1704  * of codes and types.
1705  *
1706  * If not forwarding, just drop the packet.  This could be confusing
1707  * if ipforwarding was zero but some routing protocol was advancing
1708  * us as a gateway to somewhere.  However, we must let the routing
1709  * protocol deal with that.
1710  *
1711  * The srcrt parameter indicates whether the packet is being forwarded
1712  * via a source route.
1713  */
1714 void
1715 ip_forward(struct mbuf *m, int srcrt)
1716 {
1717 	struct ip *ip = mtod(m, struct ip *);
1718 	struct in_ifaddr *ia = NULL;
1719 	int error, type = 0, code = 0;
1720 	struct mbuf *mcopy;
1721 	struct in_addr dest;
1722 	struct ifnet *destifp, dummyifp;
1723 
1724 #ifdef DIAGNOSTIC
1725 	if (ipprintfs)
1726 		printf("forward: src %lx dst %lx ttl %x\n",
1727 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1728 		    ip->ip_ttl);
1729 #endif
1730 
1731 
1732 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1733 		ipstat.ips_cantforward++;
1734 		m_freem(m);
1735 		return;
1736 	}
1737 #ifdef IPSTEALTH
1738 	if (!ipstealth) {
1739 #endif
1740 		if (ip->ip_ttl <= IPTTLDEC) {
1741 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1742 			    0, 0);
1743 			return;
1744 		}
1745 #ifdef IPSTEALTH
1746 	}
1747 #endif
1748 
1749 	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1750 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1751 		return;
1752 	}
1753 
1754 	/*
1755 	 * Save the IP header and at most 8 bytes of the payload,
1756 	 * in case we need to generate an ICMP message to the src.
1757 	 *
1758 	 * XXX this can be optimized a lot by saving the data in a local
1759 	 * buffer on the stack (72 bytes at most), and only allocating the
1760 	 * mbuf if really necessary. The vast majority of the packets
1761 	 * are forwarded without having to send an ICMP back (either
1762 	 * because unnecessary, or because rate limited), so we are
1763 	 * really we are wasting a lot of work here.
1764 	 *
1765 	 * We don't use m_copy() because it might return a reference
1766 	 * to a shared cluster. Both this function and ip_output()
1767 	 * assume exclusive access to the IP header in `m', so any
1768 	 * data in a cluster may change before we reach icmp_error().
1769 	 */
1770 	MGET(mcopy, M_DONTWAIT, m->m_type);
1771 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1772 		/*
1773 		 * It's probably ok if the pkthdr dup fails (because
1774 		 * the deep copy of the tag chain failed), but for now
1775 		 * be conservative and just discard the copy since
1776 		 * code below may some day want the tags.
1777 		 */
1778 		m_free(mcopy);
1779 		mcopy = NULL;
1780 	}
1781 	if (mcopy != NULL) {
1782 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1783 		    (int)ip->ip_len);
1784 		mcopy->m_pkthdr.len = mcopy->m_len;
1785 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1786 	}
1787 
1788 #ifdef IPSTEALTH
1789 	if (!ipstealth) {
1790 #endif
1791 		ip->ip_ttl -= IPTTLDEC;
1792 #ifdef IPSTEALTH
1793 	}
1794 #endif
1795 
1796 	/*
1797 	 * If forwarding packet using same interface that it came in on,
1798 	 * perhaps should send a redirect to sender to shortcut a hop.
1799 	 * Only send redirect if source is sending directly to us,
1800 	 * and if packet was not source routed (or has any options).
1801 	 * Also, don't send redirect if forwarding using a default route
1802 	 * or a route modified by a redirect.
1803 	 */
1804 	dest.s_addr = 0;
1805 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1806 		struct sockaddr_in *sin;
1807 		struct route ro;
1808 		struct rtentry *rt;
1809 
1810 		bzero(&ro, sizeof(ro));
1811 		sin = (struct sockaddr_in *)&ro.ro_dst;
1812 		sin->sin_family = AF_INET;
1813 		sin->sin_len = sizeof(*sin);
1814 		sin->sin_addr = ip->ip_dst;
1815 		rtalloc_ign(&ro, RTF_CLONING);
1816 
1817 		rt = ro.ro_rt;
1818 
1819 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1820 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1821 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1822 			u_long src = ntohl(ip->ip_src.s_addr);
1823 
1824 			if (RTA(rt) &&
1825 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1826 				if (rt->rt_flags & RTF_GATEWAY)
1827 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1828 				else
1829 					dest.s_addr = ip->ip_dst.s_addr;
1830 				/* Router requirements says to only send host redirects */
1831 				type = ICMP_REDIRECT;
1832 				code = ICMP_REDIRECT_HOST;
1833 #ifdef DIAGNOSTIC
1834 				if (ipprintfs)
1835 					printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
1836 #endif
1837 			}
1838 		}
1839 		if (rt)
1840 			RTFREE(rt);
1841 	}
1842 
1843 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1844 	if (error)
1845 		ipstat.ips_cantforward++;
1846 	else {
1847 		ipstat.ips_forward++;
1848 		if (type)
1849 			ipstat.ips_redirectsent++;
1850 		else {
1851 			if (mcopy)
1852 				m_freem(mcopy);
1853 			return;
1854 		}
1855 	}
1856 	if (mcopy == NULL)
1857 		return;
1858 	destifp = NULL;
1859 
1860 	switch (error) {
1861 
1862 	case 0:				/* forwarded, but need redirect */
1863 		/* type, code set above */
1864 		break;
1865 
1866 	case ENETUNREACH:		/* shouldn't happen, checked above */
1867 	case EHOSTUNREACH:
1868 	case ENETDOWN:
1869 	case EHOSTDOWN:
1870 	default:
1871 		type = ICMP_UNREACH;
1872 		code = ICMP_UNREACH_HOST;
1873 		break;
1874 
1875 	case EMSGSIZE:
1876 		type = ICMP_UNREACH;
1877 		code = ICMP_UNREACH_NEEDFRAG;
1878 #if defined(IPSEC) || defined(FAST_IPSEC)
1879 		/*
1880 		 * If the packet is routed over IPsec tunnel, tell the
1881 		 * originator the tunnel MTU.
1882 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1883 		 * XXX quickhack!!!
1884 		 */
1885 		{
1886 			struct secpolicy *sp = NULL;
1887 			int ipsecerror;
1888 			int ipsechdr;
1889 			struct route *ro;
1890 
1891 #ifdef IPSEC
1892 			sp = ipsec4_getpolicybyaddr(mcopy,
1893 						    IPSEC_DIR_OUTBOUND,
1894 						    IP_FORWARDING,
1895 						    &ipsecerror);
1896 #else /* FAST_IPSEC */
1897 			sp = ipsec_getpolicybyaddr(mcopy,
1898 						   IPSEC_DIR_OUTBOUND,
1899 						   IP_FORWARDING,
1900 						   &ipsecerror);
1901 #endif
1902 			if (sp != NULL) {
1903 				/* count IPsec header size */
1904 				ipsechdr = ipsec4_hdrsiz(mcopy,
1905 							 IPSEC_DIR_OUTBOUND,
1906 							 NULL);
1907 
1908 				/*
1909 				 * find the correct route for outer IPv4
1910 				 * header, compute tunnel MTU.
1911 				 *
1912 				 * XXX BUG ALERT
1913 				 * The "dummyifp" code relies upon the fact
1914 				 * that icmp_error() touches only ifp->if_mtu.
1915 				 */
1916 				/*XXX*/
1917 				destifp = NULL;
1918 				if (sp->req != NULL
1919 				 && sp->req->sav != NULL
1920 				 && sp->req->sav->sah != NULL) {
1921 					ro = &sp->req->sav->sah->sa_route;
1922 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1923 						dummyifp.if_mtu =
1924 						    ro->ro_rt->rt_rmx.rmx_mtu ?
1925 						    ro->ro_rt->rt_rmx.rmx_mtu :
1926 						    ro->ro_rt->rt_ifp->if_mtu;
1927 						dummyifp.if_mtu -= ipsechdr;
1928 						destifp = &dummyifp;
1929 					}
1930 				}
1931 
1932 #ifdef IPSEC
1933 				key_freesp(sp);
1934 #else /* FAST_IPSEC */
1935 				KEY_FREESP(&sp);
1936 #endif
1937 				ipstat.ips_cantfrag++;
1938 				break;
1939 			} else
1940 #endif /*IPSEC || FAST_IPSEC*/
1941 		/*
1942 		 * When doing source routing 'ia' can be NULL.  Fall back
1943 		 * to the minimum guaranteed routeable packet size and use
1944 		 * the same hack as IPSEC to setup a dummyifp for icmp.
1945 		 */
1946 		if (ia == NULL) {
1947 			dummyifp.if_mtu = IP_MSS;
1948 			destifp = &dummyifp;
1949 		} else
1950 			destifp = ia->ia_ifp;
1951 #if defined(IPSEC) || defined(FAST_IPSEC)
1952 		}
1953 #endif /*IPSEC || FAST_IPSEC*/
1954 		ipstat.ips_cantfrag++;
1955 		break;
1956 
1957 	case ENOBUFS:
1958 		/*
1959 		 * A router should not generate ICMP_SOURCEQUENCH as
1960 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1961 		 * Source quench could be a big problem under DoS attacks,
1962 		 * or if the underlying interface is rate-limited.
1963 		 * Those who need source quench packets may re-enable them
1964 		 * via the net.inet.ip.sendsourcequench sysctl.
1965 		 */
1966 		if (ip_sendsourcequench == 0) {
1967 			m_freem(mcopy);
1968 			return;
1969 		} else {
1970 			type = ICMP_SOURCEQUENCH;
1971 			code = 0;
1972 		}
1973 		break;
1974 
1975 	case EACCES:			/* ipfw denied packet */
1976 		m_freem(mcopy);
1977 		return;
1978 	}
1979 	icmp_error(mcopy, type, code, dest.s_addr, destifp);
1980 }
1981 
1982 void
1983 ip_savecontrol(inp, mp, ip, m)
1984 	register struct inpcb *inp;
1985 	register struct mbuf **mp;
1986 	register struct ip *ip;
1987 	register struct mbuf *m;
1988 {
1989 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1990 		struct bintime bt;
1991 
1992 		bintime(&bt);
1993 		if (inp->inp_socket->so_options & SO_BINTIME) {
1994 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1995 			SCM_BINTIME, SOL_SOCKET);
1996 			if (*mp)
1997 				mp = &(*mp)->m_next;
1998 		}
1999 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2000 			struct timeval tv;
2001 
2002 			bintime2timeval(&bt, &tv);
2003 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2004 				SCM_TIMESTAMP, SOL_SOCKET);
2005 			if (*mp)
2006 				mp = &(*mp)->m_next;
2007 		}
2008 	}
2009 	if (inp->inp_flags & INP_RECVDSTADDR) {
2010 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2011 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2012 		if (*mp)
2013 			mp = &(*mp)->m_next;
2014 	}
2015 	if (inp->inp_flags & INP_RECVTTL) {
2016 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2017 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2018 		if (*mp)
2019 			mp = &(*mp)->m_next;
2020 	}
2021 #ifdef notyet
2022 	/* XXX
2023 	 * Moving these out of udp_input() made them even more broken
2024 	 * than they already were.
2025 	 */
2026 	/* options were tossed already */
2027 	if (inp->inp_flags & INP_RECVOPTS) {
2028 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2029 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2030 		if (*mp)
2031 			mp = &(*mp)->m_next;
2032 	}
2033 	/* ip_srcroute doesn't do what we want here, need to fix */
2034 	if (inp->inp_flags & INP_RECVRETOPTS) {
2035 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2036 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2037 		if (*mp)
2038 			mp = &(*mp)->m_next;
2039 	}
2040 #endif
2041 	if (inp->inp_flags & INP_RECVIF) {
2042 		struct ifnet *ifp;
2043 		struct sdlbuf {
2044 			struct sockaddr_dl sdl;
2045 			u_char	pad[32];
2046 		} sdlbuf;
2047 		struct sockaddr_dl *sdp;
2048 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2049 
2050 		if (((ifp = m->m_pkthdr.rcvif))
2051 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2052 			sdp = (struct sockaddr_dl *)
2053 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2054 			/*
2055 			 * Change our mind and don't try copy.
2056 			 */
2057 			if ((sdp->sdl_family != AF_LINK)
2058 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2059 				goto makedummy;
2060 			}
2061 			bcopy(sdp, sdl2, sdp->sdl_len);
2062 		} else {
2063 makedummy:
2064 			sdl2->sdl_len
2065 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2066 			sdl2->sdl_family = AF_LINK;
2067 			sdl2->sdl_index = 0;
2068 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2069 		}
2070 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2071 			IP_RECVIF, IPPROTO_IP);
2072 		if (*mp)
2073 			mp = &(*mp)->m_next;
2074 	}
2075 }
2076 
2077 /*
2078  * XXX these routines are called from the upper part of the kernel.
2079  * They need to be locked when we remove Giant.
2080  *
2081  * They could also be moved to ip_mroute.c, since all the RSVP
2082  *  handling is done there already.
2083  */
2084 static int ip_rsvp_on;
2085 struct socket *ip_rsvpd;
2086 int
2087 ip_rsvp_init(struct socket *so)
2088 {
2089 	if (so->so_type != SOCK_RAW ||
2090 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2091 		return EOPNOTSUPP;
2092 
2093 	if (ip_rsvpd != NULL)
2094 		return EADDRINUSE;
2095 
2096 	ip_rsvpd = so;
2097 	/*
2098 	 * This may seem silly, but we need to be sure we don't over-increment
2099 	 * the RSVP counter, in case something slips up.
2100 	 */
2101 	if (!ip_rsvp_on) {
2102 		ip_rsvp_on = 1;
2103 		rsvp_on++;
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 int
2110 ip_rsvp_done(void)
2111 {
2112 	ip_rsvpd = NULL;
2113 	/*
2114 	 * This may seem silly, but we need to be sure we don't over-decrement
2115 	 * the RSVP counter, in case something slips up.
2116 	 */
2117 	if (ip_rsvp_on) {
2118 		ip_rsvp_on = 0;
2119 		rsvp_on--;
2120 	}
2121 	return 0;
2122 }
2123 
2124 void
2125 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2126 {
2127 	if (rsvp_input_p) { /* call the real one if loaded */
2128 		rsvp_input_p(m, off);
2129 		return;
2130 	}
2131 
2132 	/* Can still get packets with rsvp_on = 0 if there is a local member
2133 	 * of the group to which the RSVP packet is addressed.  But in this
2134 	 * case we want to throw the packet away.
2135 	 */
2136 
2137 	if (!rsvp_on) {
2138 		m_freem(m);
2139 		return;
2140 	}
2141 
2142 	if (ip_rsvpd != NULL) {
2143 		rip_input(m, off);
2144 		return;
2145 	}
2146 	/* Drop the packet */
2147 	m_freem(m);
2148 }
2149