1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #define _IP_VHL 38 39 #include "opt_bootp.h" 40 #include "opt_ipfw.h" 41 #include "opt_ipdn.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 #include "opt_ipstealth.h" 45 #include "opt_ipsec.h" 46 #include "opt_mac.h" 47 #include "opt_pfil_hooks.h" 48 #include "opt_random_ip_id.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/mac.h> 53 #include <sys/mbuf.h> 54 #include <sys/malloc.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/time.h> 59 #include <sys/kernel.h> 60 #include <sys/syslog.h> 61 #include <sys/sysctl.h> 62 63 #include <net/pfil.h> 64 #include <net/if.h> 65 #include <net/if_types.h> 66 #include <net/if_var.h> 67 #include <net/if_dl.h> 68 #include <net/route.h> 69 #include <net/netisr.h> 70 #include <net/intrq.h> 71 72 #include <netinet/in.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_pcb.h> 77 #include <netinet/ip_var.h> 78 #include <netinet/ip_icmp.h> 79 #include <machine/in_cksum.h> 80 81 #include <sys/socketvar.h> 82 83 #include <netinet/ip_fw.h> 84 #include <netinet/ip_dummynet.h> 85 86 #ifdef IPSEC 87 #include <netinet6/ipsec.h> 88 #include <netkey/key.h> 89 #endif 90 91 int rsvp_on = 0; 92 93 int ipforwarding = 0; 94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 95 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 96 97 static int ipsendredirects = 1; /* XXX */ 98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 99 &ipsendredirects, 0, "Enable sending IP redirects"); 100 101 int ip_defttl = IPDEFTTL; 102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 103 &ip_defttl, 0, "Maximum TTL on IP packets"); 104 105 static int ip_dosourceroute = 0; 106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 107 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 108 109 static int ip_acceptsourceroute = 0; 110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 111 CTLFLAG_RW, &ip_acceptsourceroute, 0, 112 "Enable accepting source routed IP packets"); 113 114 static int ip_keepfaith = 0; 115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 116 &ip_keepfaith, 0, 117 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 118 119 static int ip_nfragpackets = 0; 120 static int ip_maxfragpackets; /* initialized in ip_init() */ 121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 122 &ip_maxfragpackets, 0, 123 "Maximum number of IPv4 fragment reassembly queue entries"); 124 125 /* 126 * XXX - Setting ip_checkinterface mostly implements the receive side of 127 * the Strong ES model described in RFC 1122, but since the routing table 128 * and transmit implementation do not implement the Strong ES model, 129 * setting this to 1 results in an odd hybrid. 130 * 131 * XXX - ip_checkinterface currently must be disabled if you use ipnat 132 * to translate the destination address to another local interface. 133 * 134 * XXX - ip_checkinterface must be disabled if you add IP aliases 135 * to the loopback interface instead of the interface where the 136 * packets for those addresses are received. 137 */ 138 static int ip_checkinterface = 1; 139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 140 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 141 142 #ifdef DIAGNOSTIC 143 static int ipprintfs = 0; 144 #endif 145 146 static int ipqmaxlen = IFQ_MAXLEN; 147 148 extern struct domain inetdomain; 149 extern struct protosw inetsw[]; 150 u_char ip_protox[IPPROTO_MAX]; 151 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 152 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 153 u_long in_ifaddrhmask; /* mask for hash table */ 154 155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 156 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 158 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 159 160 struct ipstat ipstat; 161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 162 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 163 164 /* Packet reassembly stuff */ 165 #define IPREASS_NHASH_LOG2 6 166 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 167 #define IPREASS_HMASK (IPREASS_NHASH - 1) 168 #define IPREASS_HASH(x,y) \ 169 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 170 171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 172 static int nipq = 0; /* total # of reass queues */ 173 static int maxnipq; 174 175 #ifdef IPCTL_DEFMTU 176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 177 &ip_mtu, 0, "Default MTU"); 178 #endif 179 180 #ifdef IPSTEALTH 181 static int ipstealth = 0; 182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 183 &ipstealth, 0, ""); 184 #endif 185 186 187 /* Firewall hooks */ 188 ip_fw_chk_t *ip_fw_chk_ptr; 189 int fw_enable = 1 ; 190 191 /* Dummynet hooks */ 192 ip_dn_io_t *ip_dn_io_ptr; 193 194 195 /* 196 * XXX this is ugly -- the following two global variables are 197 * used to store packet state while it travels through the stack. 198 * Note that the code even makes assumptions on the size and 199 * alignment of fields inside struct ip_srcrt so e.g. adding some 200 * fields will break the code. This needs to be fixed. 201 * 202 * We need to save the IP options in case a protocol wants to respond 203 * to an incoming packet over the same route if the packet got here 204 * using IP source routing. This allows connection establishment and 205 * maintenance when the remote end is on a network that is not known 206 * to us. 207 */ 208 static int ip_nhops = 0; 209 static struct ip_srcrt { 210 struct in_addr dst; /* final destination */ 211 char nop; /* one NOP to align */ 212 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 213 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 214 } ip_srcrt; 215 216 static void save_rte(u_char *, struct in_addr); 217 static int ip_dooptions(struct mbuf *m, int, 218 struct sockaddr_in *next_hop); 219 static void ip_forward(struct mbuf *m, int srcrt, 220 struct sockaddr_in *next_hop); 221 static void ip_freef(struct ipqhead *, struct ipq *); 222 static struct mbuf *ip_reass(struct mbuf *, struct ipqhead *, 223 struct ipq *, u_int32_t *, u_int16_t *); 224 static void ipintr(void); 225 226 /* 227 * IP initialization: fill in IP protocol switch table. 228 * All protocols not implemented in kernel go to raw IP protocol handler. 229 */ 230 void 231 ip_init() 232 { 233 register struct protosw *pr; 234 register int i; 235 236 TAILQ_INIT(&in_ifaddrhead); 237 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 238 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 239 if (pr == 0) 240 panic("ip_init"); 241 for (i = 0; i < IPPROTO_MAX; i++) 242 ip_protox[i] = pr - inetsw; 243 for (pr = inetdomain.dom_protosw; 244 pr < inetdomain.dom_protoswNPROTOSW; pr++) 245 if (pr->pr_domain->dom_family == PF_INET && 246 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 247 ip_protox[pr->pr_protocol] = pr - inetsw; 248 249 for (i = 0; i < IPREASS_NHASH; i++) 250 TAILQ_INIT(&ipq[i]); 251 252 maxnipq = nmbclusters / 4; 253 ip_maxfragpackets = nmbclusters / 4; 254 255 #ifndef RANDOM_IP_ID 256 ip_id = time_second & 0xffff; 257 #endif 258 ipintrq.ifq_maxlen = ipqmaxlen; 259 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 260 ipintrq_present = 1; 261 262 register_netisr(NETISR_IP, ipintr); 263 } 264 265 /* 266 * XXX watch out this one. It is perhaps used as a cache for 267 * the most recently used route ? it is cleared in in_addroute() 268 * when a new route is successfully created. 269 */ 270 struct route ipforward_rt; 271 272 /* 273 * Ip input routine. Checksum and byte swap header. If fragmented 274 * try to reassemble. Process options. Pass to next level. 275 */ 276 void 277 ip_input(struct mbuf *m) 278 { 279 struct ip *ip; 280 struct ipq *fp; 281 struct in_ifaddr *ia = NULL; 282 struct ifaddr *ifa; 283 int i, hlen, checkif; 284 u_short sum; 285 struct in_addr pkt_dst; 286 u_int32_t divert_info = 0; /* packet divert/tee info */ 287 struct ip_fw_args args; 288 #ifdef PFIL_HOOKS 289 struct packet_filter_hook *pfh; 290 struct mbuf *m0; 291 int rv; 292 #endif /* PFIL_HOOKS */ 293 294 args.eh = NULL; 295 args.oif = NULL; 296 args.rule = NULL; 297 args.divert_rule = 0; /* divert cookie */ 298 args.next_hop = NULL; 299 300 /* Grab info from MT_TAG mbufs prepended to the chain. */ 301 for (; m && m->m_type == MT_TAG; m = m->m_next) { 302 switch(m->m_tag_id) { 303 default: 304 printf("ip_input: unrecognised MT_TAG tag %d\n", 305 m->m_tag_id); 306 break; 307 308 case PACKET_TAG_DUMMYNET: 309 args.rule = ((struct dn_pkt *)m)->rule; 310 break; 311 312 case PACKET_TAG_DIVERT: 313 args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff; 314 break; 315 316 case PACKET_TAG_IPFORWARD: 317 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data; 318 break; 319 } 320 } 321 322 KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0, 323 ("ip_input: no HDR")); 324 325 if (args.rule) { /* dummynet already filtered us */ 326 ip = mtod(m, struct ip *); 327 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 328 goto iphack ; 329 } 330 331 ipstat.ips_total++; 332 333 if (m->m_pkthdr.len < sizeof(struct ip)) 334 goto tooshort; 335 336 if (m->m_len < sizeof (struct ip) && 337 (m = m_pullup(m, sizeof (struct ip))) == 0) { 338 ipstat.ips_toosmall++; 339 return; 340 } 341 ip = mtod(m, struct ip *); 342 343 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 344 ipstat.ips_badvers++; 345 goto bad; 346 } 347 348 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 349 if (hlen < sizeof(struct ip)) { /* minimum header length */ 350 ipstat.ips_badhlen++; 351 goto bad; 352 } 353 if (hlen > m->m_len) { 354 if ((m = m_pullup(m, hlen)) == 0) { 355 ipstat.ips_badhlen++; 356 return; 357 } 358 ip = mtod(m, struct ip *); 359 } 360 361 /* 127/8 must not appear on wire - RFC1122 */ 362 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 363 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 364 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 365 ipstat.ips_badaddr++; 366 goto bad; 367 } 368 } 369 370 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 371 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 372 } else { 373 if (hlen == sizeof(struct ip)) { 374 sum = in_cksum_hdr(ip); 375 } else { 376 sum = in_cksum(m, hlen); 377 } 378 } 379 if (sum) { 380 ipstat.ips_badsum++; 381 goto bad; 382 } 383 384 /* 385 * Convert fields to host representation. 386 */ 387 ip->ip_len = ntohs(ip->ip_len); 388 if (ip->ip_len < hlen) { 389 ipstat.ips_badlen++; 390 goto bad; 391 } 392 ip->ip_off = ntohs(ip->ip_off); 393 394 /* 395 * Check that the amount of data in the buffers 396 * is as at least much as the IP header would have us expect. 397 * Trim mbufs if longer than we expect. 398 * Drop packet if shorter than we expect. 399 */ 400 if (m->m_pkthdr.len < ip->ip_len) { 401 tooshort: 402 ipstat.ips_tooshort++; 403 goto bad; 404 } 405 if (m->m_pkthdr.len > ip->ip_len) { 406 if (m->m_len == m->m_pkthdr.len) { 407 m->m_len = ip->ip_len; 408 m->m_pkthdr.len = ip->ip_len; 409 } else 410 m_adj(m, ip->ip_len - m->m_pkthdr.len); 411 } 412 413 #ifdef IPSEC 414 if (ipsec_gethist(m, NULL)) 415 goto pass; 416 #endif 417 418 /* 419 * IpHack's section. 420 * Right now when no processing on packet has done 421 * and it is still fresh out of network we do our black 422 * deals with it. 423 * - Firewall: deny/allow/divert 424 * - Xlate: translate packet's addr/port (NAT). 425 * - Pipe: pass pkt through dummynet. 426 * - Wrap: fake packet's addr/port <unimpl.> 427 * - Encapsulate: put it in another IP and send out. <unimp.> 428 */ 429 430 iphack: 431 432 #ifdef PFIL_HOOKS 433 /* 434 * Run through list of hooks for input packets. If there are any 435 * filters which require that additional packets in the flow are 436 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 437 * Note that filters must _never_ set this flag, as another filter 438 * in the list may have previously cleared it. 439 */ 440 m0 = m; 441 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 442 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 443 if (pfh->pfil_func) { 444 rv = pfh->pfil_func(ip, hlen, 445 m->m_pkthdr.rcvif, 0, &m0); 446 if (rv) 447 return; 448 m = m0; 449 if (m == NULL) 450 return; 451 ip = mtod(m, struct ip *); 452 } 453 #endif /* PFIL_HOOKS */ 454 455 if (fw_enable && IPFW_LOADED) { 456 /* 457 * If we've been forwarded from the output side, then 458 * skip the firewall a second time 459 */ 460 if (args.next_hop) 461 goto ours; 462 463 args.m = m; 464 i = ip_fw_chk_ptr(&args); 465 m = args.m; 466 467 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ 468 if (m) 469 m_freem(m); 470 return; 471 } 472 ip = mtod(m, struct ip *); /* just in case m changed */ 473 if (i == 0 && args.next_hop == NULL) /* common case */ 474 goto pass; 475 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 476 /* Send packet to the appropriate pipe */ 477 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args); 478 return; 479 } 480 #ifdef IPDIVERT 481 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 482 /* Divert or tee packet */ 483 divert_info = i; 484 goto ours; 485 } 486 #endif 487 if (i == 0 && args.next_hop != NULL) 488 goto pass; 489 /* 490 * if we get here, the packet must be dropped 491 */ 492 m_freem(m); 493 return; 494 } 495 pass: 496 497 /* 498 * Process options and, if not destined for us, 499 * ship it on. ip_dooptions returns 1 when an 500 * error was detected (causing an icmp message 501 * to be sent and the original packet to be freed). 502 */ 503 ip_nhops = 0; /* for source routed packets */ 504 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop)) 505 return; 506 507 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 508 * matter if it is destined to another node, or whether it is 509 * a multicast one, RSVP wants it! and prevents it from being forwarded 510 * anywhere else. Also checks if the rsvp daemon is running before 511 * grabbing the packet. 512 */ 513 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 514 goto ours; 515 516 /* 517 * Check our list of addresses, to see if the packet is for us. 518 * If we don't have any addresses, assume any unicast packet 519 * we receive might be for us (and let the upper layers deal 520 * with it). 521 */ 522 if (TAILQ_EMPTY(&in_ifaddrhead) && 523 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 524 goto ours; 525 526 /* 527 * Cache the destination address of the packet; this may be 528 * changed by use of 'ipfw fwd'. 529 */ 530 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst; 531 532 /* 533 * Enable a consistency check between the destination address 534 * and the arrival interface for a unicast packet (the RFC 1122 535 * strong ES model) if IP forwarding is disabled and the packet 536 * is not locally generated and the packet is not subject to 537 * 'ipfw fwd'. 538 * 539 * XXX - Checking also should be disabled if the destination 540 * address is ipnat'ed to a different interface. 541 * 542 * XXX - Checking is incompatible with IP aliases added 543 * to the loopback interface instead of the interface where 544 * the packets are received. 545 */ 546 checkif = ip_checkinterface && (ipforwarding == 0) && 547 m->m_pkthdr.rcvif != NULL && 548 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 549 (args.next_hop == NULL); 550 551 /* 552 * Check for exact addresses in the hash bucket. 553 */ 554 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 555 /* 556 * If the address matches, verify that the packet 557 * arrived via the correct interface if checking is 558 * enabled. 559 */ 560 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 561 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 562 goto ours; 563 } 564 /* 565 * Check for broadcast addresses. 566 * 567 * Only accept broadcast packets that arrive via the matching 568 * interface. Reception of forwarded directed broadcasts would 569 * be handled via ip_forward() and ether_output() with the loopback 570 * into the stack for SIMPLEX interfaces handled by ether_output(). 571 */ 572 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 573 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 574 if (ifa->ifa_addr->sa_family != AF_INET) 575 continue; 576 ia = ifatoia(ifa); 577 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 578 pkt_dst.s_addr) 579 goto ours; 580 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 581 goto ours; 582 #ifdef BOOTP_COMPAT 583 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 584 goto ours; 585 #endif 586 } 587 } 588 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 589 struct in_multi *inm; 590 if (ip_mrouter) { 591 /* 592 * If we are acting as a multicast router, all 593 * incoming multicast packets are passed to the 594 * kernel-level multicast forwarding function. 595 * The packet is returned (relatively) intact; if 596 * ip_mforward() returns a non-zero value, the packet 597 * must be discarded, else it may be accepted below. 598 */ 599 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 600 ipstat.ips_cantforward++; 601 m_freem(m); 602 return; 603 } 604 605 /* 606 * The process-level routing daemon needs to receive 607 * all multicast IGMP packets, whether or not this 608 * host belongs to their destination groups. 609 */ 610 if (ip->ip_p == IPPROTO_IGMP) 611 goto ours; 612 ipstat.ips_forward++; 613 } 614 /* 615 * See if we belong to the destination multicast group on the 616 * arrival interface. 617 */ 618 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 619 if (inm == NULL) { 620 ipstat.ips_notmember++; 621 m_freem(m); 622 return; 623 } 624 goto ours; 625 } 626 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 627 goto ours; 628 if (ip->ip_dst.s_addr == INADDR_ANY) 629 goto ours; 630 631 /* 632 * FAITH(Firewall Aided Internet Translator) 633 */ 634 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 635 if (ip_keepfaith) { 636 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 637 goto ours; 638 } 639 m_freem(m); 640 return; 641 } 642 643 /* 644 * Not for us; forward if possible and desirable. 645 */ 646 if (ipforwarding == 0) { 647 ipstat.ips_cantforward++; 648 m_freem(m); 649 } else { 650 #ifdef IPSEC 651 /* 652 * Enforce inbound IPsec SPD. 653 */ 654 if (ipsec4_in_reject(m, NULL)) { 655 ipsecstat.in_polvio++; 656 goto bad; 657 } 658 #endif /* IPSEC */ 659 ip_forward(m, 0, args.next_hop); 660 } 661 return; 662 663 ours: 664 #ifdef IPSTEALTH 665 /* 666 * IPSTEALTH: Process non-routing options only 667 * if the packet is destined for us. 668 */ 669 if (ipstealth && hlen > sizeof (struct ip) && 670 ip_dooptions(m, 1, args.next_hop)) 671 return; 672 #endif /* IPSTEALTH */ 673 674 /* Count the packet in the ip address stats */ 675 if (ia != NULL) { 676 ia->ia_ifa.if_ipackets++; 677 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 678 } 679 680 /* 681 * If offset or IP_MF are set, must reassemble. 682 * Otherwise, nothing need be done. 683 * (We could look in the reassembly queue to see 684 * if the packet was previously fragmented, 685 * but it's not worth the time; just let them time out.) 686 */ 687 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 688 689 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 690 /* 691 * Look for queue of fragments 692 * of this datagram. 693 */ 694 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 695 if (ip->ip_id == fp->ipq_id && 696 ip->ip_src.s_addr == fp->ipq_src.s_addr && 697 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 698 #ifdef MAC 699 mac_fragment_match(m, fp) && 700 #endif 701 ip->ip_p == fp->ipq_p) 702 goto found; 703 704 fp = 0; 705 706 /* check if there's a place for the new queue */ 707 if (nipq > maxnipq) { 708 /* 709 * drop something from the tail of the current queue 710 * before proceeding further 711 */ 712 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 713 if (q == NULL) { /* gak */ 714 for (i = 0; i < IPREASS_NHASH; i++) { 715 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 716 if (r) { 717 ip_freef(&ipq[i], r); 718 break; 719 } 720 } 721 } else 722 ip_freef(&ipq[sum], q); 723 } 724 found: 725 /* 726 * Adjust ip_len to not reflect header, 727 * convert offset of this to bytes. 728 */ 729 ip->ip_len -= hlen; 730 if (ip->ip_off & IP_MF) { 731 /* 732 * Make sure that fragments have a data length 733 * that's a non-zero multiple of 8 bytes. 734 */ 735 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 736 ipstat.ips_toosmall++; /* XXX */ 737 goto bad; 738 } 739 m->m_flags |= M_FRAG; 740 } 741 ip->ip_off <<= 3; 742 743 /* 744 * Attempt reassembly; if it succeeds, proceed. 745 * ip_reass() will return a different mbuf, and update 746 * the divert info in divert_info and args.divert_rule. 747 */ 748 ipstat.ips_fragments++; 749 m->m_pkthdr.header = ip; 750 m = ip_reass(m, 751 &ipq[sum], fp, &divert_info, &args.divert_rule); 752 if (m == 0) 753 return; 754 ipstat.ips_reassembled++; 755 ip = mtod(m, struct ip *); 756 /* Get the header length of the reassembled packet */ 757 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 758 #ifdef IPDIVERT 759 /* Restore original checksum before diverting packet */ 760 if (divert_info != 0) { 761 ip->ip_len += hlen; 762 ip->ip_len = htons(ip->ip_len); 763 ip->ip_off = htons(ip->ip_off); 764 ip->ip_sum = 0; 765 if (hlen == sizeof(struct ip)) 766 ip->ip_sum = in_cksum_hdr(ip); 767 else 768 ip->ip_sum = in_cksum(m, hlen); 769 ip->ip_off = ntohs(ip->ip_off); 770 ip->ip_len = ntohs(ip->ip_len); 771 ip->ip_len -= hlen; 772 } 773 #endif 774 } else 775 ip->ip_len -= hlen; 776 777 #ifdef IPDIVERT 778 /* 779 * Divert or tee packet to the divert protocol if required. 780 */ 781 if (divert_info != 0) { 782 struct mbuf *clone = NULL; 783 784 /* Clone packet if we're doing a 'tee' */ 785 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 786 clone = m_dup(m, M_DONTWAIT); 787 788 /* Restore packet header fields to original values */ 789 ip->ip_len += hlen; 790 ip->ip_len = htons(ip->ip_len); 791 ip->ip_off = htons(ip->ip_off); 792 793 /* Deliver packet to divert input routine */ 794 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule); 795 ipstat.ips_delivered++; 796 797 /* If 'tee', continue with original packet */ 798 if (clone == NULL) 799 return; 800 m = clone; 801 ip = mtod(m, struct ip *); 802 ip->ip_len += hlen; 803 /* 804 * Jump backwards to complete processing of the 805 * packet. But first clear divert_info to avoid 806 * entering this block again. 807 * We do not need to clear args.divert_rule 808 * or args.next_hop as they will not be used. 809 */ 810 divert_info = 0; 811 goto pass; 812 } 813 #endif 814 815 #ifdef IPSEC 816 /* 817 * enforce IPsec policy checking if we are seeing last header. 818 * note that we do not visit this with protocols with pcb layer 819 * code - like udp/tcp/raw ip. 820 */ 821 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 822 ipsec4_in_reject(m, NULL)) { 823 ipsecstat.in_polvio++; 824 goto bad; 825 } 826 #endif 827 828 /* 829 * Switch out to protocol's input routine. 830 */ 831 ipstat.ips_delivered++; 832 if (args.next_hop && ip->ip_p == IPPROTO_TCP) { 833 /* TCP needs IPFORWARD info if available */ 834 struct m_hdr tag; 835 836 tag.mh_type = MT_TAG; 837 tag.mh_flags = PACKET_TAG_IPFORWARD; 838 tag.mh_data = (caddr_t)args.next_hop; 839 tag.mh_next = m; 840 841 (*inetsw[ip_protox[ip->ip_p]].pr_input)( 842 (struct mbuf *)&tag, hlen); 843 } else 844 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 845 return; 846 bad: 847 m_freem(m); 848 } 849 850 /* 851 * IP software interrupt routine - to go away sometime soon 852 */ 853 static void 854 ipintr(void) 855 { 856 struct mbuf *m; 857 858 while (1) { 859 IF_DEQUEUE(&ipintrq, m); 860 if (m == 0) 861 return; 862 ip_input(m); 863 } 864 } 865 866 /* 867 * Take incoming datagram fragment and try to reassemble it into 868 * whole datagram. If a chain for reassembly of this datagram already 869 * exists, then it is given as fp; otherwise have to make a chain. 870 * 871 * When IPDIVERT enabled, keep additional state with each packet that 872 * tells us if we need to divert or tee the packet we're building. 873 * In particular, *divinfo includes the port and TEE flag, 874 * *divert_rule is the number of the matching rule. 875 */ 876 877 static struct mbuf * 878 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp, 879 u_int32_t *divinfo, u_int16_t *divert_rule) 880 { 881 struct ip *ip = mtod(m, struct ip *); 882 register struct mbuf *p, *q, *nq; 883 struct mbuf *t; 884 int hlen = IP_VHL_HL(ip->ip_vhl) << 2; 885 int i, next; 886 887 /* 888 * Presence of header sizes in mbufs 889 * would confuse code below. 890 */ 891 m->m_data += hlen; 892 m->m_len -= hlen; 893 894 /* 895 * If first fragment to arrive, create a reassembly queue. 896 */ 897 if (fp == 0) { 898 /* 899 * Enforce upper bound on number of fragmented packets 900 * for which we attempt reassembly; 901 * If maxfrag is 0, never accept fragments. 902 * If maxfrag is -1, accept all fragments without limitation. 903 */ 904 if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets)) 905 goto dropfrag; 906 ip_nfragpackets++; 907 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 908 goto dropfrag; 909 fp = mtod(t, struct ipq *); 910 #ifdef MAC 911 mac_init_ipq(fp); 912 mac_create_ipq(m, fp); 913 #endif 914 TAILQ_INSERT_HEAD(head, fp, ipq_list); 915 nipq++; 916 fp->ipq_ttl = IPFRAGTTL; 917 fp->ipq_p = ip->ip_p; 918 fp->ipq_id = ip->ip_id; 919 fp->ipq_src = ip->ip_src; 920 fp->ipq_dst = ip->ip_dst; 921 fp->ipq_frags = m; 922 m->m_nextpkt = NULL; 923 #ifdef IPDIVERT 924 fp->ipq_div_info = 0; 925 fp->ipq_div_cookie = 0; 926 #endif 927 goto inserted; 928 } else { 929 #ifdef MAC 930 mac_update_ipq(m, fp); 931 #endif 932 } 933 934 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 935 936 /* 937 * Find a segment which begins after this one does. 938 */ 939 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 940 if (GETIP(q)->ip_off > ip->ip_off) 941 break; 942 943 /* 944 * If there is a preceding segment, it may provide some of 945 * our data already. If so, drop the data from the incoming 946 * segment. If it provides all of our data, drop us, otherwise 947 * stick new segment in the proper place. 948 * 949 * If some of the data is dropped from the the preceding 950 * segment, then it's checksum is invalidated. 951 */ 952 if (p) { 953 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 954 if (i > 0) { 955 if (i >= ip->ip_len) 956 goto dropfrag; 957 m_adj(m, i); 958 m->m_pkthdr.csum_flags = 0; 959 ip->ip_off += i; 960 ip->ip_len -= i; 961 } 962 m->m_nextpkt = p->m_nextpkt; 963 p->m_nextpkt = m; 964 } else { 965 m->m_nextpkt = fp->ipq_frags; 966 fp->ipq_frags = m; 967 } 968 969 /* 970 * While we overlap succeeding segments trim them or, 971 * if they are completely covered, dequeue them. 972 */ 973 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 974 q = nq) { 975 i = (ip->ip_off + ip->ip_len) - 976 GETIP(q)->ip_off; 977 if (i < GETIP(q)->ip_len) { 978 GETIP(q)->ip_len -= i; 979 GETIP(q)->ip_off += i; 980 m_adj(q, i); 981 q->m_pkthdr.csum_flags = 0; 982 break; 983 } 984 nq = q->m_nextpkt; 985 m->m_nextpkt = nq; 986 m_freem(q); 987 } 988 989 inserted: 990 991 #ifdef IPDIVERT 992 /* 993 * Transfer firewall instructions to the fragment structure. 994 * Only trust info in the fragment at offset 0. 995 */ 996 if (ip->ip_off == 0) { 997 fp->ipq_div_info = *divinfo; 998 fp->ipq_div_cookie = *divert_rule; 999 } 1000 *divinfo = 0; 1001 *divert_rule = 0; 1002 #endif 1003 1004 /* 1005 * Check for complete reassembly. 1006 */ 1007 next = 0; 1008 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 1009 if (GETIP(q)->ip_off != next) 1010 return (0); 1011 next += GETIP(q)->ip_len; 1012 } 1013 /* Make sure the last packet didn't have the IP_MF flag */ 1014 if (p->m_flags & M_FRAG) 1015 return (0); 1016 1017 /* 1018 * Reassembly is complete. Make sure the packet is a sane size. 1019 */ 1020 q = fp->ipq_frags; 1021 ip = GETIP(q); 1022 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { 1023 ipstat.ips_toolong++; 1024 ip_freef(head, fp); 1025 return (0); 1026 } 1027 1028 /* 1029 * Concatenate fragments. 1030 */ 1031 m = q; 1032 t = m->m_next; 1033 m->m_next = 0; 1034 m_cat(m, t); 1035 nq = q->m_nextpkt; 1036 q->m_nextpkt = 0; 1037 for (q = nq; q != NULL; q = nq) { 1038 nq = q->m_nextpkt; 1039 q->m_nextpkt = NULL; 1040 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1041 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1042 m_cat(m, q); 1043 } 1044 #ifdef MAC 1045 mac_create_datagram_from_ipq(fp, m); 1046 mac_destroy_ipq(fp); 1047 #endif 1048 1049 #ifdef IPDIVERT 1050 /* 1051 * Extract firewall instructions from the fragment structure. 1052 */ 1053 *divinfo = fp->ipq_div_info; 1054 *divert_rule = fp->ipq_div_cookie; 1055 #endif 1056 1057 /* 1058 * Create header for new ip packet by 1059 * modifying header of first packet; 1060 * dequeue and discard fragment reassembly header. 1061 * Make header visible. 1062 */ 1063 ip->ip_len = next; 1064 ip->ip_src = fp->ipq_src; 1065 ip->ip_dst = fp->ipq_dst; 1066 TAILQ_REMOVE(head, fp, ipq_list); 1067 nipq--; 1068 (void) m_free(dtom(fp)); 1069 ip_nfragpackets--; 1070 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); 1071 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); 1072 /* some debugging cruft by sklower, below, will go away soon */ 1073 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 1074 register int plen = 0; 1075 for (t = m; t; t = t->m_next) 1076 plen += t->m_len; 1077 m->m_pkthdr.len = plen; 1078 } 1079 return (m); 1080 1081 dropfrag: 1082 #ifdef IPDIVERT 1083 *divinfo = 0; 1084 *divert_rule = 0; 1085 #endif 1086 ipstat.ips_fragdropped++; 1087 m_freem(m); 1088 return (0); 1089 1090 #undef GETIP 1091 } 1092 1093 /* 1094 * Free a fragment reassembly header and all 1095 * associated datagrams. 1096 */ 1097 static void 1098 ip_freef(fhp, fp) 1099 struct ipqhead *fhp; 1100 struct ipq *fp; 1101 { 1102 register struct mbuf *q; 1103 1104 while (fp->ipq_frags) { 1105 q = fp->ipq_frags; 1106 fp->ipq_frags = q->m_nextpkt; 1107 m_freem(q); 1108 } 1109 TAILQ_REMOVE(fhp, fp, ipq_list); 1110 (void) m_free(dtom(fp)); 1111 ip_nfragpackets--; 1112 nipq--; 1113 } 1114 1115 /* 1116 * IP timer processing; 1117 * if a timer expires on a reassembly 1118 * queue, discard it. 1119 */ 1120 void 1121 ip_slowtimo() 1122 { 1123 register struct ipq *fp; 1124 int s = splnet(); 1125 int i; 1126 1127 for (i = 0; i < IPREASS_NHASH; i++) { 1128 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1129 struct ipq *fpp; 1130 1131 fpp = fp; 1132 fp = TAILQ_NEXT(fp, ipq_list); 1133 if(--fpp->ipq_ttl == 0) { 1134 ipstat.ips_fragtimeout++; 1135 ip_freef(&ipq[i], fpp); 1136 } 1137 } 1138 } 1139 /* 1140 * If we are over the maximum number of fragments 1141 * (due to the limit being lowered), drain off 1142 * enough to get down to the new limit. 1143 */ 1144 for (i = 0; i < IPREASS_NHASH; i++) { 1145 if (ip_maxfragpackets >= 0) { 1146 while (ip_nfragpackets > ip_maxfragpackets && 1147 !TAILQ_EMPTY(&ipq[i])) { 1148 ipstat.ips_fragdropped++; 1149 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1150 } 1151 } 1152 } 1153 ipflow_slowtimo(); 1154 splx(s); 1155 } 1156 1157 /* 1158 * Drain off all datagram fragments. 1159 */ 1160 void 1161 ip_drain() 1162 { 1163 int i; 1164 1165 for (i = 0; i < IPREASS_NHASH; i++) { 1166 while(!TAILQ_EMPTY(&ipq[i])) { 1167 ipstat.ips_fragdropped++; 1168 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1169 } 1170 } 1171 in_rtqdrain(); 1172 } 1173 1174 /* 1175 * Do option processing on a datagram, 1176 * possibly discarding it if bad options are encountered, 1177 * or forwarding it if source-routed. 1178 * The pass argument is used when operating in the IPSTEALTH 1179 * mode to tell what options to process: 1180 * [LS]SRR (pass 0) or the others (pass 1). 1181 * The reason for as many as two passes is that when doing IPSTEALTH, 1182 * non-routing options should be processed only if the packet is for us. 1183 * Returns 1 if packet has been forwarded/freed, 1184 * 0 if the packet should be processed further. 1185 */ 1186 static int 1187 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop) 1188 { 1189 struct ip *ip = mtod(m, struct ip *); 1190 u_char *cp; 1191 struct in_ifaddr *ia; 1192 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1193 struct in_addr *sin, dst; 1194 n_time ntime; 1195 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 1196 1197 dst = ip->ip_dst; 1198 cp = (u_char *)(ip + 1); 1199 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1200 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1201 opt = cp[IPOPT_OPTVAL]; 1202 if (opt == IPOPT_EOL) 1203 break; 1204 if (opt == IPOPT_NOP) 1205 optlen = 1; 1206 else { 1207 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1208 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1209 goto bad; 1210 } 1211 optlen = cp[IPOPT_OLEN]; 1212 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1213 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1214 goto bad; 1215 } 1216 } 1217 switch (opt) { 1218 1219 default: 1220 break; 1221 1222 /* 1223 * Source routing with record. 1224 * Find interface with current destination address. 1225 * If none on this machine then drop if strictly routed, 1226 * or do nothing if loosely routed. 1227 * Record interface address and bring up next address 1228 * component. If strictly routed make sure next 1229 * address is on directly accessible net. 1230 */ 1231 case IPOPT_LSRR: 1232 case IPOPT_SSRR: 1233 #ifdef IPSTEALTH 1234 if (ipstealth && pass > 0) 1235 break; 1236 #endif 1237 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1238 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1239 goto bad; 1240 } 1241 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1242 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1243 goto bad; 1244 } 1245 ipaddr.sin_addr = ip->ip_dst; 1246 ia = (struct in_ifaddr *) 1247 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1248 if (ia == 0) { 1249 if (opt == IPOPT_SSRR) { 1250 type = ICMP_UNREACH; 1251 code = ICMP_UNREACH_SRCFAIL; 1252 goto bad; 1253 } 1254 if (!ip_dosourceroute) 1255 goto nosourcerouting; 1256 /* 1257 * Loose routing, and not at next destination 1258 * yet; nothing to do except forward. 1259 */ 1260 break; 1261 } 1262 off--; /* 0 origin */ 1263 if (off > optlen - (int)sizeof(struct in_addr)) { 1264 /* 1265 * End of source route. Should be for us. 1266 */ 1267 if (!ip_acceptsourceroute) 1268 goto nosourcerouting; 1269 save_rte(cp, ip->ip_src); 1270 break; 1271 } 1272 #ifdef IPSTEALTH 1273 if (ipstealth) 1274 goto dropit; 1275 #endif 1276 if (!ip_dosourceroute) { 1277 if (ipforwarding) { 1278 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1279 /* 1280 * Acting as a router, so generate ICMP 1281 */ 1282 nosourcerouting: 1283 strcpy(buf, inet_ntoa(ip->ip_dst)); 1284 log(LOG_WARNING, 1285 "attempted source route from %s to %s\n", 1286 inet_ntoa(ip->ip_src), buf); 1287 type = ICMP_UNREACH; 1288 code = ICMP_UNREACH_SRCFAIL; 1289 goto bad; 1290 } else { 1291 /* 1292 * Not acting as a router, so silently drop. 1293 */ 1294 #ifdef IPSTEALTH 1295 dropit: 1296 #endif 1297 ipstat.ips_cantforward++; 1298 m_freem(m); 1299 return (1); 1300 } 1301 } 1302 1303 /* 1304 * locate outgoing interface 1305 */ 1306 (void)memcpy(&ipaddr.sin_addr, cp + off, 1307 sizeof(ipaddr.sin_addr)); 1308 1309 if (opt == IPOPT_SSRR) { 1310 #define INA struct in_ifaddr * 1311 #define SA struct sockaddr * 1312 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1313 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1314 } else 1315 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1316 if (ia == 0) { 1317 type = ICMP_UNREACH; 1318 code = ICMP_UNREACH_SRCFAIL; 1319 goto bad; 1320 } 1321 ip->ip_dst = ipaddr.sin_addr; 1322 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1323 sizeof(struct in_addr)); 1324 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1325 /* 1326 * Let ip_intr's mcast routing check handle mcast pkts 1327 */ 1328 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1329 break; 1330 1331 case IPOPT_RR: 1332 #ifdef IPSTEALTH 1333 if (ipstealth && pass == 0) 1334 break; 1335 #endif 1336 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1337 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1338 goto bad; 1339 } 1340 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1341 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1342 goto bad; 1343 } 1344 /* 1345 * If no space remains, ignore. 1346 */ 1347 off--; /* 0 origin */ 1348 if (off > optlen - (int)sizeof(struct in_addr)) 1349 break; 1350 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1351 sizeof(ipaddr.sin_addr)); 1352 /* 1353 * locate outgoing interface; if we're the destination, 1354 * use the incoming interface (should be same). 1355 */ 1356 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1357 (ia = ip_rtaddr(ipaddr.sin_addr, 1358 &ipforward_rt)) == 0) { 1359 type = ICMP_UNREACH; 1360 code = ICMP_UNREACH_HOST; 1361 goto bad; 1362 } 1363 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1364 sizeof(struct in_addr)); 1365 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1366 break; 1367 1368 case IPOPT_TS: 1369 #ifdef IPSTEALTH 1370 if (ipstealth && pass == 0) 1371 break; 1372 #endif 1373 code = cp - (u_char *)ip; 1374 if (optlen < 4 || optlen > 40) { 1375 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1376 goto bad; 1377 } 1378 if ((off = cp[IPOPT_OFFSET]) < 5) { 1379 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1380 goto bad; 1381 } 1382 if (off > optlen - (int)sizeof(int32_t)) { 1383 cp[IPOPT_OFFSET + 1] += (1 << 4); 1384 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1385 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1386 goto bad; 1387 } 1388 break; 1389 } 1390 off--; /* 0 origin */ 1391 sin = (struct in_addr *)(cp + off); 1392 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1393 1394 case IPOPT_TS_TSONLY: 1395 break; 1396 1397 case IPOPT_TS_TSANDADDR: 1398 if (off + sizeof(n_time) + 1399 sizeof(struct in_addr) > optlen) { 1400 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1401 goto bad; 1402 } 1403 ipaddr.sin_addr = dst; 1404 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1405 m->m_pkthdr.rcvif); 1406 if (ia == 0) 1407 continue; 1408 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1409 sizeof(struct in_addr)); 1410 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1411 break; 1412 1413 case IPOPT_TS_PRESPEC: 1414 if (off + sizeof(n_time) + 1415 sizeof(struct in_addr) > optlen) { 1416 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1417 goto bad; 1418 } 1419 (void)memcpy(&ipaddr.sin_addr, sin, 1420 sizeof(struct in_addr)); 1421 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1422 continue; 1423 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1424 break; 1425 1426 default: 1427 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1428 goto bad; 1429 } 1430 ntime = iptime(); 1431 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1432 cp[IPOPT_OFFSET] += sizeof(n_time); 1433 } 1434 } 1435 if (forward && ipforwarding) { 1436 ip_forward(m, 1, next_hop); 1437 return (1); 1438 } 1439 return (0); 1440 bad: 1441 icmp_error(m, type, code, 0, 0); 1442 ipstat.ips_badoptions++; 1443 return (1); 1444 } 1445 1446 /* 1447 * Given address of next destination (final or next hop), 1448 * return internet address info of interface to be used to get there. 1449 */ 1450 struct in_ifaddr * 1451 ip_rtaddr(dst, rt) 1452 struct in_addr dst; 1453 struct route *rt; 1454 { 1455 register struct sockaddr_in *sin; 1456 1457 sin = (struct sockaddr_in *)&rt->ro_dst; 1458 1459 if (rt->ro_rt == 0 || 1460 !(rt->ro_rt->rt_flags & RTF_UP) || 1461 dst.s_addr != sin->sin_addr.s_addr) { 1462 if (rt->ro_rt) { 1463 RTFREE(rt->ro_rt); 1464 rt->ro_rt = 0; 1465 } 1466 sin->sin_family = AF_INET; 1467 sin->sin_len = sizeof(*sin); 1468 sin->sin_addr = dst; 1469 1470 rtalloc_ign(rt, RTF_PRCLONING); 1471 } 1472 if (rt->ro_rt == 0) 1473 return ((struct in_ifaddr *)0); 1474 return (ifatoia(rt->ro_rt->rt_ifa)); 1475 } 1476 1477 /* 1478 * Save incoming source route for use in replies, 1479 * to be picked up later by ip_srcroute if the receiver is interested. 1480 */ 1481 void 1482 save_rte(option, dst) 1483 u_char *option; 1484 struct in_addr dst; 1485 { 1486 unsigned olen; 1487 1488 olen = option[IPOPT_OLEN]; 1489 #ifdef DIAGNOSTIC 1490 if (ipprintfs) 1491 printf("save_rte: olen %d\n", olen); 1492 #endif 1493 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1494 return; 1495 bcopy(option, ip_srcrt.srcopt, olen); 1496 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1497 ip_srcrt.dst = dst; 1498 } 1499 1500 /* 1501 * Retrieve incoming source route for use in replies, 1502 * in the same form used by setsockopt. 1503 * The first hop is placed before the options, will be removed later. 1504 */ 1505 struct mbuf * 1506 ip_srcroute() 1507 { 1508 register struct in_addr *p, *q; 1509 register struct mbuf *m; 1510 1511 if (ip_nhops == 0) 1512 return ((struct mbuf *)0); 1513 m = m_get(M_DONTWAIT, MT_HEADER); 1514 if (m == 0) 1515 return ((struct mbuf *)0); 1516 1517 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1518 1519 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1520 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1521 OPTSIZ; 1522 #ifdef DIAGNOSTIC 1523 if (ipprintfs) 1524 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1525 #endif 1526 1527 /* 1528 * First save first hop for return route 1529 */ 1530 p = &ip_srcrt.route[ip_nhops - 1]; 1531 *(mtod(m, struct in_addr *)) = *p--; 1532 #ifdef DIAGNOSTIC 1533 if (ipprintfs) 1534 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1535 #endif 1536 1537 /* 1538 * Copy option fields and padding (nop) to mbuf. 1539 */ 1540 ip_srcrt.nop = IPOPT_NOP; 1541 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1542 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1543 &ip_srcrt.nop, OPTSIZ); 1544 q = (struct in_addr *)(mtod(m, caddr_t) + 1545 sizeof(struct in_addr) + OPTSIZ); 1546 #undef OPTSIZ 1547 /* 1548 * Record return path as an IP source route, 1549 * reversing the path (pointers are now aligned). 1550 */ 1551 while (p >= ip_srcrt.route) { 1552 #ifdef DIAGNOSTIC 1553 if (ipprintfs) 1554 printf(" %lx", (u_long)ntohl(q->s_addr)); 1555 #endif 1556 *q++ = *p--; 1557 } 1558 /* 1559 * Last hop goes to final destination. 1560 */ 1561 *q = ip_srcrt.dst; 1562 #ifdef DIAGNOSTIC 1563 if (ipprintfs) 1564 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1565 #endif 1566 return (m); 1567 } 1568 1569 /* 1570 * Strip out IP options, at higher 1571 * level protocol in the kernel. 1572 * Second argument is buffer to which options 1573 * will be moved, and return value is their length. 1574 * XXX should be deleted; last arg currently ignored. 1575 */ 1576 void 1577 ip_stripoptions(m, mopt) 1578 register struct mbuf *m; 1579 struct mbuf *mopt; 1580 { 1581 register int i; 1582 struct ip *ip = mtod(m, struct ip *); 1583 register caddr_t opts; 1584 int olen; 1585 1586 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1587 opts = (caddr_t)(ip + 1); 1588 i = m->m_len - (sizeof (struct ip) + olen); 1589 bcopy(opts + olen, opts, (unsigned)i); 1590 m->m_len -= olen; 1591 if (m->m_flags & M_PKTHDR) 1592 m->m_pkthdr.len -= olen; 1593 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1594 } 1595 1596 u_char inetctlerrmap[PRC_NCMDS] = { 1597 0, 0, 0, 0, 1598 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1599 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1600 EMSGSIZE, EHOSTUNREACH, 0, 0, 1601 0, 0, 0, 0, 1602 ENOPROTOOPT, ECONNREFUSED 1603 }; 1604 1605 /* 1606 * Forward a packet. If some error occurs return the sender 1607 * an icmp packet. Note we can't always generate a meaningful 1608 * icmp message because icmp doesn't have a large enough repertoire 1609 * of codes and types. 1610 * 1611 * If not forwarding, just drop the packet. This could be confusing 1612 * if ipforwarding was zero but some routing protocol was advancing 1613 * us as a gateway to somewhere. However, we must let the routing 1614 * protocol deal with that. 1615 * 1616 * The srcrt parameter indicates whether the packet is being forwarded 1617 * via a source route. 1618 */ 1619 static void 1620 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop) 1621 { 1622 struct ip *ip = mtod(m, struct ip *); 1623 struct rtentry *rt; 1624 int error, type = 0, code = 0; 1625 struct mbuf *mcopy; 1626 n_long dest; 1627 struct in_addr pkt_dst; 1628 struct ifnet *destifp; 1629 #ifdef IPSEC 1630 struct ifnet dummyifp; 1631 #endif 1632 1633 dest = 0; 1634 /* 1635 * Cache the destination address of the packet; this may be 1636 * changed by use of 'ipfw fwd'. 1637 */ 1638 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst; 1639 1640 #ifdef DIAGNOSTIC 1641 if (ipprintfs) 1642 printf("forward: src %lx dst %lx ttl %x\n", 1643 (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, 1644 ip->ip_ttl); 1645 #endif 1646 1647 1648 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { 1649 ipstat.ips_cantforward++; 1650 m_freem(m); 1651 return; 1652 } 1653 #ifdef IPSTEALTH 1654 if (!ipstealth) { 1655 #endif 1656 if (ip->ip_ttl <= IPTTLDEC) { 1657 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1658 dest, 0); 1659 return; 1660 } 1661 #ifdef IPSTEALTH 1662 } 1663 #endif 1664 1665 if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) { 1666 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1667 return; 1668 } else 1669 rt = ipforward_rt.ro_rt; 1670 1671 /* 1672 * Save the IP header and at most 8 bytes of the payload, 1673 * in case we need to generate an ICMP message to the src. 1674 * 1675 * XXX this can be optimized a lot by saving the data in a local 1676 * buffer on the stack (72 bytes at most), and only allocating the 1677 * mbuf if really necessary. The vast majority of the packets 1678 * are forwarded without having to send an ICMP back (either 1679 * because unnecessary, or because rate limited), so we are 1680 * really we are wasting a lot of work here. 1681 * 1682 * We don't use m_copy() because it might return a reference 1683 * to a shared cluster. Both this function and ip_output() 1684 * assume exclusive access to the IP header in `m', so any 1685 * data in a cluster may change before we reach icmp_error(). 1686 */ 1687 MGET(mcopy, M_DONTWAIT, m->m_type); 1688 if (mcopy != NULL) { 1689 M_COPY_PKTHDR(mcopy, m); 1690 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, 1691 (int)ip->ip_len); 1692 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1693 #ifdef MAC 1694 /* 1695 * XXXMAC: This will eventually become an explicit 1696 * labeling point. 1697 */ 1698 mac_create_mbuf_from_mbuf(m, mcopy); 1699 #endif 1700 } 1701 1702 #ifdef IPSTEALTH 1703 if (!ipstealth) { 1704 #endif 1705 ip->ip_ttl -= IPTTLDEC; 1706 #ifdef IPSTEALTH 1707 } 1708 #endif 1709 1710 /* 1711 * If forwarding packet using same interface that it came in on, 1712 * perhaps should send a redirect to sender to shortcut a hop. 1713 * Only send redirect if source is sending directly to us, 1714 * and if packet was not source routed (or has any options). 1715 * Also, don't send redirect if forwarding using a default route 1716 * or a route modified by a redirect. 1717 */ 1718 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1719 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1720 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1721 ipsendredirects && !srcrt && !next_hop) { 1722 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1723 u_long src = ntohl(ip->ip_src.s_addr); 1724 1725 if (RTA(rt) && 1726 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1727 if (rt->rt_flags & RTF_GATEWAY) 1728 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1729 else 1730 dest = pkt_dst.s_addr; 1731 /* Router requirements says to only send host redirects */ 1732 type = ICMP_REDIRECT; 1733 code = ICMP_REDIRECT_HOST; 1734 #ifdef DIAGNOSTIC 1735 if (ipprintfs) 1736 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1737 #endif 1738 } 1739 } 1740 1741 { 1742 struct m_hdr tag; 1743 1744 if (next_hop) { 1745 /* Pass IPFORWARD info if available */ 1746 1747 tag.mh_type = MT_TAG; 1748 tag.mh_flags = PACKET_TAG_IPFORWARD; 1749 tag.mh_data = (caddr_t)next_hop; 1750 tag.mh_next = m; 1751 m = (struct mbuf *)&tag; 1752 } 1753 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1754 IP_FORWARDING, 0); 1755 } 1756 if (error) 1757 ipstat.ips_cantforward++; 1758 else { 1759 ipstat.ips_forward++; 1760 if (type) 1761 ipstat.ips_redirectsent++; 1762 else { 1763 if (mcopy) { 1764 ipflow_create(&ipforward_rt, mcopy); 1765 m_freem(mcopy); 1766 } 1767 return; 1768 } 1769 } 1770 if (mcopy == NULL) 1771 return; 1772 destifp = NULL; 1773 1774 switch (error) { 1775 1776 case 0: /* forwarded, but need redirect */ 1777 /* type, code set above */ 1778 break; 1779 1780 case ENETUNREACH: /* shouldn't happen, checked above */ 1781 case EHOSTUNREACH: 1782 case ENETDOWN: 1783 case EHOSTDOWN: 1784 default: 1785 type = ICMP_UNREACH; 1786 code = ICMP_UNREACH_HOST; 1787 break; 1788 1789 case EMSGSIZE: 1790 type = ICMP_UNREACH; 1791 code = ICMP_UNREACH_NEEDFRAG; 1792 #ifndef IPSEC 1793 if (ipforward_rt.ro_rt) 1794 destifp = ipforward_rt.ro_rt->rt_ifp; 1795 #else 1796 /* 1797 * If the packet is routed over IPsec tunnel, tell the 1798 * originator the tunnel MTU. 1799 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1800 * XXX quickhack!!! 1801 */ 1802 if (ipforward_rt.ro_rt) { 1803 struct secpolicy *sp = NULL; 1804 int ipsecerror; 1805 int ipsechdr; 1806 struct route *ro; 1807 1808 sp = ipsec4_getpolicybyaddr(mcopy, 1809 IPSEC_DIR_OUTBOUND, 1810 IP_FORWARDING, 1811 &ipsecerror); 1812 1813 if (sp == NULL) 1814 destifp = ipforward_rt.ro_rt->rt_ifp; 1815 else { 1816 /* count IPsec header size */ 1817 ipsechdr = ipsec4_hdrsiz(mcopy, 1818 IPSEC_DIR_OUTBOUND, 1819 NULL); 1820 1821 /* 1822 * find the correct route for outer IPv4 1823 * header, compute tunnel MTU. 1824 * 1825 * XXX BUG ALERT 1826 * The "dummyifp" code relies upon the fact 1827 * that icmp_error() touches only ifp->if_mtu. 1828 */ 1829 /*XXX*/ 1830 destifp = NULL; 1831 if (sp->req != NULL 1832 && sp->req->sav != NULL 1833 && sp->req->sav->sah != NULL) { 1834 ro = &sp->req->sav->sah->sa_route; 1835 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1836 dummyifp.if_mtu = 1837 ro->ro_rt->rt_ifp->if_mtu; 1838 dummyifp.if_mtu -= ipsechdr; 1839 destifp = &dummyifp; 1840 } 1841 } 1842 1843 key_freesp(sp); 1844 } 1845 } 1846 #endif /*IPSEC*/ 1847 ipstat.ips_cantfrag++; 1848 break; 1849 1850 case ENOBUFS: 1851 type = ICMP_SOURCEQUENCH; 1852 code = 0; 1853 break; 1854 1855 case EACCES: /* ipfw denied packet */ 1856 m_freem(mcopy); 1857 return; 1858 } 1859 icmp_error(mcopy, type, code, dest, destifp); 1860 } 1861 1862 void 1863 ip_savecontrol(inp, mp, ip, m) 1864 register struct inpcb *inp; 1865 register struct mbuf **mp; 1866 register struct ip *ip; 1867 register struct mbuf *m; 1868 { 1869 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1870 struct timeval tv; 1871 1872 microtime(&tv); 1873 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1874 SCM_TIMESTAMP, SOL_SOCKET); 1875 if (*mp) 1876 mp = &(*mp)->m_next; 1877 } 1878 if (inp->inp_flags & INP_RECVDSTADDR) { 1879 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1880 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1881 if (*mp) 1882 mp = &(*mp)->m_next; 1883 } 1884 #ifdef notyet 1885 /* XXX 1886 * Moving these out of udp_input() made them even more broken 1887 * than they already were. 1888 */ 1889 /* options were tossed already */ 1890 if (inp->inp_flags & INP_RECVOPTS) { 1891 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1892 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1893 if (*mp) 1894 mp = &(*mp)->m_next; 1895 } 1896 /* ip_srcroute doesn't do what we want here, need to fix */ 1897 if (inp->inp_flags & INP_RECVRETOPTS) { 1898 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1899 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1900 if (*mp) 1901 mp = &(*mp)->m_next; 1902 } 1903 #endif 1904 if (inp->inp_flags & INP_RECVIF) { 1905 struct ifnet *ifp; 1906 struct sdlbuf { 1907 struct sockaddr_dl sdl; 1908 u_char pad[32]; 1909 } sdlbuf; 1910 struct sockaddr_dl *sdp; 1911 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1912 1913 if (((ifp = m->m_pkthdr.rcvif)) 1914 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1915 sdp = (struct sockaddr_dl *) 1916 (ifaddr_byindex(ifp->if_index)->ifa_addr); 1917 /* 1918 * Change our mind and don't try copy. 1919 */ 1920 if ((sdp->sdl_family != AF_LINK) 1921 || (sdp->sdl_len > sizeof(sdlbuf))) { 1922 goto makedummy; 1923 } 1924 bcopy(sdp, sdl2, sdp->sdl_len); 1925 } else { 1926 makedummy: 1927 sdl2->sdl_len 1928 = offsetof(struct sockaddr_dl, sdl_data[0]); 1929 sdl2->sdl_family = AF_LINK; 1930 sdl2->sdl_index = 0; 1931 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1932 } 1933 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1934 IP_RECVIF, IPPROTO_IP); 1935 if (*mp) 1936 mp = &(*mp)->m_next; 1937 } 1938 } 1939 1940 /* 1941 * XXX these routines are called from the upper part of the kernel. 1942 * They need to be locked when we remove Giant. 1943 * 1944 * They could also be moved to ip_mroute.c, since all the RSVP 1945 * handling is done there already. 1946 */ 1947 static int ip_rsvp_on; 1948 struct socket *ip_rsvpd; 1949 int 1950 ip_rsvp_init(struct socket *so) 1951 { 1952 if (so->so_type != SOCK_RAW || 1953 so->so_proto->pr_protocol != IPPROTO_RSVP) 1954 return EOPNOTSUPP; 1955 1956 if (ip_rsvpd != NULL) 1957 return EADDRINUSE; 1958 1959 ip_rsvpd = so; 1960 /* 1961 * This may seem silly, but we need to be sure we don't over-increment 1962 * the RSVP counter, in case something slips up. 1963 */ 1964 if (!ip_rsvp_on) { 1965 ip_rsvp_on = 1; 1966 rsvp_on++; 1967 } 1968 1969 return 0; 1970 } 1971 1972 int 1973 ip_rsvp_done(void) 1974 { 1975 ip_rsvpd = NULL; 1976 /* 1977 * This may seem silly, but we need to be sure we don't over-decrement 1978 * the RSVP counter, in case something slips up. 1979 */ 1980 if (ip_rsvp_on) { 1981 ip_rsvp_on = 0; 1982 rsvp_on--; 1983 } 1984 return 0; 1985 } 1986