xref: /freebsd/sys/netinet/ip_input.c (revision c4f02a891fe62fe1277c89859922804ea2c27bcd)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <sys/socketvar.h>
79 
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_dummynet.h>
82 
83 #ifdef IPSEC
84 #include <netinet6/ipsec.h>
85 #include <netkey/key.h>
86 #endif
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/key.h>
91 #endif
92 
93 int rsvp_on = 0;
94 
95 int	ipforwarding = 0;
96 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97     &ipforwarding, 0, "Enable IP forwarding between interfaces");
98 
99 static int	ipsendredirects = 1; /* XXX */
100 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101     &ipsendredirects, 0, "Enable sending IP redirects");
102 
103 int	ip_defttl = IPDEFTTL;
104 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105     &ip_defttl, 0, "Maximum TTL on IP packets");
106 
107 static int	ip_dosourceroute = 0;
108 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110 
111 static int	ip_acceptsourceroute = 0;
112 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113     CTLFLAG_RW, &ip_acceptsourceroute, 0,
114     "Enable accepting source routed IP packets");
115 
116 static int	ip_keepfaith = 0;
117 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118 	&ip_keepfaith,	0,
119 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120 
121 static int    nipq = 0;         /* total # of reass queues */
122 static int    maxnipq;
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124 	&maxnipq, 0,
125 	"Maximum number of IPv4 fragment reassembly queue entries");
126 
127 static int    maxfragsperpacket;
128 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129 	&maxfragsperpacket, 0,
130 	"Maximum number of IPv4 fragments allowed per packet");
131 
132 static int	ip_sendsourcequench = 0;
133 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134 	&ip_sendsourcequench, 0,
135 	"Enable the transmission of source quench packets");
136 
137 /*
138  * XXX - Setting ip_checkinterface mostly implements the receive side of
139  * the Strong ES model described in RFC 1122, but since the routing table
140  * and transmit implementation do not implement the Strong ES model,
141  * setting this to 1 results in an odd hybrid.
142  *
143  * XXX - ip_checkinterface currently must be disabled if you use ipnat
144  * to translate the destination address to another local interface.
145  *
146  * XXX - ip_checkinterface must be disabled if you add IP aliases
147  * to the loopback interface instead of the interface where the
148  * packets for those addresses are received.
149  */
150 static int	ip_checkinterface = 1;
151 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153 
154 #ifdef DIAGNOSTIC
155 static int	ipprintfs = 0;
156 #endif
157 #ifdef PFIL_HOOKS
158 struct pfil_head inet_pfil_hook;
159 #endif
160 
161 static struct	ifqueue ipintrq;
162 static int	ipqmaxlen = IFQ_MAXLEN;
163 
164 extern	struct domain inetdomain;
165 extern	struct protosw inetsw[];
166 u_char	ip_protox[IPPROTO_MAX];
167 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
168 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
169 u_long 	in_ifaddrhmask;				/* mask for hash table */
170 
171 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
172     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
173 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
174     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
175 
176 struct ipstat ipstat;
177 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179 
180 /* Packet reassembly stuff */
181 #define IPREASS_NHASH_LOG2      6
182 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
183 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
184 #define IPREASS_HASH(x,y) \
185 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
186 
187 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
188 struct mtx ipqlock;
189 
190 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
191 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF);
193 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED);
194 
195 #ifdef IPCTL_DEFMTU
196 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
197     &ip_mtu, 0, "Default MTU");
198 #endif
199 
200 #ifdef IPSTEALTH
201 static int	ipstealth = 0;
202 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
203     &ipstealth, 0, "");
204 #endif
205 
206 
207 /* Firewall hooks */
208 ip_fw_chk_t *ip_fw_chk_ptr;
209 int fw_enable = 1 ;
210 int fw_one_pass = 1;
211 
212 /* Dummynet hooks */
213 ip_dn_io_t *ip_dn_io_ptr;
214 
215 
216 /*
217  * XXX this is ugly -- the following two global variables are
218  * used to store packet state while it travels through the stack.
219  * Note that the code even makes assumptions on the size and
220  * alignment of fields inside struct ip_srcrt so e.g. adding some
221  * fields will break the code. This needs to be fixed.
222  *
223  * We need to save the IP options in case a protocol wants to respond
224  * to an incoming packet over the same route if the packet got here
225  * using IP source routing.  This allows connection establishment and
226  * maintenance when the remote end is on a network that is not known
227  * to us.
228  */
229 static int	ip_nhops = 0;
230 static	struct ip_srcrt {
231 	struct	in_addr dst;			/* final destination */
232 	char	nop;				/* one NOP to align */
233 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235 } ip_srcrt;
236 
237 static void	save_rte(u_char *, struct in_addr);
238 static int	ip_dooptions(struct mbuf *m, int,
239 			struct sockaddr_in *next_hop);
240 static void	ip_forward(struct mbuf *m, int srcrt,
241 			struct sockaddr_in *next_hop);
242 static void	ip_freef(struct ipqhead *, struct ipq *);
243 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
244 		struct ipq *, u_int32_t *, u_int16_t *);
245 
246 /*
247  * IP initialization: fill in IP protocol switch table.
248  * All protocols not implemented in kernel go to raw IP protocol handler.
249  */
250 void
251 ip_init()
252 {
253 	register struct protosw *pr;
254 	register int i;
255 
256 	TAILQ_INIT(&in_ifaddrhead);
257 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
258 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
259 	if (pr == 0)
260 		panic("ip_init");
261 	for (i = 0; i < IPPROTO_MAX; i++)
262 		ip_protox[i] = pr - inetsw;
263 	for (pr = inetdomain.dom_protosw;
264 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
265 		if (pr->pr_domain->dom_family == PF_INET &&
266 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
267 			ip_protox[pr->pr_protocol] = pr - inetsw;
268 
269 #ifdef PFIL_HOOKS
270 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
271 	inet_pfil_hook.ph_af = AF_INET;
272 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
273 		printf("%s: WARNING: unable to register pfil hook, "
274 			"error %d\n", __func__, i);
275 #endif /* PFIL_HOOKS */
276 
277 	IPQ_LOCK_INIT();
278 	for (i = 0; i < IPREASS_NHASH; i++)
279 	    TAILQ_INIT(&ipq[i]);
280 
281 	maxnipq = nmbclusters / 32;
282 	maxfragsperpacket = 16;
283 
284 #ifndef RANDOM_IP_ID
285 	ip_id = time_second & 0xffff;
286 #endif
287 	ipintrq.ifq_maxlen = ipqmaxlen;
288 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
289 	netisr_register(NETISR_IP, ip_input, &ipintrq);
290 }
291 
292 /*
293  * XXX watch out this one. It is perhaps used as a cache for
294  * the most recently used route ? it is cleared in in_addroute()
295  * when a new route is successfully created.
296  */
297 struct	route ipforward_rt;
298 
299 /*
300  * Ip input routine.  Checksum and byte swap header.  If fragmented
301  * try to reassemble.  Process options.  Pass to next level.
302  */
303 void
304 ip_input(struct mbuf *m)
305 {
306 	struct ip *ip;
307 	struct ipq *fp;
308 	struct in_ifaddr *ia = NULL;
309 	struct ifaddr *ifa;
310 	int    i, hlen, checkif;
311 	u_short sum;
312 	struct in_addr pkt_dst;
313 	u_int32_t divert_info = 0;		/* packet divert/tee info */
314 	struct ip_fw_args args;
315 #ifdef FAST_IPSEC
316 	struct m_tag *mtag;
317 	struct tdb_ident *tdbi;
318 	struct secpolicy *sp;
319 	int s, error;
320 #endif /* FAST_IPSEC */
321 
322 	args.eh = NULL;
323 	args.oif = NULL;
324 	args.rule = NULL;
325 	args.divert_rule = 0;			/* divert cookie */
326 	args.next_hop = NULL;
327 
328 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
329 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
330 		switch(m->_m_tag_id) {
331 		default:
332 			printf("ip_input: unrecognised MT_TAG tag %d\n",
333 			    m->_m_tag_id);
334 			break;
335 
336 		case PACKET_TAG_DUMMYNET:
337 			args.rule = ((struct dn_pkt *)m)->rule;
338 			break;
339 
340 		case PACKET_TAG_DIVERT:
341 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
342 			break;
343 
344 		case PACKET_TAG_IPFORWARD:
345 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
346 			break;
347 		}
348 	}
349 
350 	M_ASSERTPKTHDR(m);
351 
352 	if (args.rule) {	/* dummynet already filtered us */
353 		ip = mtod(m, struct ip *);
354 		hlen = ip->ip_hl << 2;
355 		goto iphack ;
356 	}
357 
358 	ipstat.ips_total++;
359 
360 	if (m->m_pkthdr.len < sizeof(struct ip))
361 		goto tooshort;
362 
363 	if (m->m_len < sizeof (struct ip) &&
364 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
365 		ipstat.ips_toosmall++;
366 		return;
367 	}
368 	ip = mtod(m, struct ip *);
369 
370 	if (ip->ip_v != IPVERSION) {
371 		ipstat.ips_badvers++;
372 		goto bad;
373 	}
374 
375 	hlen = ip->ip_hl << 2;
376 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
377 		ipstat.ips_badhlen++;
378 		goto bad;
379 	}
380 	if (hlen > m->m_len) {
381 		if ((m = m_pullup(m, hlen)) == 0) {
382 			ipstat.ips_badhlen++;
383 			return;
384 		}
385 		ip = mtod(m, struct ip *);
386 	}
387 
388 	/* 127/8 must not appear on wire - RFC1122 */
389 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
390 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
391 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
392 			ipstat.ips_badaddr++;
393 			goto bad;
394 		}
395 	}
396 
397 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
398 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
399 	} else {
400 		if (hlen == sizeof(struct ip)) {
401 			sum = in_cksum_hdr(ip);
402 		} else {
403 			sum = in_cksum(m, hlen);
404 		}
405 	}
406 	if (sum) {
407 		ipstat.ips_badsum++;
408 		goto bad;
409 	}
410 
411 	/*
412 	 * Convert fields to host representation.
413 	 */
414 	ip->ip_len = ntohs(ip->ip_len);
415 	if (ip->ip_len < hlen) {
416 		ipstat.ips_badlen++;
417 		goto bad;
418 	}
419 	ip->ip_off = ntohs(ip->ip_off);
420 
421 	/*
422 	 * Check that the amount of data in the buffers
423 	 * is as at least much as the IP header would have us expect.
424 	 * Trim mbufs if longer than we expect.
425 	 * Drop packet if shorter than we expect.
426 	 */
427 	if (m->m_pkthdr.len < ip->ip_len) {
428 tooshort:
429 		ipstat.ips_tooshort++;
430 		goto bad;
431 	}
432 	if (m->m_pkthdr.len > ip->ip_len) {
433 		if (m->m_len == m->m_pkthdr.len) {
434 			m->m_len = ip->ip_len;
435 			m->m_pkthdr.len = ip->ip_len;
436 		} else
437 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
438 	}
439 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
440 	/*
441 	 * Bypass packet filtering for packets from a tunnel (gif).
442 	 */
443 	if (ipsec_gethist(m, NULL))
444 		goto pass;
445 #endif
446 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
447 	/*
448 	 * Bypass packet filtering for packets from a tunnel (gif).
449 	 */
450 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
451 		goto pass;
452 #endif
453 
454 	/*
455 	 * IpHack's section.
456 	 * Right now when no processing on packet has done
457 	 * and it is still fresh out of network we do our black
458 	 * deals with it.
459 	 * - Firewall: deny/allow/divert
460 	 * - Xlate: translate packet's addr/port (NAT).
461 	 * - Pipe: pass pkt through dummynet.
462 	 * - Wrap: fake packet's addr/port <unimpl.>
463 	 * - Encapsulate: put it in another IP and send out. <unimp.>
464  	 */
465 
466 iphack:
467 
468 #ifdef PFIL_HOOKS
469 	/*
470 	 * Run through list of hooks for input packets.
471 	 */
472 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
473 	    PFIL_IN) != 0)
474 		return;
475 	if (m == NULL)			/* consumed by filter */
476 		return;
477 	ip = mtod(m, struct ip *);
478 #endif /* PFIL_HOOKS */
479 
480 	if (fw_enable && IPFW_LOADED) {
481 		/*
482 		 * If we've been forwarded from the output side, then
483 		 * skip the firewall a second time
484 		 */
485 		if (args.next_hop)
486 			goto ours;
487 
488 		args.m = m;
489 		i = ip_fw_chk_ptr(&args);
490 		m = args.m;
491 
492 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
493 			if (m)
494 				m_freem(m);
495 			return;
496 		}
497 		ip = mtod(m, struct ip *); /* just in case m changed */
498 		if (i == 0 && args.next_hop == NULL)	/* common case */
499 			goto pass;
500                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
501 			/* Send packet to the appropriate pipe */
502 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
503 			return;
504 		}
505 #ifdef IPDIVERT
506 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
507 			/* Divert or tee packet */
508 			divert_info = i;
509 			goto ours;
510 		}
511 #endif
512 		if (i == 0 && args.next_hop != NULL)
513 			goto pass;
514 		/*
515 		 * if we get here, the packet must be dropped
516 		 */
517 		m_freem(m);
518 		return;
519 	}
520 pass:
521 
522 	/*
523 	 * Process options and, if not destined for us,
524 	 * ship it on.  ip_dooptions returns 1 when an
525 	 * error was detected (causing an icmp message
526 	 * to be sent and the original packet to be freed).
527 	 */
528 	ip_nhops = 0;		/* for source routed packets */
529 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
530 		return;
531 
532         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
533          * matter if it is destined to another node, or whether it is
534          * a multicast one, RSVP wants it! and prevents it from being forwarded
535          * anywhere else. Also checks if the rsvp daemon is running before
536 	 * grabbing the packet.
537          */
538 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
539 		goto ours;
540 
541 	/*
542 	 * Check our list of addresses, to see if the packet is for us.
543 	 * If we don't have any addresses, assume any unicast packet
544 	 * we receive might be for us (and let the upper layers deal
545 	 * with it).
546 	 */
547 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
548 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
549 		goto ours;
550 
551 	/*
552 	 * Cache the destination address of the packet; this may be
553 	 * changed by use of 'ipfw fwd'.
554 	 */
555 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
556 
557 	/*
558 	 * Enable a consistency check between the destination address
559 	 * and the arrival interface for a unicast packet (the RFC 1122
560 	 * strong ES model) if IP forwarding is disabled and the packet
561 	 * is not locally generated and the packet is not subject to
562 	 * 'ipfw fwd'.
563 	 *
564 	 * XXX - Checking also should be disabled if the destination
565 	 * address is ipnat'ed to a different interface.
566 	 *
567 	 * XXX - Checking is incompatible with IP aliases added
568 	 * to the loopback interface instead of the interface where
569 	 * the packets are received.
570 	 */
571 	checkif = ip_checkinterface && (ipforwarding == 0) &&
572 	    m->m_pkthdr.rcvif != NULL &&
573 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
574 	    (args.next_hop == NULL);
575 
576 	/*
577 	 * Check for exact addresses in the hash bucket.
578 	 */
579 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
580 		/*
581 		 * If the address matches, verify that the packet
582 		 * arrived via the correct interface if checking is
583 		 * enabled.
584 		 */
585 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
586 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
587 			goto ours;
588 	}
589 	/*
590 	 * Check for broadcast addresses.
591 	 *
592 	 * Only accept broadcast packets that arrive via the matching
593 	 * interface.  Reception of forwarded directed broadcasts would
594 	 * be handled via ip_forward() and ether_output() with the loopback
595 	 * into the stack for SIMPLEX interfaces handled by ether_output().
596 	 */
597 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
598 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
599 			if (ifa->ifa_addr->sa_family != AF_INET)
600 				continue;
601 			ia = ifatoia(ifa);
602 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
603 			    pkt_dst.s_addr)
604 				goto ours;
605 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
606 				goto ours;
607 #ifdef BOOTP_COMPAT
608 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
609 				goto ours;
610 #endif
611 		}
612 	}
613 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
614 		struct in_multi *inm;
615 		if (ip_mrouter) {
616 			/*
617 			 * If we are acting as a multicast router, all
618 			 * incoming multicast packets are passed to the
619 			 * kernel-level multicast forwarding function.
620 			 * The packet is returned (relatively) intact; if
621 			 * ip_mforward() returns a non-zero value, the packet
622 			 * must be discarded, else it may be accepted below.
623 			 */
624 			if (ip_mforward &&
625 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
626 				ipstat.ips_cantforward++;
627 				m_freem(m);
628 				return;
629 			}
630 
631 			/*
632 			 * The process-level routing daemon needs to receive
633 			 * all multicast IGMP packets, whether or not this
634 			 * host belongs to their destination groups.
635 			 */
636 			if (ip->ip_p == IPPROTO_IGMP)
637 				goto ours;
638 			ipstat.ips_forward++;
639 		}
640 		/*
641 		 * See if we belong to the destination multicast group on the
642 		 * arrival interface.
643 		 */
644 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
645 		if (inm == NULL) {
646 			ipstat.ips_notmember++;
647 			m_freem(m);
648 			return;
649 		}
650 		goto ours;
651 	}
652 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
653 		goto ours;
654 	if (ip->ip_dst.s_addr == INADDR_ANY)
655 		goto ours;
656 
657 	/*
658 	 * FAITH(Firewall Aided Internet Translator)
659 	 */
660 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
661 		if (ip_keepfaith) {
662 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
663 				goto ours;
664 		}
665 		m_freem(m);
666 		return;
667 	}
668 
669 	/*
670 	 * Not for us; forward if possible and desirable.
671 	 */
672 	if (ipforwarding == 0) {
673 		ipstat.ips_cantforward++;
674 		m_freem(m);
675 	} else {
676 #ifdef IPSEC
677 		/*
678 		 * Enforce inbound IPsec SPD.
679 		 */
680 		if (ipsec4_in_reject(m, NULL)) {
681 			ipsecstat.in_polvio++;
682 			goto bad;
683 		}
684 #endif /* IPSEC */
685 #ifdef FAST_IPSEC
686 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
687 		s = splnet();
688 		if (mtag != NULL) {
689 			tdbi = (struct tdb_ident *)(mtag + 1);
690 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
691 		} else {
692 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
693 						   IP_FORWARDING, &error);
694 		}
695 		if (sp == NULL) {	/* NB: can happen if error */
696 			splx(s);
697 			/*XXX error stat???*/
698 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
699 			goto bad;
700 		}
701 
702 		/*
703 		 * Check security policy against packet attributes.
704 		 */
705 		error = ipsec_in_reject(sp, m);
706 		KEY_FREESP(&sp);
707 		splx(s);
708 		if (error) {
709 			ipstat.ips_cantforward++;
710 			goto bad;
711 		}
712 #endif /* FAST_IPSEC */
713 		ip_forward(m, 0, args.next_hop);
714 	}
715 	return;
716 
717 ours:
718 #ifdef IPSTEALTH
719 	/*
720 	 * IPSTEALTH: Process non-routing options only
721 	 * if the packet is destined for us.
722 	 */
723 	if (ipstealth && hlen > sizeof (struct ip) &&
724 	    ip_dooptions(m, 1, args.next_hop))
725 		return;
726 #endif /* IPSTEALTH */
727 
728 	/* Count the packet in the ip address stats */
729 	if (ia != NULL) {
730 		ia->ia_ifa.if_ipackets++;
731 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
732 	}
733 
734 	/*
735 	 * If offset or IP_MF are set, must reassemble.
736 	 * Otherwise, nothing need be done.
737 	 * (We could look in the reassembly queue to see
738 	 * if the packet was previously fragmented,
739 	 * but it's not worth the time; just let them time out.)
740 	 */
741 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
742 
743 		/* If maxnipq is 0, never accept fragments. */
744 		if (maxnipq == 0) {
745                 	ipstat.ips_fragments++;
746 			ipstat.ips_fragdropped++;
747 			goto bad;
748 		}
749 
750 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
751 		IPQ_LOCK();
752 		/*
753 		 * Look for queue of fragments
754 		 * of this datagram.
755 		 */
756 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
757 			if (ip->ip_id == fp->ipq_id &&
758 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
759 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
760 #ifdef MAC
761 			    mac_fragment_match(m, fp) &&
762 #endif
763 			    ip->ip_p == fp->ipq_p)
764 				goto found;
765 
766 		fp = NULL;
767 
768 		/*
769 		 * Enforce upper bound on number of fragmented packets
770 		 * for which we attempt reassembly;
771 		 * If maxnipq is -1, accept all fragments without limitation.
772 		 */
773 		if ((nipq > maxnipq) && (maxnipq > 0)) {
774 		    /*
775 		     * drop something from the tail of the current queue
776 		     * before proceeding further
777 		     */
778 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
779 		    if (q == NULL) {   /* gak */
780 			for (i = 0; i < IPREASS_NHASH; i++) {
781 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
782 			    if (r) {
783 				ipstat.ips_fragtimeout += r->ipq_nfrags;
784 				ip_freef(&ipq[i], r);
785 				break;
786 			    }
787 			}
788 		    } else {
789 			ipstat.ips_fragtimeout += q->ipq_nfrags;
790 			ip_freef(&ipq[sum], q);
791 		    }
792 		}
793 found:
794 		/*
795 		 * Adjust ip_len to not reflect header,
796 		 * convert offset of this to bytes.
797 		 */
798 		ip->ip_len -= hlen;
799 		if (ip->ip_off & IP_MF) {
800 		        /*
801 		         * Make sure that fragments have a data length
802 			 * that's a non-zero multiple of 8 bytes.
803 		         */
804 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
805 				IPQ_UNLOCK();
806 				ipstat.ips_toosmall++; /* XXX */
807 				goto bad;
808 			}
809 			m->m_flags |= M_FRAG;
810 		} else
811 			m->m_flags &= ~M_FRAG;
812 		ip->ip_off <<= 3;
813 
814 		/*
815 		 * Attempt reassembly; if it succeeds, proceed.
816 		 * ip_reass() will return a different mbuf, and update
817 		 * the divert info in divert_info and args.divert_rule.
818 		 */
819 		ipstat.ips_fragments++;
820 		m->m_pkthdr.header = ip;
821 		m = ip_reass(m,
822 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
823 		IPQ_UNLOCK();
824 		if (m == 0)
825 			return;
826 		ipstat.ips_reassembled++;
827 		ip = mtod(m, struct ip *);
828 		/* Get the header length of the reassembled packet */
829 		hlen = ip->ip_hl << 2;
830 #ifdef IPDIVERT
831 		/* Restore original checksum before diverting packet */
832 		if (divert_info != 0) {
833 			ip->ip_len += hlen;
834 			ip->ip_len = htons(ip->ip_len);
835 			ip->ip_off = htons(ip->ip_off);
836 			ip->ip_sum = 0;
837 			if (hlen == sizeof(struct ip))
838 				ip->ip_sum = in_cksum_hdr(ip);
839 			else
840 				ip->ip_sum = in_cksum(m, hlen);
841 			ip->ip_off = ntohs(ip->ip_off);
842 			ip->ip_len = ntohs(ip->ip_len);
843 			ip->ip_len -= hlen;
844 		}
845 #endif
846 	} else
847 		ip->ip_len -= hlen;
848 
849 #ifdef IPDIVERT
850 	/*
851 	 * Divert or tee packet to the divert protocol if required.
852 	 */
853 	if (divert_info != 0) {
854 		struct mbuf *clone = NULL;
855 
856 		/* Clone packet if we're doing a 'tee' */
857 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
858 			clone = m_dup(m, M_DONTWAIT);
859 
860 		/* Restore packet header fields to original values */
861 		ip->ip_len += hlen;
862 		ip->ip_len = htons(ip->ip_len);
863 		ip->ip_off = htons(ip->ip_off);
864 
865 		/* Deliver packet to divert input routine */
866 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
867 		ipstat.ips_delivered++;
868 
869 		/* If 'tee', continue with original packet */
870 		if (clone == NULL)
871 			return;
872 		m = clone;
873 		ip = mtod(m, struct ip *);
874 		ip->ip_len += hlen;
875 		/*
876 		 * Jump backwards to complete processing of the
877 		 * packet. But first clear divert_info to avoid
878 		 * entering this block again.
879 		 * We do not need to clear args.divert_rule
880 		 * or args.next_hop as they will not be used.
881 		 */
882 		divert_info = 0;
883 		goto pass;
884 	}
885 #endif
886 
887 #ifdef IPSEC
888 	/*
889 	 * enforce IPsec policy checking if we are seeing last header.
890 	 * note that we do not visit this with protocols with pcb layer
891 	 * code - like udp/tcp/raw ip.
892 	 */
893 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
894 	    ipsec4_in_reject(m, NULL)) {
895 		ipsecstat.in_polvio++;
896 		goto bad;
897 	}
898 #endif
899 #if FAST_IPSEC
900 	/*
901 	 * enforce IPsec policy checking if we are seeing last header.
902 	 * note that we do not visit this with protocols with pcb layer
903 	 * code - like udp/tcp/raw ip.
904 	 */
905 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
906 		/*
907 		 * Check if the packet has already had IPsec processing
908 		 * done.  If so, then just pass it along.  This tag gets
909 		 * set during AH, ESP, etc. input handling, before the
910 		 * packet is returned to the ip input queue for delivery.
911 		 */
912 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
913 		s = splnet();
914 		if (mtag != NULL) {
915 			tdbi = (struct tdb_ident *)(mtag + 1);
916 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
917 		} else {
918 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
919 						   IP_FORWARDING, &error);
920 		}
921 		if (sp != NULL) {
922 			/*
923 			 * Check security policy against packet attributes.
924 			 */
925 			error = ipsec_in_reject(sp, m);
926 			KEY_FREESP(&sp);
927 		} else {
928 			/* XXX error stat??? */
929 			error = EINVAL;
930 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
931 			goto bad;
932 		}
933 		splx(s);
934 		if (error)
935 			goto bad;
936 	}
937 #endif /* FAST_IPSEC */
938 
939 	/*
940 	 * Switch out to protocol's input routine.
941 	 */
942 	ipstat.ips_delivered++;
943 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
944 		/* TCP needs IPFORWARD info if available */
945 		struct m_hdr tag;
946 
947 		tag.mh_type = MT_TAG;
948 		tag.mh_flags = PACKET_TAG_IPFORWARD;
949 		tag.mh_data = (caddr_t)args.next_hop;
950 		tag.mh_next = m;
951 
952 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
953 			(struct mbuf *)&tag, hlen);
954 	} else
955 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
956 	return;
957 bad:
958 	m_freem(m);
959 }
960 
961 /*
962  * Take incoming datagram fragment and try to reassemble it into
963  * whole datagram.  If a chain for reassembly of this datagram already
964  * exists, then it is given as fp; otherwise have to make a chain.
965  *
966  * When IPDIVERT enabled, keep additional state with each packet that
967  * tells us if we need to divert or tee the packet we're building.
968  * In particular, *divinfo includes the port and TEE flag,
969  * *divert_rule is the number of the matching rule.
970  */
971 
972 static struct mbuf *
973 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
974 	u_int32_t *divinfo, u_int16_t *divert_rule)
975 {
976 	struct ip *ip = mtod(m, struct ip *);
977 	register struct mbuf *p, *q, *nq;
978 	struct mbuf *t;
979 	int hlen = ip->ip_hl << 2;
980 	int i, next;
981 
982 	IPQ_LOCK_ASSERT();
983 
984 	/*
985 	 * Presence of header sizes in mbufs
986 	 * would confuse code below.
987 	 */
988 	m->m_data += hlen;
989 	m->m_len -= hlen;
990 
991 	/*
992 	 * If first fragment to arrive, create a reassembly queue.
993 	 */
994 	if (fp == NULL) {
995 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
996 			goto dropfrag;
997 		fp = mtod(t, struct ipq *);
998 #ifdef MAC
999 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
1000 			m_free(t);
1001 			goto dropfrag;
1002 		}
1003 		mac_create_ipq(m, fp);
1004 #endif
1005 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1006 		nipq++;
1007 		fp->ipq_nfrags = 1;
1008 		fp->ipq_ttl = IPFRAGTTL;
1009 		fp->ipq_p = ip->ip_p;
1010 		fp->ipq_id = ip->ip_id;
1011 		fp->ipq_src = ip->ip_src;
1012 		fp->ipq_dst = ip->ip_dst;
1013 		fp->ipq_frags = m;
1014 		m->m_nextpkt = NULL;
1015 #ifdef IPDIVERT
1016 		fp->ipq_div_info = 0;
1017 		fp->ipq_div_cookie = 0;
1018 #endif
1019 		goto inserted;
1020 	} else {
1021 		fp->ipq_nfrags++;
1022 #ifdef MAC
1023 		mac_update_ipq(m, fp);
1024 #endif
1025 	}
1026 
1027 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1028 
1029 	/*
1030 	 * Find a segment which begins after this one does.
1031 	 */
1032 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1033 		if (GETIP(q)->ip_off > ip->ip_off)
1034 			break;
1035 
1036 	/*
1037 	 * If there is a preceding segment, it may provide some of
1038 	 * our data already.  If so, drop the data from the incoming
1039 	 * segment.  If it provides all of our data, drop us, otherwise
1040 	 * stick new segment in the proper place.
1041 	 *
1042 	 * If some of the data is dropped from the the preceding
1043 	 * segment, then it's checksum is invalidated.
1044 	 */
1045 	if (p) {
1046 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1047 		if (i > 0) {
1048 			if (i >= ip->ip_len)
1049 				goto dropfrag;
1050 			m_adj(m, i);
1051 			m->m_pkthdr.csum_flags = 0;
1052 			ip->ip_off += i;
1053 			ip->ip_len -= i;
1054 		}
1055 		m->m_nextpkt = p->m_nextpkt;
1056 		p->m_nextpkt = m;
1057 	} else {
1058 		m->m_nextpkt = fp->ipq_frags;
1059 		fp->ipq_frags = m;
1060 	}
1061 
1062 	/*
1063 	 * While we overlap succeeding segments trim them or,
1064 	 * if they are completely covered, dequeue them.
1065 	 */
1066 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1067 	     q = nq) {
1068 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1069 		if (i < GETIP(q)->ip_len) {
1070 			GETIP(q)->ip_len -= i;
1071 			GETIP(q)->ip_off += i;
1072 			m_adj(q, i);
1073 			q->m_pkthdr.csum_flags = 0;
1074 			break;
1075 		}
1076 		nq = q->m_nextpkt;
1077 		m->m_nextpkt = nq;
1078 		ipstat.ips_fragdropped++;
1079 		fp->ipq_nfrags--;
1080 		m_freem(q);
1081 	}
1082 
1083 inserted:
1084 
1085 #ifdef IPDIVERT
1086 	/*
1087 	 * Transfer firewall instructions to the fragment structure.
1088 	 * Only trust info in the fragment at offset 0.
1089 	 */
1090 	if (ip->ip_off == 0) {
1091 		fp->ipq_div_info = *divinfo;
1092 		fp->ipq_div_cookie = *divert_rule;
1093 	}
1094 	*divinfo = 0;
1095 	*divert_rule = 0;
1096 #endif
1097 
1098 	/*
1099 	 * Check for complete reassembly and perform frag per packet
1100 	 * limiting.
1101 	 *
1102 	 * Frag limiting is performed here so that the nth frag has
1103 	 * a chance to complete the packet before we drop the packet.
1104 	 * As a result, n+1 frags are actually allowed per packet, but
1105 	 * only n will ever be stored. (n = maxfragsperpacket.)
1106 	 *
1107 	 */
1108 	next = 0;
1109 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1110 		if (GETIP(q)->ip_off != next) {
1111 			if (fp->ipq_nfrags > maxfragsperpacket) {
1112 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1113 				ip_freef(head, fp);
1114 			}
1115 			return (0);
1116 		}
1117 		next += GETIP(q)->ip_len;
1118 	}
1119 	/* Make sure the last packet didn't have the IP_MF flag */
1120 	if (p->m_flags & M_FRAG) {
1121 		if (fp->ipq_nfrags > maxfragsperpacket) {
1122 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1123 			ip_freef(head, fp);
1124 		}
1125 		return (0);
1126 	}
1127 
1128 	/*
1129 	 * Reassembly is complete.  Make sure the packet is a sane size.
1130 	 */
1131 	q = fp->ipq_frags;
1132 	ip = GETIP(q);
1133 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1134 		ipstat.ips_toolong++;
1135 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1136 		ip_freef(head, fp);
1137 		return (0);
1138 	}
1139 
1140 	/*
1141 	 * Concatenate fragments.
1142 	 */
1143 	m = q;
1144 	t = m->m_next;
1145 	m->m_next = 0;
1146 	m_cat(m, t);
1147 	nq = q->m_nextpkt;
1148 	q->m_nextpkt = 0;
1149 	for (q = nq; q != NULL; q = nq) {
1150 		nq = q->m_nextpkt;
1151 		q->m_nextpkt = NULL;
1152 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1153 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1154 		m_cat(m, q);
1155 	}
1156 #ifdef MAC
1157 	mac_create_datagram_from_ipq(fp, m);
1158 	mac_destroy_ipq(fp);
1159 #endif
1160 
1161 #ifdef IPDIVERT
1162 	/*
1163 	 * Extract firewall instructions from the fragment structure.
1164 	 */
1165 	*divinfo = fp->ipq_div_info;
1166 	*divert_rule = fp->ipq_div_cookie;
1167 #endif
1168 
1169 	/*
1170 	 * Create header for new ip packet by
1171 	 * modifying header of first packet;
1172 	 * dequeue and discard fragment reassembly header.
1173 	 * Make header visible.
1174 	 */
1175 	ip->ip_len = next;
1176 	ip->ip_src = fp->ipq_src;
1177 	ip->ip_dst = fp->ipq_dst;
1178 	TAILQ_REMOVE(head, fp, ipq_list);
1179 	nipq--;
1180 	(void) m_free(dtom(fp));
1181 	m->m_len += (ip->ip_hl << 2);
1182 	m->m_data -= (ip->ip_hl << 2);
1183 	/* some debugging cruft by sklower, below, will go away soon */
1184 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1185 		m_fixhdr(m);
1186 	return (m);
1187 
1188 dropfrag:
1189 #ifdef IPDIVERT
1190 	*divinfo = 0;
1191 	*divert_rule = 0;
1192 #endif
1193 	ipstat.ips_fragdropped++;
1194 	if (fp != NULL)
1195 		fp->ipq_nfrags--;
1196 	m_freem(m);
1197 	return (0);
1198 
1199 #undef GETIP
1200 }
1201 
1202 /*
1203  * Free a fragment reassembly header and all
1204  * associated datagrams.
1205  */
1206 static void
1207 ip_freef(fhp, fp)
1208 	struct ipqhead *fhp;
1209 	struct ipq *fp;
1210 {
1211 	register struct mbuf *q;
1212 
1213 	IPQ_LOCK_ASSERT();
1214 
1215 	while (fp->ipq_frags) {
1216 		q = fp->ipq_frags;
1217 		fp->ipq_frags = q->m_nextpkt;
1218 		m_freem(q);
1219 	}
1220 	TAILQ_REMOVE(fhp, fp, ipq_list);
1221 	(void) m_free(dtom(fp));
1222 	nipq--;
1223 }
1224 
1225 /*
1226  * IP timer processing;
1227  * if a timer expires on a reassembly
1228  * queue, discard it.
1229  */
1230 void
1231 ip_slowtimo()
1232 {
1233 	register struct ipq *fp;
1234 	int s = splnet();
1235 	int i;
1236 
1237 	IPQ_LOCK();
1238 	for (i = 0; i < IPREASS_NHASH; i++) {
1239 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1240 			struct ipq *fpp;
1241 
1242 			fpp = fp;
1243 			fp = TAILQ_NEXT(fp, ipq_list);
1244 			if(--fpp->ipq_ttl == 0) {
1245 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1246 				ip_freef(&ipq[i], fpp);
1247 			}
1248 		}
1249 	}
1250 	/*
1251 	 * If we are over the maximum number of fragments
1252 	 * (due to the limit being lowered), drain off
1253 	 * enough to get down to the new limit.
1254 	 */
1255 	if (maxnipq >= 0 && nipq > maxnipq) {
1256 		for (i = 0; i < IPREASS_NHASH; i++) {
1257 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1258 				ipstat.ips_fragdropped +=
1259 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1260 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1261 			}
1262 		}
1263 	}
1264 	IPQ_UNLOCK();
1265 	ipflow_slowtimo();
1266 	splx(s);
1267 }
1268 
1269 /*
1270  * Drain off all datagram fragments.
1271  */
1272 void
1273 ip_drain()
1274 {
1275 	int     i;
1276 
1277 	IPQ_LOCK();
1278 	for (i = 0; i < IPREASS_NHASH; i++) {
1279 		while(!TAILQ_EMPTY(&ipq[i])) {
1280 			ipstat.ips_fragdropped +=
1281 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1282 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1283 		}
1284 	}
1285 	IPQ_UNLOCK();
1286 	in_rtqdrain();
1287 }
1288 
1289 /*
1290  * Do option processing on a datagram,
1291  * possibly discarding it if bad options are encountered,
1292  * or forwarding it if source-routed.
1293  * The pass argument is used when operating in the IPSTEALTH
1294  * mode to tell what options to process:
1295  * [LS]SRR (pass 0) or the others (pass 1).
1296  * The reason for as many as two passes is that when doing IPSTEALTH,
1297  * non-routing options should be processed only if the packet is for us.
1298  * Returns 1 if packet has been forwarded/freed,
1299  * 0 if the packet should be processed further.
1300  */
1301 static int
1302 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1303 {
1304 	struct ip *ip = mtod(m, struct ip *);
1305 	u_char *cp;
1306 	struct in_ifaddr *ia;
1307 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1308 	struct in_addr *sin, dst;
1309 	n_time ntime;
1310 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1311 
1312 	dst = ip->ip_dst;
1313 	cp = (u_char *)(ip + 1);
1314 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1315 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1316 		opt = cp[IPOPT_OPTVAL];
1317 		if (opt == IPOPT_EOL)
1318 			break;
1319 		if (opt == IPOPT_NOP)
1320 			optlen = 1;
1321 		else {
1322 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1323 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1324 				goto bad;
1325 			}
1326 			optlen = cp[IPOPT_OLEN];
1327 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1328 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1329 				goto bad;
1330 			}
1331 		}
1332 		switch (opt) {
1333 
1334 		default:
1335 			break;
1336 
1337 		/*
1338 		 * Source routing with record.
1339 		 * Find interface with current destination address.
1340 		 * If none on this machine then drop if strictly routed,
1341 		 * or do nothing if loosely routed.
1342 		 * Record interface address and bring up next address
1343 		 * component.  If strictly routed make sure next
1344 		 * address is on directly accessible net.
1345 		 */
1346 		case IPOPT_LSRR:
1347 		case IPOPT_SSRR:
1348 #ifdef IPSTEALTH
1349 			if (ipstealth && pass > 0)
1350 				break;
1351 #endif
1352 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1353 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1354 				goto bad;
1355 			}
1356 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1357 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1358 				goto bad;
1359 			}
1360 			ipaddr.sin_addr = ip->ip_dst;
1361 			ia = (struct in_ifaddr *)
1362 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1363 			if (ia == 0) {
1364 				if (opt == IPOPT_SSRR) {
1365 					type = ICMP_UNREACH;
1366 					code = ICMP_UNREACH_SRCFAIL;
1367 					goto bad;
1368 				}
1369 				if (!ip_dosourceroute)
1370 					goto nosourcerouting;
1371 				/*
1372 				 * Loose routing, and not at next destination
1373 				 * yet; nothing to do except forward.
1374 				 */
1375 				break;
1376 			}
1377 			off--;			/* 0 origin */
1378 			if (off > optlen - (int)sizeof(struct in_addr)) {
1379 				/*
1380 				 * End of source route.  Should be for us.
1381 				 */
1382 				if (!ip_acceptsourceroute)
1383 					goto nosourcerouting;
1384 				save_rte(cp, ip->ip_src);
1385 				break;
1386 			}
1387 #ifdef IPSTEALTH
1388 			if (ipstealth)
1389 				goto dropit;
1390 #endif
1391 			if (!ip_dosourceroute) {
1392 				if (ipforwarding) {
1393 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1394 					/*
1395 					 * Acting as a router, so generate ICMP
1396 					 */
1397 nosourcerouting:
1398 					strcpy(buf, inet_ntoa(ip->ip_dst));
1399 					log(LOG_WARNING,
1400 					    "attempted source route from %s to %s\n",
1401 					    inet_ntoa(ip->ip_src), buf);
1402 					type = ICMP_UNREACH;
1403 					code = ICMP_UNREACH_SRCFAIL;
1404 					goto bad;
1405 				} else {
1406 					/*
1407 					 * Not acting as a router, so silently drop.
1408 					 */
1409 #ifdef IPSTEALTH
1410 dropit:
1411 #endif
1412 					ipstat.ips_cantforward++;
1413 					m_freem(m);
1414 					return (1);
1415 				}
1416 			}
1417 
1418 			/*
1419 			 * locate outgoing interface
1420 			 */
1421 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1422 			    sizeof(ipaddr.sin_addr));
1423 
1424 			if (opt == IPOPT_SSRR) {
1425 #define	INA	struct in_ifaddr *
1426 #define	SA	struct sockaddr *
1427 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1428 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1429 			} else
1430 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1431 			if (ia == 0) {
1432 				type = ICMP_UNREACH;
1433 				code = ICMP_UNREACH_SRCFAIL;
1434 				goto bad;
1435 			}
1436 			ip->ip_dst = ipaddr.sin_addr;
1437 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1438 			    sizeof(struct in_addr));
1439 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1440 			/*
1441 			 * Let ip_intr's mcast routing check handle mcast pkts
1442 			 */
1443 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1444 			break;
1445 
1446 		case IPOPT_RR:
1447 #ifdef IPSTEALTH
1448 			if (ipstealth && pass == 0)
1449 				break;
1450 #endif
1451 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1452 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1453 				goto bad;
1454 			}
1455 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1456 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1457 				goto bad;
1458 			}
1459 			/*
1460 			 * If no space remains, ignore.
1461 			 */
1462 			off--;			/* 0 origin */
1463 			if (off > optlen - (int)sizeof(struct in_addr))
1464 				break;
1465 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1466 			    sizeof(ipaddr.sin_addr));
1467 			/*
1468 			 * locate outgoing interface; if we're the destination,
1469 			 * use the incoming interface (should be same).
1470 			 */
1471 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1472 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1473 			    &ipforward_rt)) == 0) {
1474 				type = ICMP_UNREACH;
1475 				code = ICMP_UNREACH_HOST;
1476 				goto bad;
1477 			}
1478 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1479 			    sizeof(struct in_addr));
1480 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1481 			break;
1482 
1483 		case IPOPT_TS:
1484 #ifdef IPSTEALTH
1485 			if (ipstealth && pass == 0)
1486 				break;
1487 #endif
1488 			code = cp - (u_char *)ip;
1489 			if (optlen < 4 || optlen > 40) {
1490 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1491 				goto bad;
1492 			}
1493 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1494 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495 				goto bad;
1496 			}
1497 			if (off > optlen - (int)sizeof(int32_t)) {
1498 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1499 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1500 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1501 					goto bad;
1502 				}
1503 				break;
1504 			}
1505 			off--;				/* 0 origin */
1506 			sin = (struct in_addr *)(cp + off);
1507 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1508 
1509 			case IPOPT_TS_TSONLY:
1510 				break;
1511 
1512 			case IPOPT_TS_TSANDADDR:
1513 				if (off + sizeof(n_time) +
1514 				    sizeof(struct in_addr) > optlen) {
1515 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1516 					goto bad;
1517 				}
1518 				ipaddr.sin_addr = dst;
1519 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1520 							    m->m_pkthdr.rcvif);
1521 				if (ia == 0)
1522 					continue;
1523 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1524 				    sizeof(struct in_addr));
1525 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1526 				off += sizeof(struct in_addr);
1527 				break;
1528 
1529 			case IPOPT_TS_PRESPEC:
1530 				if (off + sizeof(n_time) +
1531 				    sizeof(struct in_addr) > optlen) {
1532 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1533 					goto bad;
1534 				}
1535 				(void)memcpy(&ipaddr.sin_addr, sin,
1536 				    sizeof(struct in_addr));
1537 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1538 					continue;
1539 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1540 				off += sizeof(struct in_addr);
1541 				break;
1542 
1543 			default:
1544 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1545 				goto bad;
1546 			}
1547 			ntime = iptime();
1548 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1549 			cp[IPOPT_OFFSET] += sizeof(n_time);
1550 		}
1551 	}
1552 	if (forward && ipforwarding) {
1553 		ip_forward(m, 1, next_hop);
1554 		return (1);
1555 	}
1556 	return (0);
1557 bad:
1558 	icmp_error(m, type, code, 0, 0);
1559 	ipstat.ips_badoptions++;
1560 	return (1);
1561 }
1562 
1563 /*
1564  * Given address of next destination (final or next hop),
1565  * return internet address info of interface to be used to get there.
1566  */
1567 struct in_ifaddr *
1568 ip_rtaddr(dst, rt)
1569 	struct in_addr dst;
1570 	struct route *rt;
1571 {
1572 	register struct sockaddr_in *sin;
1573 
1574 	sin = (struct sockaddr_in *)&rt->ro_dst;
1575 
1576 	if (rt->ro_rt == 0 ||
1577 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1578 	    dst.s_addr != sin->sin_addr.s_addr) {
1579 		if (rt->ro_rt) {
1580 			RTFREE(rt->ro_rt);
1581 			rt->ro_rt = 0;
1582 		}
1583 		sin->sin_family = AF_INET;
1584 		sin->sin_len = sizeof(*sin);
1585 		sin->sin_addr = dst;
1586 
1587 		rtalloc_ign(rt, RTF_PRCLONING);
1588 	}
1589 	if (rt->ro_rt == 0)
1590 		return ((struct in_ifaddr *)0);
1591 	return (ifatoia(rt->ro_rt->rt_ifa));
1592 }
1593 
1594 /*
1595  * Save incoming source route for use in replies,
1596  * to be picked up later by ip_srcroute if the receiver is interested.
1597  */
1598 static void
1599 save_rte(option, dst)
1600 	u_char *option;
1601 	struct in_addr dst;
1602 {
1603 	unsigned olen;
1604 
1605 	olen = option[IPOPT_OLEN];
1606 #ifdef DIAGNOSTIC
1607 	if (ipprintfs)
1608 		printf("save_rte: olen %d\n", olen);
1609 #endif
1610 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1611 		return;
1612 	bcopy(option, ip_srcrt.srcopt, olen);
1613 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1614 	ip_srcrt.dst = dst;
1615 }
1616 
1617 /*
1618  * Retrieve incoming source route for use in replies,
1619  * in the same form used by setsockopt.
1620  * The first hop is placed before the options, will be removed later.
1621  */
1622 struct mbuf *
1623 ip_srcroute()
1624 {
1625 	register struct in_addr *p, *q;
1626 	register struct mbuf *m;
1627 
1628 	if (ip_nhops == 0)
1629 		return ((struct mbuf *)0);
1630 	m = m_get(M_DONTWAIT, MT_HEADER);
1631 	if (m == 0)
1632 		return ((struct mbuf *)0);
1633 
1634 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1635 
1636 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1637 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1638 	    OPTSIZ;
1639 #ifdef DIAGNOSTIC
1640 	if (ipprintfs)
1641 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1642 #endif
1643 
1644 	/*
1645 	 * First save first hop for return route
1646 	 */
1647 	p = &ip_srcrt.route[ip_nhops - 1];
1648 	*(mtod(m, struct in_addr *)) = *p--;
1649 #ifdef DIAGNOSTIC
1650 	if (ipprintfs)
1651 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1652 #endif
1653 
1654 	/*
1655 	 * Copy option fields and padding (nop) to mbuf.
1656 	 */
1657 	ip_srcrt.nop = IPOPT_NOP;
1658 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1659 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1660 	    &ip_srcrt.nop, OPTSIZ);
1661 	q = (struct in_addr *)(mtod(m, caddr_t) +
1662 	    sizeof(struct in_addr) + OPTSIZ);
1663 #undef OPTSIZ
1664 	/*
1665 	 * Record return path as an IP source route,
1666 	 * reversing the path (pointers are now aligned).
1667 	 */
1668 	while (p >= ip_srcrt.route) {
1669 #ifdef DIAGNOSTIC
1670 		if (ipprintfs)
1671 			printf(" %lx", (u_long)ntohl(q->s_addr));
1672 #endif
1673 		*q++ = *p--;
1674 	}
1675 	/*
1676 	 * Last hop goes to final destination.
1677 	 */
1678 	*q = ip_srcrt.dst;
1679 #ifdef DIAGNOSTIC
1680 	if (ipprintfs)
1681 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1682 #endif
1683 	return (m);
1684 }
1685 
1686 /*
1687  * Strip out IP options, at higher
1688  * level protocol in the kernel.
1689  * Second argument is buffer to which options
1690  * will be moved, and return value is their length.
1691  * XXX should be deleted; last arg currently ignored.
1692  */
1693 void
1694 ip_stripoptions(m, mopt)
1695 	register struct mbuf *m;
1696 	struct mbuf *mopt;
1697 {
1698 	register int i;
1699 	struct ip *ip = mtod(m, struct ip *);
1700 	register caddr_t opts;
1701 	int olen;
1702 
1703 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1704 	opts = (caddr_t)(ip + 1);
1705 	i = m->m_len - (sizeof (struct ip) + olen);
1706 	bcopy(opts + olen, opts, (unsigned)i);
1707 	m->m_len -= olen;
1708 	if (m->m_flags & M_PKTHDR)
1709 		m->m_pkthdr.len -= olen;
1710 	ip->ip_v = IPVERSION;
1711 	ip->ip_hl = sizeof(struct ip) >> 2;
1712 }
1713 
1714 u_char inetctlerrmap[PRC_NCMDS] = {
1715 	0,		0,		0,		0,
1716 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1717 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1718 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1719 	0,		0,		EHOSTUNREACH,	0,
1720 	ENOPROTOOPT,	ECONNREFUSED
1721 };
1722 
1723 /*
1724  * Forward a packet.  If some error occurs return the sender
1725  * an icmp packet.  Note we can't always generate a meaningful
1726  * icmp message because icmp doesn't have a large enough repertoire
1727  * of codes and types.
1728  *
1729  * If not forwarding, just drop the packet.  This could be confusing
1730  * if ipforwarding was zero but some routing protocol was advancing
1731  * us as a gateway to somewhere.  However, we must let the routing
1732  * protocol deal with that.
1733  *
1734  * The srcrt parameter indicates whether the packet is being forwarded
1735  * via a source route.
1736  */
1737 static void
1738 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1739 {
1740 	struct ip *ip = mtod(m, struct ip *);
1741 	struct rtentry *rt;
1742 	int error, type = 0, code = 0;
1743 	struct mbuf *mcopy;
1744 	n_long dest;
1745 	struct in_addr pkt_dst;
1746 	struct ifnet *destifp;
1747 #if defined(IPSEC) || defined(FAST_IPSEC)
1748 	struct ifnet dummyifp;
1749 #endif
1750 
1751 	dest = 0;
1752 	/*
1753 	 * Cache the destination address of the packet; this may be
1754 	 * changed by use of 'ipfw fwd'.
1755 	 */
1756 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1757 
1758 #ifdef DIAGNOSTIC
1759 	if (ipprintfs)
1760 		printf("forward: src %lx dst %lx ttl %x\n",
1761 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1762 		    ip->ip_ttl);
1763 #endif
1764 
1765 
1766 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1767 		ipstat.ips_cantforward++;
1768 		m_freem(m);
1769 		return;
1770 	}
1771 #ifdef IPSTEALTH
1772 	if (!ipstealth) {
1773 #endif
1774 		if (ip->ip_ttl <= IPTTLDEC) {
1775 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1776 			    dest, 0);
1777 			return;
1778 		}
1779 #ifdef IPSTEALTH
1780 	}
1781 #endif
1782 
1783 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1784 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1785 		return;
1786 	} else
1787 		rt = ipforward_rt.ro_rt;
1788 
1789 	/*
1790 	 * Save the IP header and at most 8 bytes of the payload,
1791 	 * in case we need to generate an ICMP message to the src.
1792 	 *
1793 	 * XXX this can be optimized a lot by saving the data in a local
1794 	 * buffer on the stack (72 bytes at most), and only allocating the
1795 	 * mbuf if really necessary. The vast majority of the packets
1796 	 * are forwarded without having to send an ICMP back (either
1797 	 * because unnecessary, or because rate limited), so we are
1798 	 * really we are wasting a lot of work here.
1799 	 *
1800 	 * We don't use m_copy() because it might return a reference
1801 	 * to a shared cluster. Both this function and ip_output()
1802 	 * assume exclusive access to the IP header in `m', so any
1803 	 * data in a cluster may change before we reach icmp_error().
1804 	 */
1805 	MGET(mcopy, M_DONTWAIT, m->m_type);
1806 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1807 		/*
1808 		 * It's probably ok if the pkthdr dup fails (because
1809 		 * the deep copy of the tag chain failed), but for now
1810 		 * be conservative and just discard the copy since
1811 		 * code below may some day want the tags.
1812 		 */
1813 		m_free(mcopy);
1814 		mcopy = NULL;
1815 	}
1816 	if (mcopy != NULL) {
1817 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1818 		    (int)ip->ip_len);
1819 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1820 		/*
1821 		 * XXXMAC: Eventually, we may have an explict labeling
1822 		 * point here.
1823 		 */
1824 	}
1825 
1826 #ifdef IPSTEALTH
1827 	if (!ipstealth) {
1828 #endif
1829 		ip->ip_ttl -= IPTTLDEC;
1830 #ifdef IPSTEALTH
1831 	}
1832 #endif
1833 
1834 	/*
1835 	 * If forwarding packet using same interface that it came in on,
1836 	 * perhaps should send a redirect to sender to shortcut a hop.
1837 	 * Only send redirect if source is sending directly to us,
1838 	 * and if packet was not source routed (or has any options).
1839 	 * Also, don't send redirect if forwarding using a default route
1840 	 * or a route modified by a redirect.
1841 	 */
1842 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1843 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1844 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1845 	    ipsendredirects && !srcrt && !next_hop) {
1846 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1847 		u_long src = ntohl(ip->ip_src.s_addr);
1848 
1849 		if (RTA(rt) &&
1850 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1851 		    if (rt->rt_flags & RTF_GATEWAY)
1852 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1853 		    else
1854 			dest = pkt_dst.s_addr;
1855 		    /* Router requirements says to only send host redirects */
1856 		    type = ICMP_REDIRECT;
1857 		    code = ICMP_REDIRECT_HOST;
1858 #ifdef DIAGNOSTIC
1859 		    if (ipprintfs)
1860 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1861 #endif
1862 		}
1863 	}
1864 
1865     {
1866 	struct m_hdr tag;
1867 
1868 	if (next_hop) {
1869 		/* Pass IPFORWARD info if available */
1870 
1871 		tag.mh_type = MT_TAG;
1872 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1873 		tag.mh_data = (caddr_t)next_hop;
1874 		tag.mh_next = m;
1875 		m = (struct mbuf *)&tag;
1876 	}
1877 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1878 			  IP_FORWARDING, 0, NULL);
1879     }
1880 	if (error)
1881 		ipstat.ips_cantforward++;
1882 	else {
1883 		ipstat.ips_forward++;
1884 		if (type)
1885 			ipstat.ips_redirectsent++;
1886 		else {
1887 			if (mcopy) {
1888 				ipflow_create(&ipforward_rt, mcopy);
1889 				m_freem(mcopy);
1890 			}
1891 			return;
1892 		}
1893 	}
1894 	if (mcopy == NULL)
1895 		return;
1896 	destifp = NULL;
1897 
1898 	switch (error) {
1899 
1900 	case 0:				/* forwarded, but need redirect */
1901 		/* type, code set above */
1902 		break;
1903 
1904 	case ENETUNREACH:		/* shouldn't happen, checked above */
1905 	case EHOSTUNREACH:
1906 	case ENETDOWN:
1907 	case EHOSTDOWN:
1908 	default:
1909 		type = ICMP_UNREACH;
1910 		code = ICMP_UNREACH_HOST;
1911 		break;
1912 
1913 	case EMSGSIZE:
1914 		type = ICMP_UNREACH;
1915 		code = ICMP_UNREACH_NEEDFRAG;
1916 #ifdef IPSEC
1917 		/*
1918 		 * If the packet is routed over IPsec tunnel, tell the
1919 		 * originator the tunnel MTU.
1920 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1921 		 * XXX quickhack!!!
1922 		 */
1923 		if (ipforward_rt.ro_rt) {
1924 			struct secpolicy *sp = NULL;
1925 			int ipsecerror;
1926 			int ipsechdr;
1927 			struct route *ro;
1928 
1929 			sp = ipsec4_getpolicybyaddr(mcopy,
1930 						    IPSEC_DIR_OUTBOUND,
1931 			                            IP_FORWARDING,
1932 			                            &ipsecerror);
1933 
1934 			if (sp == NULL)
1935 				destifp = ipforward_rt.ro_rt->rt_ifp;
1936 			else {
1937 				/* count IPsec header size */
1938 				ipsechdr = ipsec4_hdrsiz(mcopy,
1939 							 IPSEC_DIR_OUTBOUND,
1940 							 NULL);
1941 
1942 				/*
1943 				 * find the correct route for outer IPv4
1944 				 * header, compute tunnel MTU.
1945 				 *
1946 				 * XXX BUG ALERT
1947 				 * The "dummyifp" code relies upon the fact
1948 				 * that icmp_error() touches only ifp->if_mtu.
1949 				 */
1950 				/*XXX*/
1951 				destifp = NULL;
1952 				if (sp->req != NULL
1953 				 && sp->req->sav != NULL
1954 				 && sp->req->sav->sah != NULL) {
1955 					ro = &sp->req->sav->sah->sa_route;
1956 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1957 						dummyifp.if_mtu =
1958 						    ro->ro_rt->rt_ifp->if_mtu;
1959 						dummyifp.if_mtu -= ipsechdr;
1960 						destifp = &dummyifp;
1961 					}
1962 				}
1963 
1964 				key_freesp(sp);
1965 			}
1966 		}
1967 #elif FAST_IPSEC
1968 		/*
1969 		 * If the packet is routed over IPsec tunnel, tell the
1970 		 * originator the tunnel MTU.
1971 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1972 		 * XXX quickhack!!!
1973 		 */
1974 		if (ipforward_rt.ro_rt) {
1975 			struct secpolicy *sp = NULL;
1976 			int ipsecerror;
1977 			int ipsechdr;
1978 			struct route *ro;
1979 
1980 			sp = ipsec_getpolicybyaddr(mcopy,
1981 						   IPSEC_DIR_OUTBOUND,
1982 			                           IP_FORWARDING,
1983 			                           &ipsecerror);
1984 
1985 			if (sp == NULL)
1986 				destifp = ipforward_rt.ro_rt->rt_ifp;
1987 			else {
1988 				/* count IPsec header size */
1989 				ipsechdr = ipsec4_hdrsiz(mcopy,
1990 							 IPSEC_DIR_OUTBOUND,
1991 							 NULL);
1992 
1993 				/*
1994 				 * find the correct route for outer IPv4
1995 				 * header, compute tunnel MTU.
1996 				 *
1997 				 * XXX BUG ALERT
1998 				 * The "dummyifp" code relies upon the fact
1999 				 * that icmp_error() touches only ifp->if_mtu.
2000 				 */
2001 				/*XXX*/
2002 				destifp = NULL;
2003 				if (sp->req != NULL
2004 				 && sp->req->sav != NULL
2005 				 && sp->req->sav->sah != NULL) {
2006 					ro = &sp->req->sav->sah->sa_route;
2007 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2008 						dummyifp.if_mtu =
2009 						    ro->ro_rt->rt_ifp->if_mtu;
2010 						dummyifp.if_mtu -= ipsechdr;
2011 						destifp = &dummyifp;
2012 					}
2013 				}
2014 
2015 				KEY_FREESP(&sp);
2016 			}
2017 		}
2018 #else /* !IPSEC && !FAST_IPSEC */
2019 		if (ipforward_rt.ro_rt)
2020 			destifp = ipforward_rt.ro_rt->rt_ifp;
2021 #endif /*IPSEC*/
2022 		ipstat.ips_cantfrag++;
2023 		break;
2024 
2025 	case ENOBUFS:
2026 		/*
2027 		 * A router should not generate ICMP_SOURCEQUENCH as
2028 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2029 		 * Source quench could be a big problem under DoS attacks,
2030 		 * or if the underlying interface is rate-limited.
2031 		 * Those who need source quench packets may re-enable them
2032 		 * via the net.inet.ip.sendsourcequench sysctl.
2033 		 */
2034 		if (ip_sendsourcequench == 0) {
2035 			m_freem(mcopy);
2036 			return;
2037 		} else {
2038 			type = ICMP_SOURCEQUENCH;
2039 			code = 0;
2040 		}
2041 		break;
2042 
2043 	case EACCES:			/* ipfw denied packet */
2044 		m_freem(mcopy);
2045 		return;
2046 	}
2047 	icmp_error(mcopy, type, code, dest, destifp);
2048 }
2049 
2050 void
2051 ip_savecontrol(inp, mp, ip, m)
2052 	register struct inpcb *inp;
2053 	register struct mbuf **mp;
2054 	register struct ip *ip;
2055 	register struct mbuf *m;
2056 {
2057 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2058 		struct timeval tv;
2059 
2060 		microtime(&tv);
2061 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2062 			SCM_TIMESTAMP, SOL_SOCKET);
2063 		if (*mp)
2064 			mp = &(*mp)->m_next;
2065 	}
2066 	if (inp->inp_flags & INP_RECVDSTADDR) {
2067 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2068 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2069 		if (*mp)
2070 			mp = &(*mp)->m_next;
2071 	}
2072 	if (inp->inp_flags & INP_RECVTTL) {
2073 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2074 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2075 		if (*mp)
2076 			mp = &(*mp)->m_next;
2077 	}
2078 #ifdef notyet
2079 	/* XXX
2080 	 * Moving these out of udp_input() made them even more broken
2081 	 * than they already were.
2082 	 */
2083 	/* options were tossed already */
2084 	if (inp->inp_flags & INP_RECVOPTS) {
2085 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2086 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2087 		if (*mp)
2088 			mp = &(*mp)->m_next;
2089 	}
2090 	/* ip_srcroute doesn't do what we want here, need to fix */
2091 	if (inp->inp_flags & INP_RECVRETOPTS) {
2092 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2093 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2094 		if (*mp)
2095 			mp = &(*mp)->m_next;
2096 	}
2097 #endif
2098 	if (inp->inp_flags & INP_RECVIF) {
2099 		struct ifnet *ifp;
2100 		struct sdlbuf {
2101 			struct sockaddr_dl sdl;
2102 			u_char	pad[32];
2103 		} sdlbuf;
2104 		struct sockaddr_dl *sdp;
2105 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2106 
2107 		if (((ifp = m->m_pkthdr.rcvif))
2108 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2109 			sdp = (struct sockaddr_dl *)
2110 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2111 			/*
2112 			 * Change our mind and don't try copy.
2113 			 */
2114 			if ((sdp->sdl_family != AF_LINK)
2115 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2116 				goto makedummy;
2117 			}
2118 			bcopy(sdp, sdl2, sdp->sdl_len);
2119 		} else {
2120 makedummy:
2121 			sdl2->sdl_len
2122 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2123 			sdl2->sdl_family = AF_LINK;
2124 			sdl2->sdl_index = 0;
2125 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2126 		}
2127 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2128 			IP_RECVIF, IPPROTO_IP);
2129 		if (*mp)
2130 			mp = &(*mp)->m_next;
2131 	}
2132 }
2133 
2134 /*
2135  * XXX these routines are called from the upper part of the kernel.
2136  * They need to be locked when we remove Giant.
2137  *
2138  * They could also be moved to ip_mroute.c, since all the RSVP
2139  *  handling is done there already.
2140  */
2141 static int ip_rsvp_on;
2142 struct socket *ip_rsvpd;
2143 int
2144 ip_rsvp_init(struct socket *so)
2145 {
2146 	if (so->so_type != SOCK_RAW ||
2147 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2148 		return EOPNOTSUPP;
2149 
2150 	if (ip_rsvpd != NULL)
2151 		return EADDRINUSE;
2152 
2153 	ip_rsvpd = so;
2154 	/*
2155 	 * This may seem silly, but we need to be sure we don't over-increment
2156 	 * the RSVP counter, in case something slips up.
2157 	 */
2158 	if (!ip_rsvp_on) {
2159 		ip_rsvp_on = 1;
2160 		rsvp_on++;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 int
2167 ip_rsvp_done(void)
2168 {
2169 	ip_rsvpd = NULL;
2170 	/*
2171 	 * This may seem silly, but we need to be sure we don't over-decrement
2172 	 * the RSVP counter, in case something slips up.
2173 	 */
2174 	if (ip_rsvp_on) {
2175 		ip_rsvp_on = 0;
2176 		rsvp_on--;
2177 	}
2178 	return 0;
2179 }
2180 
2181 void
2182 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2183 {
2184 	if (rsvp_input_p) { /* call the real one if loaded */
2185 		rsvp_input_p(m, off);
2186 		return;
2187 	}
2188 
2189 	/* Can still get packets with rsvp_on = 0 if there is a local member
2190 	 * of the group to which the RSVP packet is addressed.  But in this
2191 	 * case we want to throw the packet away.
2192 	 */
2193 
2194 	if (!rsvp_on) {
2195 		m_freem(m);
2196 		return;
2197 	}
2198 
2199 	if (ip_rsvpd != NULL) {
2200 		rip_input(m, off);
2201 		return;
2202 	}
2203 	/* Drop the packet */
2204 	m_freem(m);
2205 }
2206