xref: /freebsd/sys/netinet/ip_input.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_mac.h"
41 #include "opt_carp.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/rwlock.h>
55 #include <sys/syslog.h>
56 #include <sys/sysctl.h>
57 #include <sys/vimage.h>
58 
59 #include <net/pfil.h>
60 #include <net/if.h>
61 #include <net/if_types.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/route.h>
65 #include <net/netisr.h>
66 #include <net/vnet.h>
67 #include <net/flowtable.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <netinet/ip_options.h>
77 #include <machine/in_cksum.h>
78 #include <netinet/vinet.h>
79 #ifdef DEV_CARP
80 #include <netinet/ip_carp.h>
81 #endif
82 #ifdef IPSEC
83 #include <netinet/ip_ipsec.h>
84 #endif /* IPSEC */
85 
86 #include <sys/socketvar.h>
87 
88 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
89 #include <netinet/ip_fw.h>
90 #include <netinet/ip_dummynet.h>
91 
92 #include <security/mac/mac_framework.h>
93 
94 #ifdef CTASSERT
95 CTASSERT(sizeof(struct ip) == 20);
96 #endif
97 
98 #ifndef VIMAGE
99 #ifndef VIMAGE_GLOBALS
100 struct vnet_inet vnet_inet_0;
101 #endif
102 #endif
103 
104 #ifdef VIMAGE_GLOBALS
105 static int	ipsendredirects;
106 static int	ip_checkinterface;
107 static int	ip_keepfaith;
108 static int	ip_sendsourcequench;
109 int	ip_defttl;
110 int	ip_do_randomid;
111 int	ipforwarding;
112 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
113 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
114 u_long 	in_ifaddrhmask;				/* mask for hash table */
115 struct ipstat ipstat;
116 static int ip_rsvp_on;
117 struct socket *ip_rsvpd;
118 int	rsvp_on;
119 static struct ipqhead ipq[IPREASS_NHASH];
120 static int	maxnipq;	/* Administrative limit on # reass queues. */
121 static int	maxfragsperpacket;
122 int	ipstealth;
123 static int	nipq;	/* Total # of reass queues */
124 #endif
125 
126 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
127     forwarding, CTLFLAG_RW, ipforwarding, 0,
128     "Enable IP forwarding between interfaces");
129 
130 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
131     redirect, CTLFLAG_RW, ipsendredirects, 0,
132     "Enable sending IP redirects");
133 
134 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
135     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
136 
137 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
138     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
139     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
140 
141 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
142     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
143     "Enable the transmission of source quench packets");
144 
145 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
146     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
147 
148 /*
149  * XXX - Setting ip_checkinterface mostly implements the receive side of
150  * the Strong ES model described in RFC 1122, but since the routing table
151  * and transmit implementation do not implement the Strong ES model,
152  * setting this to 1 results in an odd hybrid.
153  *
154  * XXX - ip_checkinterface currently must be disabled if you use ipnat
155  * to translate the destination address to another local interface.
156  *
157  * XXX - ip_checkinterface must be disabled if you add IP aliases
158  * to the loopback interface instead of the interface where the
159  * packets for those addresses are received.
160  */
161 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
162     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
163     "Verify packet arrives on correct interface");
164 
165 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
166 
167 static struct	ifqueue ipintrq;
168 static int	ipqmaxlen = IFQ_MAXLEN;
169 
170 extern	struct domain inetdomain;
171 extern	struct protosw inetsw[];
172 u_char	ip_protox[IPPROTO_MAX];
173 
174 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
175     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
176 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
177     &ipintrq.ifq_drops, 0,
178     "Number of packets dropped from the IP input queue");
179 
180 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
181     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
182 
183 #ifdef VIMAGE_GLOBALS
184 static uma_zone_t ipq_zone;
185 #endif
186 static struct mtx ipqlock;
187 
188 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
189 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
190 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
191 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
192 
193 static void	maxnipq_update(void);
194 static void	ipq_zone_change(void *);
195 
196 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
197     CTLFLAG_RD, nipq, 0,
198     "Current number of IPv4 fragment reassembly queue entries");
199 
200 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
201     CTLFLAG_RW, maxfragsperpacket, 0,
202     "Maximum number of IPv4 fragments allowed per packet");
203 
204 struct callout	ipport_tick_callout;
205 
206 #ifdef IPCTL_DEFMTU
207 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
208     &ip_mtu, 0, "Default MTU");
209 #endif
210 
211 #ifdef IPSTEALTH
212 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
213     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
214 #endif
215 static int ip_output_flowtable_size = 2048;
216 TUNABLE_INT("net.inet.ip.output_flowtable_size", &ip_output_flowtable_size);
217 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, output_flowtable_size,
218     CTLFLAG_RDTUN, ip_output_flowtable_size, 2048,
219     "number of entries in the per-cpu output flow caches");
220 
221 /*
222  * ipfw_ether and ipfw_bridge hooks.
223  * XXX: Temporary until those are converted to pfil_hooks as well.
224  */
225 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
226 ip_dn_io_t *ip_dn_io_ptr = NULL;
227 #ifdef VIMAGE_GLOBALS
228 int fw_one_pass;
229 #endif
230 struct flowtable *ip_ft;
231 
232 static void	ip_freef(struct ipqhead *, struct ipq *);
233 
234 #ifndef VIMAGE_GLOBALS
235 static void vnet_inet_register(void);
236 
237 static const vnet_modinfo_t vnet_inet_modinfo = {
238 	.vmi_id		= VNET_MOD_INET,
239 	.vmi_name	= "inet",
240 };
241 
242 static void vnet_inet_register()
243 {
244 
245 	vnet_mod_register(&vnet_inet_modinfo);
246 }
247 
248 SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
249 #endif
250 
251 /*
252  * IP initialization: fill in IP protocol switch table.
253  * All protocols not implemented in kernel go to raw IP protocol handler.
254  */
255 void
256 ip_init(void)
257 {
258 	INIT_VNET_INET(curvnet);
259 	struct protosw *pr;
260 	int i;
261 
262 	V_ipsendredirects = 1; /* XXX */
263 	V_ip_checkinterface = 0;
264 	V_ip_keepfaith = 0;
265 	V_ip_sendsourcequench = 0;
266 	V_rsvp_on = 0;
267 	V_ip_defttl = IPDEFTTL;
268 	V_ip_do_randomid = 0;
269 	V_ip_id = time_second & 0xffff;
270 	V_ipforwarding = 0;
271 	V_ipstealth = 0;
272 	V_nipq = 0;	/* Total # of reass queues */
273 
274 	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
275 	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
276 	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
277 	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
278 	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
279 	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
280 	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
281 	V_ipport_reservedlow = 0;
282 	V_ipport_randomized = 1;	/* user controlled via sysctl */
283 	V_ipport_randomcps = 10;	/* user controlled via sysctl */
284 	V_ipport_randomtime = 45;	/* user controlled via sysctl */
285 	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
286 
287 	V_fw_one_pass = 1;
288 
289 #ifdef NOTYET
290 	/* XXX global static but not instantiated in this file */
291 	V_ipfastforward_active = 0;
292 	V_subnetsarelocal = 0;
293 	V_sameprefixcarponly = 0;
294 #endif
295 
296 	TAILQ_INIT(&V_in_ifaddrhead);
297 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
298 
299 	/* Initialize IP reassembly queue. */
300 	for (i = 0; i < IPREASS_NHASH; i++)
301 		TAILQ_INIT(&V_ipq[i]);
302 	V_maxnipq = nmbclusters / 32;
303 	V_maxfragsperpacket = 16;
304 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
305 	    NULL, UMA_ALIGN_PTR, 0);
306 	maxnipq_update();
307 
308 	/* Skip initialization of globals for non-default instances. */
309 	if (!IS_DEFAULT_VNET(curvnet))
310 		return;
311 
312 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
313 	if (pr == NULL)
314 		panic("ip_init: PF_INET not found");
315 
316 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
317 	for (i = 0; i < IPPROTO_MAX; i++)
318 		ip_protox[i] = pr - inetsw;
319 	/*
320 	 * Cycle through IP protocols and put them into the appropriate place
321 	 * in ip_protox[].
322 	 */
323 	for (pr = inetdomain.dom_protosw;
324 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
325 		if (pr->pr_domain->dom_family == PF_INET &&
326 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
327 			/* Be careful to only index valid IP protocols. */
328 			if (pr->pr_protocol < IPPROTO_MAX)
329 				ip_protox[pr->pr_protocol] = pr - inetsw;
330 		}
331 
332 	/* Initialize packet filter hooks. */
333 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
334 	inet_pfil_hook.ph_af = AF_INET;
335 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
336 		printf("%s: WARNING: unable to register pfil hook, "
337 			"error %d\n", __func__, i);
338 
339 	/* Start ipport_tick. */
340 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
341 	ipport_tick(NULL);
342 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
343 		SHUTDOWN_PRI_DEFAULT);
344 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
345 		NULL, EVENTHANDLER_PRI_ANY);
346 
347 	/* Initialize various other remaining things. */
348 	IPQ_LOCK_INIT();
349 	ipintrq.ifq_maxlen = ipqmaxlen;
350 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
351 	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
352 
353 	ip_ft = flowtable_alloc(ip_output_flowtable_size, FL_PCPU);
354 }
355 
356 void
357 ip_fini(void *xtp)
358 {
359 
360 	callout_stop(&ipport_tick_callout);
361 }
362 
363 /*
364  * Ip input routine.  Checksum and byte swap header.  If fragmented
365  * try to reassemble.  Process options.  Pass to next level.
366  */
367 void
368 ip_input(struct mbuf *m)
369 {
370 	INIT_VNET_INET(curvnet);
371 	struct ip *ip = NULL;
372 	struct in_ifaddr *ia = NULL;
373 	struct ifaddr *ifa;
374 	int    checkif, hlen = 0;
375 	u_short sum;
376 	int dchg = 0;				/* dest changed after fw */
377 	struct in_addr odst;			/* original dst address */
378 
379 	M_ASSERTPKTHDR(m);
380 
381 	if (m->m_flags & M_FASTFWD_OURS) {
382 		/*
383 		 * Firewall or NAT changed destination to local.
384 		 * We expect ip_len and ip_off to be in host byte order.
385 		 */
386 		m->m_flags &= ~M_FASTFWD_OURS;
387 		/* Set up some basics that will be used later. */
388 		ip = mtod(m, struct ip *);
389 		hlen = ip->ip_hl << 2;
390 		goto ours;
391 	}
392 
393 	IPSTAT_INC(ips_total);
394 
395 	if (m->m_pkthdr.len < sizeof(struct ip))
396 		goto tooshort;
397 
398 	if (m->m_len < sizeof (struct ip) &&
399 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
400 		IPSTAT_INC(ips_toosmall);
401 		return;
402 	}
403 	ip = mtod(m, struct ip *);
404 
405 	if (ip->ip_v != IPVERSION) {
406 		IPSTAT_INC(ips_badvers);
407 		goto bad;
408 	}
409 
410 	hlen = ip->ip_hl << 2;
411 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
412 		IPSTAT_INC(ips_badhlen);
413 		goto bad;
414 	}
415 	if (hlen > m->m_len) {
416 		if ((m = m_pullup(m, hlen)) == NULL) {
417 			IPSTAT_INC(ips_badhlen);
418 			return;
419 		}
420 		ip = mtod(m, struct ip *);
421 	}
422 
423 	/* 127/8 must not appear on wire - RFC1122 */
424 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
425 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
426 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
427 			IPSTAT_INC(ips_badaddr);
428 			goto bad;
429 		}
430 	}
431 
432 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
433 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
434 	} else {
435 		if (hlen == sizeof(struct ip)) {
436 			sum = in_cksum_hdr(ip);
437 		} else {
438 			sum = in_cksum(m, hlen);
439 		}
440 	}
441 	if (sum) {
442 		IPSTAT_INC(ips_badsum);
443 		goto bad;
444 	}
445 
446 #ifdef ALTQ
447 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
448 		/* packet is dropped by traffic conditioner */
449 		return;
450 #endif
451 
452 	/*
453 	 * Convert fields to host representation.
454 	 */
455 	ip->ip_len = ntohs(ip->ip_len);
456 	if (ip->ip_len < hlen) {
457 		IPSTAT_INC(ips_badlen);
458 		goto bad;
459 	}
460 	ip->ip_off = ntohs(ip->ip_off);
461 
462 	/*
463 	 * Check that the amount of data in the buffers
464 	 * is as at least much as the IP header would have us expect.
465 	 * Trim mbufs if longer than we expect.
466 	 * Drop packet if shorter than we expect.
467 	 */
468 	if (m->m_pkthdr.len < ip->ip_len) {
469 tooshort:
470 		IPSTAT_INC(ips_tooshort);
471 		goto bad;
472 	}
473 	if (m->m_pkthdr.len > ip->ip_len) {
474 		if (m->m_len == m->m_pkthdr.len) {
475 			m->m_len = ip->ip_len;
476 			m->m_pkthdr.len = ip->ip_len;
477 		} else
478 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
479 	}
480 #ifdef IPSEC
481 	/*
482 	 * Bypass packet filtering for packets from a tunnel (gif).
483 	 */
484 	if (ip_ipsec_filtertunnel(m))
485 		goto passin;
486 #endif /* IPSEC */
487 
488 	/*
489 	 * Run through list of hooks for input packets.
490 	 *
491 	 * NB: Beware of the destination address changing (e.g.
492 	 *     by NAT rewriting).  When this happens, tell
493 	 *     ip_forward to do the right thing.
494 	 */
495 
496 	/* Jump over all PFIL processing if hooks are not active. */
497 	if (!PFIL_HOOKED(&inet_pfil_hook))
498 		goto passin;
499 
500 	odst = ip->ip_dst;
501 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
502 	    PFIL_IN, NULL) != 0)
503 		return;
504 	if (m == NULL)			/* consumed by filter */
505 		return;
506 
507 	ip = mtod(m, struct ip *);
508 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
509 
510 #ifdef IPFIREWALL_FORWARD
511 	if (m->m_flags & M_FASTFWD_OURS) {
512 		m->m_flags &= ~M_FASTFWD_OURS;
513 		goto ours;
514 	}
515 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
516 		/*
517 		 * Directly ship on the packet.  This allows to forward packets
518 		 * that were destined for us to some other directly connected
519 		 * host.
520 		 */
521 		ip_forward(m, dchg);
522 		return;
523 	}
524 #endif /* IPFIREWALL_FORWARD */
525 
526 passin:
527 	/*
528 	 * Process options and, if not destined for us,
529 	 * ship it on.  ip_dooptions returns 1 when an
530 	 * error was detected (causing an icmp message
531 	 * to be sent and the original packet to be freed).
532 	 */
533 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
534 		return;
535 
536         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
537          * matter if it is destined to another node, or whether it is
538          * a multicast one, RSVP wants it! and prevents it from being forwarded
539          * anywhere else. Also checks if the rsvp daemon is running before
540 	 * grabbing the packet.
541          */
542 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
543 		goto ours;
544 
545 	/*
546 	 * Check our list of addresses, to see if the packet is for us.
547 	 * If we don't have any addresses, assume any unicast packet
548 	 * we receive might be for us (and let the upper layers deal
549 	 * with it).
550 	 */
551 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
552 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
553 		goto ours;
554 
555 	/*
556 	 * Enable a consistency check between the destination address
557 	 * and the arrival interface for a unicast packet (the RFC 1122
558 	 * strong ES model) if IP forwarding is disabled and the packet
559 	 * is not locally generated and the packet is not subject to
560 	 * 'ipfw fwd'.
561 	 *
562 	 * XXX - Checking also should be disabled if the destination
563 	 * address is ipnat'ed to a different interface.
564 	 *
565 	 * XXX - Checking is incompatible with IP aliases added
566 	 * to the loopback interface instead of the interface where
567 	 * the packets are received.
568 	 *
569 	 * XXX - This is the case for carp vhost IPs as well so we
570 	 * insert a workaround. If the packet got here, we already
571 	 * checked with carp_iamatch() and carp_forus().
572 	 */
573 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
574 	    m->m_pkthdr.rcvif != NULL &&
575 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
576 #ifdef DEV_CARP
577 	    !m->m_pkthdr.rcvif->if_carp &&
578 #endif
579 	    (dchg == 0);
580 
581 	/*
582 	 * Check for exact addresses in the hash bucket.
583 	 */
584 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
585 		/*
586 		 * If the address matches, verify that the packet
587 		 * arrived via the correct interface if checking is
588 		 * enabled.
589 		 */
590 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
591 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
592 			goto ours;
593 	}
594 	/*
595 	 * Check for broadcast addresses.
596 	 *
597 	 * Only accept broadcast packets that arrive via the matching
598 	 * interface.  Reception of forwarded directed broadcasts would
599 	 * be handled via ip_forward() and ether_output() with the loopback
600 	 * into the stack for SIMPLEX interfaces handled by ether_output().
601 	 */
602 	if (m->m_pkthdr.rcvif != NULL &&
603 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
604 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
605 			if (ifa->ifa_addr->sa_family != AF_INET)
606 				continue;
607 			ia = ifatoia(ifa);
608 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
609 			    ip->ip_dst.s_addr)
610 				goto ours;
611 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
612 				goto ours;
613 #ifdef BOOTP_COMPAT
614 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
615 				goto ours;
616 #endif
617 		}
618 	}
619 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
620 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
621 		IPSTAT_INC(ips_cantforward);
622 		m_freem(m);
623 		return;
624 	}
625 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
626 		if (V_ip_mrouter) {
627 			/*
628 			 * If we are acting as a multicast router, all
629 			 * incoming multicast packets are passed to the
630 			 * kernel-level multicast forwarding function.
631 			 * The packet is returned (relatively) intact; if
632 			 * ip_mforward() returns a non-zero value, the packet
633 			 * must be discarded, else it may be accepted below.
634 			 */
635 			if (ip_mforward &&
636 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
637 				IPSTAT_INC(ips_cantforward);
638 				m_freem(m);
639 				return;
640 			}
641 
642 			/*
643 			 * The process-level routing daemon needs to receive
644 			 * all multicast IGMP packets, whether or not this
645 			 * host belongs to their destination groups.
646 			 */
647 			if (ip->ip_p == IPPROTO_IGMP)
648 				goto ours;
649 			IPSTAT_INC(ips_forward);
650 		}
651 		/*
652 		 * Assume the packet is for us, to avoid prematurely taking
653 		 * a lock on the in_multi hash. Protocols must perform
654 		 * their own filtering and update statistics accordingly.
655 		 */
656 		goto ours;
657 	}
658 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
659 		goto ours;
660 	if (ip->ip_dst.s_addr == INADDR_ANY)
661 		goto ours;
662 
663 	/*
664 	 * FAITH(Firewall Aided Internet Translator)
665 	 */
666 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
667 		if (V_ip_keepfaith) {
668 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
669 				goto ours;
670 		}
671 		m_freem(m);
672 		return;
673 	}
674 
675 	/*
676 	 * Not for us; forward if possible and desirable.
677 	 */
678 	if (V_ipforwarding == 0) {
679 		IPSTAT_INC(ips_cantforward);
680 		m_freem(m);
681 	} else {
682 #ifdef IPSEC
683 		if (ip_ipsec_fwd(m))
684 			goto bad;
685 #endif /* IPSEC */
686 		ip_forward(m, dchg);
687 	}
688 	return;
689 
690 ours:
691 #ifdef IPSTEALTH
692 	/*
693 	 * IPSTEALTH: Process non-routing options only
694 	 * if the packet is destined for us.
695 	 */
696 	if (V_ipstealth && hlen > sizeof (struct ip) &&
697 	    ip_dooptions(m, 1))
698 		return;
699 #endif /* IPSTEALTH */
700 
701 	/* Count the packet in the ip address stats */
702 	if (ia != NULL) {
703 		ia->ia_ifa.if_ipackets++;
704 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
705 	}
706 
707 	/*
708 	 * Attempt reassembly; if it succeeds, proceed.
709 	 * ip_reass() will return a different mbuf.
710 	 */
711 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
712 		m = ip_reass(m);
713 		if (m == NULL)
714 			return;
715 		ip = mtod(m, struct ip *);
716 		/* Get the header length of the reassembled packet */
717 		hlen = ip->ip_hl << 2;
718 	}
719 
720 	/*
721 	 * Further protocols expect the packet length to be w/o the
722 	 * IP header.
723 	 */
724 	ip->ip_len -= hlen;
725 
726 #ifdef IPSEC
727 	/*
728 	 * enforce IPsec policy checking if we are seeing last header.
729 	 * note that we do not visit this with protocols with pcb layer
730 	 * code - like udp/tcp/raw ip.
731 	 */
732 	if (ip_ipsec_input(m))
733 		goto bad;
734 #endif /* IPSEC */
735 
736 	/*
737 	 * Switch out to protocol's input routine.
738 	 */
739 	IPSTAT_INC(ips_delivered);
740 
741 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
742 	return;
743 bad:
744 	m_freem(m);
745 }
746 
747 /*
748  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
749  * max has slightly different semantics than the sysctl, for historical
750  * reasons.
751  */
752 static void
753 maxnipq_update(void)
754 {
755 	INIT_VNET_INET(curvnet);
756 
757 	/*
758 	 * -1 for unlimited allocation.
759 	 */
760 	if (V_maxnipq < 0)
761 		uma_zone_set_max(V_ipq_zone, 0);
762 	/*
763 	 * Positive number for specific bound.
764 	 */
765 	if (V_maxnipq > 0)
766 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
767 	/*
768 	 * Zero specifies no further fragment queue allocation -- set the
769 	 * bound very low, but rely on implementation elsewhere to actually
770 	 * prevent allocation and reclaim current queues.
771 	 */
772 	if (V_maxnipq == 0)
773 		uma_zone_set_max(V_ipq_zone, 1);
774 }
775 
776 static void
777 ipq_zone_change(void *tag)
778 {
779 	INIT_VNET_INET(curvnet);
780 
781 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
782 		V_maxnipq = nmbclusters / 32;
783 		maxnipq_update();
784 	}
785 }
786 
787 static int
788 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
789 {
790 	INIT_VNET_INET(curvnet);
791 	int error, i;
792 
793 	i = V_maxnipq;
794 	error = sysctl_handle_int(oidp, &i, 0, req);
795 	if (error || !req->newptr)
796 		return (error);
797 
798 	/*
799 	 * XXXRW: Might be a good idea to sanity check the argument and place
800 	 * an extreme upper bound.
801 	 */
802 	if (i < -1)
803 		return (EINVAL);
804 	V_maxnipq = i;
805 	maxnipq_update();
806 	return (0);
807 }
808 
809 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
810     NULL, 0, sysctl_maxnipq, "I",
811     "Maximum number of IPv4 fragment reassembly queue entries");
812 
813 /*
814  * Take incoming datagram fragment and try to reassemble it into
815  * whole datagram.  If the argument is the first fragment or one
816  * in between the function will return NULL and store the mbuf
817  * in the fragment chain.  If the argument is the last fragment
818  * the packet will be reassembled and the pointer to the new
819  * mbuf returned for further processing.  Only m_tags attached
820  * to the first packet/fragment are preserved.
821  * The IP header is *NOT* adjusted out of iplen.
822  */
823 struct mbuf *
824 ip_reass(struct mbuf *m)
825 {
826 	INIT_VNET_INET(curvnet);
827 	struct ip *ip;
828 	struct mbuf *p, *q, *nq, *t;
829 	struct ipq *fp = NULL;
830 	struct ipqhead *head;
831 	int i, hlen, next;
832 	u_int8_t ecn, ecn0;
833 	u_short hash;
834 
835 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
836 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
837 		IPSTAT_INC(ips_fragments);
838 		IPSTAT_INC(ips_fragdropped);
839 		m_freem(m);
840 		return (NULL);
841 	}
842 
843 	ip = mtod(m, struct ip *);
844 	hlen = ip->ip_hl << 2;
845 
846 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
847 	head = &V_ipq[hash];
848 	IPQ_LOCK();
849 
850 	/*
851 	 * Look for queue of fragments
852 	 * of this datagram.
853 	 */
854 	TAILQ_FOREACH(fp, head, ipq_list)
855 		if (ip->ip_id == fp->ipq_id &&
856 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
857 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
858 #ifdef MAC
859 		    mac_ipq_match(m, fp) &&
860 #endif
861 		    ip->ip_p == fp->ipq_p)
862 			goto found;
863 
864 	fp = NULL;
865 
866 	/*
867 	 * Attempt to trim the number of allocated fragment queues if it
868 	 * exceeds the administrative limit.
869 	 */
870 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
871 		/*
872 		 * drop something from the tail of the current queue
873 		 * before proceeding further
874 		 */
875 		struct ipq *q = TAILQ_LAST(head, ipqhead);
876 		if (q == NULL) {   /* gak */
877 			for (i = 0; i < IPREASS_NHASH; i++) {
878 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
879 				if (r) {
880 					IPSTAT_ADD(ips_fragtimeout,
881 					    r->ipq_nfrags);
882 					ip_freef(&V_ipq[i], r);
883 					break;
884 				}
885 			}
886 		} else {
887 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
888 			ip_freef(head, q);
889 		}
890 	}
891 
892 found:
893 	/*
894 	 * Adjust ip_len to not reflect header,
895 	 * convert offset of this to bytes.
896 	 */
897 	ip->ip_len -= hlen;
898 	if (ip->ip_off & IP_MF) {
899 		/*
900 		 * Make sure that fragments have a data length
901 		 * that's a non-zero multiple of 8 bytes.
902 		 */
903 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
904 			IPSTAT_INC(ips_toosmall); /* XXX */
905 			goto dropfrag;
906 		}
907 		m->m_flags |= M_FRAG;
908 	} else
909 		m->m_flags &= ~M_FRAG;
910 	ip->ip_off <<= 3;
911 
912 
913 	/*
914 	 * Attempt reassembly; if it succeeds, proceed.
915 	 * ip_reass() will return a different mbuf.
916 	 */
917 	IPSTAT_INC(ips_fragments);
918 	m->m_pkthdr.header = ip;
919 
920 	/* Previous ip_reass() started here. */
921 	/*
922 	 * Presence of header sizes in mbufs
923 	 * would confuse code below.
924 	 */
925 	m->m_data += hlen;
926 	m->m_len -= hlen;
927 
928 	/*
929 	 * If first fragment to arrive, create a reassembly queue.
930 	 */
931 	if (fp == NULL) {
932 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
933 		if (fp == NULL)
934 			goto dropfrag;
935 #ifdef MAC
936 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
937 			uma_zfree(V_ipq_zone, fp);
938 			fp = NULL;
939 			goto dropfrag;
940 		}
941 		mac_ipq_create(m, fp);
942 #endif
943 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
944 		V_nipq++;
945 		fp->ipq_nfrags = 1;
946 		fp->ipq_ttl = IPFRAGTTL;
947 		fp->ipq_p = ip->ip_p;
948 		fp->ipq_id = ip->ip_id;
949 		fp->ipq_src = ip->ip_src;
950 		fp->ipq_dst = ip->ip_dst;
951 		fp->ipq_frags = m;
952 		m->m_nextpkt = NULL;
953 		goto done;
954 	} else {
955 		fp->ipq_nfrags++;
956 #ifdef MAC
957 		mac_ipq_update(m, fp);
958 #endif
959 	}
960 
961 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
962 
963 	/*
964 	 * Handle ECN by comparing this segment with the first one;
965 	 * if CE is set, do not lose CE.
966 	 * drop if CE and not-ECT are mixed for the same packet.
967 	 */
968 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
969 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
970 	if (ecn == IPTOS_ECN_CE) {
971 		if (ecn0 == IPTOS_ECN_NOTECT)
972 			goto dropfrag;
973 		if (ecn0 != IPTOS_ECN_CE)
974 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
975 	}
976 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
977 		goto dropfrag;
978 
979 	/*
980 	 * Find a segment which begins after this one does.
981 	 */
982 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
983 		if (GETIP(q)->ip_off > ip->ip_off)
984 			break;
985 
986 	/*
987 	 * If there is a preceding segment, it may provide some of
988 	 * our data already.  If so, drop the data from the incoming
989 	 * segment.  If it provides all of our data, drop us, otherwise
990 	 * stick new segment in the proper place.
991 	 *
992 	 * If some of the data is dropped from the the preceding
993 	 * segment, then it's checksum is invalidated.
994 	 */
995 	if (p) {
996 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
997 		if (i > 0) {
998 			if (i >= ip->ip_len)
999 				goto dropfrag;
1000 			m_adj(m, i);
1001 			m->m_pkthdr.csum_flags = 0;
1002 			ip->ip_off += i;
1003 			ip->ip_len -= i;
1004 		}
1005 		m->m_nextpkt = p->m_nextpkt;
1006 		p->m_nextpkt = m;
1007 	} else {
1008 		m->m_nextpkt = fp->ipq_frags;
1009 		fp->ipq_frags = m;
1010 	}
1011 
1012 	/*
1013 	 * While we overlap succeeding segments trim them or,
1014 	 * if they are completely covered, dequeue them.
1015 	 */
1016 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1017 	     q = nq) {
1018 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1019 		if (i < GETIP(q)->ip_len) {
1020 			GETIP(q)->ip_len -= i;
1021 			GETIP(q)->ip_off += i;
1022 			m_adj(q, i);
1023 			q->m_pkthdr.csum_flags = 0;
1024 			break;
1025 		}
1026 		nq = q->m_nextpkt;
1027 		m->m_nextpkt = nq;
1028 		IPSTAT_INC(ips_fragdropped);
1029 		fp->ipq_nfrags--;
1030 		m_freem(q);
1031 	}
1032 
1033 	/*
1034 	 * Check for complete reassembly and perform frag per packet
1035 	 * limiting.
1036 	 *
1037 	 * Frag limiting is performed here so that the nth frag has
1038 	 * a chance to complete the packet before we drop the packet.
1039 	 * As a result, n+1 frags are actually allowed per packet, but
1040 	 * only n will ever be stored. (n = maxfragsperpacket.)
1041 	 *
1042 	 */
1043 	next = 0;
1044 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1045 		if (GETIP(q)->ip_off != next) {
1046 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1047 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1048 				ip_freef(head, fp);
1049 			}
1050 			goto done;
1051 		}
1052 		next += GETIP(q)->ip_len;
1053 	}
1054 	/* Make sure the last packet didn't have the IP_MF flag */
1055 	if (p->m_flags & M_FRAG) {
1056 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1057 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1058 			ip_freef(head, fp);
1059 		}
1060 		goto done;
1061 	}
1062 
1063 	/*
1064 	 * Reassembly is complete.  Make sure the packet is a sane size.
1065 	 */
1066 	q = fp->ipq_frags;
1067 	ip = GETIP(q);
1068 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1069 		IPSTAT_INC(ips_toolong);
1070 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1071 		ip_freef(head, fp);
1072 		goto done;
1073 	}
1074 
1075 	/*
1076 	 * Concatenate fragments.
1077 	 */
1078 	m = q;
1079 	t = m->m_next;
1080 	m->m_next = NULL;
1081 	m_cat(m, t);
1082 	nq = q->m_nextpkt;
1083 	q->m_nextpkt = NULL;
1084 	for (q = nq; q != NULL; q = nq) {
1085 		nq = q->m_nextpkt;
1086 		q->m_nextpkt = NULL;
1087 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1088 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1089 		m_cat(m, q);
1090 	}
1091 	/*
1092 	 * In order to do checksumming faster we do 'end-around carry' here
1093 	 * (and not in for{} loop), though it implies we are not going to
1094 	 * reassemble more than 64k fragments.
1095 	 */
1096 	m->m_pkthdr.csum_data =
1097 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1098 #ifdef MAC
1099 	mac_ipq_reassemble(fp, m);
1100 	mac_ipq_destroy(fp);
1101 #endif
1102 
1103 	/*
1104 	 * Create header for new ip packet by modifying header of first
1105 	 * packet;  dequeue and discard fragment reassembly header.
1106 	 * Make header visible.
1107 	 */
1108 	ip->ip_len = (ip->ip_hl << 2) + next;
1109 	ip->ip_src = fp->ipq_src;
1110 	ip->ip_dst = fp->ipq_dst;
1111 	TAILQ_REMOVE(head, fp, ipq_list);
1112 	V_nipq--;
1113 	uma_zfree(V_ipq_zone, fp);
1114 	m->m_len += (ip->ip_hl << 2);
1115 	m->m_data -= (ip->ip_hl << 2);
1116 	/* some debugging cruft by sklower, below, will go away soon */
1117 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1118 		m_fixhdr(m);
1119 	IPSTAT_INC(ips_reassembled);
1120 	IPQ_UNLOCK();
1121 	return (m);
1122 
1123 dropfrag:
1124 	IPSTAT_INC(ips_fragdropped);
1125 	if (fp != NULL)
1126 		fp->ipq_nfrags--;
1127 	m_freem(m);
1128 done:
1129 	IPQ_UNLOCK();
1130 	return (NULL);
1131 
1132 #undef GETIP
1133 }
1134 
1135 /*
1136  * Free a fragment reassembly header and all
1137  * associated datagrams.
1138  */
1139 static void
1140 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1141 {
1142 	INIT_VNET_INET(curvnet);
1143 	struct mbuf *q;
1144 
1145 	IPQ_LOCK_ASSERT();
1146 
1147 	while (fp->ipq_frags) {
1148 		q = fp->ipq_frags;
1149 		fp->ipq_frags = q->m_nextpkt;
1150 		m_freem(q);
1151 	}
1152 	TAILQ_REMOVE(fhp, fp, ipq_list);
1153 	uma_zfree(V_ipq_zone, fp);
1154 	V_nipq--;
1155 }
1156 
1157 /*
1158  * IP timer processing;
1159  * if a timer expires on a reassembly
1160  * queue, discard it.
1161  */
1162 void
1163 ip_slowtimo(void)
1164 {
1165 	VNET_ITERATOR_DECL(vnet_iter);
1166 	struct ipq *fp;
1167 	int i;
1168 
1169 	IPQ_LOCK();
1170 	VNET_LIST_RLOCK();
1171 	VNET_FOREACH(vnet_iter) {
1172 		CURVNET_SET(vnet_iter);
1173 		INIT_VNET_INET(vnet_iter);
1174 		for (i = 0; i < IPREASS_NHASH; i++) {
1175 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1176 				struct ipq *fpp;
1177 
1178 				fpp = fp;
1179 				fp = TAILQ_NEXT(fp, ipq_list);
1180 				if(--fpp->ipq_ttl == 0) {
1181 					IPSTAT_ADD(ips_fragtimeout,
1182 					    fpp->ipq_nfrags);
1183 					ip_freef(&V_ipq[i], fpp);
1184 				}
1185 			}
1186 		}
1187 		/*
1188 		 * If we are over the maximum number of fragments
1189 		 * (due to the limit being lowered), drain off
1190 		 * enough to get down to the new limit.
1191 		 */
1192 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1193 			for (i = 0; i < IPREASS_NHASH; i++) {
1194 				while (V_nipq > V_maxnipq &&
1195 				    !TAILQ_EMPTY(&V_ipq[i])) {
1196 					IPSTAT_ADD(ips_fragdropped,
1197 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1198 					ip_freef(&V_ipq[i],
1199 					    TAILQ_FIRST(&V_ipq[i]));
1200 				}
1201 			}
1202 		}
1203 		CURVNET_RESTORE();
1204 	}
1205 	VNET_LIST_RUNLOCK();
1206 	IPQ_UNLOCK();
1207 }
1208 
1209 /*
1210  * Drain off all datagram fragments.
1211  */
1212 void
1213 ip_drain(void)
1214 {
1215 	VNET_ITERATOR_DECL(vnet_iter);
1216 	int     i;
1217 
1218 	IPQ_LOCK();
1219 	VNET_LIST_RLOCK();
1220 	VNET_FOREACH(vnet_iter) {
1221 		CURVNET_SET(vnet_iter);
1222 		INIT_VNET_INET(vnet_iter);
1223 		for (i = 0; i < IPREASS_NHASH; i++) {
1224 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1225 				IPSTAT_ADD(ips_fragdropped,
1226 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1227 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1228 			}
1229 		}
1230 		CURVNET_RESTORE();
1231 	}
1232 	VNET_LIST_RUNLOCK();
1233 	IPQ_UNLOCK();
1234 	in_rtqdrain();
1235 }
1236 
1237 /*
1238  * The protocol to be inserted into ip_protox[] must be already registered
1239  * in inetsw[], either statically or through pf_proto_register().
1240  */
1241 int
1242 ipproto_register(u_char ipproto)
1243 {
1244 	struct protosw *pr;
1245 
1246 	/* Sanity checks. */
1247 	if (ipproto == 0)
1248 		return (EPROTONOSUPPORT);
1249 
1250 	/*
1251 	 * The protocol slot must not be occupied by another protocol
1252 	 * already.  An index pointing to IPPROTO_RAW is unused.
1253 	 */
1254 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1255 	if (pr == NULL)
1256 		return (EPFNOSUPPORT);
1257 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1258 		return (EEXIST);
1259 
1260 	/* Find the protocol position in inetsw[] and set the index. */
1261 	for (pr = inetdomain.dom_protosw;
1262 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1263 		if (pr->pr_domain->dom_family == PF_INET &&
1264 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1265 			/* Be careful to only index valid IP protocols. */
1266 			if (pr->pr_protocol < IPPROTO_MAX) {
1267 				ip_protox[pr->pr_protocol] = pr - inetsw;
1268 				return (0);
1269 			} else
1270 				return (EINVAL);
1271 		}
1272 	}
1273 	return (EPROTONOSUPPORT);
1274 }
1275 
1276 int
1277 ipproto_unregister(u_char ipproto)
1278 {
1279 	struct protosw *pr;
1280 
1281 	/* Sanity checks. */
1282 	if (ipproto == 0)
1283 		return (EPROTONOSUPPORT);
1284 
1285 	/* Check if the protocol was indeed registered. */
1286 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1287 	if (pr == NULL)
1288 		return (EPFNOSUPPORT);
1289 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1290 		return (ENOENT);
1291 
1292 	/* Reset the protocol slot to IPPROTO_RAW. */
1293 	ip_protox[ipproto] = pr - inetsw;
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Given address of next destination (final or next hop),
1299  * return internet address info of interface to be used to get there.
1300  */
1301 struct in_ifaddr *
1302 ip_rtaddr(struct in_addr dst, u_int fibnum)
1303 {
1304 	struct route sro;
1305 	struct sockaddr_in *sin;
1306 	struct in_ifaddr *ifa;
1307 
1308 	bzero(&sro, sizeof(sro));
1309 	sin = (struct sockaddr_in *)&sro.ro_dst;
1310 	sin->sin_family = AF_INET;
1311 	sin->sin_len = sizeof(*sin);
1312 	sin->sin_addr = dst;
1313 	in_rtalloc_ign(&sro, 0, fibnum);
1314 
1315 	if (sro.ro_rt == NULL)
1316 		return (NULL);
1317 
1318 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1319 	RTFREE(sro.ro_rt);
1320 	return (ifa);
1321 }
1322 
1323 u_char inetctlerrmap[PRC_NCMDS] = {
1324 	0,		0,		0,		0,
1325 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1326 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1327 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1328 	0,		0,		EHOSTUNREACH,	0,
1329 	ENOPROTOOPT,	ECONNREFUSED
1330 };
1331 
1332 /*
1333  * Forward a packet.  If some error occurs return the sender
1334  * an icmp packet.  Note we can't always generate a meaningful
1335  * icmp message because icmp doesn't have a large enough repertoire
1336  * of codes and types.
1337  *
1338  * If not forwarding, just drop the packet.  This could be confusing
1339  * if ipforwarding was zero but some routing protocol was advancing
1340  * us as a gateway to somewhere.  However, we must let the routing
1341  * protocol deal with that.
1342  *
1343  * The srcrt parameter indicates whether the packet is being forwarded
1344  * via a source route.
1345  */
1346 void
1347 ip_forward(struct mbuf *m, int srcrt)
1348 {
1349 	INIT_VNET_INET(curvnet);
1350 	struct ip *ip = mtod(m, struct ip *);
1351 	struct in_ifaddr *ia = NULL;
1352 	struct mbuf *mcopy;
1353 	struct in_addr dest;
1354 	struct route ro;
1355 	int error, type = 0, code = 0, mtu = 0;
1356 
1357 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1358 		IPSTAT_INC(ips_cantforward);
1359 		m_freem(m);
1360 		return;
1361 	}
1362 #ifdef IPSTEALTH
1363 	if (!V_ipstealth) {
1364 #endif
1365 		if (ip->ip_ttl <= IPTTLDEC) {
1366 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1367 			    0, 0);
1368 			return;
1369 		}
1370 #ifdef IPSTEALTH
1371 	}
1372 #endif
1373 
1374 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1375 	if (!srcrt && ia == NULL) {
1376 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * Save the IP header and at most 8 bytes of the payload,
1382 	 * in case we need to generate an ICMP message to the src.
1383 	 *
1384 	 * XXX this can be optimized a lot by saving the data in a local
1385 	 * buffer on the stack (72 bytes at most), and only allocating the
1386 	 * mbuf if really necessary. The vast majority of the packets
1387 	 * are forwarded without having to send an ICMP back (either
1388 	 * because unnecessary, or because rate limited), so we are
1389 	 * really we are wasting a lot of work here.
1390 	 *
1391 	 * We don't use m_copy() because it might return a reference
1392 	 * to a shared cluster. Both this function and ip_output()
1393 	 * assume exclusive access to the IP header in `m', so any
1394 	 * data in a cluster may change before we reach icmp_error().
1395 	 */
1396 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1397 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1398 		/*
1399 		 * It's probably ok if the pkthdr dup fails (because
1400 		 * the deep copy of the tag chain failed), but for now
1401 		 * be conservative and just discard the copy since
1402 		 * code below may some day want the tags.
1403 		 */
1404 		m_free(mcopy);
1405 		mcopy = NULL;
1406 	}
1407 	if (mcopy != NULL) {
1408 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1409 		mcopy->m_pkthdr.len = mcopy->m_len;
1410 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1411 	}
1412 
1413 #ifdef IPSTEALTH
1414 	if (!V_ipstealth) {
1415 #endif
1416 		ip->ip_ttl -= IPTTLDEC;
1417 #ifdef IPSTEALTH
1418 	}
1419 #endif
1420 
1421 	/*
1422 	 * If forwarding packet using same interface that it came in on,
1423 	 * perhaps should send a redirect to sender to shortcut a hop.
1424 	 * Only send redirect if source is sending directly to us,
1425 	 * and if packet was not source routed (or has any options).
1426 	 * Also, don't send redirect if forwarding using a default route
1427 	 * or a route modified by a redirect.
1428 	 */
1429 	dest.s_addr = 0;
1430 	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1431 		struct sockaddr_in *sin;
1432 		struct rtentry *rt;
1433 
1434 		bzero(&ro, sizeof(ro));
1435 		sin = (struct sockaddr_in *)&ro.ro_dst;
1436 		sin->sin_family = AF_INET;
1437 		sin->sin_len = sizeof(*sin);
1438 		sin->sin_addr = ip->ip_dst;
1439 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1440 
1441 		rt = ro.ro_rt;
1442 
1443 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1444 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1445 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1446 			u_long src = ntohl(ip->ip_src.s_addr);
1447 
1448 			if (RTA(rt) &&
1449 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1450 				if (rt->rt_flags & RTF_GATEWAY)
1451 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1452 				else
1453 					dest.s_addr = ip->ip_dst.s_addr;
1454 				/* Router requirements says to only send host redirects */
1455 				type = ICMP_REDIRECT;
1456 				code = ICMP_REDIRECT_HOST;
1457 			}
1458 		}
1459 		if (rt)
1460 			RTFREE(rt);
1461 	}
1462 
1463 	/*
1464 	 * Try to cache the route MTU from ip_output so we can consider it for
1465 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1466 	 */
1467 	bzero(&ro, sizeof(ro));
1468 
1469 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1470 
1471 	if (error == EMSGSIZE && ro.ro_rt)
1472 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1473 	if (ro.ro_rt)
1474 		RTFREE(ro.ro_rt);
1475 
1476 	if (error)
1477 		IPSTAT_INC(ips_cantforward);
1478 	else {
1479 		IPSTAT_INC(ips_forward);
1480 		if (type)
1481 			IPSTAT_INC(ips_redirectsent);
1482 		else {
1483 			if (mcopy)
1484 				m_freem(mcopy);
1485 			return;
1486 		}
1487 	}
1488 	if (mcopy == NULL)
1489 		return;
1490 
1491 	switch (error) {
1492 
1493 	case 0:				/* forwarded, but need redirect */
1494 		/* type, code set above */
1495 		break;
1496 
1497 	case ENETUNREACH:		/* shouldn't happen, checked above */
1498 	case EHOSTUNREACH:
1499 	case ENETDOWN:
1500 	case EHOSTDOWN:
1501 	default:
1502 		type = ICMP_UNREACH;
1503 		code = ICMP_UNREACH_HOST;
1504 		break;
1505 
1506 	case EMSGSIZE:
1507 		type = ICMP_UNREACH;
1508 		code = ICMP_UNREACH_NEEDFRAG;
1509 
1510 #ifdef IPSEC
1511 		/*
1512 		 * If IPsec is configured for this path,
1513 		 * override any possibly mtu value set by ip_output.
1514 		 */
1515 		mtu = ip_ipsec_mtu(m, mtu);
1516 #endif /* IPSEC */
1517 		/*
1518 		 * If the MTU was set before make sure we are below the
1519 		 * interface MTU.
1520 		 * If the MTU wasn't set before use the interface mtu or
1521 		 * fall back to the next smaller mtu step compared to the
1522 		 * current packet size.
1523 		 */
1524 		if (mtu != 0) {
1525 			if (ia != NULL)
1526 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1527 		} else {
1528 			if (ia != NULL)
1529 				mtu = ia->ia_ifp->if_mtu;
1530 			else
1531 				mtu = ip_next_mtu(ip->ip_len, 0);
1532 		}
1533 		IPSTAT_INC(ips_cantfrag);
1534 		break;
1535 
1536 	case ENOBUFS:
1537 		/*
1538 		 * A router should not generate ICMP_SOURCEQUENCH as
1539 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1540 		 * Source quench could be a big problem under DoS attacks,
1541 		 * or if the underlying interface is rate-limited.
1542 		 * Those who need source quench packets may re-enable them
1543 		 * via the net.inet.ip.sendsourcequench sysctl.
1544 		 */
1545 		if (V_ip_sendsourcequench == 0) {
1546 			m_freem(mcopy);
1547 			return;
1548 		} else {
1549 			type = ICMP_SOURCEQUENCH;
1550 			code = 0;
1551 		}
1552 		break;
1553 
1554 	case EACCES:			/* ipfw denied packet */
1555 		m_freem(mcopy);
1556 		return;
1557 	}
1558 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1559 }
1560 
1561 void
1562 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1563     struct mbuf *m)
1564 {
1565 	INIT_VNET_NET(inp->inp_vnet);
1566 
1567 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1568 		struct bintime bt;
1569 
1570 		bintime(&bt);
1571 		if (inp->inp_socket->so_options & SO_BINTIME) {
1572 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1573 			SCM_BINTIME, SOL_SOCKET);
1574 			if (*mp)
1575 				mp = &(*mp)->m_next;
1576 		}
1577 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1578 			struct timeval tv;
1579 
1580 			bintime2timeval(&bt, &tv);
1581 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1582 				SCM_TIMESTAMP, SOL_SOCKET);
1583 			if (*mp)
1584 				mp = &(*mp)->m_next;
1585 		}
1586 	}
1587 	if (inp->inp_flags & INP_RECVDSTADDR) {
1588 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1589 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1590 		if (*mp)
1591 			mp = &(*mp)->m_next;
1592 	}
1593 	if (inp->inp_flags & INP_RECVTTL) {
1594 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1595 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1596 		if (*mp)
1597 			mp = &(*mp)->m_next;
1598 	}
1599 #ifdef notyet
1600 	/* XXX
1601 	 * Moving these out of udp_input() made them even more broken
1602 	 * than they already were.
1603 	 */
1604 	/* options were tossed already */
1605 	if (inp->inp_flags & INP_RECVOPTS) {
1606 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1607 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1608 		if (*mp)
1609 			mp = &(*mp)->m_next;
1610 	}
1611 	/* ip_srcroute doesn't do what we want here, need to fix */
1612 	if (inp->inp_flags & INP_RECVRETOPTS) {
1613 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1614 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1615 		if (*mp)
1616 			mp = &(*mp)->m_next;
1617 	}
1618 #endif
1619 	if (inp->inp_flags & INP_RECVIF) {
1620 		struct ifnet *ifp;
1621 		struct sdlbuf {
1622 			struct sockaddr_dl sdl;
1623 			u_char	pad[32];
1624 		} sdlbuf;
1625 		struct sockaddr_dl *sdp;
1626 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1627 
1628 		if (((ifp = m->m_pkthdr.rcvif))
1629 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1630 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1631 			/*
1632 			 * Change our mind and don't try copy.
1633 			 */
1634 			if ((sdp->sdl_family != AF_LINK)
1635 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1636 				goto makedummy;
1637 			}
1638 			bcopy(sdp, sdl2, sdp->sdl_len);
1639 		} else {
1640 makedummy:
1641 			sdl2->sdl_len
1642 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1643 			sdl2->sdl_family = AF_LINK;
1644 			sdl2->sdl_index = 0;
1645 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1646 		}
1647 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1648 			IP_RECVIF, IPPROTO_IP);
1649 		if (*mp)
1650 			mp = &(*mp)->m_next;
1651 	}
1652 }
1653 
1654 /*
1655  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1656  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1657  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1658  * compiled.
1659  */
1660 int
1661 ip_rsvp_init(struct socket *so)
1662 {
1663 	INIT_VNET_INET(so->so_vnet);
1664 
1665 	if (so->so_type != SOCK_RAW ||
1666 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1667 		return EOPNOTSUPP;
1668 
1669 	if (V_ip_rsvpd != NULL)
1670 		return EADDRINUSE;
1671 
1672 	V_ip_rsvpd = so;
1673 	/*
1674 	 * This may seem silly, but we need to be sure we don't over-increment
1675 	 * the RSVP counter, in case something slips up.
1676 	 */
1677 	if (!V_ip_rsvp_on) {
1678 		V_ip_rsvp_on = 1;
1679 		V_rsvp_on++;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 int
1686 ip_rsvp_done(void)
1687 {
1688 	INIT_VNET_INET(curvnet);
1689 
1690 	V_ip_rsvpd = NULL;
1691 	/*
1692 	 * This may seem silly, but we need to be sure we don't over-decrement
1693 	 * the RSVP counter, in case something slips up.
1694 	 */
1695 	if (V_ip_rsvp_on) {
1696 		V_ip_rsvp_on = 0;
1697 		V_rsvp_on--;
1698 	}
1699 	return 0;
1700 }
1701 
1702 void
1703 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1704 {
1705 	INIT_VNET_INET(curvnet);
1706 
1707 	if (rsvp_input_p) { /* call the real one if loaded */
1708 		rsvp_input_p(m, off);
1709 		return;
1710 	}
1711 
1712 	/* Can still get packets with rsvp_on = 0 if there is a local member
1713 	 * of the group to which the RSVP packet is addressed.  But in this
1714 	 * case we want to throw the packet away.
1715 	 */
1716 
1717 	if (!V_rsvp_on) {
1718 		m_freem(m);
1719 		return;
1720 	}
1721 
1722 	if (V_ip_rsvpd != NULL) {
1723 		rip_input(m, off);
1724 		return;
1725 	}
1726 	/* Drop the packet */
1727 	m_freem(m);
1728 }
1729