xref: /freebsd/sys/netinet/ip_input.c (revision bbb29a3c0f2c4565eff6fda70426807b6ed97f8b)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_rss.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/sdt.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_fw.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #include <netinet/ip_carp.h>
78 #ifdef IPSEC
79 #include <netinet/ip_ipsec.h>
80 #endif /* IPSEC */
81 #include <netinet/in_rss.h>
82 
83 #include <sys/socketvar.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef CTASSERT
88 CTASSERT(sizeof(struct ip) == 20);
89 #endif
90 
91 struct	rwlock in_ifaddr_lock;
92 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
93 
94 VNET_DEFINE(int, rsvp_on);
95 
96 VNET_DEFINE(int, ipforwarding);
97 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW,
98     &VNET_NAME(ipforwarding), 0,
99     "Enable IP forwarding between interfaces");
100 
101 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
102 #define	V_ipsendredirects	VNET(ipsendredirects)
103 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW,
104     &VNET_NAME(ipsendredirects), 0,
105     "Enable sending IP redirects");
106 
107 VNET_DEFINE(int, ip_do_randomid);
108 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(ip_do_randomid), 0,
110     "Assign random ip_id values");
111 
112 /*
113  * XXX - Setting ip_checkinterface mostly implements the receive side of
114  * the Strong ES model described in RFC 1122, but since the routing table
115  * and transmit implementation do not implement the Strong ES model,
116  * setting this to 1 results in an odd hybrid.
117  *
118  * XXX - ip_checkinterface currently must be disabled if you use ipnat
119  * to translate the destination address to another local interface.
120  *
121  * XXX - ip_checkinterface must be disabled if you add IP aliases
122  * to the loopback interface instead of the interface where the
123  * packets for those addresses are received.
124  */
125 static VNET_DEFINE(int, ip_checkinterface);
126 #define	V_ip_checkinterface	VNET(ip_checkinterface)
127 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW,
128     &VNET_NAME(ip_checkinterface), 0,
129     "Verify packet arrives on correct interface");
130 
131 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
132 
133 static struct netisr_handler ip_nh = {
134 	.nh_name = "ip",
135 	.nh_handler = ip_input,
136 	.nh_proto = NETISR_IP,
137 #ifdef	RSS
138 	.nh_m2cpuid = rss_soft_m2cpuid,
139 	.nh_policy = NETISR_POLICY_CPU,
140 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
141 #else
142 	.nh_policy = NETISR_POLICY_FLOW,
143 #endif
144 };
145 
146 #ifdef	RSS
147 /*
148  * Directly dispatched frames are currently assumed
149  * to have a flowid already calculated.
150  *
151  * It should likely have something that assert it
152  * actually has valid flow details.
153  */
154 static struct netisr_handler ip_direct_nh = {
155 	.nh_name = "ip_direct",
156 	.nh_handler = ip_direct_input,
157 	.nh_proto = NETISR_IP_DIRECT,
158 	.nh_m2cpuid = rss_m2cpuid,
159 	.nh_policy = NETISR_POLICY_CPU,
160 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
161 };
162 #endif
163 
164 extern	struct domain inetdomain;
165 extern	struct protosw inetsw[];
166 u_char	ip_protox[IPPROTO_MAX];
167 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
168 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
169 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
170 
171 static VNET_DEFINE(uma_zone_t, ipq_zone);
172 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
173 static struct mtx ipqlock;
174 
175 #define	V_ipq_zone		VNET(ipq_zone)
176 #define	V_ipq			VNET(ipq)
177 
178 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
179 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
180 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
181 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
182 
183 static void	maxnipq_update(void);
184 static void	ipq_zone_change(void *);
185 static void	ip_drain_locked(void);
186 
187 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
188 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
189 #define	V_maxnipq		VNET(maxnipq)
190 #define	V_nipq			VNET(nipq)
191 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET | CTLFLAG_RD,
192     &VNET_NAME(nipq), 0,
193     "Current number of IPv4 fragment reassembly queue entries");
194 
195 static VNET_DEFINE(int, maxfragsperpacket);
196 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
197 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
198     &VNET_NAME(maxfragsperpacket), 0,
199     "Maximum number of IPv4 fragments allowed per packet");
200 
201 #ifdef IPCTL_DEFMTU
202 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
203     &ip_mtu, 0, "Default MTU");
204 #endif
205 
206 #ifdef IPSTEALTH
207 VNET_DEFINE(int, ipstealth);
208 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW,
209     &VNET_NAME(ipstealth), 0,
210     "IP stealth mode, no TTL decrementation on forwarding");
211 #endif
212 
213 static void	ip_freef(struct ipqhead *, struct ipq *);
214 
215 /*
216  * IP statistics are stored in the "array" of counter(9)s.
217  */
218 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
219 VNET_PCPUSTAT_SYSINIT(ipstat);
220 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
221     "IP statistics (struct ipstat, netinet/ip_var.h)");
222 
223 #ifdef VIMAGE
224 VNET_PCPUSTAT_SYSUNINIT(ipstat);
225 #endif /* VIMAGE */
226 
227 /*
228  * Kernel module interface for updating ipstat.  The argument is an index
229  * into ipstat treated as an array.
230  */
231 void
232 kmod_ipstat_inc(int statnum)
233 {
234 
235 	counter_u64_add(VNET(ipstat)[statnum], 1);
236 }
237 
238 void
239 kmod_ipstat_dec(int statnum)
240 {
241 
242 	counter_u64_add(VNET(ipstat)[statnum], -1);
243 }
244 
245 static int
246 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
247 {
248 	int error, qlimit;
249 
250 	netisr_getqlimit(&ip_nh, &qlimit);
251 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
252 	if (error || !req->newptr)
253 		return (error);
254 	if (qlimit < 1)
255 		return (EINVAL);
256 	return (netisr_setqlimit(&ip_nh, qlimit));
257 }
258 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
259     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
260     "Maximum size of the IP input queue");
261 
262 static int
263 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
264 {
265 	u_int64_t qdrops_long;
266 	int error, qdrops;
267 
268 	netisr_getqdrops(&ip_nh, &qdrops_long);
269 	qdrops = qdrops_long;
270 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
271 	if (error || !req->newptr)
272 		return (error);
273 	if (qdrops != 0)
274 		return (EINVAL);
275 	netisr_clearqdrops(&ip_nh);
276 	return (0);
277 }
278 
279 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
280     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
281     "Number of packets dropped from the IP input queue");
282 
283 #ifdef	RSS
284 static int
285 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
286 {
287 	int error, qlimit;
288 
289 	netisr_getqlimit(&ip_direct_nh, &qlimit);
290 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
291 	if (error || !req->newptr)
292 		return (error);
293 	if (qlimit < 1)
294 		return (EINVAL);
295 	return (netisr_setqlimit(&ip_direct_nh, qlimit));
296 }
297 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
298     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
299     "Maximum size of the IP direct input queue");
300 
301 static int
302 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
303 {
304 	u_int64_t qdrops_long;
305 	int error, qdrops;
306 
307 	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
308 	qdrops = qdrops_long;
309 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
310 	if (error || !req->newptr)
311 		return (error);
312 	if (qdrops != 0)
313 		return (EINVAL);
314 	netisr_clearqdrops(&ip_direct_nh);
315 	return (0);
316 }
317 
318 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
319     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
320     "Number of packets dropped from the IP direct input queue");
321 #endif	/* RSS */
322 
323 /*
324  * IP initialization: fill in IP protocol switch table.
325  * All protocols not implemented in kernel go to raw IP protocol handler.
326  */
327 void
328 ip_init(void)
329 {
330 	struct protosw *pr;
331 	int i;
332 
333 	V_ip_id = time_second & 0xffff;
334 
335 	TAILQ_INIT(&V_in_ifaddrhead);
336 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
337 
338 	/* Initialize IP reassembly queue. */
339 	for (i = 0; i < IPREASS_NHASH; i++)
340 		TAILQ_INIT(&V_ipq[i]);
341 	V_maxnipq = nmbclusters / 32;
342 	V_maxfragsperpacket = 16;
343 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
344 	    NULL, UMA_ALIGN_PTR, 0);
345 	maxnipq_update();
346 
347 	/* Initialize packet filter hooks. */
348 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
349 	V_inet_pfil_hook.ph_af = AF_INET;
350 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
351 		printf("%s: WARNING: unable to register pfil hook, "
352 			"error %d\n", __func__, i);
353 
354 	/* Skip initialization of globals for non-default instances. */
355 	if (!IS_DEFAULT_VNET(curvnet))
356 		return;
357 
358 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
359 	if (pr == NULL)
360 		panic("ip_init: PF_INET not found");
361 
362 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
363 	for (i = 0; i < IPPROTO_MAX; i++)
364 		ip_protox[i] = pr - inetsw;
365 	/*
366 	 * Cycle through IP protocols and put them into the appropriate place
367 	 * in ip_protox[].
368 	 */
369 	for (pr = inetdomain.dom_protosw;
370 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
371 		if (pr->pr_domain->dom_family == PF_INET &&
372 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
373 			/* Be careful to only index valid IP protocols. */
374 			if (pr->pr_protocol < IPPROTO_MAX)
375 				ip_protox[pr->pr_protocol] = pr - inetsw;
376 		}
377 
378 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
379 		NULL, EVENTHANDLER_PRI_ANY);
380 
381 	/* Initialize various other remaining things. */
382 	IPQ_LOCK_INIT();
383 	netisr_register(&ip_nh);
384 #ifdef	RSS
385 	netisr_register(&ip_direct_nh);
386 #endif
387 }
388 
389 #ifdef VIMAGE
390 void
391 ip_destroy(void)
392 {
393 	int i;
394 
395 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
396 		printf("%s: WARNING: unable to unregister pfil hook, "
397 		    "error %d\n", __func__, i);
398 
399 	/* Cleanup in_ifaddr hash table; should be empty. */
400 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
401 
402 	IPQ_LOCK();
403 	ip_drain_locked();
404 	IPQ_UNLOCK();
405 
406 	uma_zdestroy(V_ipq_zone);
407 }
408 #endif
409 
410 #ifdef	RSS
411 /*
412  * IP direct input routine.
413  *
414  * This is called when reinjecting completed fragments where
415  * all of the previous checking and book-keeping has been done.
416  */
417 void
418 ip_direct_input(struct mbuf *m)
419 {
420 	struct ip *ip;
421 	int hlen;
422 
423 	ip = mtod(m, struct ip *);
424 	hlen = ip->ip_hl << 2;
425 
426 	IPSTAT_INC(ips_delivered);
427 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
428 	return;
429 }
430 #endif
431 
432 /*
433  * Ip input routine.  Checksum and byte swap header.  If fragmented
434  * try to reassemble.  Process options.  Pass to next level.
435  */
436 void
437 ip_input(struct mbuf *m)
438 {
439 	struct ip *ip = NULL;
440 	struct in_ifaddr *ia = NULL;
441 	struct ifaddr *ifa;
442 	struct ifnet *ifp;
443 	int    checkif, hlen = 0;
444 	uint16_t sum, ip_len;
445 	int dchg = 0;				/* dest changed after fw */
446 	struct in_addr odst;			/* original dst address */
447 
448 	M_ASSERTPKTHDR(m);
449 
450 	if (m->m_flags & M_FASTFWD_OURS) {
451 		m->m_flags &= ~M_FASTFWD_OURS;
452 		/* Set up some basics that will be used later. */
453 		ip = mtod(m, struct ip *);
454 		hlen = ip->ip_hl << 2;
455 		ip_len = ntohs(ip->ip_len);
456 		goto ours;
457 	}
458 
459 	IPSTAT_INC(ips_total);
460 
461 	if (m->m_pkthdr.len < sizeof(struct ip))
462 		goto tooshort;
463 
464 	if (m->m_len < sizeof (struct ip) &&
465 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
466 		IPSTAT_INC(ips_toosmall);
467 		return;
468 	}
469 	ip = mtod(m, struct ip *);
470 
471 	if (ip->ip_v != IPVERSION) {
472 		IPSTAT_INC(ips_badvers);
473 		goto bad;
474 	}
475 
476 	hlen = ip->ip_hl << 2;
477 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
478 		IPSTAT_INC(ips_badhlen);
479 		goto bad;
480 	}
481 	if (hlen > m->m_len) {
482 		if ((m = m_pullup(m, hlen)) == NULL) {
483 			IPSTAT_INC(ips_badhlen);
484 			return;
485 		}
486 		ip = mtod(m, struct ip *);
487 	}
488 
489 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
490 
491 	/* 127/8 must not appear on wire - RFC1122 */
492 	ifp = m->m_pkthdr.rcvif;
493 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
494 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
495 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
496 			IPSTAT_INC(ips_badaddr);
497 			goto bad;
498 		}
499 	}
500 
501 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
502 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
503 	} else {
504 		if (hlen == sizeof(struct ip)) {
505 			sum = in_cksum_hdr(ip);
506 		} else {
507 			sum = in_cksum(m, hlen);
508 		}
509 	}
510 	if (sum) {
511 		IPSTAT_INC(ips_badsum);
512 		goto bad;
513 	}
514 
515 #ifdef ALTQ
516 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
517 		/* packet is dropped by traffic conditioner */
518 		return;
519 #endif
520 
521 	ip_len = ntohs(ip->ip_len);
522 	if (ip_len < hlen) {
523 		IPSTAT_INC(ips_badlen);
524 		goto bad;
525 	}
526 
527 	/*
528 	 * Check that the amount of data in the buffers
529 	 * is as at least much as the IP header would have us expect.
530 	 * Trim mbufs if longer than we expect.
531 	 * Drop packet if shorter than we expect.
532 	 */
533 	if (m->m_pkthdr.len < ip_len) {
534 tooshort:
535 		IPSTAT_INC(ips_tooshort);
536 		goto bad;
537 	}
538 	if (m->m_pkthdr.len > ip_len) {
539 		if (m->m_len == m->m_pkthdr.len) {
540 			m->m_len = ip_len;
541 			m->m_pkthdr.len = ip_len;
542 		} else
543 			m_adj(m, ip_len - m->m_pkthdr.len);
544 	}
545 
546 #ifdef IPSEC
547 	/*
548 	 * Bypass packet filtering for packets previously handled by IPsec.
549 	 */
550 	if (ip_ipsec_filtertunnel(m))
551 		goto passin;
552 #endif /* IPSEC */
553 
554 	/*
555 	 * Run through list of hooks for input packets.
556 	 *
557 	 * NB: Beware of the destination address changing (e.g.
558 	 *     by NAT rewriting).  When this happens, tell
559 	 *     ip_forward to do the right thing.
560 	 */
561 
562 	/* Jump over all PFIL processing if hooks are not active. */
563 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
564 		goto passin;
565 
566 	odst = ip->ip_dst;
567 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
568 		return;
569 	if (m == NULL)			/* consumed by filter */
570 		return;
571 
572 	ip = mtod(m, struct ip *);
573 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
574 	ifp = m->m_pkthdr.rcvif;
575 
576 	if (m->m_flags & M_FASTFWD_OURS) {
577 		m->m_flags &= ~M_FASTFWD_OURS;
578 		goto ours;
579 	}
580 	if (m->m_flags & M_IP_NEXTHOP) {
581 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
582 		if (dchg != 0) {
583 			/*
584 			 * Directly ship the packet on.  This allows
585 			 * forwarding packets originally destined to us
586 			 * to some other directly connected host.
587 			 */
588 			ip_forward(m, 1);
589 			return;
590 		}
591 	}
592 passin:
593 
594 	/*
595 	 * Process options and, if not destined for us,
596 	 * ship it on.  ip_dooptions returns 1 when an
597 	 * error was detected (causing an icmp message
598 	 * to be sent and the original packet to be freed).
599 	 */
600 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
601 		return;
602 
603         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
604          * matter if it is destined to another node, or whether it is
605          * a multicast one, RSVP wants it! and prevents it from being forwarded
606          * anywhere else. Also checks if the rsvp daemon is running before
607 	 * grabbing the packet.
608          */
609 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
610 		goto ours;
611 
612 	/*
613 	 * Check our list of addresses, to see if the packet is for us.
614 	 * If we don't have any addresses, assume any unicast packet
615 	 * we receive might be for us (and let the upper layers deal
616 	 * with it).
617 	 */
618 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
619 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
620 		goto ours;
621 
622 	/*
623 	 * Enable a consistency check between the destination address
624 	 * and the arrival interface for a unicast packet (the RFC 1122
625 	 * strong ES model) if IP forwarding is disabled and the packet
626 	 * is not locally generated and the packet is not subject to
627 	 * 'ipfw fwd'.
628 	 *
629 	 * XXX - Checking also should be disabled if the destination
630 	 * address is ipnat'ed to a different interface.
631 	 *
632 	 * XXX - Checking is incompatible with IP aliases added
633 	 * to the loopback interface instead of the interface where
634 	 * the packets are received.
635 	 *
636 	 * XXX - This is the case for carp vhost IPs as well so we
637 	 * insert a workaround. If the packet got here, we already
638 	 * checked with carp_iamatch() and carp_forus().
639 	 */
640 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
641 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
642 	    ifp->if_carp == NULL && (dchg == 0);
643 
644 	/*
645 	 * Check for exact addresses in the hash bucket.
646 	 */
647 	/* IN_IFADDR_RLOCK(); */
648 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
649 		/*
650 		 * If the address matches, verify that the packet
651 		 * arrived via the correct interface if checking is
652 		 * enabled.
653 		 */
654 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
655 		    (!checkif || ia->ia_ifp == ifp)) {
656 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
657 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
658 			    m->m_pkthdr.len);
659 			/* IN_IFADDR_RUNLOCK(); */
660 			goto ours;
661 		}
662 	}
663 	/* IN_IFADDR_RUNLOCK(); */
664 
665 	/*
666 	 * Check for broadcast addresses.
667 	 *
668 	 * Only accept broadcast packets that arrive via the matching
669 	 * interface.  Reception of forwarded directed broadcasts would
670 	 * be handled via ip_forward() and ether_output() with the loopback
671 	 * into the stack for SIMPLEX interfaces handled by ether_output().
672 	 */
673 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
674 		IF_ADDR_RLOCK(ifp);
675 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
676 			if (ifa->ifa_addr->sa_family != AF_INET)
677 				continue;
678 			ia = ifatoia(ifa);
679 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
680 			    ip->ip_dst.s_addr) {
681 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
682 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
683 				    m->m_pkthdr.len);
684 				IF_ADDR_RUNLOCK(ifp);
685 				goto ours;
686 			}
687 #ifdef BOOTP_COMPAT
688 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
689 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
690 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
691 				    m->m_pkthdr.len);
692 				IF_ADDR_RUNLOCK(ifp);
693 				goto ours;
694 			}
695 #endif
696 		}
697 		IF_ADDR_RUNLOCK(ifp);
698 		ia = NULL;
699 	}
700 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
701 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
702 		IPSTAT_INC(ips_cantforward);
703 		m_freem(m);
704 		return;
705 	}
706 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
707 		if (V_ip_mrouter) {
708 			/*
709 			 * If we are acting as a multicast router, all
710 			 * incoming multicast packets are passed to the
711 			 * kernel-level multicast forwarding function.
712 			 * The packet is returned (relatively) intact; if
713 			 * ip_mforward() returns a non-zero value, the packet
714 			 * must be discarded, else it may be accepted below.
715 			 */
716 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
717 				IPSTAT_INC(ips_cantforward);
718 				m_freem(m);
719 				return;
720 			}
721 
722 			/*
723 			 * The process-level routing daemon needs to receive
724 			 * all multicast IGMP packets, whether or not this
725 			 * host belongs to their destination groups.
726 			 */
727 			if (ip->ip_p == IPPROTO_IGMP)
728 				goto ours;
729 			IPSTAT_INC(ips_forward);
730 		}
731 		/*
732 		 * Assume the packet is for us, to avoid prematurely taking
733 		 * a lock on the in_multi hash. Protocols must perform
734 		 * their own filtering and update statistics accordingly.
735 		 */
736 		goto ours;
737 	}
738 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
739 		goto ours;
740 	if (ip->ip_dst.s_addr == INADDR_ANY)
741 		goto ours;
742 
743 	/*
744 	 * Not for us; forward if possible and desirable.
745 	 */
746 	if (V_ipforwarding == 0) {
747 		IPSTAT_INC(ips_cantforward);
748 		m_freem(m);
749 	} else {
750 #ifdef IPSEC
751 		if (ip_ipsec_fwd(m))
752 			goto bad;
753 #endif /* IPSEC */
754 		ip_forward(m, dchg);
755 	}
756 	return;
757 
758 ours:
759 #ifdef IPSTEALTH
760 	/*
761 	 * IPSTEALTH: Process non-routing options only
762 	 * if the packet is destined for us.
763 	 */
764 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
765 		return;
766 #endif /* IPSTEALTH */
767 
768 	/*
769 	 * Attempt reassembly; if it succeeds, proceed.
770 	 * ip_reass() will return a different mbuf.
771 	 */
772 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
773 		/* XXXGL: shouldn't we save & set m_flags? */
774 		m = ip_reass(m);
775 		if (m == NULL)
776 			return;
777 		ip = mtod(m, struct ip *);
778 		/* Get the header length of the reassembled packet */
779 		hlen = ip->ip_hl << 2;
780 	}
781 
782 #ifdef IPSEC
783 	/*
784 	 * enforce IPsec policy checking if we are seeing last header.
785 	 * note that we do not visit this with protocols with pcb layer
786 	 * code - like udp/tcp/raw ip.
787 	 */
788 	if (ip_ipsec_input(m))
789 		goto bad;
790 #endif /* IPSEC */
791 
792 	/*
793 	 * Switch out to protocol's input routine.
794 	 */
795 	IPSTAT_INC(ips_delivered);
796 
797 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
798 	return;
799 bad:
800 	m_freem(m);
801 }
802 
803 /*
804  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
805  * max has slightly different semantics than the sysctl, for historical
806  * reasons.
807  */
808 static void
809 maxnipq_update(void)
810 {
811 
812 	/*
813 	 * -1 for unlimited allocation.
814 	 */
815 	if (V_maxnipq < 0)
816 		uma_zone_set_max(V_ipq_zone, 0);
817 	/*
818 	 * Positive number for specific bound.
819 	 */
820 	if (V_maxnipq > 0)
821 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
822 	/*
823 	 * Zero specifies no further fragment queue allocation -- set the
824 	 * bound very low, but rely on implementation elsewhere to actually
825 	 * prevent allocation and reclaim current queues.
826 	 */
827 	if (V_maxnipq == 0)
828 		uma_zone_set_max(V_ipq_zone, 1);
829 }
830 
831 static void
832 ipq_zone_change(void *tag)
833 {
834 
835 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
836 		V_maxnipq = nmbclusters / 32;
837 		maxnipq_update();
838 	}
839 }
840 
841 static int
842 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
843 {
844 	int error, i;
845 
846 	i = V_maxnipq;
847 	error = sysctl_handle_int(oidp, &i, 0, req);
848 	if (error || !req->newptr)
849 		return (error);
850 
851 	/*
852 	 * XXXRW: Might be a good idea to sanity check the argument and place
853 	 * an extreme upper bound.
854 	 */
855 	if (i < -1)
856 		return (EINVAL);
857 	V_maxnipq = i;
858 	maxnipq_update();
859 	return (0);
860 }
861 
862 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
863     NULL, 0, sysctl_maxnipq, "I",
864     "Maximum number of IPv4 fragment reassembly queue entries");
865 
866 #define	M_IP_FRAG	M_PROTO9
867 
868 /*
869  * Take incoming datagram fragment and try to reassemble it into
870  * whole datagram.  If the argument is the first fragment or one
871  * in between the function will return NULL and store the mbuf
872  * in the fragment chain.  If the argument is the last fragment
873  * the packet will be reassembled and the pointer to the new
874  * mbuf returned for further processing.  Only m_tags attached
875  * to the first packet/fragment are preserved.
876  * The IP header is *NOT* adjusted out of iplen.
877  */
878 struct mbuf *
879 ip_reass(struct mbuf *m)
880 {
881 	struct ip *ip;
882 	struct mbuf *p, *q, *nq, *t;
883 	struct ipq *fp = NULL;
884 	struct ipqhead *head;
885 	int i, hlen, next;
886 	u_int8_t ecn, ecn0;
887 	u_short hash;
888 #ifdef	RSS
889 	uint32_t rss_hash, rss_type;
890 #endif
891 
892 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
893 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
894 		IPSTAT_INC(ips_fragments);
895 		IPSTAT_INC(ips_fragdropped);
896 		m_freem(m);
897 		return (NULL);
898 	}
899 
900 	ip = mtod(m, struct ip *);
901 	hlen = ip->ip_hl << 2;
902 
903 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
904 	head = &V_ipq[hash];
905 	IPQ_LOCK();
906 
907 	/*
908 	 * Look for queue of fragments
909 	 * of this datagram.
910 	 */
911 	TAILQ_FOREACH(fp, head, ipq_list)
912 		if (ip->ip_id == fp->ipq_id &&
913 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
914 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
915 #ifdef MAC
916 		    mac_ipq_match(m, fp) &&
917 #endif
918 		    ip->ip_p == fp->ipq_p)
919 			goto found;
920 
921 	fp = NULL;
922 
923 	/*
924 	 * Attempt to trim the number of allocated fragment queues if it
925 	 * exceeds the administrative limit.
926 	 */
927 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
928 		/*
929 		 * drop something from the tail of the current queue
930 		 * before proceeding further
931 		 */
932 		struct ipq *q = TAILQ_LAST(head, ipqhead);
933 		if (q == NULL) {   /* gak */
934 			for (i = 0; i < IPREASS_NHASH; i++) {
935 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
936 				if (r) {
937 					IPSTAT_ADD(ips_fragtimeout,
938 					    r->ipq_nfrags);
939 					ip_freef(&V_ipq[i], r);
940 					break;
941 				}
942 			}
943 		} else {
944 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
945 			ip_freef(head, q);
946 		}
947 	}
948 
949 found:
950 	/*
951 	 * Adjust ip_len to not reflect header,
952 	 * convert offset of this to bytes.
953 	 */
954 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
955 	if (ip->ip_off & htons(IP_MF)) {
956 		/*
957 		 * Make sure that fragments have a data length
958 		 * that's a non-zero multiple of 8 bytes.
959 		 */
960 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
961 			IPSTAT_INC(ips_toosmall); /* XXX */
962 			goto dropfrag;
963 		}
964 		m->m_flags |= M_IP_FRAG;
965 	} else
966 		m->m_flags &= ~M_IP_FRAG;
967 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
968 
969 	/*
970 	 * Attempt reassembly; if it succeeds, proceed.
971 	 * ip_reass() will return a different mbuf.
972 	 */
973 	IPSTAT_INC(ips_fragments);
974 	m->m_pkthdr.PH_loc.ptr = ip;
975 
976 	/* Previous ip_reass() started here. */
977 	/*
978 	 * Presence of header sizes in mbufs
979 	 * would confuse code below.
980 	 */
981 	m->m_data += hlen;
982 	m->m_len -= hlen;
983 
984 	/*
985 	 * If first fragment to arrive, create a reassembly queue.
986 	 */
987 	if (fp == NULL) {
988 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
989 		if (fp == NULL)
990 			goto dropfrag;
991 #ifdef MAC
992 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
993 			uma_zfree(V_ipq_zone, fp);
994 			fp = NULL;
995 			goto dropfrag;
996 		}
997 		mac_ipq_create(m, fp);
998 #endif
999 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1000 		V_nipq++;
1001 		fp->ipq_nfrags = 1;
1002 		fp->ipq_ttl = IPFRAGTTL;
1003 		fp->ipq_p = ip->ip_p;
1004 		fp->ipq_id = ip->ip_id;
1005 		fp->ipq_src = ip->ip_src;
1006 		fp->ipq_dst = ip->ip_dst;
1007 		fp->ipq_frags = m;
1008 		m->m_nextpkt = NULL;
1009 		goto done;
1010 	} else {
1011 		fp->ipq_nfrags++;
1012 #ifdef MAC
1013 		mac_ipq_update(m, fp);
1014 #endif
1015 	}
1016 
1017 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1018 
1019 	/*
1020 	 * Handle ECN by comparing this segment with the first one;
1021 	 * if CE is set, do not lose CE.
1022 	 * drop if CE and not-ECT are mixed for the same packet.
1023 	 */
1024 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1025 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1026 	if (ecn == IPTOS_ECN_CE) {
1027 		if (ecn0 == IPTOS_ECN_NOTECT)
1028 			goto dropfrag;
1029 		if (ecn0 != IPTOS_ECN_CE)
1030 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1031 	}
1032 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1033 		goto dropfrag;
1034 
1035 	/*
1036 	 * Find a segment which begins after this one does.
1037 	 */
1038 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1039 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1040 			break;
1041 
1042 	/*
1043 	 * If there is a preceding segment, it may provide some of
1044 	 * our data already.  If so, drop the data from the incoming
1045 	 * segment.  If it provides all of our data, drop us, otherwise
1046 	 * stick new segment in the proper place.
1047 	 *
1048 	 * If some of the data is dropped from the preceding
1049 	 * segment, then it's checksum is invalidated.
1050 	 */
1051 	if (p) {
1052 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1053 		    ntohs(ip->ip_off);
1054 		if (i > 0) {
1055 			if (i >= ntohs(ip->ip_len))
1056 				goto dropfrag;
1057 			m_adj(m, i);
1058 			m->m_pkthdr.csum_flags = 0;
1059 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1060 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1061 		}
1062 		m->m_nextpkt = p->m_nextpkt;
1063 		p->m_nextpkt = m;
1064 	} else {
1065 		m->m_nextpkt = fp->ipq_frags;
1066 		fp->ipq_frags = m;
1067 	}
1068 
1069 	/*
1070 	 * While we overlap succeeding segments trim them or,
1071 	 * if they are completely covered, dequeue them.
1072 	 */
1073 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1074 	    ntohs(GETIP(q)->ip_off); q = nq) {
1075 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1076 		    ntohs(GETIP(q)->ip_off);
1077 		if (i < ntohs(GETIP(q)->ip_len)) {
1078 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1079 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1080 			m_adj(q, i);
1081 			q->m_pkthdr.csum_flags = 0;
1082 			break;
1083 		}
1084 		nq = q->m_nextpkt;
1085 		m->m_nextpkt = nq;
1086 		IPSTAT_INC(ips_fragdropped);
1087 		fp->ipq_nfrags--;
1088 		m_freem(q);
1089 	}
1090 
1091 	/*
1092 	 * Check for complete reassembly and perform frag per packet
1093 	 * limiting.
1094 	 *
1095 	 * Frag limiting is performed here so that the nth frag has
1096 	 * a chance to complete the packet before we drop the packet.
1097 	 * As a result, n+1 frags are actually allowed per packet, but
1098 	 * only n will ever be stored. (n = maxfragsperpacket.)
1099 	 *
1100 	 */
1101 	next = 0;
1102 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1103 		if (ntohs(GETIP(q)->ip_off) != next) {
1104 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1105 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1106 				ip_freef(head, fp);
1107 			}
1108 			goto done;
1109 		}
1110 		next += ntohs(GETIP(q)->ip_len);
1111 	}
1112 	/* Make sure the last packet didn't have the IP_MF flag */
1113 	if (p->m_flags & M_IP_FRAG) {
1114 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1115 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1116 			ip_freef(head, fp);
1117 		}
1118 		goto done;
1119 	}
1120 
1121 	/*
1122 	 * Reassembly is complete.  Make sure the packet is a sane size.
1123 	 */
1124 	q = fp->ipq_frags;
1125 	ip = GETIP(q);
1126 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1127 		IPSTAT_INC(ips_toolong);
1128 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1129 		ip_freef(head, fp);
1130 		goto done;
1131 	}
1132 
1133 	/*
1134 	 * Concatenate fragments.
1135 	 */
1136 	m = q;
1137 	t = m->m_next;
1138 	m->m_next = NULL;
1139 	m_cat(m, t);
1140 	nq = q->m_nextpkt;
1141 	q->m_nextpkt = NULL;
1142 	for (q = nq; q != NULL; q = nq) {
1143 		nq = q->m_nextpkt;
1144 		q->m_nextpkt = NULL;
1145 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1146 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1147 		m_cat(m, q);
1148 	}
1149 	/*
1150 	 * In order to do checksumming faster we do 'end-around carry' here
1151 	 * (and not in for{} loop), though it implies we are not going to
1152 	 * reassemble more than 64k fragments.
1153 	 */
1154 	while (m->m_pkthdr.csum_data & 0xffff0000)
1155 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1156 		    (m->m_pkthdr.csum_data >> 16);
1157 #ifdef MAC
1158 	mac_ipq_reassemble(fp, m);
1159 	mac_ipq_destroy(fp);
1160 #endif
1161 
1162 	/*
1163 	 * Create header for new ip packet by modifying header of first
1164 	 * packet;  dequeue and discard fragment reassembly header.
1165 	 * Make header visible.
1166 	 */
1167 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1168 	ip->ip_src = fp->ipq_src;
1169 	ip->ip_dst = fp->ipq_dst;
1170 	TAILQ_REMOVE(head, fp, ipq_list);
1171 	V_nipq--;
1172 	uma_zfree(V_ipq_zone, fp);
1173 	m->m_len += (ip->ip_hl << 2);
1174 	m->m_data -= (ip->ip_hl << 2);
1175 	/* some debugging cruft by sklower, below, will go away soon */
1176 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1177 		m_fixhdr(m);
1178 	IPSTAT_INC(ips_reassembled);
1179 	IPQ_UNLOCK();
1180 
1181 #ifdef	RSS
1182 	/*
1183 	 * Query the RSS layer for the flowid / flowtype for the
1184 	 * mbuf payload.
1185 	 *
1186 	 * For now, just assume we have to calculate a new one.
1187 	 * Later on we should check to see if the assigned flowid matches
1188 	 * what RSS wants for the given IP protocol and if so, just keep it.
1189 	 *
1190 	 * We then queue into the relevant netisr so it can be dispatched
1191 	 * to the correct CPU.
1192 	 *
1193 	 * Note - this may return 1, which means the flowid in the mbuf
1194 	 * is correct for the configured RSS hash types and can be used.
1195 	 */
1196 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1197 		m->m_pkthdr.flowid = rss_hash;
1198 		M_HASHTYPE_SET(m, rss_type);
1199 	}
1200 
1201 	/*
1202 	 * Queue/dispatch for reprocessing.
1203 	 *
1204 	 * Note: this is much slower than just handling the frame in the
1205 	 * current receive context.  It's likely worth investigating
1206 	 * why this is.
1207 	 */
1208 	netisr_dispatch(NETISR_IP_DIRECT, m);
1209 	return (NULL);
1210 #endif
1211 
1212 	/* Handle in-line */
1213 	return (m);
1214 
1215 dropfrag:
1216 	IPSTAT_INC(ips_fragdropped);
1217 	if (fp != NULL)
1218 		fp->ipq_nfrags--;
1219 	m_freem(m);
1220 done:
1221 	IPQ_UNLOCK();
1222 	return (NULL);
1223 
1224 #undef GETIP
1225 }
1226 
1227 /*
1228  * Free a fragment reassembly header and all
1229  * associated datagrams.
1230  */
1231 static void
1232 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1233 {
1234 	struct mbuf *q;
1235 
1236 	IPQ_LOCK_ASSERT();
1237 
1238 	while (fp->ipq_frags) {
1239 		q = fp->ipq_frags;
1240 		fp->ipq_frags = q->m_nextpkt;
1241 		m_freem(q);
1242 	}
1243 	TAILQ_REMOVE(fhp, fp, ipq_list);
1244 	uma_zfree(V_ipq_zone, fp);
1245 	V_nipq--;
1246 }
1247 
1248 /*
1249  * IP timer processing;
1250  * if a timer expires on a reassembly
1251  * queue, discard it.
1252  */
1253 void
1254 ip_slowtimo(void)
1255 {
1256 	VNET_ITERATOR_DECL(vnet_iter);
1257 	struct ipq *fp;
1258 	int i;
1259 
1260 	VNET_LIST_RLOCK_NOSLEEP();
1261 	IPQ_LOCK();
1262 	VNET_FOREACH(vnet_iter) {
1263 		CURVNET_SET(vnet_iter);
1264 		for (i = 0; i < IPREASS_NHASH; i++) {
1265 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1266 				struct ipq *fpp;
1267 
1268 				fpp = fp;
1269 				fp = TAILQ_NEXT(fp, ipq_list);
1270 				if(--fpp->ipq_ttl == 0) {
1271 					IPSTAT_ADD(ips_fragtimeout,
1272 					    fpp->ipq_nfrags);
1273 					ip_freef(&V_ipq[i], fpp);
1274 				}
1275 			}
1276 		}
1277 		/*
1278 		 * If we are over the maximum number of fragments
1279 		 * (due to the limit being lowered), drain off
1280 		 * enough to get down to the new limit.
1281 		 */
1282 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1283 			for (i = 0; i < IPREASS_NHASH; i++) {
1284 				while (V_nipq > V_maxnipq &&
1285 				    !TAILQ_EMPTY(&V_ipq[i])) {
1286 					IPSTAT_ADD(ips_fragdropped,
1287 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1288 					ip_freef(&V_ipq[i],
1289 					    TAILQ_FIRST(&V_ipq[i]));
1290 				}
1291 			}
1292 		}
1293 		CURVNET_RESTORE();
1294 	}
1295 	IPQ_UNLOCK();
1296 	VNET_LIST_RUNLOCK_NOSLEEP();
1297 }
1298 
1299 /*
1300  * Drain off all datagram fragments.
1301  */
1302 static void
1303 ip_drain_locked(void)
1304 {
1305 	int     i;
1306 
1307 	IPQ_LOCK_ASSERT();
1308 
1309 	for (i = 0; i < IPREASS_NHASH; i++) {
1310 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1311 			IPSTAT_ADD(ips_fragdropped,
1312 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1313 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1314 		}
1315 	}
1316 }
1317 
1318 void
1319 ip_drain(void)
1320 {
1321 	VNET_ITERATOR_DECL(vnet_iter);
1322 
1323 	VNET_LIST_RLOCK_NOSLEEP();
1324 	IPQ_LOCK();
1325 	VNET_FOREACH(vnet_iter) {
1326 		CURVNET_SET(vnet_iter);
1327 		ip_drain_locked();
1328 		CURVNET_RESTORE();
1329 	}
1330 	IPQ_UNLOCK();
1331 	VNET_LIST_RUNLOCK_NOSLEEP();
1332 }
1333 
1334 /*
1335  * The protocol to be inserted into ip_protox[] must be already registered
1336  * in inetsw[], either statically or through pf_proto_register().
1337  */
1338 int
1339 ipproto_register(short ipproto)
1340 {
1341 	struct protosw *pr;
1342 
1343 	/* Sanity checks. */
1344 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1345 		return (EPROTONOSUPPORT);
1346 
1347 	/*
1348 	 * The protocol slot must not be occupied by another protocol
1349 	 * already.  An index pointing to IPPROTO_RAW is unused.
1350 	 */
1351 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1352 	if (pr == NULL)
1353 		return (EPFNOSUPPORT);
1354 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1355 		return (EEXIST);
1356 
1357 	/* Find the protocol position in inetsw[] and set the index. */
1358 	for (pr = inetdomain.dom_protosw;
1359 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1360 		if (pr->pr_domain->dom_family == PF_INET &&
1361 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1362 			ip_protox[pr->pr_protocol] = pr - inetsw;
1363 			return (0);
1364 		}
1365 	}
1366 	return (EPROTONOSUPPORT);
1367 }
1368 
1369 int
1370 ipproto_unregister(short ipproto)
1371 {
1372 	struct protosw *pr;
1373 
1374 	/* Sanity checks. */
1375 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1376 		return (EPROTONOSUPPORT);
1377 
1378 	/* Check if the protocol was indeed registered. */
1379 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1380 	if (pr == NULL)
1381 		return (EPFNOSUPPORT);
1382 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1383 		return (ENOENT);
1384 
1385 	/* Reset the protocol slot to IPPROTO_RAW. */
1386 	ip_protox[ipproto] = pr - inetsw;
1387 	return (0);
1388 }
1389 
1390 /*
1391  * Given address of next destination (final or next hop), return (referenced)
1392  * internet address info of interface to be used to get there.
1393  */
1394 struct in_ifaddr *
1395 ip_rtaddr(struct in_addr dst, u_int fibnum)
1396 {
1397 	struct route sro;
1398 	struct sockaddr_in *sin;
1399 	struct in_ifaddr *ia;
1400 
1401 	bzero(&sro, sizeof(sro));
1402 	sin = (struct sockaddr_in *)&sro.ro_dst;
1403 	sin->sin_family = AF_INET;
1404 	sin->sin_len = sizeof(*sin);
1405 	sin->sin_addr = dst;
1406 	in_rtalloc_ign(&sro, 0, fibnum);
1407 
1408 	if (sro.ro_rt == NULL)
1409 		return (NULL);
1410 
1411 	ia = ifatoia(sro.ro_rt->rt_ifa);
1412 	ifa_ref(&ia->ia_ifa);
1413 	RTFREE(sro.ro_rt);
1414 	return (ia);
1415 }
1416 
1417 u_char inetctlerrmap[PRC_NCMDS] = {
1418 	0,		0,		0,		0,
1419 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1420 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1421 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1422 	0,		0,		EHOSTUNREACH,	0,
1423 	ENOPROTOOPT,	ECONNREFUSED
1424 };
1425 
1426 /*
1427  * Forward a packet.  If some error occurs return the sender
1428  * an icmp packet.  Note we can't always generate a meaningful
1429  * icmp message because icmp doesn't have a large enough repertoire
1430  * of codes and types.
1431  *
1432  * If not forwarding, just drop the packet.  This could be confusing
1433  * if ipforwarding was zero but some routing protocol was advancing
1434  * us as a gateway to somewhere.  However, we must let the routing
1435  * protocol deal with that.
1436  *
1437  * The srcrt parameter indicates whether the packet is being forwarded
1438  * via a source route.
1439  */
1440 void
1441 ip_forward(struct mbuf *m, int srcrt)
1442 {
1443 	struct ip *ip = mtod(m, struct ip *);
1444 	struct in_ifaddr *ia;
1445 	struct mbuf *mcopy;
1446 	struct in_addr dest;
1447 	struct route ro;
1448 	int error, type = 0, code = 0, mtu = 0;
1449 
1450 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1451 		IPSTAT_INC(ips_cantforward);
1452 		m_freem(m);
1453 		return;
1454 	}
1455 #ifdef IPSTEALTH
1456 	if (!V_ipstealth) {
1457 #endif
1458 		if (ip->ip_ttl <= IPTTLDEC) {
1459 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1460 			    0, 0);
1461 			return;
1462 		}
1463 #ifdef IPSTEALTH
1464 	}
1465 #endif
1466 
1467 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1468 #ifndef IPSEC
1469 	/*
1470 	 * 'ia' may be NULL if there is no route for this destination.
1471 	 * In case of IPsec, Don't discard it just yet, but pass it to
1472 	 * ip_output in case of outgoing IPsec policy.
1473 	 */
1474 	if (!srcrt && ia == NULL) {
1475 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1476 		return;
1477 	}
1478 #endif
1479 
1480 	/*
1481 	 * Save the IP header and at most 8 bytes of the payload,
1482 	 * in case we need to generate an ICMP message to the src.
1483 	 *
1484 	 * XXX this can be optimized a lot by saving the data in a local
1485 	 * buffer on the stack (72 bytes at most), and only allocating the
1486 	 * mbuf if really necessary. The vast majority of the packets
1487 	 * are forwarded without having to send an ICMP back (either
1488 	 * because unnecessary, or because rate limited), so we are
1489 	 * really we are wasting a lot of work here.
1490 	 *
1491 	 * We don't use m_copy() because it might return a reference
1492 	 * to a shared cluster. Both this function and ip_output()
1493 	 * assume exclusive access to the IP header in `m', so any
1494 	 * data in a cluster may change before we reach icmp_error().
1495 	 */
1496 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1497 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1498 		/*
1499 		 * It's probably ok if the pkthdr dup fails (because
1500 		 * the deep copy of the tag chain failed), but for now
1501 		 * be conservative and just discard the copy since
1502 		 * code below may some day want the tags.
1503 		 */
1504 		m_free(mcopy);
1505 		mcopy = NULL;
1506 	}
1507 	if (mcopy != NULL) {
1508 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1509 		mcopy->m_pkthdr.len = mcopy->m_len;
1510 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1511 	}
1512 
1513 #ifdef IPSTEALTH
1514 	if (!V_ipstealth) {
1515 #endif
1516 		ip->ip_ttl -= IPTTLDEC;
1517 #ifdef IPSTEALTH
1518 	}
1519 #endif
1520 
1521 	/*
1522 	 * If forwarding packet using same interface that it came in on,
1523 	 * perhaps should send a redirect to sender to shortcut a hop.
1524 	 * Only send redirect if source is sending directly to us,
1525 	 * and if packet was not source routed (or has any options).
1526 	 * Also, don't send redirect if forwarding using a default route
1527 	 * or a route modified by a redirect.
1528 	 */
1529 	dest.s_addr = 0;
1530 	if (!srcrt && V_ipsendredirects &&
1531 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1532 		struct sockaddr_in *sin;
1533 		struct rtentry *rt;
1534 
1535 		bzero(&ro, sizeof(ro));
1536 		sin = (struct sockaddr_in *)&ro.ro_dst;
1537 		sin->sin_family = AF_INET;
1538 		sin->sin_len = sizeof(*sin);
1539 		sin->sin_addr = ip->ip_dst;
1540 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1541 
1542 		rt = ro.ro_rt;
1543 
1544 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1545 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1546 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1547 			u_long src = ntohl(ip->ip_src.s_addr);
1548 
1549 			if (RTA(rt) &&
1550 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1551 				if (rt->rt_flags & RTF_GATEWAY)
1552 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1553 				else
1554 					dest.s_addr = ip->ip_dst.s_addr;
1555 				/* Router requirements says to only send host redirects */
1556 				type = ICMP_REDIRECT;
1557 				code = ICMP_REDIRECT_HOST;
1558 			}
1559 		}
1560 		if (rt)
1561 			RTFREE(rt);
1562 	}
1563 
1564 	/*
1565 	 * Try to cache the route MTU from ip_output so we can consider it for
1566 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1567 	 */
1568 	bzero(&ro, sizeof(ro));
1569 
1570 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1571 
1572 	if (error == EMSGSIZE && ro.ro_rt)
1573 		mtu = ro.ro_rt->rt_mtu;
1574 	RO_RTFREE(&ro);
1575 
1576 	if (error)
1577 		IPSTAT_INC(ips_cantforward);
1578 	else {
1579 		IPSTAT_INC(ips_forward);
1580 		if (type)
1581 			IPSTAT_INC(ips_redirectsent);
1582 		else {
1583 			if (mcopy)
1584 				m_freem(mcopy);
1585 			if (ia != NULL)
1586 				ifa_free(&ia->ia_ifa);
1587 			return;
1588 		}
1589 	}
1590 	if (mcopy == NULL) {
1591 		if (ia != NULL)
1592 			ifa_free(&ia->ia_ifa);
1593 		return;
1594 	}
1595 
1596 	switch (error) {
1597 
1598 	case 0:				/* forwarded, but need redirect */
1599 		/* type, code set above */
1600 		break;
1601 
1602 	case ENETUNREACH:
1603 	case EHOSTUNREACH:
1604 	case ENETDOWN:
1605 	case EHOSTDOWN:
1606 	default:
1607 		type = ICMP_UNREACH;
1608 		code = ICMP_UNREACH_HOST;
1609 		break;
1610 
1611 	case EMSGSIZE:
1612 		type = ICMP_UNREACH;
1613 		code = ICMP_UNREACH_NEEDFRAG;
1614 
1615 #ifdef IPSEC
1616 		/*
1617 		 * If IPsec is configured for this path,
1618 		 * override any possibly mtu value set by ip_output.
1619 		 */
1620 		mtu = ip_ipsec_mtu(mcopy, mtu);
1621 #endif /* IPSEC */
1622 		/*
1623 		 * If the MTU was set before make sure we are below the
1624 		 * interface MTU.
1625 		 * If the MTU wasn't set before use the interface mtu or
1626 		 * fall back to the next smaller mtu step compared to the
1627 		 * current packet size.
1628 		 */
1629 		if (mtu != 0) {
1630 			if (ia != NULL)
1631 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1632 		} else {
1633 			if (ia != NULL)
1634 				mtu = ia->ia_ifp->if_mtu;
1635 			else
1636 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1637 		}
1638 		IPSTAT_INC(ips_cantfrag);
1639 		break;
1640 
1641 	case ENOBUFS:
1642 	case EACCES:			/* ipfw denied packet */
1643 		m_freem(mcopy);
1644 		if (ia != NULL)
1645 			ifa_free(&ia->ia_ifa);
1646 		return;
1647 	}
1648 	if (ia != NULL)
1649 		ifa_free(&ia->ia_ifa);
1650 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1651 }
1652 
1653 void
1654 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1655     struct mbuf *m)
1656 {
1657 
1658 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1659 		struct bintime bt;
1660 
1661 		bintime(&bt);
1662 		if (inp->inp_socket->so_options & SO_BINTIME) {
1663 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1664 			    SCM_BINTIME, SOL_SOCKET);
1665 			if (*mp)
1666 				mp = &(*mp)->m_next;
1667 		}
1668 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1669 			struct timeval tv;
1670 
1671 			bintime2timeval(&bt, &tv);
1672 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1673 			    SCM_TIMESTAMP, SOL_SOCKET);
1674 			if (*mp)
1675 				mp = &(*mp)->m_next;
1676 		}
1677 	}
1678 	if (inp->inp_flags & INP_RECVDSTADDR) {
1679 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1680 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1681 		if (*mp)
1682 			mp = &(*mp)->m_next;
1683 	}
1684 	if (inp->inp_flags & INP_RECVTTL) {
1685 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1686 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1687 		if (*mp)
1688 			mp = &(*mp)->m_next;
1689 	}
1690 #ifdef notyet
1691 	/* XXX
1692 	 * Moving these out of udp_input() made them even more broken
1693 	 * than they already were.
1694 	 */
1695 	/* options were tossed already */
1696 	if (inp->inp_flags & INP_RECVOPTS) {
1697 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1698 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1699 		if (*mp)
1700 			mp = &(*mp)->m_next;
1701 	}
1702 	/* ip_srcroute doesn't do what we want here, need to fix */
1703 	if (inp->inp_flags & INP_RECVRETOPTS) {
1704 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1705 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1706 		if (*mp)
1707 			mp = &(*mp)->m_next;
1708 	}
1709 #endif
1710 	if (inp->inp_flags & INP_RECVIF) {
1711 		struct ifnet *ifp;
1712 		struct sdlbuf {
1713 			struct sockaddr_dl sdl;
1714 			u_char	pad[32];
1715 		} sdlbuf;
1716 		struct sockaddr_dl *sdp;
1717 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1718 
1719 		if ((ifp = m->m_pkthdr.rcvif) &&
1720 		    ifp->if_index && ifp->if_index <= V_if_index) {
1721 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1722 			/*
1723 			 * Change our mind and don't try copy.
1724 			 */
1725 			if (sdp->sdl_family != AF_LINK ||
1726 			    sdp->sdl_len > sizeof(sdlbuf)) {
1727 				goto makedummy;
1728 			}
1729 			bcopy(sdp, sdl2, sdp->sdl_len);
1730 		} else {
1731 makedummy:
1732 			sdl2->sdl_len =
1733 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1734 			sdl2->sdl_family = AF_LINK;
1735 			sdl2->sdl_index = 0;
1736 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1737 		}
1738 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1739 		    IP_RECVIF, IPPROTO_IP);
1740 		if (*mp)
1741 			mp = &(*mp)->m_next;
1742 	}
1743 	if (inp->inp_flags & INP_RECVTOS) {
1744 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1745 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1746 		if (*mp)
1747 			mp = &(*mp)->m_next;
1748 	}
1749 
1750 	if (inp->inp_flags2 & INP_RECVFLOWID) {
1751 		uint32_t flowid, flow_type;
1752 
1753 		flowid = m->m_pkthdr.flowid;
1754 		flow_type = M_HASHTYPE_GET(m);
1755 
1756 		/*
1757 		 * XXX should handle the failure of one or the
1758 		 * other - don't populate both?
1759 		 */
1760 		*mp = sbcreatecontrol((caddr_t) &flowid,
1761 		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1762 		if (*mp)
1763 			mp = &(*mp)->m_next;
1764 		*mp = sbcreatecontrol((caddr_t) &flow_type,
1765 		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1766 		if (*mp)
1767 			mp = &(*mp)->m_next;
1768 	}
1769 
1770 #ifdef	RSS
1771 	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1772 		uint32_t flowid, flow_type;
1773 		uint32_t rss_bucketid;
1774 
1775 		flowid = m->m_pkthdr.flowid;
1776 		flow_type = M_HASHTYPE_GET(m);
1777 
1778 		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1779 			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1780 			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1781 			if (*mp)
1782 				mp = &(*mp)->m_next;
1783 		}
1784 	}
1785 #endif
1786 }
1787 
1788 /*
1789  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1790  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1791  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1792  * compiled.
1793  */
1794 static VNET_DEFINE(int, ip_rsvp_on);
1795 VNET_DEFINE(struct socket *, ip_rsvpd);
1796 
1797 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1798 
1799 int
1800 ip_rsvp_init(struct socket *so)
1801 {
1802 
1803 	if (so->so_type != SOCK_RAW ||
1804 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1805 		return EOPNOTSUPP;
1806 
1807 	if (V_ip_rsvpd != NULL)
1808 		return EADDRINUSE;
1809 
1810 	V_ip_rsvpd = so;
1811 	/*
1812 	 * This may seem silly, but we need to be sure we don't over-increment
1813 	 * the RSVP counter, in case something slips up.
1814 	 */
1815 	if (!V_ip_rsvp_on) {
1816 		V_ip_rsvp_on = 1;
1817 		V_rsvp_on++;
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 int
1824 ip_rsvp_done(void)
1825 {
1826 
1827 	V_ip_rsvpd = NULL;
1828 	/*
1829 	 * This may seem silly, but we need to be sure we don't over-decrement
1830 	 * the RSVP counter, in case something slips up.
1831 	 */
1832 	if (V_ip_rsvp_on) {
1833 		V_ip_rsvp_on = 0;
1834 		V_rsvp_on--;
1835 	}
1836 	return 0;
1837 }
1838 
1839 int
1840 rsvp_input(struct mbuf **mp, int *offp, int proto)
1841 {
1842 	struct mbuf *m;
1843 
1844 	m = *mp;
1845 	*mp = NULL;
1846 
1847 	if (rsvp_input_p) { /* call the real one if loaded */
1848 		*mp = m;
1849 		rsvp_input_p(mp, offp, proto);
1850 		return (IPPROTO_DONE);
1851 	}
1852 
1853 	/* Can still get packets with rsvp_on = 0 if there is a local member
1854 	 * of the group to which the RSVP packet is addressed.  But in this
1855 	 * case we want to throw the packet away.
1856 	 */
1857 
1858 	if (!V_rsvp_on) {
1859 		m_freem(m);
1860 		return (IPPROTO_DONE);
1861 	}
1862 
1863 	if (V_ip_rsvpd != NULL) {
1864 		*mp = m;
1865 		rip_input(mp, offp, proto);
1866 		return (IPPROTO_DONE);
1867 	}
1868 	/* Drop the packet */
1869 	m_freem(m);
1870 	return (IPPROTO_DONE);
1871 }
1872