1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #define _IP_VHL 38 39 #include "opt_bootp.h" 40 #include "opt_ipfw.h" 41 #include "opt_ipdn.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 #include "opt_ipstealth.h" 45 #include "opt_ipsec.h" 46 #include "opt_pfil_hooks.h" 47 #include "opt_random_ip_id.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/mbuf.h> 52 #include <sys/malloc.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/time.h> 57 #include <sys/kernel.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 61 #include <net/pfil.h> 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/if_var.h> 65 #include <net/if_dl.h> 66 #include <net/route.h> 67 #include <net/netisr.h> 68 #include <net/intrq.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/ip_var.h> 76 #include <netinet/ip_icmp.h> 77 #include <machine/in_cksum.h> 78 79 #include <sys/socketvar.h> 80 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_dummynet.h> 83 84 #ifdef IPSEC 85 #include <netinet6/ipsec.h> 86 #include <netkey/key.h> 87 #endif 88 89 int rsvp_on = 0; 90 91 int ipforwarding = 0; 92 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 93 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 94 95 static int ipsendredirects = 1; /* XXX */ 96 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 97 &ipsendredirects, 0, "Enable sending IP redirects"); 98 99 int ip_defttl = IPDEFTTL; 100 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 101 &ip_defttl, 0, "Maximum TTL on IP packets"); 102 103 static int ip_dosourceroute = 0; 104 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 105 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 106 107 static int ip_acceptsourceroute = 0; 108 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 109 CTLFLAG_RW, &ip_acceptsourceroute, 0, 110 "Enable accepting source routed IP packets"); 111 112 static int ip_keepfaith = 0; 113 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 114 &ip_keepfaith, 0, 115 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 116 117 static int ip_nfragpackets = 0; 118 static int ip_maxfragpackets; /* initialized in ip_init() */ 119 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 120 &ip_maxfragpackets, 0, 121 "Maximum number of IPv4 fragment reassembly queue entries"); 122 123 /* 124 * XXX - Setting ip_checkinterface mostly implements the receive side of 125 * the Strong ES model described in RFC 1122, but since the routing table 126 * and transmit implementation do not implement the Strong ES model, 127 * setting this to 1 results in an odd hybrid. 128 * 129 * XXX - ip_checkinterface currently must be disabled if you use ipnat 130 * to translate the destination address to another local interface. 131 * 132 * XXX - ip_checkinterface must be disabled if you add IP aliases 133 * to the loopback interface instead of the interface where the 134 * packets for those addresses are received. 135 */ 136 static int ip_checkinterface = 1; 137 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 138 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 139 140 #ifdef DIAGNOSTIC 141 static int ipprintfs = 0; 142 #endif 143 144 static int ipqmaxlen = IFQ_MAXLEN; 145 146 extern struct domain inetdomain; 147 extern struct protosw inetsw[]; 148 u_char ip_protox[IPPROTO_MAX]; 149 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 150 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 151 u_long in_ifaddrhmask; /* mask for hash table */ 152 153 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 154 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 156 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 157 158 struct ipstat ipstat; 159 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 160 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 161 162 /* Packet reassembly stuff */ 163 #define IPREASS_NHASH_LOG2 6 164 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 165 #define IPREASS_HMASK (IPREASS_NHASH - 1) 166 #define IPREASS_HASH(x,y) \ 167 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 168 169 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 170 static int nipq = 0; /* total # of reass queues */ 171 static int maxnipq; 172 173 #ifdef IPCTL_DEFMTU 174 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 175 &ip_mtu, 0, "Default MTU"); 176 #endif 177 178 #ifdef IPSTEALTH 179 static int ipstealth = 0; 180 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 181 &ipstealth, 0, ""); 182 #endif 183 184 185 /* Firewall hooks */ 186 ip_fw_chk_t *ip_fw_chk_ptr; 187 int fw_enable = 1 ; 188 189 /* Dummynet hooks */ 190 ip_dn_io_t *ip_dn_io_ptr; 191 192 193 /* 194 * XXX this is ugly -- the following two global variables are 195 * used to store packet state while it travels through the stack. 196 * Note that the code even makes assumptions on the size and 197 * alignment of fields inside struct ip_srcrt so e.g. adding some 198 * fields will break the code. This needs to be fixed. 199 * 200 * We need to save the IP options in case a protocol wants to respond 201 * to an incoming packet over the same route if the packet got here 202 * using IP source routing. This allows connection establishment and 203 * maintenance when the remote end is on a network that is not known 204 * to us. 205 */ 206 static int ip_nhops = 0; 207 static struct ip_srcrt { 208 struct in_addr dst; /* final destination */ 209 char nop; /* one NOP to align */ 210 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 211 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 212 } ip_srcrt; 213 214 static void save_rte(u_char *, struct in_addr); 215 static int ip_dooptions(struct mbuf *m, int, 216 struct sockaddr_in *next_hop); 217 static void ip_forward(struct mbuf *m, int srcrt, 218 struct sockaddr_in *next_hop); 219 static void ip_freef(struct ipqhead *, struct ipq *); 220 static struct mbuf *ip_reass(struct mbuf *, struct ipqhead *, 221 struct ipq *, u_int32_t *, u_int16_t *); 222 static void ipintr(void); 223 224 /* 225 * IP initialization: fill in IP protocol switch table. 226 * All protocols not implemented in kernel go to raw IP protocol handler. 227 */ 228 void 229 ip_init() 230 { 231 register struct protosw *pr; 232 register int i; 233 234 TAILQ_INIT(&in_ifaddrhead); 235 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 236 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 237 if (pr == 0) 238 panic("ip_init"); 239 for (i = 0; i < IPPROTO_MAX; i++) 240 ip_protox[i] = pr - inetsw; 241 for (pr = inetdomain.dom_protosw; 242 pr < inetdomain.dom_protoswNPROTOSW; pr++) 243 if (pr->pr_domain->dom_family == PF_INET && 244 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 245 ip_protox[pr->pr_protocol] = pr - inetsw; 246 247 for (i = 0; i < IPREASS_NHASH; i++) 248 TAILQ_INIT(&ipq[i]); 249 250 maxnipq = nmbclusters / 4; 251 ip_maxfragpackets = nmbclusters / 4; 252 253 #ifndef RANDOM_IP_ID 254 ip_id = time_second & 0xffff; 255 #endif 256 ipintrq.ifq_maxlen = ipqmaxlen; 257 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 258 ipintrq_present = 1; 259 260 register_netisr(NETISR_IP, ipintr); 261 } 262 263 /* 264 * XXX watch out this one. It is perhaps used as a cache for 265 * the most recently used route ? it is cleared in in_addroute() 266 * when a new route is successfully created. 267 */ 268 struct route ipforward_rt; 269 270 /* 271 * Ip input routine. Checksum and byte swap header. If fragmented 272 * try to reassemble. Process options. Pass to next level. 273 */ 274 void 275 ip_input(struct mbuf *m) 276 { 277 struct ip *ip; 278 struct ipq *fp; 279 struct in_ifaddr *ia = NULL; 280 struct ifaddr *ifa; 281 int i, hlen, checkif; 282 u_short sum; 283 struct in_addr pkt_dst; 284 u_int32_t divert_info = 0; /* packet divert/tee info */ 285 struct ip_fw_args args; 286 #ifdef PFIL_HOOKS 287 struct packet_filter_hook *pfh; 288 struct mbuf *m0; 289 int rv; 290 #endif /* PFIL_HOOKS */ 291 292 args.eh = NULL; 293 args.oif = NULL; 294 args.rule = NULL; 295 args.divert_rule = 0; /* divert cookie */ 296 args.next_hop = NULL; 297 298 /* Grab info from MT_TAG mbufs prepended to the chain. */ 299 for (; m && m->m_type == MT_TAG; m = m->m_next) { 300 switch(m->m_tag_id) { 301 default: 302 printf("ip_input: unrecognised MT_TAG tag %d\n", 303 m->m_tag_id); 304 break; 305 306 case PACKET_TAG_DUMMYNET: 307 args.rule = ((struct dn_pkt *)m)->rule; 308 break; 309 310 case PACKET_TAG_DIVERT: 311 args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff; 312 break; 313 314 case PACKET_TAG_IPFORWARD: 315 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data; 316 break; 317 } 318 } 319 320 KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0, 321 ("ip_input: no HDR")); 322 323 if (args.rule) { /* dummynet already filtered us */ 324 ip = mtod(m, struct ip *); 325 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 326 goto iphack ; 327 } 328 329 ipstat.ips_total++; 330 331 if (m->m_pkthdr.len < sizeof(struct ip)) 332 goto tooshort; 333 334 if (m->m_len < sizeof (struct ip) && 335 (m = m_pullup(m, sizeof (struct ip))) == 0) { 336 ipstat.ips_toosmall++; 337 return; 338 } 339 ip = mtod(m, struct ip *); 340 341 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 342 ipstat.ips_badvers++; 343 goto bad; 344 } 345 346 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 347 if (hlen < sizeof(struct ip)) { /* minimum header length */ 348 ipstat.ips_badhlen++; 349 goto bad; 350 } 351 if (hlen > m->m_len) { 352 if ((m = m_pullup(m, hlen)) == 0) { 353 ipstat.ips_badhlen++; 354 return; 355 } 356 ip = mtod(m, struct ip *); 357 } 358 359 /* 127/8 must not appear on wire - RFC1122 */ 360 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 361 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 362 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 363 ipstat.ips_badaddr++; 364 goto bad; 365 } 366 } 367 368 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 369 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 370 } else { 371 if (hlen == sizeof(struct ip)) { 372 sum = in_cksum_hdr(ip); 373 } else { 374 sum = in_cksum(m, hlen); 375 } 376 } 377 if (sum) { 378 ipstat.ips_badsum++; 379 goto bad; 380 } 381 382 /* 383 * Convert fields to host representation. 384 */ 385 ip->ip_len = ntohs(ip->ip_len); 386 if (ip->ip_len < hlen) { 387 ipstat.ips_badlen++; 388 goto bad; 389 } 390 ip->ip_off = ntohs(ip->ip_off); 391 392 /* 393 * Check that the amount of data in the buffers 394 * is as at least much as the IP header would have us expect. 395 * Trim mbufs if longer than we expect. 396 * Drop packet if shorter than we expect. 397 */ 398 if (m->m_pkthdr.len < ip->ip_len) { 399 tooshort: 400 ipstat.ips_tooshort++; 401 goto bad; 402 } 403 if (m->m_pkthdr.len > ip->ip_len) { 404 if (m->m_len == m->m_pkthdr.len) { 405 m->m_len = ip->ip_len; 406 m->m_pkthdr.len = ip->ip_len; 407 } else 408 m_adj(m, ip->ip_len - m->m_pkthdr.len); 409 } 410 411 #ifdef IPSEC 412 if (ipsec_gethist(m, NULL)) 413 goto pass; 414 #endif 415 416 /* 417 * IpHack's section. 418 * Right now when no processing on packet has done 419 * and it is still fresh out of network we do our black 420 * deals with it. 421 * - Firewall: deny/allow/divert 422 * - Xlate: translate packet's addr/port (NAT). 423 * - Pipe: pass pkt through dummynet. 424 * - Wrap: fake packet's addr/port <unimpl.> 425 * - Encapsulate: put it in another IP and send out. <unimp.> 426 */ 427 428 iphack: 429 430 #ifdef PFIL_HOOKS 431 /* 432 * Run through list of hooks for input packets. If there are any 433 * filters which require that additional packets in the flow are 434 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 435 * Note that filters must _never_ set this flag, as another filter 436 * in the list may have previously cleared it. 437 */ 438 m0 = m; 439 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 440 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 441 if (pfh->pfil_func) { 442 rv = pfh->pfil_func(ip, hlen, 443 m->m_pkthdr.rcvif, 0, &m0); 444 if (rv) 445 return; 446 m = m0; 447 if (m == NULL) 448 return; 449 ip = mtod(m, struct ip *); 450 } 451 #endif /* PFIL_HOOKS */ 452 453 if (fw_enable && IPFW_LOADED) { 454 /* 455 * If we've been forwarded from the output side, then 456 * skip the firewall a second time 457 */ 458 if (args.next_hop) 459 goto ours; 460 461 args.m = m; 462 i = ip_fw_chk_ptr(&args); 463 m = args.m; 464 465 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ 466 if (m) 467 m_freem(m); 468 return; 469 } 470 ip = mtod(m, struct ip *); /* just in case m changed */ 471 if (i == 0 && args.next_hop == NULL) /* common case */ 472 goto pass; 473 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 474 /* Send packet to the appropriate pipe */ 475 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args); 476 return; 477 } 478 #ifdef IPDIVERT 479 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 480 /* Divert or tee packet */ 481 divert_info = i; 482 goto ours; 483 } 484 #endif 485 if (i == 0 && args.next_hop != NULL) 486 goto pass; 487 /* 488 * if we get here, the packet must be dropped 489 */ 490 m_freem(m); 491 return; 492 } 493 pass: 494 495 /* 496 * Process options and, if not destined for us, 497 * ship it on. ip_dooptions returns 1 when an 498 * error was detected (causing an icmp message 499 * to be sent and the original packet to be freed). 500 */ 501 ip_nhops = 0; /* for source routed packets */ 502 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop)) 503 return; 504 505 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 506 * matter if it is destined to another node, or whether it is 507 * a multicast one, RSVP wants it! and prevents it from being forwarded 508 * anywhere else. Also checks if the rsvp daemon is running before 509 * grabbing the packet. 510 */ 511 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 512 goto ours; 513 514 /* 515 * Check our list of addresses, to see if the packet is for us. 516 * If we don't have any addresses, assume any unicast packet 517 * we receive might be for us (and let the upper layers deal 518 * with it). 519 */ 520 if (TAILQ_EMPTY(&in_ifaddrhead) && 521 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 522 goto ours; 523 524 /* 525 * Cache the destination address of the packet; this may be 526 * changed by use of 'ipfw fwd'. 527 */ 528 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst; 529 530 /* 531 * Enable a consistency check between the destination address 532 * and the arrival interface for a unicast packet (the RFC 1122 533 * strong ES model) if IP forwarding is disabled and the packet 534 * is not locally generated and the packet is not subject to 535 * 'ipfw fwd'. 536 * 537 * XXX - Checking also should be disabled if the destination 538 * address is ipnat'ed to a different interface. 539 * 540 * XXX - Checking is incompatible with IP aliases added 541 * to the loopback interface instead of the interface where 542 * the packets are received. 543 */ 544 checkif = ip_checkinterface && (ipforwarding == 0) && 545 m->m_pkthdr.rcvif != NULL && 546 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 547 (args.next_hop == NULL); 548 549 /* 550 * Check for exact addresses in the hash bucket. 551 */ 552 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 553 /* 554 * If the address matches, verify that the packet 555 * arrived via the correct interface if checking is 556 * enabled. 557 */ 558 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 559 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 560 goto ours; 561 } 562 /* 563 * Check for broadcast addresses. 564 * 565 * Only accept broadcast packets that arrive via the matching 566 * interface. Reception of forwarded directed broadcasts would 567 * be handled via ip_forward() and ether_output() with the loopback 568 * into the stack for SIMPLEX interfaces handled by ether_output(). 569 */ 570 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 571 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 572 if (ifa->ifa_addr->sa_family != AF_INET) 573 continue; 574 ia = ifatoia(ifa); 575 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 576 pkt_dst.s_addr) 577 goto ours; 578 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 579 goto ours; 580 #ifdef BOOTP_COMPAT 581 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 582 goto ours; 583 #endif 584 } 585 } 586 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 587 struct in_multi *inm; 588 if (ip_mrouter) { 589 /* 590 * If we are acting as a multicast router, all 591 * incoming multicast packets are passed to the 592 * kernel-level multicast forwarding function. 593 * The packet is returned (relatively) intact; if 594 * ip_mforward() returns a non-zero value, the packet 595 * must be discarded, else it may be accepted below. 596 */ 597 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 598 ipstat.ips_cantforward++; 599 m_freem(m); 600 return; 601 } 602 603 /* 604 * The process-level routing daemon needs to receive 605 * all multicast IGMP packets, whether or not this 606 * host belongs to their destination groups. 607 */ 608 if (ip->ip_p == IPPROTO_IGMP) 609 goto ours; 610 ipstat.ips_forward++; 611 } 612 /* 613 * See if we belong to the destination multicast group on the 614 * arrival interface. 615 */ 616 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 617 if (inm == NULL) { 618 ipstat.ips_notmember++; 619 m_freem(m); 620 return; 621 } 622 goto ours; 623 } 624 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 625 goto ours; 626 if (ip->ip_dst.s_addr == INADDR_ANY) 627 goto ours; 628 629 /* 630 * FAITH(Firewall Aided Internet Translator) 631 */ 632 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 633 if (ip_keepfaith) { 634 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 635 goto ours; 636 } 637 m_freem(m); 638 return; 639 } 640 641 /* 642 * Not for us; forward if possible and desirable. 643 */ 644 if (ipforwarding == 0) { 645 ipstat.ips_cantforward++; 646 m_freem(m); 647 } else { 648 #ifdef IPSEC 649 /* 650 * Enforce inbound IPsec SPD. 651 */ 652 if (ipsec4_in_reject(m, NULL)) { 653 ipsecstat.in_polvio++; 654 goto bad; 655 } 656 #endif /* IPSEC */ 657 ip_forward(m, 0, args.next_hop); 658 } 659 return; 660 661 ours: 662 #ifdef IPSTEALTH 663 /* 664 * IPSTEALTH: Process non-routing options only 665 * if the packet is destined for us. 666 */ 667 if (ipstealth && hlen > sizeof (struct ip) && 668 ip_dooptions(m, 1, args.next_hop)) 669 return; 670 #endif /* IPSTEALTH */ 671 672 /* Count the packet in the ip address stats */ 673 if (ia != NULL) { 674 ia->ia_ifa.if_ipackets++; 675 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 676 } 677 678 /* 679 * If offset or IP_MF are set, must reassemble. 680 * Otherwise, nothing need be done. 681 * (We could look in the reassembly queue to see 682 * if the packet was previously fragmented, 683 * but it's not worth the time; just let them time out.) 684 */ 685 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 686 687 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 688 /* 689 * Look for queue of fragments 690 * of this datagram. 691 */ 692 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 693 if (ip->ip_id == fp->ipq_id && 694 ip->ip_src.s_addr == fp->ipq_src.s_addr && 695 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 696 ip->ip_p == fp->ipq_p) 697 goto found; 698 699 fp = 0; 700 701 /* check if there's a place for the new queue */ 702 if (nipq > maxnipq) { 703 /* 704 * drop something from the tail of the current queue 705 * before proceeding further 706 */ 707 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 708 if (q == NULL) { /* gak */ 709 for (i = 0; i < IPREASS_NHASH; i++) { 710 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 711 if (r) { 712 ip_freef(&ipq[i], r); 713 break; 714 } 715 } 716 } else 717 ip_freef(&ipq[sum], q); 718 } 719 found: 720 /* 721 * Adjust ip_len to not reflect header, 722 * convert offset of this to bytes. 723 */ 724 ip->ip_len -= hlen; 725 if (ip->ip_off & IP_MF) { 726 /* 727 * Make sure that fragments have a data length 728 * that's a non-zero multiple of 8 bytes. 729 */ 730 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 731 ipstat.ips_toosmall++; /* XXX */ 732 goto bad; 733 } 734 m->m_flags |= M_FRAG; 735 } 736 ip->ip_off <<= 3; 737 738 /* 739 * Attempt reassembly; if it succeeds, proceed. 740 * ip_reass() will return a different mbuf, and update 741 * the divert info in divert_info and args.divert_rule. 742 */ 743 ipstat.ips_fragments++; 744 m->m_pkthdr.header = ip; 745 m = ip_reass(m, 746 &ipq[sum], fp, &divert_info, &args.divert_rule); 747 if (m == 0) 748 return; 749 ipstat.ips_reassembled++; 750 ip = mtod(m, struct ip *); 751 /* Get the header length of the reassembled packet */ 752 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 753 #ifdef IPDIVERT 754 /* Restore original checksum before diverting packet */ 755 if (divert_info != 0) { 756 ip->ip_len += hlen; 757 ip->ip_len = htons(ip->ip_len); 758 ip->ip_off = htons(ip->ip_off); 759 ip->ip_sum = 0; 760 if (hlen == sizeof(struct ip)) 761 ip->ip_sum = in_cksum_hdr(ip); 762 else 763 ip->ip_sum = in_cksum(m, hlen); 764 ip->ip_off = ntohs(ip->ip_off); 765 ip->ip_len = ntohs(ip->ip_len); 766 ip->ip_len -= hlen; 767 } 768 #endif 769 } else 770 ip->ip_len -= hlen; 771 772 #ifdef IPDIVERT 773 /* 774 * Divert or tee packet to the divert protocol if required. 775 */ 776 if (divert_info != 0) { 777 struct mbuf *clone = NULL; 778 779 /* Clone packet if we're doing a 'tee' */ 780 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 781 clone = m_dup(m, M_DONTWAIT); 782 783 /* Restore packet header fields to original values */ 784 ip->ip_len += hlen; 785 ip->ip_len = htons(ip->ip_len); 786 ip->ip_off = htons(ip->ip_off); 787 788 /* Deliver packet to divert input routine */ 789 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule); 790 ipstat.ips_delivered++; 791 792 /* If 'tee', continue with original packet */ 793 if (clone == NULL) 794 return; 795 m = clone; 796 ip = mtod(m, struct ip *); 797 ip->ip_len += hlen; 798 /* 799 * Jump backwards to complete processing of the 800 * packet. But first clear divert_info to avoid 801 * entering this block again. 802 * We do not need to clear args.divert_rule 803 * or args.next_hop as they will not be used. 804 */ 805 divert_info = 0; 806 goto pass; 807 } 808 #endif 809 810 #ifdef IPSEC 811 /* 812 * enforce IPsec policy checking if we are seeing last header. 813 * note that we do not visit this with protocols with pcb layer 814 * code - like udp/tcp/raw ip. 815 */ 816 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 817 ipsec4_in_reject(m, NULL)) { 818 ipsecstat.in_polvio++; 819 goto bad; 820 } 821 #endif 822 823 /* 824 * Switch out to protocol's input routine. 825 */ 826 ipstat.ips_delivered++; 827 if (args.next_hop && ip->ip_p == IPPROTO_TCP) { 828 /* TCP needs IPFORWARD info if available */ 829 struct m_hdr tag; 830 831 tag.mh_type = MT_TAG; 832 tag.mh_flags = PACKET_TAG_IPFORWARD; 833 tag.mh_data = (caddr_t)args.next_hop; 834 tag.mh_next = m; 835 836 (*inetsw[ip_protox[ip->ip_p]].pr_input)( 837 (struct mbuf *)&tag, hlen); 838 } else 839 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 840 return; 841 bad: 842 m_freem(m); 843 } 844 845 /* 846 * IP software interrupt routine - to go away sometime soon 847 */ 848 static void 849 ipintr(void) 850 { 851 struct mbuf *m; 852 853 while (1) { 854 IF_DEQUEUE(&ipintrq, m); 855 if (m == 0) 856 return; 857 ip_input(m); 858 } 859 } 860 861 /* 862 * Take incoming datagram fragment and try to reassemble it into 863 * whole datagram. If a chain for reassembly of this datagram already 864 * exists, then it is given as fp; otherwise have to make a chain. 865 * 866 * When IPDIVERT enabled, keep additional state with each packet that 867 * tells us if we need to divert or tee the packet we're building. 868 * In particular, *divinfo includes the port and TEE flag, 869 * *divert_rule is the number of the matching rule. 870 */ 871 872 static struct mbuf * 873 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp, 874 u_int32_t *divinfo, u_int16_t *divert_rule) 875 { 876 struct ip *ip = mtod(m, struct ip *); 877 register struct mbuf *p, *q, *nq; 878 struct mbuf *t; 879 int hlen = IP_VHL_HL(ip->ip_vhl) << 2; 880 int i, next; 881 882 /* 883 * Presence of header sizes in mbufs 884 * would confuse code below. 885 */ 886 m->m_data += hlen; 887 m->m_len -= hlen; 888 889 /* 890 * If first fragment to arrive, create a reassembly queue. 891 */ 892 if (fp == 0) { 893 /* 894 * Enforce upper bound on number of fragmented packets 895 * for which we attempt reassembly; 896 * If maxfrag is 0, never accept fragments. 897 * If maxfrag is -1, accept all fragments without limitation. 898 */ 899 if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets)) 900 goto dropfrag; 901 ip_nfragpackets++; 902 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 903 goto dropfrag; 904 fp = mtod(t, struct ipq *); 905 TAILQ_INSERT_HEAD(head, fp, ipq_list); 906 nipq++; 907 fp->ipq_ttl = IPFRAGTTL; 908 fp->ipq_p = ip->ip_p; 909 fp->ipq_id = ip->ip_id; 910 fp->ipq_src = ip->ip_src; 911 fp->ipq_dst = ip->ip_dst; 912 fp->ipq_frags = m; 913 m->m_nextpkt = NULL; 914 #ifdef IPDIVERT 915 fp->ipq_div_info = 0; 916 fp->ipq_div_cookie = 0; 917 #endif 918 goto inserted; 919 } 920 921 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 922 923 /* 924 * Find a segment which begins after this one does. 925 */ 926 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 927 if (GETIP(q)->ip_off > ip->ip_off) 928 break; 929 930 /* 931 * If there is a preceding segment, it may provide some of 932 * our data already. If so, drop the data from the incoming 933 * segment. If it provides all of our data, drop us, otherwise 934 * stick new segment in the proper place. 935 * 936 * If some of the data is dropped from the the preceding 937 * segment, then it's checksum is invalidated. 938 */ 939 if (p) { 940 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 941 if (i > 0) { 942 if (i >= ip->ip_len) 943 goto dropfrag; 944 m_adj(m, i); 945 m->m_pkthdr.csum_flags = 0; 946 ip->ip_off += i; 947 ip->ip_len -= i; 948 } 949 m->m_nextpkt = p->m_nextpkt; 950 p->m_nextpkt = m; 951 } else { 952 m->m_nextpkt = fp->ipq_frags; 953 fp->ipq_frags = m; 954 } 955 956 /* 957 * While we overlap succeeding segments trim them or, 958 * if they are completely covered, dequeue them. 959 */ 960 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 961 q = nq) { 962 i = (ip->ip_off + ip->ip_len) - 963 GETIP(q)->ip_off; 964 if (i < GETIP(q)->ip_len) { 965 GETIP(q)->ip_len -= i; 966 GETIP(q)->ip_off += i; 967 m_adj(q, i); 968 q->m_pkthdr.csum_flags = 0; 969 break; 970 } 971 nq = q->m_nextpkt; 972 m->m_nextpkt = nq; 973 m_freem(q); 974 } 975 976 inserted: 977 978 #ifdef IPDIVERT 979 /* 980 * Transfer firewall instructions to the fragment structure. 981 * Only trust info in the fragment at offset 0. 982 */ 983 if (ip->ip_off == 0) { 984 fp->ipq_div_info = *divinfo; 985 fp->ipq_div_cookie = *divert_rule; 986 } 987 *divinfo = 0; 988 *divert_rule = 0; 989 #endif 990 991 /* 992 * Check for complete reassembly. 993 */ 994 next = 0; 995 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 996 if (GETIP(q)->ip_off != next) 997 return (0); 998 next += GETIP(q)->ip_len; 999 } 1000 /* Make sure the last packet didn't have the IP_MF flag */ 1001 if (p->m_flags & M_FRAG) 1002 return (0); 1003 1004 /* 1005 * Reassembly is complete. Make sure the packet is a sane size. 1006 */ 1007 q = fp->ipq_frags; 1008 ip = GETIP(q); 1009 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { 1010 ipstat.ips_toolong++; 1011 ip_freef(head, fp); 1012 return (0); 1013 } 1014 1015 /* 1016 * Concatenate fragments. 1017 */ 1018 m = q; 1019 t = m->m_next; 1020 m->m_next = 0; 1021 m_cat(m, t); 1022 nq = q->m_nextpkt; 1023 q->m_nextpkt = 0; 1024 for (q = nq; q != NULL; q = nq) { 1025 nq = q->m_nextpkt; 1026 q->m_nextpkt = NULL; 1027 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1028 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1029 m_cat(m, q); 1030 } 1031 1032 #ifdef IPDIVERT 1033 /* 1034 * Extract firewall instructions from the fragment structure. 1035 */ 1036 *divinfo = fp->ipq_div_info; 1037 *divert_rule = fp->ipq_div_cookie; 1038 #endif 1039 1040 /* 1041 * Create header for new ip packet by 1042 * modifying header of first packet; 1043 * dequeue and discard fragment reassembly header. 1044 * Make header visible. 1045 */ 1046 ip->ip_len = next; 1047 ip->ip_src = fp->ipq_src; 1048 ip->ip_dst = fp->ipq_dst; 1049 TAILQ_REMOVE(head, fp, ipq_list); 1050 nipq--; 1051 (void) m_free(dtom(fp)); 1052 ip_nfragpackets--; 1053 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); 1054 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); 1055 /* some debugging cruft by sklower, below, will go away soon */ 1056 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 1057 register int plen = 0; 1058 for (t = m; t; t = t->m_next) 1059 plen += t->m_len; 1060 m->m_pkthdr.len = plen; 1061 } 1062 return (m); 1063 1064 dropfrag: 1065 #ifdef IPDIVERT 1066 *divinfo = 0; 1067 *divert_rule = 0; 1068 #endif 1069 ipstat.ips_fragdropped++; 1070 m_freem(m); 1071 return (0); 1072 1073 #undef GETIP 1074 } 1075 1076 /* 1077 * Free a fragment reassembly header and all 1078 * associated datagrams. 1079 */ 1080 static void 1081 ip_freef(fhp, fp) 1082 struct ipqhead *fhp; 1083 struct ipq *fp; 1084 { 1085 register struct mbuf *q; 1086 1087 while (fp->ipq_frags) { 1088 q = fp->ipq_frags; 1089 fp->ipq_frags = q->m_nextpkt; 1090 m_freem(q); 1091 } 1092 TAILQ_REMOVE(fhp, fp, ipq_list); 1093 (void) m_free(dtom(fp)); 1094 ip_nfragpackets--; 1095 nipq--; 1096 } 1097 1098 /* 1099 * IP timer processing; 1100 * if a timer expires on a reassembly 1101 * queue, discard it. 1102 */ 1103 void 1104 ip_slowtimo() 1105 { 1106 register struct ipq *fp; 1107 int s = splnet(); 1108 int i; 1109 1110 for (i = 0; i < IPREASS_NHASH; i++) { 1111 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1112 struct ipq *fpp; 1113 1114 fpp = fp; 1115 fp = TAILQ_NEXT(fp, ipq_list); 1116 if(--fpp->ipq_ttl == 0) { 1117 ipstat.ips_fragtimeout++; 1118 ip_freef(&ipq[i], fpp); 1119 } 1120 } 1121 } 1122 /* 1123 * If we are over the maximum number of fragments 1124 * (due to the limit being lowered), drain off 1125 * enough to get down to the new limit. 1126 */ 1127 for (i = 0; i < IPREASS_NHASH; i++) { 1128 if (ip_maxfragpackets >= 0) { 1129 while (ip_nfragpackets > ip_maxfragpackets && 1130 !TAILQ_EMPTY(&ipq[i])) { 1131 ipstat.ips_fragdropped++; 1132 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1133 } 1134 } 1135 } 1136 ipflow_slowtimo(); 1137 splx(s); 1138 } 1139 1140 /* 1141 * Drain off all datagram fragments. 1142 */ 1143 void 1144 ip_drain() 1145 { 1146 int i; 1147 1148 for (i = 0; i < IPREASS_NHASH; i++) { 1149 while(!TAILQ_EMPTY(&ipq[i])) { 1150 ipstat.ips_fragdropped++; 1151 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1152 } 1153 } 1154 in_rtqdrain(); 1155 } 1156 1157 /* 1158 * Do option processing on a datagram, 1159 * possibly discarding it if bad options are encountered, 1160 * or forwarding it if source-routed. 1161 * The pass argument is used when operating in the IPSTEALTH 1162 * mode to tell what options to process: 1163 * [LS]SRR (pass 0) or the others (pass 1). 1164 * The reason for as many as two passes is that when doing IPSTEALTH, 1165 * non-routing options should be processed only if the packet is for us. 1166 * Returns 1 if packet has been forwarded/freed, 1167 * 0 if the packet should be processed further. 1168 */ 1169 static int 1170 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop) 1171 { 1172 struct ip *ip = mtod(m, struct ip *); 1173 u_char *cp; 1174 struct in_ifaddr *ia; 1175 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1176 struct in_addr *sin, dst; 1177 n_time ntime; 1178 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 1179 1180 dst = ip->ip_dst; 1181 cp = (u_char *)(ip + 1); 1182 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1183 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1184 opt = cp[IPOPT_OPTVAL]; 1185 if (opt == IPOPT_EOL) 1186 break; 1187 if (opt == IPOPT_NOP) 1188 optlen = 1; 1189 else { 1190 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1191 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1192 goto bad; 1193 } 1194 optlen = cp[IPOPT_OLEN]; 1195 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1196 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1197 goto bad; 1198 } 1199 } 1200 switch (opt) { 1201 1202 default: 1203 break; 1204 1205 /* 1206 * Source routing with record. 1207 * Find interface with current destination address. 1208 * If none on this machine then drop if strictly routed, 1209 * or do nothing if loosely routed. 1210 * Record interface address and bring up next address 1211 * component. If strictly routed make sure next 1212 * address is on directly accessible net. 1213 */ 1214 case IPOPT_LSRR: 1215 case IPOPT_SSRR: 1216 #ifdef IPSTEALTH 1217 if (ipstealth && pass > 0) 1218 break; 1219 #endif 1220 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1221 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1222 goto bad; 1223 } 1224 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1225 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1226 goto bad; 1227 } 1228 ipaddr.sin_addr = ip->ip_dst; 1229 ia = (struct in_ifaddr *) 1230 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1231 if (ia == 0) { 1232 if (opt == IPOPT_SSRR) { 1233 type = ICMP_UNREACH; 1234 code = ICMP_UNREACH_SRCFAIL; 1235 goto bad; 1236 } 1237 if (!ip_dosourceroute) 1238 goto nosourcerouting; 1239 /* 1240 * Loose routing, and not at next destination 1241 * yet; nothing to do except forward. 1242 */ 1243 break; 1244 } 1245 off--; /* 0 origin */ 1246 if (off > optlen - (int)sizeof(struct in_addr)) { 1247 /* 1248 * End of source route. Should be for us. 1249 */ 1250 if (!ip_acceptsourceroute) 1251 goto nosourcerouting; 1252 save_rte(cp, ip->ip_src); 1253 break; 1254 } 1255 #ifdef IPSTEALTH 1256 if (ipstealth) 1257 goto dropit; 1258 #endif 1259 if (!ip_dosourceroute) { 1260 if (ipforwarding) { 1261 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1262 /* 1263 * Acting as a router, so generate ICMP 1264 */ 1265 nosourcerouting: 1266 strcpy(buf, inet_ntoa(ip->ip_dst)); 1267 log(LOG_WARNING, 1268 "attempted source route from %s to %s\n", 1269 inet_ntoa(ip->ip_src), buf); 1270 type = ICMP_UNREACH; 1271 code = ICMP_UNREACH_SRCFAIL; 1272 goto bad; 1273 } else { 1274 /* 1275 * Not acting as a router, so silently drop. 1276 */ 1277 #ifdef IPSTEALTH 1278 dropit: 1279 #endif 1280 ipstat.ips_cantforward++; 1281 m_freem(m); 1282 return (1); 1283 } 1284 } 1285 1286 /* 1287 * locate outgoing interface 1288 */ 1289 (void)memcpy(&ipaddr.sin_addr, cp + off, 1290 sizeof(ipaddr.sin_addr)); 1291 1292 if (opt == IPOPT_SSRR) { 1293 #define INA struct in_ifaddr * 1294 #define SA struct sockaddr * 1295 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1296 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1297 } else 1298 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1299 if (ia == 0) { 1300 type = ICMP_UNREACH; 1301 code = ICMP_UNREACH_SRCFAIL; 1302 goto bad; 1303 } 1304 ip->ip_dst = ipaddr.sin_addr; 1305 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1306 sizeof(struct in_addr)); 1307 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1308 /* 1309 * Let ip_intr's mcast routing check handle mcast pkts 1310 */ 1311 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1312 break; 1313 1314 case IPOPT_RR: 1315 #ifdef IPSTEALTH 1316 if (ipstealth && pass == 0) 1317 break; 1318 #endif 1319 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1320 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1321 goto bad; 1322 } 1323 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1324 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1325 goto bad; 1326 } 1327 /* 1328 * If no space remains, ignore. 1329 */ 1330 off--; /* 0 origin */ 1331 if (off > optlen - (int)sizeof(struct in_addr)) 1332 break; 1333 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1334 sizeof(ipaddr.sin_addr)); 1335 /* 1336 * locate outgoing interface; if we're the destination, 1337 * use the incoming interface (should be same). 1338 */ 1339 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1340 (ia = ip_rtaddr(ipaddr.sin_addr, 1341 &ipforward_rt)) == 0) { 1342 type = ICMP_UNREACH; 1343 code = ICMP_UNREACH_HOST; 1344 goto bad; 1345 } 1346 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1347 sizeof(struct in_addr)); 1348 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1349 break; 1350 1351 case IPOPT_TS: 1352 #ifdef IPSTEALTH 1353 if (ipstealth && pass == 0) 1354 break; 1355 #endif 1356 code = cp - (u_char *)ip; 1357 if (optlen < 4 || optlen > 40) { 1358 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1359 goto bad; 1360 } 1361 if ((off = cp[IPOPT_OFFSET]) < 5) { 1362 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1363 goto bad; 1364 } 1365 if (off > optlen - (int)sizeof(int32_t)) { 1366 cp[IPOPT_OFFSET + 1] += (1 << 4); 1367 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1368 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1369 goto bad; 1370 } 1371 break; 1372 } 1373 off--; /* 0 origin */ 1374 sin = (struct in_addr *)(cp + off); 1375 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1376 1377 case IPOPT_TS_TSONLY: 1378 break; 1379 1380 case IPOPT_TS_TSANDADDR: 1381 if (off + sizeof(n_time) + 1382 sizeof(struct in_addr) > optlen) { 1383 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1384 goto bad; 1385 } 1386 ipaddr.sin_addr = dst; 1387 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1388 m->m_pkthdr.rcvif); 1389 if (ia == 0) 1390 continue; 1391 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1392 sizeof(struct in_addr)); 1393 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1394 break; 1395 1396 case IPOPT_TS_PRESPEC: 1397 if (off + sizeof(n_time) + 1398 sizeof(struct in_addr) > optlen) { 1399 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1400 goto bad; 1401 } 1402 (void)memcpy(&ipaddr.sin_addr, sin, 1403 sizeof(struct in_addr)); 1404 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1405 continue; 1406 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1407 break; 1408 1409 default: 1410 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1411 goto bad; 1412 } 1413 ntime = iptime(); 1414 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1415 cp[IPOPT_OFFSET] += sizeof(n_time); 1416 } 1417 } 1418 if (forward && ipforwarding) { 1419 ip_forward(m, 1, next_hop); 1420 return (1); 1421 } 1422 return (0); 1423 bad: 1424 icmp_error(m, type, code, 0, 0); 1425 ipstat.ips_badoptions++; 1426 return (1); 1427 } 1428 1429 /* 1430 * Given address of next destination (final or next hop), 1431 * return internet address info of interface to be used to get there. 1432 */ 1433 struct in_ifaddr * 1434 ip_rtaddr(dst, rt) 1435 struct in_addr dst; 1436 struct route *rt; 1437 { 1438 register struct sockaddr_in *sin; 1439 1440 sin = (struct sockaddr_in *)&rt->ro_dst; 1441 1442 if (rt->ro_rt == 0 || 1443 !(rt->ro_rt->rt_flags & RTF_UP) || 1444 dst.s_addr != sin->sin_addr.s_addr) { 1445 if (rt->ro_rt) { 1446 RTFREE(rt->ro_rt); 1447 rt->ro_rt = 0; 1448 } 1449 sin->sin_family = AF_INET; 1450 sin->sin_len = sizeof(*sin); 1451 sin->sin_addr = dst; 1452 1453 rtalloc_ign(rt, RTF_PRCLONING); 1454 } 1455 if (rt->ro_rt == 0) 1456 return ((struct in_ifaddr *)0); 1457 return (ifatoia(rt->ro_rt->rt_ifa)); 1458 } 1459 1460 /* 1461 * Save incoming source route for use in replies, 1462 * to be picked up later by ip_srcroute if the receiver is interested. 1463 */ 1464 void 1465 save_rte(option, dst) 1466 u_char *option; 1467 struct in_addr dst; 1468 { 1469 unsigned olen; 1470 1471 olen = option[IPOPT_OLEN]; 1472 #ifdef DIAGNOSTIC 1473 if (ipprintfs) 1474 printf("save_rte: olen %d\n", olen); 1475 #endif 1476 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1477 return; 1478 bcopy(option, ip_srcrt.srcopt, olen); 1479 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1480 ip_srcrt.dst = dst; 1481 } 1482 1483 /* 1484 * Retrieve incoming source route for use in replies, 1485 * in the same form used by setsockopt. 1486 * The first hop is placed before the options, will be removed later. 1487 */ 1488 struct mbuf * 1489 ip_srcroute() 1490 { 1491 register struct in_addr *p, *q; 1492 register struct mbuf *m; 1493 1494 if (ip_nhops == 0) 1495 return ((struct mbuf *)0); 1496 m = m_get(M_DONTWAIT, MT_HEADER); 1497 if (m == 0) 1498 return ((struct mbuf *)0); 1499 1500 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1501 1502 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1503 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1504 OPTSIZ; 1505 #ifdef DIAGNOSTIC 1506 if (ipprintfs) 1507 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1508 #endif 1509 1510 /* 1511 * First save first hop for return route 1512 */ 1513 p = &ip_srcrt.route[ip_nhops - 1]; 1514 *(mtod(m, struct in_addr *)) = *p--; 1515 #ifdef DIAGNOSTIC 1516 if (ipprintfs) 1517 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1518 #endif 1519 1520 /* 1521 * Copy option fields and padding (nop) to mbuf. 1522 */ 1523 ip_srcrt.nop = IPOPT_NOP; 1524 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1525 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1526 &ip_srcrt.nop, OPTSIZ); 1527 q = (struct in_addr *)(mtod(m, caddr_t) + 1528 sizeof(struct in_addr) + OPTSIZ); 1529 #undef OPTSIZ 1530 /* 1531 * Record return path as an IP source route, 1532 * reversing the path (pointers are now aligned). 1533 */ 1534 while (p >= ip_srcrt.route) { 1535 #ifdef DIAGNOSTIC 1536 if (ipprintfs) 1537 printf(" %lx", (u_long)ntohl(q->s_addr)); 1538 #endif 1539 *q++ = *p--; 1540 } 1541 /* 1542 * Last hop goes to final destination. 1543 */ 1544 *q = ip_srcrt.dst; 1545 #ifdef DIAGNOSTIC 1546 if (ipprintfs) 1547 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1548 #endif 1549 return (m); 1550 } 1551 1552 /* 1553 * Strip out IP options, at higher 1554 * level protocol in the kernel. 1555 * Second argument is buffer to which options 1556 * will be moved, and return value is their length. 1557 * XXX should be deleted; last arg currently ignored. 1558 */ 1559 void 1560 ip_stripoptions(m, mopt) 1561 register struct mbuf *m; 1562 struct mbuf *mopt; 1563 { 1564 register int i; 1565 struct ip *ip = mtod(m, struct ip *); 1566 register caddr_t opts; 1567 int olen; 1568 1569 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1570 opts = (caddr_t)(ip + 1); 1571 i = m->m_len - (sizeof (struct ip) + olen); 1572 bcopy(opts + olen, opts, (unsigned)i); 1573 m->m_len -= olen; 1574 if (m->m_flags & M_PKTHDR) 1575 m->m_pkthdr.len -= olen; 1576 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1577 } 1578 1579 u_char inetctlerrmap[PRC_NCMDS] = { 1580 0, 0, 0, 0, 1581 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1582 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1583 EMSGSIZE, EHOSTUNREACH, 0, 0, 1584 0, 0, 0, 0, 1585 ENOPROTOOPT, ECONNREFUSED 1586 }; 1587 1588 /* 1589 * Forward a packet. If some error occurs return the sender 1590 * an icmp packet. Note we can't always generate a meaningful 1591 * icmp message because icmp doesn't have a large enough repertoire 1592 * of codes and types. 1593 * 1594 * If not forwarding, just drop the packet. This could be confusing 1595 * if ipforwarding was zero but some routing protocol was advancing 1596 * us as a gateway to somewhere. However, we must let the routing 1597 * protocol deal with that. 1598 * 1599 * The srcrt parameter indicates whether the packet is being forwarded 1600 * via a source route. 1601 */ 1602 static void 1603 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop) 1604 { 1605 struct ip *ip = mtod(m, struct ip *); 1606 struct rtentry *rt; 1607 int error, type = 0, code = 0; 1608 struct mbuf *mcopy; 1609 n_long dest; 1610 struct in_addr pkt_dst; 1611 struct ifnet *destifp; 1612 #ifdef IPSEC 1613 struct ifnet dummyifp; 1614 #endif 1615 1616 dest = 0; 1617 /* 1618 * Cache the destination address of the packet; this may be 1619 * changed by use of 'ipfw fwd'. 1620 */ 1621 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst; 1622 1623 #ifdef DIAGNOSTIC 1624 if (ipprintfs) 1625 printf("forward: src %lx dst %lx ttl %x\n", 1626 (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, 1627 ip->ip_ttl); 1628 #endif 1629 1630 1631 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { 1632 ipstat.ips_cantforward++; 1633 m_freem(m); 1634 return; 1635 } 1636 #ifdef IPSTEALTH 1637 if (!ipstealth) { 1638 #endif 1639 if (ip->ip_ttl <= IPTTLDEC) { 1640 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1641 dest, 0); 1642 return; 1643 } 1644 #ifdef IPSTEALTH 1645 } 1646 #endif 1647 1648 if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) { 1649 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1650 return; 1651 } else 1652 rt = ipforward_rt.ro_rt; 1653 1654 /* 1655 * Save the IP header and at most 8 bytes of the payload, 1656 * in case we need to generate an ICMP message to the src. 1657 * 1658 * XXX this can be optimized a lot by saving the data in a local 1659 * buffer on the stack (72 bytes at most), and only allocating the 1660 * mbuf if really necessary. The vast majority of the packets 1661 * are forwarded without having to send an ICMP back (either 1662 * because unnecessary, or because rate limited), so we are 1663 * really we are wasting a lot of work here. 1664 * 1665 * We don't use m_copy() because it might return a reference 1666 * to a shared cluster. Both this function and ip_output() 1667 * assume exclusive access to the IP header in `m', so any 1668 * data in a cluster may change before we reach icmp_error(). 1669 */ 1670 MGET(mcopy, M_DONTWAIT, m->m_type); 1671 if (mcopy != NULL) { 1672 M_COPY_PKTHDR(mcopy, m); 1673 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, 1674 (int)ip->ip_len); 1675 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1676 } 1677 1678 #ifdef IPSTEALTH 1679 if (!ipstealth) { 1680 #endif 1681 ip->ip_ttl -= IPTTLDEC; 1682 #ifdef IPSTEALTH 1683 } 1684 #endif 1685 1686 /* 1687 * If forwarding packet using same interface that it came in on, 1688 * perhaps should send a redirect to sender to shortcut a hop. 1689 * Only send redirect if source is sending directly to us, 1690 * and if packet was not source routed (or has any options). 1691 * Also, don't send redirect if forwarding using a default route 1692 * or a route modified by a redirect. 1693 */ 1694 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1695 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1696 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1697 ipsendredirects && !srcrt && !next_hop) { 1698 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1699 u_long src = ntohl(ip->ip_src.s_addr); 1700 1701 if (RTA(rt) && 1702 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1703 if (rt->rt_flags & RTF_GATEWAY) 1704 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1705 else 1706 dest = pkt_dst.s_addr; 1707 /* Router requirements says to only send host redirects */ 1708 type = ICMP_REDIRECT; 1709 code = ICMP_REDIRECT_HOST; 1710 #ifdef DIAGNOSTIC 1711 if (ipprintfs) 1712 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1713 #endif 1714 } 1715 } 1716 1717 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1718 IP_FORWARDING, 0); 1719 if (error) 1720 ipstat.ips_cantforward++; 1721 else { 1722 ipstat.ips_forward++; 1723 if (type) 1724 ipstat.ips_redirectsent++; 1725 else { 1726 if (mcopy) { 1727 ipflow_create(&ipforward_rt, mcopy); 1728 m_freem(mcopy); 1729 } 1730 return; 1731 } 1732 } 1733 if (mcopy == NULL) 1734 return; 1735 destifp = NULL; 1736 1737 switch (error) { 1738 1739 case 0: /* forwarded, but need redirect */ 1740 /* type, code set above */ 1741 break; 1742 1743 case ENETUNREACH: /* shouldn't happen, checked above */ 1744 case EHOSTUNREACH: 1745 case ENETDOWN: 1746 case EHOSTDOWN: 1747 default: 1748 type = ICMP_UNREACH; 1749 code = ICMP_UNREACH_HOST; 1750 break; 1751 1752 case EMSGSIZE: 1753 type = ICMP_UNREACH; 1754 code = ICMP_UNREACH_NEEDFRAG; 1755 #ifndef IPSEC 1756 if (ipforward_rt.ro_rt) 1757 destifp = ipforward_rt.ro_rt->rt_ifp; 1758 #else 1759 /* 1760 * If the packet is routed over IPsec tunnel, tell the 1761 * originator the tunnel MTU. 1762 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1763 * XXX quickhack!!! 1764 */ 1765 if (ipforward_rt.ro_rt) { 1766 struct secpolicy *sp = NULL; 1767 int ipsecerror; 1768 int ipsechdr; 1769 struct route *ro; 1770 1771 sp = ipsec4_getpolicybyaddr(mcopy, 1772 IPSEC_DIR_OUTBOUND, 1773 IP_FORWARDING, 1774 &ipsecerror); 1775 1776 if (sp == NULL) 1777 destifp = ipforward_rt.ro_rt->rt_ifp; 1778 else { 1779 /* count IPsec header size */ 1780 ipsechdr = ipsec4_hdrsiz(mcopy, 1781 IPSEC_DIR_OUTBOUND, 1782 NULL); 1783 1784 /* 1785 * find the correct route for outer IPv4 1786 * header, compute tunnel MTU. 1787 * 1788 * XXX BUG ALERT 1789 * The "dummyifp" code relies upon the fact 1790 * that icmp_error() touches only ifp->if_mtu. 1791 */ 1792 /*XXX*/ 1793 destifp = NULL; 1794 if (sp->req != NULL 1795 && sp->req->sav != NULL 1796 && sp->req->sav->sah != NULL) { 1797 ro = &sp->req->sav->sah->sa_route; 1798 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1799 dummyifp.if_mtu = 1800 ro->ro_rt->rt_ifp->if_mtu; 1801 dummyifp.if_mtu -= ipsechdr; 1802 destifp = &dummyifp; 1803 } 1804 } 1805 1806 key_freesp(sp); 1807 } 1808 } 1809 #endif /*IPSEC*/ 1810 ipstat.ips_cantfrag++; 1811 break; 1812 1813 case ENOBUFS: 1814 type = ICMP_SOURCEQUENCH; 1815 code = 0; 1816 break; 1817 1818 case EACCES: /* ipfw denied packet */ 1819 m_freem(mcopy); 1820 return; 1821 } 1822 icmp_error(mcopy, type, code, dest, destifp); 1823 } 1824 1825 void 1826 ip_savecontrol(inp, mp, ip, m) 1827 register struct inpcb *inp; 1828 register struct mbuf **mp; 1829 register struct ip *ip; 1830 register struct mbuf *m; 1831 { 1832 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1833 struct timeval tv; 1834 1835 microtime(&tv); 1836 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1837 SCM_TIMESTAMP, SOL_SOCKET); 1838 if (*mp) 1839 mp = &(*mp)->m_next; 1840 } 1841 if (inp->inp_flags & INP_RECVDSTADDR) { 1842 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1843 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1844 if (*mp) 1845 mp = &(*mp)->m_next; 1846 } 1847 #ifdef notyet 1848 /* XXX 1849 * Moving these out of udp_input() made them even more broken 1850 * than they already were. 1851 */ 1852 /* options were tossed already */ 1853 if (inp->inp_flags & INP_RECVOPTS) { 1854 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1855 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1856 if (*mp) 1857 mp = &(*mp)->m_next; 1858 } 1859 /* ip_srcroute doesn't do what we want here, need to fix */ 1860 if (inp->inp_flags & INP_RECVRETOPTS) { 1861 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1862 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1863 if (*mp) 1864 mp = &(*mp)->m_next; 1865 } 1866 #endif 1867 if (inp->inp_flags & INP_RECVIF) { 1868 struct ifnet *ifp; 1869 struct sdlbuf { 1870 struct sockaddr_dl sdl; 1871 u_char pad[32]; 1872 } sdlbuf; 1873 struct sockaddr_dl *sdp; 1874 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1875 1876 if (((ifp = m->m_pkthdr.rcvif)) 1877 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1878 sdp = (struct sockaddr_dl *) 1879 (ifaddr_byindex(ifp->if_index)->ifa_addr); 1880 /* 1881 * Change our mind and don't try copy. 1882 */ 1883 if ((sdp->sdl_family != AF_LINK) 1884 || (sdp->sdl_len > sizeof(sdlbuf))) { 1885 goto makedummy; 1886 } 1887 bcopy(sdp, sdl2, sdp->sdl_len); 1888 } else { 1889 makedummy: 1890 sdl2->sdl_len 1891 = offsetof(struct sockaddr_dl, sdl_data[0]); 1892 sdl2->sdl_family = AF_LINK; 1893 sdl2->sdl_index = 0; 1894 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1895 } 1896 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1897 IP_RECVIF, IPPROTO_IP); 1898 if (*mp) 1899 mp = &(*mp)->m_next; 1900 } 1901 } 1902 1903 /* 1904 * XXX these routines are called from the upper part of the kernel. 1905 * They need to be locked when we remove Giant. 1906 * 1907 * They could also be moved to ip_mroute.c, since all the RSVP 1908 * handling is done there already. 1909 */ 1910 static int ip_rsvp_on; 1911 struct socket *ip_rsvpd; 1912 int 1913 ip_rsvp_init(struct socket *so) 1914 { 1915 if (so->so_type != SOCK_RAW || 1916 so->so_proto->pr_protocol != IPPROTO_RSVP) 1917 return EOPNOTSUPP; 1918 1919 if (ip_rsvpd != NULL) 1920 return EADDRINUSE; 1921 1922 ip_rsvpd = so; 1923 /* 1924 * This may seem silly, but we need to be sure we don't over-increment 1925 * the RSVP counter, in case something slips up. 1926 */ 1927 if (!ip_rsvp_on) { 1928 ip_rsvp_on = 1; 1929 rsvp_on++; 1930 } 1931 1932 return 0; 1933 } 1934 1935 int 1936 ip_rsvp_done(void) 1937 { 1938 ip_rsvpd = NULL; 1939 /* 1940 * This may seem silly, but we need to be sure we don't over-decrement 1941 * the RSVP counter, in case something slips up. 1942 */ 1943 if (ip_rsvp_on) { 1944 ip_rsvp_on = 0; 1945 rsvp_on--; 1946 } 1947 return 0; 1948 } 1949