1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_bootp.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipstealth.h" 38 #include "opt_ipsec.h" 39 #include "opt_mac.h" 40 #include "opt_carp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/mbuf.h> 46 #include <sys/malloc.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/rwlock.h> 54 #include <sys/syslog.h> 55 #include <sys/sysctl.h> 56 #include <sys/vimage.h> 57 58 #include <net/pfil.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/route.h> 64 #include <net/netisr.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip.h> 71 #include <netinet/in_pcb.h> 72 #include <netinet/ip_var.h> 73 #include <netinet/ip_icmp.h> 74 #include <netinet/ip_options.h> 75 #include <machine/in_cksum.h> 76 #include <netinet/vinet.h> 77 #ifdef DEV_CARP 78 #include <netinet/ip_carp.h> 79 #endif 80 #ifdef IPSEC 81 #include <netinet/ip_ipsec.h> 82 #endif /* IPSEC */ 83 84 #include <sys/socketvar.h> 85 86 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */ 87 #include <netinet/ip_fw.h> 88 #include <netinet/ip_dummynet.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #ifdef CTASSERT 93 CTASSERT(sizeof(struct ip) == 20); 94 #endif 95 96 #ifndef VIMAGE 97 #ifndef VIMAGE_GLOBALS 98 struct vnet_inet vnet_inet_0; 99 #endif 100 #endif 101 102 #ifdef VIMAGE_GLOBALS 103 static int ipsendredirects; 104 static int ip_checkinterface; 105 static int ip_keepfaith; 106 static int ip_sendsourcequench; 107 int ip_defttl; 108 int ip_do_randomid; 109 int ipforwarding; 110 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 111 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 112 u_long in_ifaddrhmask; /* mask for hash table */ 113 struct ipstat ipstat; 114 static int ip_rsvp_on; 115 struct socket *ip_rsvpd; 116 int rsvp_on; 117 static struct ipqhead ipq[IPREASS_NHASH]; 118 static int maxnipq; /* Administrative limit on # reass queues. */ 119 static int maxfragsperpacket; 120 int ipstealth; 121 static int nipq; /* Total # of reass queues */ 122 #endif 123 124 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING, 125 forwarding, CTLFLAG_RW, ipforwarding, 0, 126 "Enable IP forwarding between interfaces"); 127 128 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS, 129 redirect, CTLFLAG_RW, ipsendredirects, 0, 130 "Enable sending IP redirects"); 131 132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL, 133 ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets"); 134 135 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH, 136 keepfaith, CTLFLAG_RW, ip_keepfaith, 0, 137 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 138 139 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, 140 sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0, 141 "Enable the transmission of source quench packets"); 142 143 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id, 144 CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values"); 145 146 /* 147 * XXX - Setting ip_checkinterface mostly implements the receive side of 148 * the Strong ES model described in RFC 1122, but since the routing table 149 * and transmit implementation do not implement the Strong ES model, 150 * setting this to 1 results in an odd hybrid. 151 * 152 * XXX - ip_checkinterface currently must be disabled if you use ipnat 153 * to translate the destination address to another local interface. 154 * 155 * XXX - ip_checkinterface must be disabled if you add IP aliases 156 * to the loopback interface instead of the interface where the 157 * packets for those addresses are received. 158 */ 159 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, 160 check_interface, CTLFLAG_RW, ip_checkinterface, 0, 161 "Verify packet arrives on correct interface"); 162 163 struct pfil_head inet_pfil_hook; /* Packet filter hooks */ 164 165 static struct ifqueue ipintrq; 166 static int ipqmaxlen = IFQ_MAXLEN; 167 168 extern struct domain inetdomain; 169 extern struct protosw inetsw[]; 170 u_char ip_protox[IPPROTO_MAX]; 171 172 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 173 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 174 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 175 &ipintrq.ifq_drops, 0, 176 "Number of packets dropped from the IP input queue"); 177 178 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 179 ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 180 181 #ifdef VIMAGE_GLOBALS 182 static uma_zone_t ipq_zone; 183 #endif 184 static struct mtx ipqlock; 185 186 #define IPQ_LOCK() mtx_lock(&ipqlock) 187 #define IPQ_UNLOCK() mtx_unlock(&ipqlock) 188 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF) 189 #define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED) 190 191 static void maxnipq_update(void); 192 static void ipq_zone_change(void *); 193 194 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets, 195 CTLFLAG_RD, nipq, 0, 196 "Current number of IPv4 fragment reassembly queue entries"); 197 198 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket, 199 CTLFLAG_RW, maxfragsperpacket, 0, 200 "Maximum number of IPv4 fragments allowed per packet"); 201 202 struct callout ipport_tick_callout; 203 204 #ifdef IPCTL_DEFMTU 205 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 206 &ip_mtu, 0, "Default MTU"); 207 #endif 208 209 #ifdef IPSTEALTH 210 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 211 ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding"); 212 #endif 213 214 /* 215 * ipfw_ether and ipfw_bridge hooks. 216 * XXX: Temporary until those are converted to pfil_hooks as well. 217 */ 218 ip_fw_chk_t *ip_fw_chk_ptr = NULL; 219 ip_dn_io_t *ip_dn_io_ptr = NULL; 220 #ifdef VIMAGE_GLOBALS 221 int fw_one_pass; 222 #endif 223 224 static void ip_freef(struct ipqhead *, struct ipq *); 225 226 /* 227 * IP initialization: fill in IP protocol switch table. 228 * All protocols not implemented in kernel go to raw IP protocol handler. 229 */ 230 void 231 ip_init(void) 232 { 233 INIT_VNET_INET(curvnet); 234 struct protosw *pr; 235 int i; 236 237 V_ipsendredirects = 1; /* XXX */ 238 V_ip_checkinterface = 0; 239 V_ip_keepfaith = 0; 240 V_ip_sendsourcequench = 0; 241 V_rsvp_on = 0; 242 V_ip_defttl = IPDEFTTL; 243 V_ip_do_randomid = 0; 244 V_ipforwarding = 0; 245 V_ipstealth = 0; 246 V_nipq = 0; /* Total # of reass queues */ 247 248 V_ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 249 V_ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 250 V_ipport_firstauto = IPPORT_EPHEMERALFIRST; /* 10000 */ 251 V_ipport_lastauto = IPPORT_EPHEMERALLAST; /* 65535 */ 252 V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 253 V_ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 254 V_ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 255 V_ipport_reservedlow = 0; 256 V_ipport_randomized = 1; /* user controlled via sysctl */ 257 V_ipport_randomcps = 10; /* user controlled via sysctl */ 258 V_ipport_randomtime = 45; /* user controlled via sysctl */ 259 V_ipport_stoprandom = 0; /* toggled by ipport_tick */ 260 261 V_fw_one_pass = 1; 262 263 #ifdef NOTYET 264 /* XXX global static but not instantiated in this file */ 265 V_ipfastforward_active = 0; 266 V_subnetsarelocal = 0; 267 V_sameprefixcarponly = 0; 268 #endif 269 270 TAILQ_INIT(&V_in_ifaddrhead); 271 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 272 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 273 if (pr == NULL) 274 panic("ip_init: PF_INET not found"); 275 276 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 277 for (i = 0; i < IPPROTO_MAX; i++) 278 ip_protox[i] = pr - inetsw; 279 /* 280 * Cycle through IP protocols and put them into the appropriate place 281 * in ip_protox[]. 282 */ 283 for (pr = inetdomain.dom_protosw; 284 pr < inetdomain.dom_protoswNPROTOSW; pr++) 285 if (pr->pr_domain->dom_family == PF_INET && 286 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 287 /* Be careful to only index valid IP protocols. */ 288 if (pr->pr_protocol < IPPROTO_MAX) 289 ip_protox[pr->pr_protocol] = pr - inetsw; 290 } 291 292 /* Initialize packet filter hooks. */ 293 inet_pfil_hook.ph_type = PFIL_TYPE_AF; 294 inet_pfil_hook.ph_af = AF_INET; 295 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) 296 printf("%s: WARNING: unable to register pfil hook, " 297 "error %d\n", __func__, i); 298 299 /* Initialize IP reassembly queue. */ 300 IPQ_LOCK_INIT(); 301 for (i = 0; i < IPREASS_NHASH; i++) 302 TAILQ_INIT(&V_ipq[i]); 303 V_maxnipq = nmbclusters / 32; 304 V_maxfragsperpacket = 16; 305 V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL, 306 NULL, UMA_ALIGN_PTR, 0); 307 maxnipq_update(); 308 309 /* Start ipport_tick. */ 310 callout_init(&ipport_tick_callout, CALLOUT_MPSAFE); 311 ipport_tick(NULL); 312 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 313 SHUTDOWN_PRI_DEFAULT); 314 EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change, 315 NULL, EVENTHANDLER_PRI_ANY); 316 317 /* Initialize various other remaining things. */ 318 V_ip_id = time_second & 0xffff; 319 ipintrq.ifq_maxlen = ipqmaxlen; 320 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 321 netisr_register(NETISR_IP, ip_input, &ipintrq, 0); 322 } 323 324 void 325 ip_fini(void *xtp) 326 { 327 328 callout_stop(&ipport_tick_callout); 329 } 330 331 /* 332 * Ip input routine. Checksum and byte swap header. If fragmented 333 * try to reassemble. Process options. Pass to next level. 334 */ 335 void 336 ip_input(struct mbuf *m) 337 { 338 INIT_VNET_INET(curvnet); 339 struct ip *ip = NULL; 340 struct in_ifaddr *ia = NULL; 341 struct ifaddr *ifa; 342 int checkif, hlen = 0; 343 u_short sum; 344 int dchg = 0; /* dest changed after fw */ 345 struct in_addr odst; /* original dst address */ 346 347 M_ASSERTPKTHDR(m); 348 349 if (m->m_flags & M_FASTFWD_OURS) { 350 /* 351 * Firewall or NAT changed destination to local. 352 * We expect ip_len and ip_off to be in host byte order. 353 */ 354 m->m_flags &= ~M_FASTFWD_OURS; 355 /* Set up some basics that will be used later. */ 356 ip = mtod(m, struct ip *); 357 hlen = ip->ip_hl << 2; 358 goto ours; 359 } 360 361 V_ipstat.ips_total++; 362 363 if (m->m_pkthdr.len < sizeof(struct ip)) 364 goto tooshort; 365 366 if (m->m_len < sizeof (struct ip) && 367 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 368 V_ipstat.ips_toosmall++; 369 return; 370 } 371 ip = mtod(m, struct ip *); 372 373 if (ip->ip_v != IPVERSION) { 374 V_ipstat.ips_badvers++; 375 goto bad; 376 } 377 378 hlen = ip->ip_hl << 2; 379 if (hlen < sizeof(struct ip)) { /* minimum header length */ 380 V_ipstat.ips_badhlen++; 381 goto bad; 382 } 383 if (hlen > m->m_len) { 384 if ((m = m_pullup(m, hlen)) == NULL) { 385 V_ipstat.ips_badhlen++; 386 return; 387 } 388 ip = mtod(m, struct ip *); 389 } 390 391 /* 127/8 must not appear on wire - RFC1122 */ 392 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 393 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 394 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 395 V_ipstat.ips_badaddr++; 396 goto bad; 397 } 398 } 399 400 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 401 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 402 } else { 403 if (hlen == sizeof(struct ip)) { 404 sum = in_cksum_hdr(ip); 405 } else { 406 sum = in_cksum(m, hlen); 407 } 408 } 409 if (sum) { 410 V_ipstat.ips_badsum++; 411 goto bad; 412 } 413 414 #ifdef ALTQ 415 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 416 /* packet is dropped by traffic conditioner */ 417 return; 418 #endif 419 420 /* 421 * Convert fields to host representation. 422 */ 423 ip->ip_len = ntohs(ip->ip_len); 424 if (ip->ip_len < hlen) { 425 V_ipstat.ips_badlen++; 426 goto bad; 427 } 428 ip->ip_off = ntohs(ip->ip_off); 429 430 /* 431 * Check that the amount of data in the buffers 432 * is as at least much as the IP header would have us expect. 433 * Trim mbufs if longer than we expect. 434 * Drop packet if shorter than we expect. 435 */ 436 if (m->m_pkthdr.len < ip->ip_len) { 437 tooshort: 438 V_ipstat.ips_tooshort++; 439 goto bad; 440 } 441 if (m->m_pkthdr.len > ip->ip_len) { 442 if (m->m_len == m->m_pkthdr.len) { 443 m->m_len = ip->ip_len; 444 m->m_pkthdr.len = ip->ip_len; 445 } else 446 m_adj(m, ip->ip_len - m->m_pkthdr.len); 447 } 448 #ifdef IPSEC 449 /* 450 * Bypass packet filtering for packets from a tunnel (gif). 451 */ 452 if (ip_ipsec_filtertunnel(m)) 453 goto passin; 454 #endif /* IPSEC */ 455 456 /* 457 * Run through list of hooks for input packets. 458 * 459 * NB: Beware of the destination address changing (e.g. 460 * by NAT rewriting). When this happens, tell 461 * ip_forward to do the right thing. 462 */ 463 464 /* Jump over all PFIL processing if hooks are not active. */ 465 if (!PFIL_HOOKED(&inet_pfil_hook)) 466 goto passin; 467 468 odst = ip->ip_dst; 469 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, 470 PFIL_IN, NULL) != 0) 471 return; 472 if (m == NULL) /* consumed by filter */ 473 return; 474 475 ip = mtod(m, struct ip *); 476 dchg = (odst.s_addr != ip->ip_dst.s_addr); 477 478 #ifdef IPFIREWALL_FORWARD 479 if (m->m_flags & M_FASTFWD_OURS) { 480 m->m_flags &= ~M_FASTFWD_OURS; 481 goto ours; 482 } 483 if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) { 484 /* 485 * Directly ship on the packet. This allows to forward packets 486 * that were destined for us to some other directly connected 487 * host. 488 */ 489 ip_forward(m, dchg); 490 return; 491 } 492 #endif /* IPFIREWALL_FORWARD */ 493 494 passin: 495 /* 496 * Process options and, if not destined for us, 497 * ship it on. ip_dooptions returns 1 when an 498 * error was detected (causing an icmp message 499 * to be sent and the original packet to be freed). 500 */ 501 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 502 return; 503 504 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 505 * matter if it is destined to another node, or whether it is 506 * a multicast one, RSVP wants it! and prevents it from being forwarded 507 * anywhere else. Also checks if the rsvp daemon is running before 508 * grabbing the packet. 509 */ 510 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 511 goto ours; 512 513 /* 514 * Check our list of addresses, to see if the packet is for us. 515 * If we don't have any addresses, assume any unicast packet 516 * we receive might be for us (and let the upper layers deal 517 * with it). 518 */ 519 if (TAILQ_EMPTY(&V_in_ifaddrhead) && 520 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 521 goto ours; 522 523 /* 524 * Enable a consistency check between the destination address 525 * and the arrival interface for a unicast packet (the RFC 1122 526 * strong ES model) if IP forwarding is disabled and the packet 527 * is not locally generated and the packet is not subject to 528 * 'ipfw fwd'. 529 * 530 * XXX - Checking also should be disabled if the destination 531 * address is ipnat'ed to a different interface. 532 * 533 * XXX - Checking is incompatible with IP aliases added 534 * to the loopback interface instead of the interface where 535 * the packets are received. 536 * 537 * XXX - This is the case for carp vhost IPs as well so we 538 * insert a workaround. If the packet got here, we already 539 * checked with carp_iamatch() and carp_forus(). 540 */ 541 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 542 m->m_pkthdr.rcvif != NULL && 543 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 544 #ifdef DEV_CARP 545 !m->m_pkthdr.rcvif->if_carp && 546 #endif 547 (dchg == 0); 548 549 /* 550 * Check for exact addresses in the hash bucket. 551 */ 552 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 553 /* 554 * If the address matches, verify that the packet 555 * arrived via the correct interface if checking is 556 * enabled. 557 */ 558 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 559 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 560 goto ours; 561 } 562 /* 563 * Check for broadcast addresses. 564 * 565 * Only accept broadcast packets that arrive via the matching 566 * interface. Reception of forwarded directed broadcasts would 567 * be handled via ip_forward() and ether_output() with the loopback 568 * into the stack for SIMPLEX interfaces handled by ether_output(). 569 */ 570 if (m->m_pkthdr.rcvif != NULL && 571 m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 572 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 573 if (ifa->ifa_addr->sa_family != AF_INET) 574 continue; 575 ia = ifatoia(ifa); 576 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 577 ip->ip_dst.s_addr) 578 goto ours; 579 if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) 580 goto ours; 581 #ifdef BOOTP_COMPAT 582 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 583 goto ours; 584 #endif 585 } 586 } 587 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 588 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 589 V_ipstat.ips_cantforward++; 590 m_freem(m); 591 return; 592 } 593 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 594 struct in_multi *inm; 595 if (V_ip_mrouter) { 596 /* 597 * If we are acting as a multicast router, all 598 * incoming multicast packets are passed to the 599 * kernel-level multicast forwarding function. 600 * The packet is returned (relatively) intact; if 601 * ip_mforward() returns a non-zero value, the packet 602 * must be discarded, else it may be accepted below. 603 */ 604 if (ip_mforward && 605 ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 606 V_ipstat.ips_cantforward++; 607 m_freem(m); 608 return; 609 } 610 611 /* 612 * The process-level routing daemon needs to receive 613 * all multicast IGMP packets, whether or not this 614 * host belongs to their destination groups. 615 */ 616 if (ip->ip_p == IPPROTO_IGMP) 617 goto ours; 618 V_ipstat.ips_forward++; 619 } 620 /* 621 * See if we belong to the destination multicast group on the 622 * arrival interface. 623 */ 624 IN_MULTI_LOCK(); 625 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 626 IN_MULTI_UNLOCK(); 627 if (inm == NULL) { 628 V_ipstat.ips_notmember++; 629 m_freem(m); 630 return; 631 } 632 goto ours; 633 } 634 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 635 goto ours; 636 if (ip->ip_dst.s_addr == INADDR_ANY) 637 goto ours; 638 639 /* 640 * FAITH(Firewall Aided Internet Translator) 641 */ 642 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 643 if (V_ip_keepfaith) { 644 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 645 goto ours; 646 } 647 m_freem(m); 648 return; 649 } 650 651 /* 652 * Not for us; forward if possible and desirable. 653 */ 654 if (V_ipforwarding == 0) { 655 V_ipstat.ips_cantforward++; 656 m_freem(m); 657 } else { 658 #ifdef IPSEC 659 if (ip_ipsec_fwd(m)) 660 goto bad; 661 #endif /* IPSEC */ 662 ip_forward(m, dchg); 663 } 664 return; 665 666 ours: 667 #ifdef IPSTEALTH 668 /* 669 * IPSTEALTH: Process non-routing options only 670 * if the packet is destined for us. 671 */ 672 if (V_ipstealth && hlen > sizeof (struct ip) && 673 ip_dooptions(m, 1)) 674 return; 675 #endif /* IPSTEALTH */ 676 677 /* Count the packet in the ip address stats */ 678 if (ia != NULL) { 679 ia->ia_ifa.if_ipackets++; 680 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 681 } 682 683 /* 684 * Attempt reassembly; if it succeeds, proceed. 685 * ip_reass() will return a different mbuf. 686 */ 687 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 688 m = ip_reass(m); 689 if (m == NULL) 690 return; 691 ip = mtod(m, struct ip *); 692 /* Get the header length of the reassembled packet */ 693 hlen = ip->ip_hl << 2; 694 } 695 696 /* 697 * Further protocols expect the packet length to be w/o the 698 * IP header. 699 */ 700 ip->ip_len -= hlen; 701 702 #ifdef IPSEC 703 /* 704 * enforce IPsec policy checking if we are seeing last header. 705 * note that we do not visit this with protocols with pcb layer 706 * code - like udp/tcp/raw ip. 707 */ 708 if (ip_ipsec_input(m)) 709 goto bad; 710 #endif /* IPSEC */ 711 712 /* 713 * Switch out to protocol's input routine. 714 */ 715 V_ipstat.ips_delivered++; 716 717 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 718 return; 719 bad: 720 m_freem(m); 721 } 722 723 /* 724 * After maxnipq has been updated, propagate the change to UMA. The UMA zone 725 * max has slightly different semantics than the sysctl, for historical 726 * reasons. 727 */ 728 static void 729 maxnipq_update(void) 730 { 731 INIT_VNET_INET(curvnet); 732 733 /* 734 * -1 for unlimited allocation. 735 */ 736 if (V_maxnipq < 0) 737 uma_zone_set_max(V_ipq_zone, 0); 738 /* 739 * Positive number for specific bound. 740 */ 741 if (V_maxnipq > 0) 742 uma_zone_set_max(V_ipq_zone, V_maxnipq); 743 /* 744 * Zero specifies no further fragment queue allocation -- set the 745 * bound very low, but rely on implementation elsewhere to actually 746 * prevent allocation and reclaim current queues. 747 */ 748 if (V_maxnipq == 0) 749 uma_zone_set_max(V_ipq_zone, 1); 750 } 751 752 static void 753 ipq_zone_change(void *tag) 754 { 755 INIT_VNET_INET(curvnet); 756 757 if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) { 758 V_maxnipq = nmbclusters / 32; 759 maxnipq_update(); 760 } 761 } 762 763 static int 764 sysctl_maxnipq(SYSCTL_HANDLER_ARGS) 765 { 766 INIT_VNET_INET(curvnet); 767 int error, i; 768 769 i = V_maxnipq; 770 error = sysctl_handle_int(oidp, &i, 0, req); 771 if (error || !req->newptr) 772 return (error); 773 774 /* 775 * XXXRW: Might be a good idea to sanity check the argument and place 776 * an extreme upper bound. 777 */ 778 if (i < -1) 779 return (EINVAL); 780 V_maxnipq = i; 781 maxnipq_update(); 782 return (0); 783 } 784 785 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW, 786 NULL, 0, sysctl_maxnipq, "I", 787 "Maximum number of IPv4 fragment reassembly queue entries"); 788 789 /* 790 * Take incoming datagram fragment and try to reassemble it into 791 * whole datagram. If the argument is the first fragment or one 792 * in between the function will return NULL and store the mbuf 793 * in the fragment chain. If the argument is the last fragment 794 * the packet will be reassembled and the pointer to the new 795 * mbuf returned for further processing. Only m_tags attached 796 * to the first packet/fragment are preserved. 797 * The IP header is *NOT* adjusted out of iplen. 798 */ 799 struct mbuf * 800 ip_reass(struct mbuf *m) 801 { 802 INIT_VNET_INET(curvnet); 803 struct ip *ip; 804 struct mbuf *p, *q, *nq, *t; 805 struct ipq *fp = NULL; 806 struct ipqhead *head; 807 int i, hlen, next; 808 u_int8_t ecn, ecn0; 809 u_short hash; 810 811 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */ 812 if (V_maxnipq == 0 || V_maxfragsperpacket == 0) { 813 V_ipstat.ips_fragments++; 814 V_ipstat.ips_fragdropped++; 815 m_freem(m); 816 return (NULL); 817 } 818 819 ip = mtod(m, struct ip *); 820 hlen = ip->ip_hl << 2; 821 822 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 823 head = &V_ipq[hash]; 824 IPQ_LOCK(); 825 826 /* 827 * Look for queue of fragments 828 * of this datagram. 829 */ 830 TAILQ_FOREACH(fp, head, ipq_list) 831 if (ip->ip_id == fp->ipq_id && 832 ip->ip_src.s_addr == fp->ipq_src.s_addr && 833 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 834 #ifdef MAC 835 mac_ipq_match(m, fp) && 836 #endif 837 ip->ip_p == fp->ipq_p) 838 goto found; 839 840 fp = NULL; 841 842 /* 843 * Attempt to trim the number of allocated fragment queues if it 844 * exceeds the administrative limit. 845 */ 846 if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) { 847 /* 848 * drop something from the tail of the current queue 849 * before proceeding further 850 */ 851 struct ipq *q = TAILQ_LAST(head, ipqhead); 852 if (q == NULL) { /* gak */ 853 for (i = 0; i < IPREASS_NHASH; i++) { 854 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead); 855 if (r) { 856 V_ipstat.ips_fragtimeout += 857 r->ipq_nfrags; 858 ip_freef(&V_ipq[i], r); 859 break; 860 } 861 } 862 } else { 863 V_ipstat.ips_fragtimeout += q->ipq_nfrags; 864 ip_freef(head, q); 865 } 866 } 867 868 found: 869 /* 870 * Adjust ip_len to not reflect header, 871 * convert offset of this to bytes. 872 */ 873 ip->ip_len -= hlen; 874 if (ip->ip_off & IP_MF) { 875 /* 876 * Make sure that fragments have a data length 877 * that's a non-zero multiple of 8 bytes. 878 */ 879 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 880 V_ipstat.ips_toosmall++; /* XXX */ 881 goto dropfrag; 882 } 883 m->m_flags |= M_FRAG; 884 } else 885 m->m_flags &= ~M_FRAG; 886 ip->ip_off <<= 3; 887 888 889 /* 890 * Attempt reassembly; if it succeeds, proceed. 891 * ip_reass() will return a different mbuf. 892 */ 893 V_ipstat.ips_fragments++; 894 m->m_pkthdr.header = ip; 895 896 /* Previous ip_reass() started here. */ 897 /* 898 * Presence of header sizes in mbufs 899 * would confuse code below. 900 */ 901 m->m_data += hlen; 902 m->m_len -= hlen; 903 904 /* 905 * If first fragment to arrive, create a reassembly queue. 906 */ 907 if (fp == NULL) { 908 fp = uma_zalloc(V_ipq_zone, M_NOWAIT); 909 if (fp == NULL) 910 goto dropfrag; 911 #ifdef MAC 912 if (mac_ipq_init(fp, M_NOWAIT) != 0) { 913 uma_zfree(V_ipq_zone, fp); 914 fp = NULL; 915 goto dropfrag; 916 } 917 mac_ipq_create(m, fp); 918 #endif 919 TAILQ_INSERT_HEAD(head, fp, ipq_list); 920 V_nipq++; 921 fp->ipq_nfrags = 1; 922 fp->ipq_ttl = IPFRAGTTL; 923 fp->ipq_p = ip->ip_p; 924 fp->ipq_id = ip->ip_id; 925 fp->ipq_src = ip->ip_src; 926 fp->ipq_dst = ip->ip_dst; 927 fp->ipq_frags = m; 928 m->m_nextpkt = NULL; 929 goto done; 930 } else { 931 fp->ipq_nfrags++; 932 #ifdef MAC 933 mac_ipq_update(m, fp); 934 #endif 935 } 936 937 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 938 939 /* 940 * Handle ECN by comparing this segment with the first one; 941 * if CE is set, do not lose CE. 942 * drop if CE and not-ECT are mixed for the same packet. 943 */ 944 ecn = ip->ip_tos & IPTOS_ECN_MASK; 945 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; 946 if (ecn == IPTOS_ECN_CE) { 947 if (ecn0 == IPTOS_ECN_NOTECT) 948 goto dropfrag; 949 if (ecn0 != IPTOS_ECN_CE) 950 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; 951 } 952 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) 953 goto dropfrag; 954 955 /* 956 * Find a segment which begins after this one does. 957 */ 958 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 959 if (GETIP(q)->ip_off > ip->ip_off) 960 break; 961 962 /* 963 * If there is a preceding segment, it may provide some of 964 * our data already. If so, drop the data from the incoming 965 * segment. If it provides all of our data, drop us, otherwise 966 * stick new segment in the proper place. 967 * 968 * If some of the data is dropped from the the preceding 969 * segment, then it's checksum is invalidated. 970 */ 971 if (p) { 972 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 973 if (i > 0) { 974 if (i >= ip->ip_len) 975 goto dropfrag; 976 m_adj(m, i); 977 m->m_pkthdr.csum_flags = 0; 978 ip->ip_off += i; 979 ip->ip_len -= i; 980 } 981 m->m_nextpkt = p->m_nextpkt; 982 p->m_nextpkt = m; 983 } else { 984 m->m_nextpkt = fp->ipq_frags; 985 fp->ipq_frags = m; 986 } 987 988 /* 989 * While we overlap succeeding segments trim them or, 990 * if they are completely covered, dequeue them. 991 */ 992 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 993 q = nq) { 994 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off; 995 if (i < GETIP(q)->ip_len) { 996 GETIP(q)->ip_len -= i; 997 GETIP(q)->ip_off += i; 998 m_adj(q, i); 999 q->m_pkthdr.csum_flags = 0; 1000 break; 1001 } 1002 nq = q->m_nextpkt; 1003 m->m_nextpkt = nq; 1004 V_ipstat.ips_fragdropped++; 1005 fp->ipq_nfrags--; 1006 m_freem(q); 1007 } 1008 1009 /* 1010 * Check for complete reassembly and perform frag per packet 1011 * limiting. 1012 * 1013 * Frag limiting is performed here so that the nth frag has 1014 * a chance to complete the packet before we drop the packet. 1015 * As a result, n+1 frags are actually allowed per packet, but 1016 * only n will ever be stored. (n = maxfragsperpacket.) 1017 * 1018 */ 1019 next = 0; 1020 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 1021 if (GETIP(q)->ip_off != next) { 1022 if (fp->ipq_nfrags > V_maxfragsperpacket) { 1023 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 1024 ip_freef(head, fp); 1025 } 1026 goto done; 1027 } 1028 next += GETIP(q)->ip_len; 1029 } 1030 /* Make sure the last packet didn't have the IP_MF flag */ 1031 if (p->m_flags & M_FRAG) { 1032 if (fp->ipq_nfrags > V_maxfragsperpacket) { 1033 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 1034 ip_freef(head, fp); 1035 } 1036 goto done; 1037 } 1038 1039 /* 1040 * Reassembly is complete. Make sure the packet is a sane size. 1041 */ 1042 q = fp->ipq_frags; 1043 ip = GETIP(q); 1044 if (next + (ip->ip_hl << 2) > IP_MAXPACKET) { 1045 V_ipstat.ips_toolong++; 1046 V_ipstat.ips_fragdropped += fp->ipq_nfrags; 1047 ip_freef(head, fp); 1048 goto done; 1049 } 1050 1051 /* 1052 * Concatenate fragments. 1053 */ 1054 m = q; 1055 t = m->m_next; 1056 m->m_next = NULL; 1057 m_cat(m, t); 1058 nq = q->m_nextpkt; 1059 q->m_nextpkt = NULL; 1060 for (q = nq; q != NULL; q = nq) { 1061 nq = q->m_nextpkt; 1062 q->m_nextpkt = NULL; 1063 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1064 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1065 m_cat(m, q); 1066 } 1067 /* 1068 * In order to do checksumming faster we do 'end-around carry' here 1069 * (and not in for{} loop), though it implies we are not going to 1070 * reassemble more than 64k fragments. 1071 */ 1072 m->m_pkthdr.csum_data = 1073 (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16); 1074 #ifdef MAC 1075 mac_ipq_reassemble(fp, m); 1076 mac_ipq_destroy(fp); 1077 #endif 1078 1079 /* 1080 * Create header for new ip packet by modifying header of first 1081 * packet; dequeue and discard fragment reassembly header. 1082 * Make header visible. 1083 */ 1084 ip->ip_len = (ip->ip_hl << 2) + next; 1085 ip->ip_src = fp->ipq_src; 1086 ip->ip_dst = fp->ipq_dst; 1087 TAILQ_REMOVE(head, fp, ipq_list); 1088 V_nipq--; 1089 uma_zfree(V_ipq_zone, fp); 1090 m->m_len += (ip->ip_hl << 2); 1091 m->m_data -= (ip->ip_hl << 2); 1092 /* some debugging cruft by sklower, below, will go away soon */ 1093 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ 1094 m_fixhdr(m); 1095 V_ipstat.ips_reassembled++; 1096 IPQ_UNLOCK(); 1097 return (m); 1098 1099 dropfrag: 1100 V_ipstat.ips_fragdropped++; 1101 if (fp != NULL) 1102 fp->ipq_nfrags--; 1103 m_freem(m); 1104 done: 1105 IPQ_UNLOCK(); 1106 return (NULL); 1107 1108 #undef GETIP 1109 } 1110 1111 /* 1112 * Free a fragment reassembly header and all 1113 * associated datagrams. 1114 */ 1115 static void 1116 ip_freef(struct ipqhead *fhp, struct ipq *fp) 1117 { 1118 INIT_VNET_INET(curvnet); 1119 struct mbuf *q; 1120 1121 IPQ_LOCK_ASSERT(); 1122 1123 while (fp->ipq_frags) { 1124 q = fp->ipq_frags; 1125 fp->ipq_frags = q->m_nextpkt; 1126 m_freem(q); 1127 } 1128 TAILQ_REMOVE(fhp, fp, ipq_list); 1129 uma_zfree(V_ipq_zone, fp); 1130 V_nipq--; 1131 } 1132 1133 /* 1134 * IP timer processing; 1135 * if a timer expires on a reassembly 1136 * queue, discard it. 1137 */ 1138 void 1139 ip_slowtimo(void) 1140 { 1141 VNET_ITERATOR_DECL(vnet_iter); 1142 struct ipq *fp; 1143 int i; 1144 1145 IPQ_LOCK(); 1146 VNET_LIST_RLOCK(); 1147 VNET_FOREACH(vnet_iter) { 1148 CURVNET_SET(vnet_iter); 1149 INIT_VNET_INET(vnet_iter); 1150 for (i = 0; i < IPREASS_NHASH; i++) { 1151 for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) { 1152 struct ipq *fpp; 1153 1154 fpp = fp; 1155 fp = TAILQ_NEXT(fp, ipq_list); 1156 if(--fpp->ipq_ttl == 0) { 1157 V_ipstat.ips_fragtimeout += 1158 fpp->ipq_nfrags; 1159 ip_freef(&V_ipq[i], fpp); 1160 } 1161 } 1162 } 1163 /* 1164 * If we are over the maximum number of fragments 1165 * (due to the limit being lowered), drain off 1166 * enough to get down to the new limit. 1167 */ 1168 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) { 1169 for (i = 0; i < IPREASS_NHASH; i++) { 1170 while (V_nipq > V_maxnipq && 1171 !TAILQ_EMPTY(&V_ipq[i])) { 1172 V_ipstat.ips_fragdropped += 1173 TAILQ_FIRST(&V_ipq[i])->ipq_nfrags; 1174 ip_freef(&V_ipq[i], 1175 TAILQ_FIRST(&V_ipq[i])); 1176 } 1177 } 1178 } 1179 CURVNET_RESTORE(); 1180 } 1181 VNET_LIST_RUNLOCK(); 1182 IPQ_UNLOCK(); 1183 } 1184 1185 /* 1186 * Drain off all datagram fragments. 1187 */ 1188 void 1189 ip_drain(void) 1190 { 1191 VNET_ITERATOR_DECL(vnet_iter); 1192 int i; 1193 1194 IPQ_LOCK(); 1195 VNET_LIST_RLOCK(); 1196 VNET_FOREACH(vnet_iter) { 1197 CURVNET_SET(vnet_iter); 1198 INIT_VNET_INET(vnet_iter); 1199 for (i = 0; i < IPREASS_NHASH; i++) { 1200 while(!TAILQ_EMPTY(&V_ipq[i])) { 1201 V_ipstat.ips_fragdropped += 1202 TAILQ_FIRST(&V_ipq[i])->ipq_nfrags; 1203 ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i])); 1204 } 1205 } 1206 CURVNET_RESTORE(); 1207 } 1208 VNET_LIST_RUNLOCK(); 1209 IPQ_UNLOCK(); 1210 in_rtqdrain(); 1211 } 1212 1213 /* 1214 * The protocol to be inserted into ip_protox[] must be already registered 1215 * in inetsw[], either statically or through pf_proto_register(). 1216 */ 1217 int 1218 ipproto_register(u_char ipproto) 1219 { 1220 struct protosw *pr; 1221 1222 /* Sanity checks. */ 1223 if (ipproto == 0) 1224 return (EPROTONOSUPPORT); 1225 1226 /* 1227 * The protocol slot must not be occupied by another protocol 1228 * already. An index pointing to IPPROTO_RAW is unused. 1229 */ 1230 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1231 if (pr == NULL) 1232 return (EPFNOSUPPORT); 1233 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 1234 return (EEXIST); 1235 1236 /* Find the protocol position in inetsw[] and set the index. */ 1237 for (pr = inetdomain.dom_protosw; 1238 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 1239 if (pr->pr_domain->dom_family == PF_INET && 1240 pr->pr_protocol && pr->pr_protocol == ipproto) { 1241 /* Be careful to only index valid IP protocols. */ 1242 if (pr->pr_protocol < IPPROTO_MAX) { 1243 ip_protox[pr->pr_protocol] = pr - inetsw; 1244 return (0); 1245 } else 1246 return (EINVAL); 1247 } 1248 } 1249 return (EPROTONOSUPPORT); 1250 } 1251 1252 int 1253 ipproto_unregister(u_char ipproto) 1254 { 1255 struct protosw *pr; 1256 1257 /* Sanity checks. */ 1258 if (ipproto == 0) 1259 return (EPROTONOSUPPORT); 1260 1261 /* Check if the protocol was indeed registered. */ 1262 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1263 if (pr == NULL) 1264 return (EPFNOSUPPORT); 1265 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 1266 return (ENOENT); 1267 1268 /* Reset the protocol slot to IPPROTO_RAW. */ 1269 ip_protox[ipproto] = pr - inetsw; 1270 return (0); 1271 } 1272 1273 /* 1274 * Given address of next destination (final or next hop), 1275 * return internet address info of interface to be used to get there. 1276 */ 1277 struct in_ifaddr * 1278 ip_rtaddr(struct in_addr dst, u_int fibnum) 1279 { 1280 struct route sro; 1281 struct sockaddr_in *sin; 1282 struct in_ifaddr *ifa; 1283 1284 bzero(&sro, sizeof(sro)); 1285 sin = (struct sockaddr_in *)&sro.ro_dst; 1286 sin->sin_family = AF_INET; 1287 sin->sin_len = sizeof(*sin); 1288 sin->sin_addr = dst; 1289 in_rtalloc_ign(&sro, 0, fibnum); 1290 1291 if (sro.ro_rt == NULL) 1292 return (NULL); 1293 1294 ifa = ifatoia(sro.ro_rt->rt_ifa); 1295 RTFREE(sro.ro_rt); 1296 return (ifa); 1297 } 1298 1299 u_char inetctlerrmap[PRC_NCMDS] = { 1300 0, 0, 0, 0, 1301 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1302 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1303 EMSGSIZE, EHOSTUNREACH, 0, 0, 1304 0, 0, EHOSTUNREACH, 0, 1305 ENOPROTOOPT, ECONNREFUSED 1306 }; 1307 1308 /* 1309 * Forward a packet. If some error occurs return the sender 1310 * an icmp packet. Note we can't always generate a meaningful 1311 * icmp message because icmp doesn't have a large enough repertoire 1312 * of codes and types. 1313 * 1314 * If not forwarding, just drop the packet. This could be confusing 1315 * if ipforwarding was zero but some routing protocol was advancing 1316 * us as a gateway to somewhere. However, we must let the routing 1317 * protocol deal with that. 1318 * 1319 * The srcrt parameter indicates whether the packet is being forwarded 1320 * via a source route. 1321 */ 1322 void 1323 ip_forward(struct mbuf *m, int srcrt) 1324 { 1325 INIT_VNET_INET(curvnet); 1326 struct ip *ip = mtod(m, struct ip *); 1327 struct in_ifaddr *ia = NULL; 1328 struct mbuf *mcopy; 1329 struct in_addr dest; 1330 struct route ro; 1331 int error, type = 0, code = 0, mtu = 0; 1332 1333 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 1334 V_ipstat.ips_cantforward++; 1335 m_freem(m); 1336 return; 1337 } 1338 #ifdef IPSTEALTH 1339 if (!V_ipstealth) { 1340 #endif 1341 if (ip->ip_ttl <= IPTTLDEC) { 1342 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1343 0, 0); 1344 return; 1345 } 1346 #ifdef IPSTEALTH 1347 } 1348 #endif 1349 1350 ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m)); 1351 if (!srcrt && ia == NULL) { 1352 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); 1353 return; 1354 } 1355 1356 /* 1357 * Save the IP header and at most 8 bytes of the payload, 1358 * in case we need to generate an ICMP message to the src. 1359 * 1360 * XXX this can be optimized a lot by saving the data in a local 1361 * buffer on the stack (72 bytes at most), and only allocating the 1362 * mbuf if really necessary. The vast majority of the packets 1363 * are forwarded without having to send an ICMP back (either 1364 * because unnecessary, or because rate limited), so we are 1365 * really we are wasting a lot of work here. 1366 * 1367 * We don't use m_copy() because it might return a reference 1368 * to a shared cluster. Both this function and ip_output() 1369 * assume exclusive access to the IP header in `m', so any 1370 * data in a cluster may change before we reach icmp_error(). 1371 */ 1372 MGETHDR(mcopy, M_DONTWAIT, m->m_type); 1373 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) { 1374 /* 1375 * It's probably ok if the pkthdr dup fails (because 1376 * the deep copy of the tag chain failed), but for now 1377 * be conservative and just discard the copy since 1378 * code below may some day want the tags. 1379 */ 1380 m_free(mcopy); 1381 mcopy = NULL; 1382 } 1383 if (mcopy != NULL) { 1384 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy)); 1385 mcopy->m_pkthdr.len = mcopy->m_len; 1386 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1387 } 1388 1389 #ifdef IPSTEALTH 1390 if (!V_ipstealth) { 1391 #endif 1392 ip->ip_ttl -= IPTTLDEC; 1393 #ifdef IPSTEALTH 1394 } 1395 #endif 1396 1397 /* 1398 * If forwarding packet using same interface that it came in on, 1399 * perhaps should send a redirect to sender to shortcut a hop. 1400 * Only send redirect if source is sending directly to us, 1401 * and if packet was not source routed (or has any options). 1402 * Also, don't send redirect if forwarding using a default route 1403 * or a route modified by a redirect. 1404 */ 1405 dest.s_addr = 0; 1406 if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) { 1407 struct sockaddr_in *sin; 1408 struct rtentry *rt; 1409 1410 bzero(&ro, sizeof(ro)); 1411 sin = (struct sockaddr_in *)&ro.ro_dst; 1412 sin->sin_family = AF_INET; 1413 sin->sin_len = sizeof(*sin); 1414 sin->sin_addr = ip->ip_dst; 1415 in_rtalloc_ign(&ro, 0, M_GETFIB(m)); 1416 1417 rt = ro.ro_rt; 1418 1419 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1420 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1421 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1422 u_long src = ntohl(ip->ip_src.s_addr); 1423 1424 if (RTA(rt) && 1425 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1426 if (rt->rt_flags & RTF_GATEWAY) 1427 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1428 else 1429 dest.s_addr = ip->ip_dst.s_addr; 1430 /* Router requirements says to only send host redirects */ 1431 type = ICMP_REDIRECT; 1432 code = ICMP_REDIRECT_HOST; 1433 } 1434 } 1435 if (rt) 1436 RTFREE(rt); 1437 } 1438 1439 /* 1440 * Try to cache the route MTU from ip_output so we can consider it for 1441 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191. 1442 */ 1443 bzero(&ro, sizeof(ro)); 1444 1445 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1446 1447 if (error == EMSGSIZE && ro.ro_rt) 1448 mtu = ro.ro_rt->rt_rmx.rmx_mtu; 1449 if (ro.ro_rt) 1450 RTFREE(ro.ro_rt); 1451 1452 if (error) 1453 V_ipstat.ips_cantforward++; 1454 else { 1455 V_ipstat.ips_forward++; 1456 if (type) 1457 V_ipstat.ips_redirectsent++; 1458 else { 1459 if (mcopy) 1460 m_freem(mcopy); 1461 return; 1462 } 1463 } 1464 if (mcopy == NULL) 1465 return; 1466 1467 switch (error) { 1468 1469 case 0: /* forwarded, but need redirect */ 1470 /* type, code set above */ 1471 break; 1472 1473 case ENETUNREACH: /* shouldn't happen, checked above */ 1474 case EHOSTUNREACH: 1475 case ENETDOWN: 1476 case EHOSTDOWN: 1477 default: 1478 type = ICMP_UNREACH; 1479 code = ICMP_UNREACH_HOST; 1480 break; 1481 1482 case EMSGSIZE: 1483 type = ICMP_UNREACH; 1484 code = ICMP_UNREACH_NEEDFRAG; 1485 1486 #ifdef IPSEC 1487 /* 1488 * If IPsec is configured for this path, 1489 * override any possibly mtu value set by ip_output. 1490 */ 1491 mtu = ip_ipsec_mtu(m, mtu); 1492 #endif /* IPSEC */ 1493 /* 1494 * If the MTU was set before make sure we are below the 1495 * interface MTU. 1496 * If the MTU wasn't set before use the interface mtu or 1497 * fall back to the next smaller mtu step compared to the 1498 * current packet size. 1499 */ 1500 if (mtu != 0) { 1501 if (ia != NULL) 1502 mtu = min(mtu, ia->ia_ifp->if_mtu); 1503 } else { 1504 if (ia != NULL) 1505 mtu = ia->ia_ifp->if_mtu; 1506 else 1507 mtu = ip_next_mtu(ip->ip_len, 0); 1508 } 1509 V_ipstat.ips_cantfrag++; 1510 break; 1511 1512 case ENOBUFS: 1513 /* 1514 * A router should not generate ICMP_SOURCEQUENCH as 1515 * required in RFC1812 Requirements for IP Version 4 Routers. 1516 * Source quench could be a big problem under DoS attacks, 1517 * or if the underlying interface is rate-limited. 1518 * Those who need source quench packets may re-enable them 1519 * via the net.inet.ip.sendsourcequench sysctl. 1520 */ 1521 if (V_ip_sendsourcequench == 0) { 1522 m_freem(mcopy); 1523 return; 1524 } else { 1525 type = ICMP_SOURCEQUENCH; 1526 code = 0; 1527 } 1528 break; 1529 1530 case EACCES: /* ipfw denied packet */ 1531 m_freem(mcopy); 1532 return; 1533 } 1534 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1535 } 1536 1537 void 1538 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1539 struct mbuf *m) 1540 { 1541 INIT_VNET_NET(inp->inp_vnet); 1542 1543 if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) { 1544 struct bintime bt; 1545 1546 bintime(&bt); 1547 if (inp->inp_socket->so_options & SO_BINTIME) { 1548 *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt), 1549 SCM_BINTIME, SOL_SOCKET); 1550 if (*mp) 1551 mp = &(*mp)->m_next; 1552 } 1553 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1554 struct timeval tv; 1555 1556 bintime2timeval(&bt, &tv); 1557 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1558 SCM_TIMESTAMP, SOL_SOCKET); 1559 if (*mp) 1560 mp = &(*mp)->m_next; 1561 } 1562 } 1563 if (inp->inp_flags & INP_RECVDSTADDR) { 1564 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1565 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1566 if (*mp) 1567 mp = &(*mp)->m_next; 1568 } 1569 if (inp->inp_flags & INP_RECVTTL) { 1570 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl, 1571 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1572 if (*mp) 1573 mp = &(*mp)->m_next; 1574 } 1575 #ifdef notyet 1576 /* XXX 1577 * Moving these out of udp_input() made them even more broken 1578 * than they already were. 1579 */ 1580 /* options were tossed already */ 1581 if (inp->inp_flags & INP_RECVOPTS) { 1582 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1583 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1584 if (*mp) 1585 mp = &(*mp)->m_next; 1586 } 1587 /* ip_srcroute doesn't do what we want here, need to fix */ 1588 if (inp->inp_flags & INP_RECVRETOPTS) { 1589 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m), 1590 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1591 if (*mp) 1592 mp = &(*mp)->m_next; 1593 } 1594 #endif 1595 if (inp->inp_flags & INP_RECVIF) { 1596 struct ifnet *ifp; 1597 struct sdlbuf { 1598 struct sockaddr_dl sdl; 1599 u_char pad[32]; 1600 } sdlbuf; 1601 struct sockaddr_dl *sdp; 1602 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1603 1604 if (((ifp = m->m_pkthdr.rcvif)) 1605 && ( ifp->if_index && (ifp->if_index <= V_if_index))) { 1606 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1607 /* 1608 * Change our mind and don't try copy. 1609 */ 1610 if ((sdp->sdl_family != AF_LINK) 1611 || (sdp->sdl_len > sizeof(sdlbuf))) { 1612 goto makedummy; 1613 } 1614 bcopy(sdp, sdl2, sdp->sdl_len); 1615 } else { 1616 makedummy: 1617 sdl2->sdl_len 1618 = offsetof(struct sockaddr_dl, sdl_data[0]); 1619 sdl2->sdl_family = AF_LINK; 1620 sdl2->sdl_index = 0; 1621 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1622 } 1623 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1624 IP_RECVIF, IPPROTO_IP); 1625 if (*mp) 1626 mp = &(*mp)->m_next; 1627 } 1628 } 1629 1630 /* 1631 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1632 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1633 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1634 * compiled. 1635 */ 1636 int 1637 ip_rsvp_init(struct socket *so) 1638 { 1639 INIT_VNET_INET(so->so_vnet); 1640 1641 if (so->so_type != SOCK_RAW || 1642 so->so_proto->pr_protocol != IPPROTO_RSVP) 1643 return EOPNOTSUPP; 1644 1645 if (V_ip_rsvpd != NULL) 1646 return EADDRINUSE; 1647 1648 V_ip_rsvpd = so; 1649 /* 1650 * This may seem silly, but we need to be sure we don't over-increment 1651 * the RSVP counter, in case something slips up. 1652 */ 1653 if (!V_ip_rsvp_on) { 1654 V_ip_rsvp_on = 1; 1655 V_rsvp_on++; 1656 } 1657 1658 return 0; 1659 } 1660 1661 int 1662 ip_rsvp_done(void) 1663 { 1664 INIT_VNET_INET(curvnet); 1665 1666 V_ip_rsvpd = NULL; 1667 /* 1668 * This may seem silly, but we need to be sure we don't over-decrement 1669 * the RSVP counter, in case something slips up. 1670 */ 1671 if (V_ip_rsvp_on) { 1672 V_ip_rsvp_on = 0; 1673 V_rsvp_on--; 1674 } 1675 return 0; 1676 } 1677 1678 void 1679 rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */ 1680 { 1681 INIT_VNET_INET(curvnet); 1682 1683 if (rsvp_input_p) { /* call the real one if loaded */ 1684 rsvp_input_p(m, off); 1685 return; 1686 } 1687 1688 /* Can still get packets with rsvp_on = 0 if there is a local member 1689 * of the group to which the RSVP packet is addressed. But in this 1690 * case we want to throw the packet away. 1691 */ 1692 1693 if (!V_rsvp_on) { 1694 m_freem(m); 1695 return; 1696 } 1697 1698 if (V_ip_rsvpd != NULL) { 1699 rip_input(m, off); 1700 return; 1701 } 1702 /* Drop the packet */ 1703 m_freem(m); 1704 } 1705