xref: /freebsd/sys/netinet/ip_input.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/rwlock.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 #include <sys/vimage.h>
57 
58 #include <net/pfil.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/route.h>
64 #include <net/netisr.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_options.h>
75 #include <machine/in_cksum.h>
76 #include <netinet/vinet.h>
77 #ifdef DEV_CARP
78 #include <netinet/ip_carp.h>
79 #endif
80 #ifdef IPSEC
81 #include <netinet/ip_ipsec.h>
82 #endif /* IPSEC */
83 
84 #include <sys/socketvar.h>
85 
86 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
87 #include <netinet/ip_fw.h>
88 #include <netinet/ip_dummynet.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #ifdef CTASSERT
93 CTASSERT(sizeof(struct ip) == 20);
94 #endif
95 
96 #ifndef VIMAGE
97 #ifndef VIMAGE_GLOBALS
98 struct vnet_inet vnet_inet_0;
99 #endif
100 #endif
101 
102 #ifdef VIMAGE_GLOBALS
103 static int	ipsendredirects;
104 static int	ip_checkinterface;
105 static int	ip_keepfaith;
106 static int	ip_sendsourcequench;
107 int	ip_defttl;
108 int	ip_do_randomid;
109 int	ipforwarding;
110 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
111 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
112 u_long 	in_ifaddrhmask;				/* mask for hash table */
113 struct ipstat ipstat;
114 static int ip_rsvp_on;
115 struct socket *ip_rsvpd;
116 int	rsvp_on;
117 static struct ipqhead ipq[IPREASS_NHASH];
118 static int	maxnipq;	/* Administrative limit on # reass queues. */
119 static int	maxfragsperpacket;
120 int	ipstealth;
121 static int	nipq;	/* Total # of reass queues */
122 #endif
123 
124 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
125     forwarding, CTLFLAG_RW, ipforwarding, 0,
126     "Enable IP forwarding between interfaces");
127 
128 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
129     redirect, CTLFLAG_RW, ipsendredirects, 0,
130     "Enable sending IP redirects");
131 
132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
133     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
134 
135 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
136     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
137     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
138 
139 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
140     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
141     "Enable the transmission of source quench packets");
142 
143 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
144     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
145 
146 /*
147  * XXX - Setting ip_checkinterface mostly implements the receive side of
148  * the Strong ES model described in RFC 1122, but since the routing table
149  * and transmit implementation do not implement the Strong ES model,
150  * setting this to 1 results in an odd hybrid.
151  *
152  * XXX - ip_checkinterface currently must be disabled if you use ipnat
153  * to translate the destination address to another local interface.
154  *
155  * XXX - ip_checkinterface must be disabled if you add IP aliases
156  * to the loopback interface instead of the interface where the
157  * packets for those addresses are received.
158  */
159 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
160     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
161     "Verify packet arrives on correct interface");
162 
163 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
164 
165 static struct	ifqueue ipintrq;
166 static int	ipqmaxlen = IFQ_MAXLEN;
167 
168 extern	struct domain inetdomain;
169 extern	struct protosw inetsw[];
170 u_char	ip_protox[IPPROTO_MAX];
171 
172 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175     &ipintrq.ifq_drops, 0,
176     "Number of packets dropped from the IP input queue");
177 
178 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180 
181 #ifdef VIMAGE_GLOBALS
182 static uma_zone_t ipq_zone;
183 #endif
184 static struct mtx ipqlock;
185 
186 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
187 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
188 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
189 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
190 
191 static void	maxnipq_update(void);
192 static void	ipq_zone_change(void *);
193 
194 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
195     CTLFLAG_RD, nipq, 0,
196     "Current number of IPv4 fragment reassembly queue entries");
197 
198 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
199     CTLFLAG_RW, maxfragsperpacket, 0,
200     "Maximum number of IPv4 fragments allowed per packet");
201 
202 struct callout	ipport_tick_callout;
203 
204 #ifdef IPCTL_DEFMTU
205 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
206     &ip_mtu, 0, "Default MTU");
207 #endif
208 
209 #ifdef IPSTEALTH
210 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
211     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
212 #endif
213 
214 /*
215  * ipfw_ether and ipfw_bridge hooks.
216  * XXX: Temporary until those are converted to pfil_hooks as well.
217  */
218 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
219 ip_dn_io_t *ip_dn_io_ptr = NULL;
220 #ifdef VIMAGE_GLOBALS
221 int fw_one_pass;
222 #endif
223 
224 static void	ip_freef(struct ipqhead *, struct ipq *);
225 
226 /*
227  * IP initialization: fill in IP protocol switch table.
228  * All protocols not implemented in kernel go to raw IP protocol handler.
229  */
230 void
231 ip_init(void)
232 {
233 	INIT_VNET_INET(curvnet);
234 	struct protosw *pr;
235 	int i;
236 
237 	V_ipsendredirects = 1; /* XXX */
238 	V_ip_checkinterface = 0;
239 	V_ip_keepfaith = 0;
240 	V_ip_sendsourcequench = 0;
241 	V_rsvp_on = 0;
242 	V_ip_defttl = IPDEFTTL;
243 	V_ip_do_randomid = 0;
244 	V_ipforwarding = 0;
245 	V_ipstealth = 0;
246 	V_nipq = 0;	/* Total # of reass queues */
247 
248 	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
249 	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
250 	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
251 	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
252 	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
253 	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
254 	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
255 	V_ipport_reservedlow = 0;
256 	V_ipport_randomized = 1;	/* user controlled via sysctl */
257 	V_ipport_randomcps = 10;	/* user controlled via sysctl */
258 	V_ipport_randomtime = 45;	/* user controlled via sysctl */
259 	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
260 
261 	V_fw_one_pass = 1;
262 
263 #ifdef NOTYET
264 	/* XXX global static but not instantiated in this file */
265 	V_ipfastforward_active = 0;
266 	V_subnetsarelocal = 0;
267 	V_sameprefixcarponly = 0;
268 #endif
269 
270 	TAILQ_INIT(&V_in_ifaddrhead);
271 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
272 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
273 	if (pr == NULL)
274 		panic("ip_init: PF_INET not found");
275 
276 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
277 	for (i = 0; i < IPPROTO_MAX; i++)
278 		ip_protox[i] = pr - inetsw;
279 	/*
280 	 * Cycle through IP protocols and put them into the appropriate place
281 	 * in ip_protox[].
282 	 */
283 	for (pr = inetdomain.dom_protosw;
284 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
285 		if (pr->pr_domain->dom_family == PF_INET &&
286 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
287 			/* Be careful to only index valid IP protocols. */
288 			if (pr->pr_protocol < IPPROTO_MAX)
289 				ip_protox[pr->pr_protocol] = pr - inetsw;
290 		}
291 
292 	/* Initialize packet filter hooks. */
293 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
294 	inet_pfil_hook.ph_af = AF_INET;
295 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
296 		printf("%s: WARNING: unable to register pfil hook, "
297 			"error %d\n", __func__, i);
298 
299 	/* Initialize IP reassembly queue. */
300 	IPQ_LOCK_INIT();
301 	for (i = 0; i < IPREASS_NHASH; i++)
302 	    TAILQ_INIT(&V_ipq[i]);
303 	V_maxnipq = nmbclusters / 32;
304 	V_maxfragsperpacket = 16;
305 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
306 	    NULL, UMA_ALIGN_PTR, 0);
307 	maxnipq_update();
308 
309 	/* Start ipport_tick. */
310 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
311 	ipport_tick(NULL);
312 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
313 		SHUTDOWN_PRI_DEFAULT);
314 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
315 		NULL, EVENTHANDLER_PRI_ANY);
316 
317 	/* Initialize various other remaining things. */
318 	V_ip_id = time_second & 0xffff;
319 	ipintrq.ifq_maxlen = ipqmaxlen;
320 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
321 	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
322 }
323 
324 void
325 ip_fini(void *xtp)
326 {
327 
328 	callout_stop(&ipport_tick_callout);
329 }
330 
331 /*
332  * Ip input routine.  Checksum and byte swap header.  If fragmented
333  * try to reassemble.  Process options.  Pass to next level.
334  */
335 void
336 ip_input(struct mbuf *m)
337 {
338 	INIT_VNET_INET(curvnet);
339 	struct ip *ip = NULL;
340 	struct in_ifaddr *ia = NULL;
341 	struct ifaddr *ifa;
342 	int    checkif, hlen = 0;
343 	u_short sum;
344 	int dchg = 0;				/* dest changed after fw */
345 	struct in_addr odst;			/* original dst address */
346 
347 	M_ASSERTPKTHDR(m);
348 
349 	if (m->m_flags & M_FASTFWD_OURS) {
350 		/*
351 		 * Firewall or NAT changed destination to local.
352 		 * We expect ip_len and ip_off to be in host byte order.
353 		 */
354 		m->m_flags &= ~M_FASTFWD_OURS;
355 		/* Set up some basics that will be used later. */
356 		ip = mtod(m, struct ip *);
357 		hlen = ip->ip_hl << 2;
358 		goto ours;
359 	}
360 
361 	V_ipstat.ips_total++;
362 
363 	if (m->m_pkthdr.len < sizeof(struct ip))
364 		goto tooshort;
365 
366 	if (m->m_len < sizeof (struct ip) &&
367 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
368 		V_ipstat.ips_toosmall++;
369 		return;
370 	}
371 	ip = mtod(m, struct ip *);
372 
373 	if (ip->ip_v != IPVERSION) {
374 		V_ipstat.ips_badvers++;
375 		goto bad;
376 	}
377 
378 	hlen = ip->ip_hl << 2;
379 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
380 		V_ipstat.ips_badhlen++;
381 		goto bad;
382 	}
383 	if (hlen > m->m_len) {
384 		if ((m = m_pullup(m, hlen)) == NULL) {
385 			V_ipstat.ips_badhlen++;
386 			return;
387 		}
388 		ip = mtod(m, struct ip *);
389 	}
390 
391 	/* 127/8 must not appear on wire - RFC1122 */
392 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
393 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
394 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
395 			V_ipstat.ips_badaddr++;
396 			goto bad;
397 		}
398 	}
399 
400 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
401 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
402 	} else {
403 		if (hlen == sizeof(struct ip)) {
404 			sum = in_cksum_hdr(ip);
405 		} else {
406 			sum = in_cksum(m, hlen);
407 		}
408 	}
409 	if (sum) {
410 		V_ipstat.ips_badsum++;
411 		goto bad;
412 	}
413 
414 #ifdef ALTQ
415 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
416 		/* packet is dropped by traffic conditioner */
417 		return;
418 #endif
419 
420 	/*
421 	 * Convert fields to host representation.
422 	 */
423 	ip->ip_len = ntohs(ip->ip_len);
424 	if (ip->ip_len < hlen) {
425 		V_ipstat.ips_badlen++;
426 		goto bad;
427 	}
428 	ip->ip_off = ntohs(ip->ip_off);
429 
430 	/*
431 	 * Check that the amount of data in the buffers
432 	 * is as at least much as the IP header would have us expect.
433 	 * Trim mbufs if longer than we expect.
434 	 * Drop packet if shorter than we expect.
435 	 */
436 	if (m->m_pkthdr.len < ip->ip_len) {
437 tooshort:
438 		V_ipstat.ips_tooshort++;
439 		goto bad;
440 	}
441 	if (m->m_pkthdr.len > ip->ip_len) {
442 		if (m->m_len == m->m_pkthdr.len) {
443 			m->m_len = ip->ip_len;
444 			m->m_pkthdr.len = ip->ip_len;
445 		} else
446 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
447 	}
448 #ifdef IPSEC
449 	/*
450 	 * Bypass packet filtering for packets from a tunnel (gif).
451 	 */
452 	if (ip_ipsec_filtertunnel(m))
453 		goto passin;
454 #endif /* IPSEC */
455 
456 	/*
457 	 * Run through list of hooks for input packets.
458 	 *
459 	 * NB: Beware of the destination address changing (e.g.
460 	 *     by NAT rewriting).  When this happens, tell
461 	 *     ip_forward to do the right thing.
462 	 */
463 
464 	/* Jump over all PFIL processing if hooks are not active. */
465 	if (!PFIL_HOOKED(&inet_pfil_hook))
466 		goto passin;
467 
468 	odst = ip->ip_dst;
469 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
470 	    PFIL_IN, NULL) != 0)
471 		return;
472 	if (m == NULL)			/* consumed by filter */
473 		return;
474 
475 	ip = mtod(m, struct ip *);
476 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
477 
478 #ifdef IPFIREWALL_FORWARD
479 	if (m->m_flags & M_FASTFWD_OURS) {
480 		m->m_flags &= ~M_FASTFWD_OURS;
481 		goto ours;
482 	}
483 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
484 		/*
485 		 * Directly ship on the packet.  This allows to forward packets
486 		 * that were destined for us to some other directly connected
487 		 * host.
488 		 */
489 		ip_forward(m, dchg);
490 		return;
491 	}
492 #endif /* IPFIREWALL_FORWARD */
493 
494 passin:
495 	/*
496 	 * Process options and, if not destined for us,
497 	 * ship it on.  ip_dooptions returns 1 when an
498 	 * error was detected (causing an icmp message
499 	 * to be sent and the original packet to be freed).
500 	 */
501 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
502 		return;
503 
504         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
505          * matter if it is destined to another node, or whether it is
506          * a multicast one, RSVP wants it! and prevents it from being forwarded
507          * anywhere else. Also checks if the rsvp daemon is running before
508 	 * grabbing the packet.
509          */
510 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
511 		goto ours;
512 
513 	/*
514 	 * Check our list of addresses, to see if the packet is for us.
515 	 * If we don't have any addresses, assume any unicast packet
516 	 * we receive might be for us (and let the upper layers deal
517 	 * with it).
518 	 */
519 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
520 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
521 		goto ours;
522 
523 	/*
524 	 * Enable a consistency check between the destination address
525 	 * and the arrival interface for a unicast packet (the RFC 1122
526 	 * strong ES model) if IP forwarding is disabled and the packet
527 	 * is not locally generated and the packet is not subject to
528 	 * 'ipfw fwd'.
529 	 *
530 	 * XXX - Checking also should be disabled if the destination
531 	 * address is ipnat'ed to a different interface.
532 	 *
533 	 * XXX - Checking is incompatible with IP aliases added
534 	 * to the loopback interface instead of the interface where
535 	 * the packets are received.
536 	 *
537 	 * XXX - This is the case for carp vhost IPs as well so we
538 	 * insert a workaround. If the packet got here, we already
539 	 * checked with carp_iamatch() and carp_forus().
540 	 */
541 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
542 	    m->m_pkthdr.rcvif != NULL &&
543 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
544 #ifdef DEV_CARP
545 	    !m->m_pkthdr.rcvif->if_carp &&
546 #endif
547 	    (dchg == 0);
548 
549 	/*
550 	 * Check for exact addresses in the hash bucket.
551 	 */
552 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
553 		/*
554 		 * If the address matches, verify that the packet
555 		 * arrived via the correct interface if checking is
556 		 * enabled.
557 		 */
558 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
559 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
560 			goto ours;
561 	}
562 	/*
563 	 * Check for broadcast addresses.
564 	 *
565 	 * Only accept broadcast packets that arrive via the matching
566 	 * interface.  Reception of forwarded directed broadcasts would
567 	 * be handled via ip_forward() and ether_output() with the loopback
568 	 * into the stack for SIMPLEX interfaces handled by ether_output().
569 	 */
570 	if (m->m_pkthdr.rcvif != NULL &&
571 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
572 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
573 			if (ifa->ifa_addr->sa_family != AF_INET)
574 				continue;
575 			ia = ifatoia(ifa);
576 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
577 			    ip->ip_dst.s_addr)
578 				goto ours;
579 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
580 				goto ours;
581 #ifdef BOOTP_COMPAT
582 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
583 				goto ours;
584 #endif
585 		}
586 	}
587 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
588 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
589 		V_ipstat.ips_cantforward++;
590 		m_freem(m);
591 		return;
592 	}
593 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
594 		struct in_multi *inm;
595 		if (V_ip_mrouter) {
596 			/*
597 			 * If we are acting as a multicast router, all
598 			 * incoming multicast packets are passed to the
599 			 * kernel-level multicast forwarding function.
600 			 * The packet is returned (relatively) intact; if
601 			 * ip_mforward() returns a non-zero value, the packet
602 			 * must be discarded, else it may be accepted below.
603 			 */
604 			if (ip_mforward &&
605 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
606 				V_ipstat.ips_cantforward++;
607 				m_freem(m);
608 				return;
609 			}
610 
611 			/*
612 			 * The process-level routing daemon needs to receive
613 			 * all multicast IGMP packets, whether or not this
614 			 * host belongs to their destination groups.
615 			 */
616 			if (ip->ip_p == IPPROTO_IGMP)
617 				goto ours;
618 			V_ipstat.ips_forward++;
619 		}
620 		/*
621 		 * See if we belong to the destination multicast group on the
622 		 * arrival interface.
623 		 */
624 		IN_MULTI_LOCK();
625 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
626 		IN_MULTI_UNLOCK();
627 		if (inm == NULL) {
628 			V_ipstat.ips_notmember++;
629 			m_freem(m);
630 			return;
631 		}
632 		goto ours;
633 	}
634 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
635 		goto ours;
636 	if (ip->ip_dst.s_addr == INADDR_ANY)
637 		goto ours;
638 
639 	/*
640 	 * FAITH(Firewall Aided Internet Translator)
641 	 */
642 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
643 		if (V_ip_keepfaith) {
644 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
645 				goto ours;
646 		}
647 		m_freem(m);
648 		return;
649 	}
650 
651 	/*
652 	 * Not for us; forward if possible and desirable.
653 	 */
654 	if (V_ipforwarding == 0) {
655 		V_ipstat.ips_cantforward++;
656 		m_freem(m);
657 	} else {
658 #ifdef IPSEC
659 		if (ip_ipsec_fwd(m))
660 			goto bad;
661 #endif /* IPSEC */
662 		ip_forward(m, dchg);
663 	}
664 	return;
665 
666 ours:
667 #ifdef IPSTEALTH
668 	/*
669 	 * IPSTEALTH: Process non-routing options only
670 	 * if the packet is destined for us.
671 	 */
672 	if (V_ipstealth && hlen > sizeof (struct ip) &&
673 	    ip_dooptions(m, 1))
674 		return;
675 #endif /* IPSTEALTH */
676 
677 	/* Count the packet in the ip address stats */
678 	if (ia != NULL) {
679 		ia->ia_ifa.if_ipackets++;
680 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
681 	}
682 
683 	/*
684 	 * Attempt reassembly; if it succeeds, proceed.
685 	 * ip_reass() will return a different mbuf.
686 	 */
687 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
688 		m = ip_reass(m);
689 		if (m == NULL)
690 			return;
691 		ip = mtod(m, struct ip *);
692 		/* Get the header length of the reassembled packet */
693 		hlen = ip->ip_hl << 2;
694 	}
695 
696 	/*
697 	 * Further protocols expect the packet length to be w/o the
698 	 * IP header.
699 	 */
700 	ip->ip_len -= hlen;
701 
702 #ifdef IPSEC
703 	/*
704 	 * enforce IPsec policy checking if we are seeing last header.
705 	 * note that we do not visit this with protocols with pcb layer
706 	 * code - like udp/tcp/raw ip.
707 	 */
708 	if (ip_ipsec_input(m))
709 		goto bad;
710 #endif /* IPSEC */
711 
712 	/*
713 	 * Switch out to protocol's input routine.
714 	 */
715 	V_ipstat.ips_delivered++;
716 
717 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
718 	return;
719 bad:
720 	m_freem(m);
721 }
722 
723 /*
724  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
725  * max has slightly different semantics than the sysctl, for historical
726  * reasons.
727  */
728 static void
729 maxnipq_update(void)
730 {
731 	INIT_VNET_INET(curvnet);
732 
733 	/*
734 	 * -1 for unlimited allocation.
735 	 */
736 	if (V_maxnipq < 0)
737 		uma_zone_set_max(V_ipq_zone, 0);
738 	/*
739 	 * Positive number for specific bound.
740 	 */
741 	if (V_maxnipq > 0)
742 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
743 	/*
744 	 * Zero specifies no further fragment queue allocation -- set the
745 	 * bound very low, but rely on implementation elsewhere to actually
746 	 * prevent allocation and reclaim current queues.
747 	 */
748 	if (V_maxnipq == 0)
749 		uma_zone_set_max(V_ipq_zone, 1);
750 }
751 
752 static void
753 ipq_zone_change(void *tag)
754 {
755 	INIT_VNET_INET(curvnet);
756 
757 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
758 		V_maxnipq = nmbclusters / 32;
759 		maxnipq_update();
760 	}
761 }
762 
763 static int
764 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
765 {
766 	INIT_VNET_INET(curvnet);
767 	int error, i;
768 
769 	i = V_maxnipq;
770 	error = sysctl_handle_int(oidp, &i, 0, req);
771 	if (error || !req->newptr)
772 		return (error);
773 
774 	/*
775 	 * XXXRW: Might be a good idea to sanity check the argument and place
776 	 * an extreme upper bound.
777 	 */
778 	if (i < -1)
779 		return (EINVAL);
780 	V_maxnipq = i;
781 	maxnipq_update();
782 	return (0);
783 }
784 
785 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
786     NULL, 0, sysctl_maxnipq, "I",
787     "Maximum number of IPv4 fragment reassembly queue entries");
788 
789 /*
790  * Take incoming datagram fragment and try to reassemble it into
791  * whole datagram.  If the argument is the first fragment or one
792  * in between the function will return NULL and store the mbuf
793  * in the fragment chain.  If the argument is the last fragment
794  * the packet will be reassembled and the pointer to the new
795  * mbuf returned for further processing.  Only m_tags attached
796  * to the first packet/fragment are preserved.
797  * The IP header is *NOT* adjusted out of iplen.
798  */
799 struct mbuf *
800 ip_reass(struct mbuf *m)
801 {
802 	INIT_VNET_INET(curvnet);
803 	struct ip *ip;
804 	struct mbuf *p, *q, *nq, *t;
805 	struct ipq *fp = NULL;
806 	struct ipqhead *head;
807 	int i, hlen, next;
808 	u_int8_t ecn, ecn0;
809 	u_short hash;
810 
811 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
812 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
813 		V_ipstat.ips_fragments++;
814 		V_ipstat.ips_fragdropped++;
815 		m_freem(m);
816 		return (NULL);
817 	}
818 
819 	ip = mtod(m, struct ip *);
820 	hlen = ip->ip_hl << 2;
821 
822 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
823 	head = &V_ipq[hash];
824 	IPQ_LOCK();
825 
826 	/*
827 	 * Look for queue of fragments
828 	 * of this datagram.
829 	 */
830 	TAILQ_FOREACH(fp, head, ipq_list)
831 		if (ip->ip_id == fp->ipq_id &&
832 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
833 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
834 #ifdef MAC
835 		    mac_ipq_match(m, fp) &&
836 #endif
837 		    ip->ip_p == fp->ipq_p)
838 			goto found;
839 
840 	fp = NULL;
841 
842 	/*
843 	 * Attempt to trim the number of allocated fragment queues if it
844 	 * exceeds the administrative limit.
845 	 */
846 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
847 		/*
848 		 * drop something from the tail of the current queue
849 		 * before proceeding further
850 		 */
851 		struct ipq *q = TAILQ_LAST(head, ipqhead);
852 		if (q == NULL) {   /* gak */
853 			for (i = 0; i < IPREASS_NHASH; i++) {
854 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
855 				if (r) {
856 					V_ipstat.ips_fragtimeout +=
857 					    r->ipq_nfrags;
858 					ip_freef(&V_ipq[i], r);
859 					break;
860 				}
861 			}
862 		} else {
863 			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
864 			ip_freef(head, q);
865 		}
866 	}
867 
868 found:
869 	/*
870 	 * Adjust ip_len to not reflect header,
871 	 * convert offset of this to bytes.
872 	 */
873 	ip->ip_len -= hlen;
874 	if (ip->ip_off & IP_MF) {
875 		/*
876 		 * Make sure that fragments have a data length
877 		 * that's a non-zero multiple of 8 bytes.
878 		 */
879 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
880 			V_ipstat.ips_toosmall++; /* XXX */
881 			goto dropfrag;
882 		}
883 		m->m_flags |= M_FRAG;
884 	} else
885 		m->m_flags &= ~M_FRAG;
886 	ip->ip_off <<= 3;
887 
888 
889 	/*
890 	 * Attempt reassembly; if it succeeds, proceed.
891 	 * ip_reass() will return a different mbuf.
892 	 */
893 	V_ipstat.ips_fragments++;
894 	m->m_pkthdr.header = ip;
895 
896 	/* Previous ip_reass() started here. */
897 	/*
898 	 * Presence of header sizes in mbufs
899 	 * would confuse code below.
900 	 */
901 	m->m_data += hlen;
902 	m->m_len -= hlen;
903 
904 	/*
905 	 * If first fragment to arrive, create a reassembly queue.
906 	 */
907 	if (fp == NULL) {
908 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
909 		if (fp == NULL)
910 			goto dropfrag;
911 #ifdef MAC
912 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
913 			uma_zfree(V_ipq_zone, fp);
914 			fp = NULL;
915 			goto dropfrag;
916 		}
917 		mac_ipq_create(m, fp);
918 #endif
919 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
920 		V_nipq++;
921 		fp->ipq_nfrags = 1;
922 		fp->ipq_ttl = IPFRAGTTL;
923 		fp->ipq_p = ip->ip_p;
924 		fp->ipq_id = ip->ip_id;
925 		fp->ipq_src = ip->ip_src;
926 		fp->ipq_dst = ip->ip_dst;
927 		fp->ipq_frags = m;
928 		m->m_nextpkt = NULL;
929 		goto done;
930 	} else {
931 		fp->ipq_nfrags++;
932 #ifdef MAC
933 		mac_ipq_update(m, fp);
934 #endif
935 	}
936 
937 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
938 
939 	/*
940 	 * Handle ECN by comparing this segment with the first one;
941 	 * if CE is set, do not lose CE.
942 	 * drop if CE and not-ECT are mixed for the same packet.
943 	 */
944 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
945 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
946 	if (ecn == IPTOS_ECN_CE) {
947 		if (ecn0 == IPTOS_ECN_NOTECT)
948 			goto dropfrag;
949 		if (ecn0 != IPTOS_ECN_CE)
950 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
951 	}
952 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
953 		goto dropfrag;
954 
955 	/*
956 	 * Find a segment which begins after this one does.
957 	 */
958 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
959 		if (GETIP(q)->ip_off > ip->ip_off)
960 			break;
961 
962 	/*
963 	 * If there is a preceding segment, it may provide some of
964 	 * our data already.  If so, drop the data from the incoming
965 	 * segment.  If it provides all of our data, drop us, otherwise
966 	 * stick new segment in the proper place.
967 	 *
968 	 * If some of the data is dropped from the the preceding
969 	 * segment, then it's checksum is invalidated.
970 	 */
971 	if (p) {
972 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
973 		if (i > 0) {
974 			if (i >= ip->ip_len)
975 				goto dropfrag;
976 			m_adj(m, i);
977 			m->m_pkthdr.csum_flags = 0;
978 			ip->ip_off += i;
979 			ip->ip_len -= i;
980 		}
981 		m->m_nextpkt = p->m_nextpkt;
982 		p->m_nextpkt = m;
983 	} else {
984 		m->m_nextpkt = fp->ipq_frags;
985 		fp->ipq_frags = m;
986 	}
987 
988 	/*
989 	 * While we overlap succeeding segments trim them or,
990 	 * if they are completely covered, dequeue them.
991 	 */
992 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
993 	     q = nq) {
994 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
995 		if (i < GETIP(q)->ip_len) {
996 			GETIP(q)->ip_len -= i;
997 			GETIP(q)->ip_off += i;
998 			m_adj(q, i);
999 			q->m_pkthdr.csum_flags = 0;
1000 			break;
1001 		}
1002 		nq = q->m_nextpkt;
1003 		m->m_nextpkt = nq;
1004 		V_ipstat.ips_fragdropped++;
1005 		fp->ipq_nfrags--;
1006 		m_freem(q);
1007 	}
1008 
1009 	/*
1010 	 * Check for complete reassembly and perform frag per packet
1011 	 * limiting.
1012 	 *
1013 	 * Frag limiting is performed here so that the nth frag has
1014 	 * a chance to complete the packet before we drop the packet.
1015 	 * As a result, n+1 frags are actually allowed per packet, but
1016 	 * only n will ever be stored. (n = maxfragsperpacket.)
1017 	 *
1018 	 */
1019 	next = 0;
1020 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1021 		if (GETIP(q)->ip_off != next) {
1022 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1023 				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1024 				ip_freef(head, fp);
1025 			}
1026 			goto done;
1027 		}
1028 		next += GETIP(q)->ip_len;
1029 	}
1030 	/* Make sure the last packet didn't have the IP_MF flag */
1031 	if (p->m_flags & M_FRAG) {
1032 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1033 			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1034 			ip_freef(head, fp);
1035 		}
1036 		goto done;
1037 	}
1038 
1039 	/*
1040 	 * Reassembly is complete.  Make sure the packet is a sane size.
1041 	 */
1042 	q = fp->ipq_frags;
1043 	ip = GETIP(q);
1044 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1045 		V_ipstat.ips_toolong++;
1046 		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1047 		ip_freef(head, fp);
1048 		goto done;
1049 	}
1050 
1051 	/*
1052 	 * Concatenate fragments.
1053 	 */
1054 	m = q;
1055 	t = m->m_next;
1056 	m->m_next = NULL;
1057 	m_cat(m, t);
1058 	nq = q->m_nextpkt;
1059 	q->m_nextpkt = NULL;
1060 	for (q = nq; q != NULL; q = nq) {
1061 		nq = q->m_nextpkt;
1062 		q->m_nextpkt = NULL;
1063 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1064 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1065 		m_cat(m, q);
1066 	}
1067 	/*
1068 	 * In order to do checksumming faster we do 'end-around carry' here
1069 	 * (and not in for{} loop), though it implies we are not going to
1070 	 * reassemble more than 64k fragments.
1071 	 */
1072 	m->m_pkthdr.csum_data =
1073 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1074 #ifdef MAC
1075 	mac_ipq_reassemble(fp, m);
1076 	mac_ipq_destroy(fp);
1077 #endif
1078 
1079 	/*
1080 	 * Create header for new ip packet by modifying header of first
1081 	 * packet;  dequeue and discard fragment reassembly header.
1082 	 * Make header visible.
1083 	 */
1084 	ip->ip_len = (ip->ip_hl << 2) + next;
1085 	ip->ip_src = fp->ipq_src;
1086 	ip->ip_dst = fp->ipq_dst;
1087 	TAILQ_REMOVE(head, fp, ipq_list);
1088 	V_nipq--;
1089 	uma_zfree(V_ipq_zone, fp);
1090 	m->m_len += (ip->ip_hl << 2);
1091 	m->m_data -= (ip->ip_hl << 2);
1092 	/* some debugging cruft by sklower, below, will go away soon */
1093 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1094 		m_fixhdr(m);
1095 	V_ipstat.ips_reassembled++;
1096 	IPQ_UNLOCK();
1097 	return (m);
1098 
1099 dropfrag:
1100 	V_ipstat.ips_fragdropped++;
1101 	if (fp != NULL)
1102 		fp->ipq_nfrags--;
1103 	m_freem(m);
1104 done:
1105 	IPQ_UNLOCK();
1106 	return (NULL);
1107 
1108 #undef GETIP
1109 }
1110 
1111 /*
1112  * Free a fragment reassembly header and all
1113  * associated datagrams.
1114  */
1115 static void
1116 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1117 {
1118 	INIT_VNET_INET(curvnet);
1119 	struct mbuf *q;
1120 
1121 	IPQ_LOCK_ASSERT();
1122 
1123 	while (fp->ipq_frags) {
1124 		q = fp->ipq_frags;
1125 		fp->ipq_frags = q->m_nextpkt;
1126 		m_freem(q);
1127 	}
1128 	TAILQ_REMOVE(fhp, fp, ipq_list);
1129 	uma_zfree(V_ipq_zone, fp);
1130 	V_nipq--;
1131 }
1132 
1133 /*
1134  * IP timer processing;
1135  * if a timer expires on a reassembly
1136  * queue, discard it.
1137  */
1138 void
1139 ip_slowtimo(void)
1140 {
1141 	VNET_ITERATOR_DECL(vnet_iter);
1142 	struct ipq *fp;
1143 	int i;
1144 
1145 	IPQ_LOCK();
1146 	VNET_LIST_RLOCK();
1147 	VNET_FOREACH(vnet_iter) {
1148 		CURVNET_SET(vnet_iter);
1149 		INIT_VNET_INET(vnet_iter);
1150 		for (i = 0; i < IPREASS_NHASH; i++) {
1151 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1152 				struct ipq *fpp;
1153 
1154 				fpp = fp;
1155 				fp = TAILQ_NEXT(fp, ipq_list);
1156 				if(--fpp->ipq_ttl == 0) {
1157 					V_ipstat.ips_fragtimeout +=
1158 					    fpp->ipq_nfrags;
1159 					ip_freef(&V_ipq[i], fpp);
1160 				}
1161 			}
1162 		}
1163 		/*
1164 		 * If we are over the maximum number of fragments
1165 		 * (due to the limit being lowered), drain off
1166 		 * enough to get down to the new limit.
1167 		 */
1168 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1169 			for (i = 0; i < IPREASS_NHASH; i++) {
1170 				while (V_nipq > V_maxnipq &&
1171 				    !TAILQ_EMPTY(&V_ipq[i])) {
1172 					V_ipstat.ips_fragdropped +=
1173 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1174 					ip_freef(&V_ipq[i],
1175 					    TAILQ_FIRST(&V_ipq[i]));
1176 				}
1177 			}
1178 		}
1179 		CURVNET_RESTORE();
1180 	}
1181 	VNET_LIST_RUNLOCK();
1182 	IPQ_UNLOCK();
1183 }
1184 
1185 /*
1186  * Drain off all datagram fragments.
1187  */
1188 void
1189 ip_drain(void)
1190 {
1191 	VNET_ITERATOR_DECL(vnet_iter);
1192 	int     i;
1193 
1194 	IPQ_LOCK();
1195 	VNET_LIST_RLOCK();
1196 	VNET_FOREACH(vnet_iter) {
1197 		CURVNET_SET(vnet_iter);
1198 		INIT_VNET_INET(vnet_iter);
1199 		for (i = 0; i < IPREASS_NHASH; i++) {
1200 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1201 				V_ipstat.ips_fragdropped +=
1202 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1203 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1204 			}
1205 		}
1206 		CURVNET_RESTORE();
1207 	}
1208 	VNET_LIST_RUNLOCK();
1209 	IPQ_UNLOCK();
1210 	in_rtqdrain();
1211 }
1212 
1213 /*
1214  * The protocol to be inserted into ip_protox[] must be already registered
1215  * in inetsw[], either statically or through pf_proto_register().
1216  */
1217 int
1218 ipproto_register(u_char ipproto)
1219 {
1220 	struct protosw *pr;
1221 
1222 	/* Sanity checks. */
1223 	if (ipproto == 0)
1224 		return (EPROTONOSUPPORT);
1225 
1226 	/*
1227 	 * The protocol slot must not be occupied by another protocol
1228 	 * already.  An index pointing to IPPROTO_RAW is unused.
1229 	 */
1230 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1231 	if (pr == NULL)
1232 		return (EPFNOSUPPORT);
1233 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1234 		return (EEXIST);
1235 
1236 	/* Find the protocol position in inetsw[] and set the index. */
1237 	for (pr = inetdomain.dom_protosw;
1238 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1239 		if (pr->pr_domain->dom_family == PF_INET &&
1240 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1241 			/* Be careful to only index valid IP protocols. */
1242 			if (pr->pr_protocol < IPPROTO_MAX) {
1243 				ip_protox[pr->pr_protocol] = pr - inetsw;
1244 				return (0);
1245 			} else
1246 				return (EINVAL);
1247 		}
1248 	}
1249 	return (EPROTONOSUPPORT);
1250 }
1251 
1252 int
1253 ipproto_unregister(u_char ipproto)
1254 {
1255 	struct protosw *pr;
1256 
1257 	/* Sanity checks. */
1258 	if (ipproto == 0)
1259 		return (EPROTONOSUPPORT);
1260 
1261 	/* Check if the protocol was indeed registered. */
1262 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1263 	if (pr == NULL)
1264 		return (EPFNOSUPPORT);
1265 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1266 		return (ENOENT);
1267 
1268 	/* Reset the protocol slot to IPPROTO_RAW. */
1269 	ip_protox[ipproto] = pr - inetsw;
1270 	return (0);
1271 }
1272 
1273 /*
1274  * Given address of next destination (final or next hop),
1275  * return internet address info of interface to be used to get there.
1276  */
1277 struct in_ifaddr *
1278 ip_rtaddr(struct in_addr dst, u_int fibnum)
1279 {
1280 	struct route sro;
1281 	struct sockaddr_in *sin;
1282 	struct in_ifaddr *ifa;
1283 
1284 	bzero(&sro, sizeof(sro));
1285 	sin = (struct sockaddr_in *)&sro.ro_dst;
1286 	sin->sin_family = AF_INET;
1287 	sin->sin_len = sizeof(*sin);
1288 	sin->sin_addr = dst;
1289 	in_rtalloc_ign(&sro, 0, fibnum);
1290 
1291 	if (sro.ro_rt == NULL)
1292 		return (NULL);
1293 
1294 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1295 	RTFREE(sro.ro_rt);
1296 	return (ifa);
1297 }
1298 
1299 u_char inetctlerrmap[PRC_NCMDS] = {
1300 	0,		0,		0,		0,
1301 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1302 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1303 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1304 	0,		0,		EHOSTUNREACH,	0,
1305 	ENOPROTOOPT,	ECONNREFUSED
1306 };
1307 
1308 /*
1309  * Forward a packet.  If some error occurs return the sender
1310  * an icmp packet.  Note we can't always generate a meaningful
1311  * icmp message because icmp doesn't have a large enough repertoire
1312  * of codes and types.
1313  *
1314  * If not forwarding, just drop the packet.  This could be confusing
1315  * if ipforwarding was zero but some routing protocol was advancing
1316  * us as a gateway to somewhere.  However, we must let the routing
1317  * protocol deal with that.
1318  *
1319  * The srcrt parameter indicates whether the packet is being forwarded
1320  * via a source route.
1321  */
1322 void
1323 ip_forward(struct mbuf *m, int srcrt)
1324 {
1325 	INIT_VNET_INET(curvnet);
1326 	struct ip *ip = mtod(m, struct ip *);
1327 	struct in_ifaddr *ia = NULL;
1328 	struct mbuf *mcopy;
1329 	struct in_addr dest;
1330 	struct route ro;
1331 	int error, type = 0, code = 0, mtu = 0;
1332 
1333 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1334 		V_ipstat.ips_cantforward++;
1335 		m_freem(m);
1336 		return;
1337 	}
1338 #ifdef IPSTEALTH
1339 	if (!V_ipstealth) {
1340 #endif
1341 		if (ip->ip_ttl <= IPTTLDEC) {
1342 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1343 			    0, 0);
1344 			return;
1345 		}
1346 #ifdef IPSTEALTH
1347 	}
1348 #endif
1349 
1350 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1351 	if (!srcrt && ia == NULL) {
1352 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1353 		return;
1354 	}
1355 
1356 	/*
1357 	 * Save the IP header and at most 8 bytes of the payload,
1358 	 * in case we need to generate an ICMP message to the src.
1359 	 *
1360 	 * XXX this can be optimized a lot by saving the data in a local
1361 	 * buffer on the stack (72 bytes at most), and only allocating the
1362 	 * mbuf if really necessary. The vast majority of the packets
1363 	 * are forwarded without having to send an ICMP back (either
1364 	 * because unnecessary, or because rate limited), so we are
1365 	 * really we are wasting a lot of work here.
1366 	 *
1367 	 * We don't use m_copy() because it might return a reference
1368 	 * to a shared cluster. Both this function and ip_output()
1369 	 * assume exclusive access to the IP header in `m', so any
1370 	 * data in a cluster may change before we reach icmp_error().
1371 	 */
1372 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1373 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1374 		/*
1375 		 * It's probably ok if the pkthdr dup fails (because
1376 		 * the deep copy of the tag chain failed), but for now
1377 		 * be conservative and just discard the copy since
1378 		 * code below may some day want the tags.
1379 		 */
1380 		m_free(mcopy);
1381 		mcopy = NULL;
1382 	}
1383 	if (mcopy != NULL) {
1384 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1385 		mcopy->m_pkthdr.len = mcopy->m_len;
1386 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1387 	}
1388 
1389 #ifdef IPSTEALTH
1390 	if (!V_ipstealth) {
1391 #endif
1392 		ip->ip_ttl -= IPTTLDEC;
1393 #ifdef IPSTEALTH
1394 	}
1395 #endif
1396 
1397 	/*
1398 	 * If forwarding packet using same interface that it came in on,
1399 	 * perhaps should send a redirect to sender to shortcut a hop.
1400 	 * Only send redirect if source is sending directly to us,
1401 	 * and if packet was not source routed (or has any options).
1402 	 * Also, don't send redirect if forwarding using a default route
1403 	 * or a route modified by a redirect.
1404 	 */
1405 	dest.s_addr = 0;
1406 	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1407 		struct sockaddr_in *sin;
1408 		struct rtentry *rt;
1409 
1410 		bzero(&ro, sizeof(ro));
1411 		sin = (struct sockaddr_in *)&ro.ro_dst;
1412 		sin->sin_family = AF_INET;
1413 		sin->sin_len = sizeof(*sin);
1414 		sin->sin_addr = ip->ip_dst;
1415 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1416 
1417 		rt = ro.ro_rt;
1418 
1419 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1420 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1421 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1422 			u_long src = ntohl(ip->ip_src.s_addr);
1423 
1424 			if (RTA(rt) &&
1425 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1426 				if (rt->rt_flags & RTF_GATEWAY)
1427 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1428 				else
1429 					dest.s_addr = ip->ip_dst.s_addr;
1430 				/* Router requirements says to only send host redirects */
1431 				type = ICMP_REDIRECT;
1432 				code = ICMP_REDIRECT_HOST;
1433 			}
1434 		}
1435 		if (rt)
1436 			RTFREE(rt);
1437 	}
1438 
1439 	/*
1440 	 * Try to cache the route MTU from ip_output so we can consider it for
1441 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1442 	 */
1443 	bzero(&ro, sizeof(ro));
1444 
1445 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1446 
1447 	if (error == EMSGSIZE && ro.ro_rt)
1448 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1449 	if (ro.ro_rt)
1450 		RTFREE(ro.ro_rt);
1451 
1452 	if (error)
1453 		V_ipstat.ips_cantforward++;
1454 	else {
1455 		V_ipstat.ips_forward++;
1456 		if (type)
1457 			V_ipstat.ips_redirectsent++;
1458 		else {
1459 			if (mcopy)
1460 				m_freem(mcopy);
1461 			return;
1462 		}
1463 	}
1464 	if (mcopy == NULL)
1465 		return;
1466 
1467 	switch (error) {
1468 
1469 	case 0:				/* forwarded, but need redirect */
1470 		/* type, code set above */
1471 		break;
1472 
1473 	case ENETUNREACH:		/* shouldn't happen, checked above */
1474 	case EHOSTUNREACH:
1475 	case ENETDOWN:
1476 	case EHOSTDOWN:
1477 	default:
1478 		type = ICMP_UNREACH;
1479 		code = ICMP_UNREACH_HOST;
1480 		break;
1481 
1482 	case EMSGSIZE:
1483 		type = ICMP_UNREACH;
1484 		code = ICMP_UNREACH_NEEDFRAG;
1485 
1486 #ifdef IPSEC
1487 		/*
1488 		 * If IPsec is configured for this path,
1489 		 * override any possibly mtu value set by ip_output.
1490 		 */
1491 		mtu = ip_ipsec_mtu(m, mtu);
1492 #endif /* IPSEC */
1493 		/*
1494 		 * If the MTU was set before make sure we are below the
1495 		 * interface MTU.
1496 		 * If the MTU wasn't set before use the interface mtu or
1497 		 * fall back to the next smaller mtu step compared to the
1498 		 * current packet size.
1499 		 */
1500 		if (mtu != 0) {
1501 			if (ia != NULL)
1502 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1503 		} else {
1504 			if (ia != NULL)
1505 				mtu = ia->ia_ifp->if_mtu;
1506 			else
1507 				mtu = ip_next_mtu(ip->ip_len, 0);
1508 		}
1509 		V_ipstat.ips_cantfrag++;
1510 		break;
1511 
1512 	case ENOBUFS:
1513 		/*
1514 		 * A router should not generate ICMP_SOURCEQUENCH as
1515 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1516 		 * Source quench could be a big problem under DoS attacks,
1517 		 * or if the underlying interface is rate-limited.
1518 		 * Those who need source quench packets may re-enable them
1519 		 * via the net.inet.ip.sendsourcequench sysctl.
1520 		 */
1521 		if (V_ip_sendsourcequench == 0) {
1522 			m_freem(mcopy);
1523 			return;
1524 		} else {
1525 			type = ICMP_SOURCEQUENCH;
1526 			code = 0;
1527 		}
1528 		break;
1529 
1530 	case EACCES:			/* ipfw denied packet */
1531 		m_freem(mcopy);
1532 		return;
1533 	}
1534 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1535 }
1536 
1537 void
1538 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1539     struct mbuf *m)
1540 {
1541 	INIT_VNET_NET(inp->inp_vnet);
1542 
1543 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1544 		struct bintime bt;
1545 
1546 		bintime(&bt);
1547 		if (inp->inp_socket->so_options & SO_BINTIME) {
1548 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1549 			SCM_BINTIME, SOL_SOCKET);
1550 			if (*mp)
1551 				mp = &(*mp)->m_next;
1552 		}
1553 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1554 			struct timeval tv;
1555 
1556 			bintime2timeval(&bt, &tv);
1557 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1558 				SCM_TIMESTAMP, SOL_SOCKET);
1559 			if (*mp)
1560 				mp = &(*mp)->m_next;
1561 		}
1562 	}
1563 	if (inp->inp_flags & INP_RECVDSTADDR) {
1564 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1565 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1566 		if (*mp)
1567 			mp = &(*mp)->m_next;
1568 	}
1569 	if (inp->inp_flags & INP_RECVTTL) {
1570 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1571 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1572 		if (*mp)
1573 			mp = &(*mp)->m_next;
1574 	}
1575 #ifdef notyet
1576 	/* XXX
1577 	 * Moving these out of udp_input() made them even more broken
1578 	 * than they already were.
1579 	 */
1580 	/* options were tossed already */
1581 	if (inp->inp_flags & INP_RECVOPTS) {
1582 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1583 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1584 		if (*mp)
1585 			mp = &(*mp)->m_next;
1586 	}
1587 	/* ip_srcroute doesn't do what we want here, need to fix */
1588 	if (inp->inp_flags & INP_RECVRETOPTS) {
1589 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1590 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1591 		if (*mp)
1592 			mp = &(*mp)->m_next;
1593 	}
1594 #endif
1595 	if (inp->inp_flags & INP_RECVIF) {
1596 		struct ifnet *ifp;
1597 		struct sdlbuf {
1598 			struct sockaddr_dl sdl;
1599 			u_char	pad[32];
1600 		} sdlbuf;
1601 		struct sockaddr_dl *sdp;
1602 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1603 
1604 		if (((ifp = m->m_pkthdr.rcvif))
1605 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1606 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1607 			/*
1608 			 * Change our mind and don't try copy.
1609 			 */
1610 			if ((sdp->sdl_family != AF_LINK)
1611 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1612 				goto makedummy;
1613 			}
1614 			bcopy(sdp, sdl2, sdp->sdl_len);
1615 		} else {
1616 makedummy:
1617 			sdl2->sdl_len
1618 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1619 			sdl2->sdl_family = AF_LINK;
1620 			sdl2->sdl_index = 0;
1621 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1622 		}
1623 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1624 			IP_RECVIF, IPPROTO_IP);
1625 		if (*mp)
1626 			mp = &(*mp)->m_next;
1627 	}
1628 }
1629 
1630 /*
1631  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1632  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1633  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1634  * compiled.
1635  */
1636 int
1637 ip_rsvp_init(struct socket *so)
1638 {
1639 	INIT_VNET_INET(so->so_vnet);
1640 
1641 	if (so->so_type != SOCK_RAW ||
1642 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1643 		return EOPNOTSUPP;
1644 
1645 	if (V_ip_rsvpd != NULL)
1646 		return EADDRINUSE;
1647 
1648 	V_ip_rsvpd = so;
1649 	/*
1650 	 * This may seem silly, but we need to be sure we don't over-increment
1651 	 * the RSVP counter, in case something slips up.
1652 	 */
1653 	if (!V_ip_rsvp_on) {
1654 		V_ip_rsvp_on = 1;
1655 		V_rsvp_on++;
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 int
1662 ip_rsvp_done(void)
1663 {
1664 	INIT_VNET_INET(curvnet);
1665 
1666 	V_ip_rsvpd = NULL;
1667 	/*
1668 	 * This may seem silly, but we need to be sure we don't over-decrement
1669 	 * the RSVP counter, in case something slips up.
1670 	 */
1671 	if (V_ip_rsvp_on) {
1672 		V_ip_rsvp_on = 0;
1673 		V_rsvp_on--;
1674 	}
1675 	return 0;
1676 }
1677 
1678 void
1679 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1680 {
1681 	INIT_VNET_INET(curvnet);
1682 
1683 	if (rsvp_input_p) { /* call the real one if loaded */
1684 		rsvp_input_p(m, off);
1685 		return;
1686 	}
1687 
1688 	/* Can still get packets with rsvp_on = 0 if there is a local member
1689 	 * of the group to which the RSVP packet is addressed.  But in this
1690 	 * case we want to throw the packet away.
1691 	 */
1692 
1693 	if (!V_rsvp_on) {
1694 		m_freem(m);
1695 		return;
1696 	}
1697 
1698 	if (V_ip_rsvpd != NULL) {
1699 		rip_input(m, off);
1700 		return;
1701 	}
1702 	/* Drop the packet */
1703 	m_freem(m);
1704 }
1705