xref: /freebsd/sys/netinet/ip_input.c (revision a220d00e74dd245b4fca59c5eca0c53963686325)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 int rsvp_on = 0;
90 static int ip_rsvp_on;
91 struct socket *ip_rsvpd;
92 
93 int	ipforwarding = 0;
94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &ipforwarding, 0, "Enable IP forwarding between interfaces");
96 
97 static int	ipsendredirects = 1; /* XXX */
98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99     &ipsendredirects, 0, "Enable sending IP redirects");
100 
101 int	ip_defttl = IPDEFTTL;
102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103     &ip_defttl, 0, "Maximum TTL on IP packets");
104 
105 static int	ip_dosourceroute = 0;
106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
107     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
108 
109 static int	ip_acceptsourceroute = 0;
110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
111     CTLFLAG_RW, &ip_acceptsourceroute, 0,
112     "Enable accepting source routed IP packets");
113 
114 static int	ip_keepfaith = 0;
115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
116 	&ip_keepfaith,	0,
117 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
118 
119 static int	ip_nfragpackets = 0;
120 static int	ip_maxfragpackets;	/* initialized in ip_init() */
121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
122 	&ip_maxfragpackets, 0,
123 	"Maximum number of IPv4 fragment reassembly queue entries");
124 
125 /*
126  * XXX - Setting ip_checkinterface mostly implements the receive side of
127  * the Strong ES model described in RFC 1122, but since the routing table
128  * and transmit implementation do not implement the Strong ES model,
129  * setting this to 1 results in an odd hybrid.
130  *
131  * XXX - ip_checkinterface currently must be disabled if you use ipnat
132  * to translate the destination address to another local interface.
133  *
134  * XXX - ip_checkinterface must be disabled if you add IP aliases
135  * to the loopback interface instead of the interface where the
136  * packets for those addresses are received.
137  */
138 static int	ip_checkinterface = 1;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
141 
142 #ifdef DIAGNOSTIC
143 static int	ipprintfs = 0;
144 #endif
145 
146 static int	ipqmaxlen = IFQ_MAXLEN;
147 
148 extern	struct domain inetdomain;
149 extern	struct protosw inetsw[];
150 u_char	ip_protox[IPPROTO_MAX];
151 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
152 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
153 u_long 	in_ifaddrhmask;				/* mask for hash table */
154 
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
156     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
158     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
159 
160 struct ipstat ipstat;
161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
162     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
163 
164 /* Packet reassembly stuff */
165 #define IPREASS_NHASH_LOG2      6
166 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
168 #define IPREASS_HASH(x,y) \
169 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170 
171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
172 static int    nipq = 0;         /* total # of reass queues */
173 static int    maxnipq;
174 const  int    ipintrq_present = 1;
175 
176 #ifdef IPCTL_DEFMTU
177 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
178     &ip_mtu, 0, "Default MTU");
179 #endif
180 
181 #ifdef IPSTEALTH
182 static int	ipstealth = 0;
183 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
184     &ipstealth, 0, "");
185 #endif
186 
187 
188 /* Firewall hooks */
189 ip_fw_chk_t *ip_fw_chk_ptr;
190 int fw_enable = 1 ;
191 
192 /* Dummynet hooks */
193 ip_dn_io_t *ip_dn_io_ptr;
194 
195 
196 /*
197  * We need to save the IP options in case a protocol wants to respond
198  * to an incoming packet over the same route if the packet got here
199  * using IP source routing.  This allows connection establishment and
200  * maintenance when the remote end is on a network that is not known
201  * to us.
202  */
203 static int	ip_nhops = 0;
204 static	struct ip_srcrt {
205 	struct	in_addr dst;			/* final destination */
206 	char	nop;				/* one NOP to align */
207 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
208 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
209 } ip_srcrt;
210 
211 struct sockaddr_in *ip_fw_fwd_addr;
212 
213 static void	save_rte __P((u_char *, struct in_addr));
214 static int	ip_dooptions __P((struct mbuf *));
215 static void	ip_forward __P((struct mbuf *, int));
216 static void	ip_freef __P((struct ipqhead *, struct ipq *));
217 #ifdef IPDIVERT
218 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
219 #else
220 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
221 #endif
222 static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
223 static void	ipintr __P((void));
224 
225 /*
226  * IP initialization: fill in IP protocol switch table.
227  * All protocols not implemented in kernel go to raw IP protocol handler.
228  */
229 void
230 ip_init()
231 {
232 	register struct protosw *pr;
233 	register int i;
234 
235 	TAILQ_INIT(&in_ifaddrhead);
236 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
237 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
238 	if (pr == 0)
239 		panic("ip_init");
240 	for (i = 0; i < IPPROTO_MAX; i++)
241 		ip_protox[i] = pr - inetsw;
242 	for (pr = inetdomain.dom_protosw;
243 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
244 		if (pr->pr_domain->dom_family == PF_INET &&
245 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
246 			ip_protox[pr->pr_protocol] = pr - inetsw;
247 
248 	for (i = 0; i < IPREASS_NHASH; i++)
249 	    TAILQ_INIT(&ipq[i]);
250 
251 	maxnipq = nmbclusters / 4;
252 	ip_maxfragpackets = nmbclusters / 4;
253 
254 #ifndef RANDOM_IP_ID
255 	ip_id = time_second & 0xffff;
256 #endif
257 	ipintrq.ifq_maxlen = ipqmaxlen;
258 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
259 
260 	register_netisr(NETISR_IP, ipintr);
261 }
262 
263 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
264 struct	route ipforward_rt;
265 
266 /*
267  * Ip input routine.  Checksum and byte swap header.  If fragmented
268  * try to reassemble.  Process options.  Pass to next level.
269  */
270 void
271 ip_input(struct mbuf *m)
272 {
273 	struct ip *ip;
274 	struct ipq *fp;
275 	struct in_ifaddr *ia = NULL;
276 	struct ifaddr *ifa;
277 	int    i, hlen, checkif;
278 	u_short sum;
279 	u_int16_t divert_cookie;		/* firewall cookie */
280 	struct in_addr pkt_dst;
281 #ifdef IPDIVERT
282 	u_int32_t divert_info = 0;		/* packet divert/tee info */
283 #endif
284 	struct ip_fw *rule = NULL;
285 #ifdef PFIL_HOOKS
286 	struct packet_filter_hook *pfh;
287 	struct mbuf *m0;
288 	int rv;
289 #endif /* PFIL_HOOKS */
290 
291 #ifdef IPDIVERT
292 	/* Get and reset firewall cookie */
293 	divert_cookie = ip_divert_cookie;
294 	ip_divert_cookie = 0;
295 #else
296 	divert_cookie = 0;
297 #endif
298 
299         /*
300          * dummynet packet are prepended a vestigial mbuf with
301          * m_type = MT_DUMMYNET and m_data pointing to the matching
302          * rule.
303          */
304         if (m->m_type == MT_DUMMYNET) {
305             rule = (struct ip_fw *)(m->m_data) ;
306             m = m->m_next ;
307             ip = mtod(m, struct ip *);
308             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
309             goto iphack ;
310         } else
311             rule = NULL ;
312 
313 #ifdef	DIAGNOSTIC
314 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
315 		panic("ip_input no HDR");
316 #endif
317 	ipstat.ips_total++;
318 
319 	if (m->m_pkthdr.len < sizeof(struct ip))
320 		goto tooshort;
321 
322 	if (m->m_len < sizeof (struct ip) &&
323 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
324 		ipstat.ips_toosmall++;
325 		return;
326 	}
327 	ip = mtod(m, struct ip *);
328 
329 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
330 		ipstat.ips_badvers++;
331 		goto bad;
332 	}
333 
334 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
335 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
336 		ipstat.ips_badhlen++;
337 		goto bad;
338 	}
339 	if (hlen > m->m_len) {
340 		if ((m = m_pullup(m, hlen)) == 0) {
341 			ipstat.ips_badhlen++;
342 			return;
343 		}
344 		ip = mtod(m, struct ip *);
345 	}
346 
347 	/* 127/8 must not appear on wire - RFC1122 */
348 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
349 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
350 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
351 			ipstat.ips_badaddr++;
352 			goto bad;
353 		}
354 	}
355 
356 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
357 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
358 	} else {
359 		if (hlen == sizeof(struct ip)) {
360 			sum = in_cksum_hdr(ip);
361 		} else {
362 			sum = in_cksum(m, hlen);
363 		}
364 	}
365 	if (sum) {
366 		ipstat.ips_badsum++;
367 		goto bad;
368 	}
369 
370 	/*
371 	 * Convert fields to host representation.
372 	 */
373 	NTOHS(ip->ip_len);
374 	if (ip->ip_len < hlen) {
375 		ipstat.ips_badlen++;
376 		goto bad;
377 	}
378 	NTOHS(ip->ip_off);
379 
380 	/*
381 	 * Check that the amount of data in the buffers
382 	 * is as at least much as the IP header would have us expect.
383 	 * Trim mbufs if longer than we expect.
384 	 * Drop packet if shorter than we expect.
385 	 */
386 	if (m->m_pkthdr.len < ip->ip_len) {
387 tooshort:
388 		ipstat.ips_tooshort++;
389 		goto bad;
390 	}
391 	if (m->m_pkthdr.len > ip->ip_len) {
392 		if (m->m_len == m->m_pkthdr.len) {
393 			m->m_len = ip->ip_len;
394 			m->m_pkthdr.len = ip->ip_len;
395 		} else
396 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
397 	}
398 
399 #ifdef IPSEC
400 	if (ipsec_gethist(m, NULL))
401 		goto pass;
402 #endif
403 
404 	/*
405 	 * IpHack's section.
406 	 * Right now when no processing on packet has done
407 	 * and it is still fresh out of network we do our black
408 	 * deals with it.
409 	 * - Firewall: deny/allow/divert
410 	 * - Xlate: translate packet's addr/port (NAT).
411 	 * - Pipe: pass pkt through dummynet.
412 	 * - Wrap: fake packet's addr/port <unimpl.>
413 	 * - Encapsulate: put it in another IP and send out. <unimp.>
414  	 */
415 
416 iphack:
417 
418 #ifdef PFIL_HOOKS
419 	/*
420 	 * Run through list of hooks for input packets.  If there are any
421 	 * filters which require that additional packets in the flow are
422 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
423 	 * Note that filters must _never_ set this flag, as another filter
424 	 * in the list may have previously cleared it.
425 	 */
426 	m0 = m;
427 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
428 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
429 		if (pfh->pfil_func) {
430 			rv = pfh->pfil_func(ip, hlen,
431 					    m->m_pkthdr.rcvif, 0, &m0);
432 			if (rv)
433 				return;
434 			m = m0;
435 			if (m == NULL)
436 				return;
437 			ip = mtod(m, struct ip *);
438 		}
439 #endif /* PFIL_HOOKS */
440 
441 	if (fw_enable && IPFW_LOADED) {
442 #ifdef IPFIREWALL_FORWARD
443 		/*
444 		 * If we've been forwarded from the output side, then
445 		 * skip the firewall a second time
446 		 */
447 		if (ip_fw_fwd_addr)
448 			goto ours;
449 #endif	/* IPFIREWALL_FORWARD */
450 		/*
451 		 * See the comment in ip_output for the return values
452 		 * produced by the firewall.
453 		 */
454 		i = ip_fw_chk_ptr(&ip,
455 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
456 		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
457 		    if (m)
458 			m_freem(m);
459 		    return ;
460 		}
461 		if (m == NULL) {	/* Packet discarded by firewall */
462 		    static int __debug=10;
463 		    if (__debug >0) {
464 			printf("firewall returns NULL, please update!\n");
465 			__debug-- ;
466 		    }
467 		    return;
468 		}
469 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
470 			goto pass;
471                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
472                         /* Send packet to the appropriate pipe */
473                         ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
474 				    0);
475 			return;
476 		}
477 #ifdef IPDIVERT
478 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
479 			/* Divert or tee packet */
480 			divert_info = i;
481 			goto ours;
482 		}
483 #endif
484 #ifdef IPFIREWALL_FORWARD
485 		if (i == 0 && ip_fw_fwd_addr != NULL)
486 			goto pass;
487 #endif
488 		/*
489 		 * if we get here, the packet must be dropped
490 		 */
491 		m_freem(m);
492 		return;
493 	}
494 pass:
495 
496 	/*
497 	 * Process options and, if not destined for us,
498 	 * ship it on.  ip_dooptions returns 1 when an
499 	 * error was detected (causing an icmp message
500 	 * to be sent and the original packet to be freed).
501 	 */
502 	ip_nhops = 0;		/* for source routed packets */
503 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
504 #ifdef IPFIREWALL_FORWARD
505 		ip_fw_fwd_addr = NULL;
506 #endif
507 		return;
508 	}
509 
510         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
511          * matter if it is destined to another node, or whether it is
512          * a multicast one, RSVP wants it! and prevents it from being forwarded
513          * anywhere else. Also checks if the rsvp daemon is running before
514 	 * grabbing the packet.
515          */
516 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
517 		goto ours;
518 
519 	/*
520 	 * Check our list of addresses, to see if the packet is for us.
521 	 * If we don't have any addresses, assume any unicast packet
522 	 * we receive might be for us (and let the upper layers deal
523 	 * with it).
524 	 */
525 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
526 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
527 		goto ours;
528 
529 	/*
530 	 * Cache the destination address of the packet; this may be
531 	 * changed by use of 'ipfw fwd'.
532 	 */
533 	pkt_dst = ip_fw_fwd_addr == NULL ?
534 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
535 
536 	/*
537 	 * Enable a consistency check between the destination address
538 	 * and the arrival interface for a unicast packet (the RFC 1122
539 	 * strong ES model) if IP forwarding is disabled and the packet
540 	 * is not locally generated and the packet is not subject to
541 	 * 'ipfw fwd'.
542 	 *
543 	 * XXX - Checking also should be disabled if the destination
544 	 * address is ipnat'ed to a different interface.
545 	 *
546 	 * XXX - Checking is incompatible with IP aliases added
547 	 * to the loopback interface instead of the interface where
548 	 * the packets are received.
549 	 */
550 	checkif = ip_checkinterface && (ipforwarding == 0) &&
551 	    m->m_pkthdr.rcvif != NULL &&
552 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
553 	    (ip_fw_fwd_addr == NULL);
554 
555 	/*
556 	 * Check for exact addresses in the hash bucket.
557 	 */
558 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
559 		/*
560 		 * If the address matches, verify that the packet
561 		 * arrived via the correct interface if checking is
562 		 * enabled.
563 		 */
564 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
565 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
566 			goto ours;
567 	}
568 	/*
569 	 * Check for broadcast addresses.
570 	 *
571 	 * Only accept broadcast packets that arrive via the matching
572 	 * interface.  Reception of forwarded directed broadcasts would
573 	 * be handled via ip_forward() and ether_output() with the loopback
574 	 * into the stack for SIMPLEX interfaces handled by ether_output().
575 	 */
576 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
577 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
578 			if (ifa->ifa_addr->sa_family != AF_INET)
579 				continue;
580 			ia = ifatoia(ifa);
581 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
582 			    pkt_dst.s_addr)
583 				goto ours;
584 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
585 				goto ours;
586 #ifdef BOOTP_COMPAT
587 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
588 				goto ours;
589 #endif
590 		}
591 	}
592 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
593 		struct in_multi *inm;
594 		if (ip_mrouter) {
595 			/*
596 			 * If we are acting as a multicast router, all
597 			 * incoming multicast packets are passed to the
598 			 * kernel-level multicast forwarding function.
599 			 * The packet is returned (relatively) intact; if
600 			 * ip_mforward() returns a non-zero value, the packet
601 			 * must be discarded, else it may be accepted below.
602 			 */
603 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
604 				ipstat.ips_cantforward++;
605 				m_freem(m);
606 				return;
607 			}
608 
609 			/*
610 			 * The process-level routing demon needs to receive
611 			 * all multicast IGMP packets, whether or not this
612 			 * host belongs to their destination groups.
613 			 */
614 			if (ip->ip_p == IPPROTO_IGMP)
615 				goto ours;
616 			ipstat.ips_forward++;
617 		}
618 		/*
619 		 * See if we belong to the destination multicast group on the
620 		 * arrival interface.
621 		 */
622 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
623 		if (inm == NULL) {
624 			ipstat.ips_notmember++;
625 			m_freem(m);
626 			return;
627 		}
628 		goto ours;
629 	}
630 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
631 		goto ours;
632 	if (ip->ip_dst.s_addr == INADDR_ANY)
633 		goto ours;
634 
635 	/*
636 	 * FAITH(Firewall Aided Internet Translator)
637 	 */
638 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
639 		if (ip_keepfaith) {
640 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
641 				goto ours;
642 		}
643 		m_freem(m);
644 		return;
645 	}
646 
647 	/*
648 	 * Not for us; forward if possible and desirable.
649 	 */
650 	if (ipforwarding == 0) {
651 		ipstat.ips_cantforward++;
652 		m_freem(m);
653 	} else
654 		ip_forward(m, 0);
655 #ifdef IPFIREWALL_FORWARD
656 	ip_fw_fwd_addr = NULL;
657 #endif
658 	return;
659 
660 ours:
661 	/* Count the packet in the ip address stats */
662 	if (ia != NULL) {
663 		ia->ia_ifa.if_ipackets++;
664 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
665 	}
666 
667 	/*
668 	 * If offset or IP_MF are set, must reassemble.
669 	 * Otherwise, nothing need be done.
670 	 * (We could look in the reassembly queue to see
671 	 * if the packet was previously fragmented,
672 	 * but it's not worth the time; just let them time out.)
673 	 */
674 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
675 
676 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
677 		/*
678 		 * Look for queue of fragments
679 		 * of this datagram.
680 		 */
681 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
682 			if (ip->ip_id == fp->ipq_id &&
683 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
684 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
685 			    ip->ip_p == fp->ipq_p)
686 				goto found;
687 
688 		fp = 0;
689 
690 		/* check if there's a place for the new queue */
691 		if (nipq > maxnipq) {
692 		    /*
693 		     * drop something from the tail of the current queue
694 		     * before proceeding further
695 		     */
696 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
697 		    if (q == NULL) {   /* gak */
698 			for (i = 0; i < IPREASS_NHASH; i++) {
699 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
700 			    if (r) {
701 				ip_freef(&ipq[i], r);
702 				break;
703 			    }
704 			}
705 		    } else
706 			ip_freef(&ipq[sum], q);
707 		}
708 found:
709 		/*
710 		 * Adjust ip_len to not reflect header,
711 		 * convert offset of this to bytes.
712 		 */
713 		ip->ip_len -= hlen;
714 		if (ip->ip_off & IP_MF) {
715 		        /*
716 		         * Make sure that fragments have a data length
717 			 * that's a non-zero multiple of 8 bytes.
718 		         */
719 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
720 				ipstat.ips_toosmall++; /* XXX */
721 				goto bad;
722 			}
723 			m->m_flags |= M_FRAG;
724 		}
725 		ip->ip_off <<= 3;
726 
727 		/*
728 		 * Attempt reassembly; if it succeeds, proceed.
729 		 */
730 		ipstat.ips_fragments++;
731 		m->m_pkthdr.header = ip;
732 #ifdef IPDIVERT
733 		m = ip_reass(m,
734 		    &ipq[sum], fp, &divert_info, &divert_cookie);
735 #else
736 		m = ip_reass(m, &ipq[sum], fp);
737 #endif
738 		if (m == 0) {
739 #ifdef IPFIREWALL_FORWARD
740 			ip_fw_fwd_addr = NULL;
741 #endif
742 			return;
743 		}
744 		ipstat.ips_reassembled++;
745 		ip = mtod(m, struct ip *);
746 		/* Get the header length of the reassembled packet */
747 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
748 #ifdef IPDIVERT
749 		/* Restore original checksum before diverting packet */
750 		if (divert_info != 0) {
751 			ip->ip_len += hlen;
752 			HTONS(ip->ip_len);
753 			HTONS(ip->ip_off);
754 			ip->ip_sum = 0;
755 			if (hlen == sizeof(struct ip))
756 				ip->ip_sum = in_cksum_hdr(ip);
757 			else
758 				ip->ip_sum = in_cksum(m, hlen);
759 			NTOHS(ip->ip_off);
760 			NTOHS(ip->ip_len);
761 			ip->ip_len -= hlen;
762 		}
763 #endif
764 	} else
765 		ip->ip_len -= hlen;
766 
767 #ifdef IPDIVERT
768 	/*
769 	 * Divert or tee packet to the divert protocol if required.
770 	 *
771 	 * If divert_info is zero then cookie should be too, so we shouldn't
772 	 * need to clear them here.  Assume divert_packet() does so also.
773 	 */
774 	if (divert_info != 0) {
775 		struct mbuf *clone = NULL;
776 
777 		/* Clone packet if we're doing a 'tee' */
778 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
779 			clone = m_dup(m, M_DONTWAIT);
780 
781 		/* Restore packet header fields to original values */
782 		ip->ip_len += hlen;
783 		HTONS(ip->ip_len);
784 		HTONS(ip->ip_off);
785 
786 		/* Deliver packet to divert input routine */
787 		ip_divert_cookie = divert_cookie;
788 		divert_packet(m, 1, divert_info & 0xffff);
789 		ipstat.ips_delivered++;
790 
791 		/* If 'tee', continue with original packet */
792 		if (clone == NULL)
793 			return;
794 		m = clone;
795 		ip = mtod(m, struct ip *);
796 	}
797 #endif
798 
799 #ifdef IPSEC
800 	/*
801 	 * enforce IPsec policy checking if we are seeing last header.
802 	 * note that we do not visit this with protocols with pcb layer
803 	 * code - like udp/tcp/raw ip.
804 	 */
805 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
806 	    ipsec4_in_reject(m, NULL)) {
807 		ipsecstat.in_polvio++;
808 		goto bad;
809 	}
810 #endif
811 
812 	/*
813 	 * Switch out to protocol's input routine.
814 	 */
815 	ipstat.ips_delivered++;
816     {
817 	int off = hlen;
818 
819 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off);
820 #ifdef	IPFIREWALL_FORWARD
821 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
822 #endif
823 	return;
824     }
825 bad:
826 #ifdef	IPFIREWALL_FORWARD
827 	ip_fw_fwd_addr = NULL;
828 #endif
829 	m_freem(m);
830 }
831 
832 /*
833  * IP software interrupt routine - to go away sometime soon
834  */
835 static void
836 ipintr(void)
837 {
838 	struct mbuf *m;
839 
840 	while (1) {
841 		IF_DEQUEUE(&ipintrq, m);
842 		if (m == 0)
843 			return;
844 		ip_input(m);
845 	}
846 }
847 
848 /*
849  * Take incoming datagram fragment and try to reassemble it into
850  * whole datagram.  If a chain for reassembly of this datagram already
851  * exists, then it is given as fp; otherwise have to make a chain.
852  *
853  * When IPDIVERT enabled, keep additional state with each packet that
854  * tells us if we need to divert or tee the packet we're building.
855  */
856 
857 static struct mbuf *
858 #ifdef IPDIVERT
859 ip_reass(m, head, fp, divinfo, divcookie)
860 #else
861 ip_reass(m, head, fp)
862 #endif
863 	struct mbuf *m;
864 	struct ipqhead *head;
865 	struct ipq *fp;
866 #ifdef IPDIVERT
867 	u_int32_t *divinfo;
868 	u_int16_t *divcookie;
869 #endif
870 {
871 	struct ip *ip = mtod(m, struct ip *);
872 	register struct mbuf *p, *q, *nq;
873 	struct mbuf *t;
874 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
875 	int i, next;
876 
877 	/*
878 	 * Presence of header sizes in mbufs
879 	 * would confuse code below.
880 	 */
881 	m->m_data += hlen;
882 	m->m_len -= hlen;
883 
884 	/*
885 	 * If first fragment to arrive, create a reassembly queue.
886 	 */
887 	if (fp == 0) {
888 		/*
889 		 * Enforce upper bound on number of fragmented packets
890 		 * for which we attempt reassembly;
891 		 * If maxfrag is 0, never accept fragments.
892 		 * If maxfrag is -1, accept all fragments without limitation.
893 		 */
894 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
895 			goto dropfrag;
896 		ip_nfragpackets++;
897 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
898 			goto dropfrag;
899 		fp = mtod(t, struct ipq *);
900 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
901 		nipq++;
902 		fp->ipq_ttl = IPFRAGTTL;
903 		fp->ipq_p = ip->ip_p;
904 		fp->ipq_id = ip->ip_id;
905 		fp->ipq_src = ip->ip_src;
906 		fp->ipq_dst = ip->ip_dst;
907 		fp->ipq_frags = m;
908 		m->m_nextpkt = NULL;
909 #ifdef IPDIVERT
910 		fp->ipq_div_info = 0;
911 		fp->ipq_div_cookie = 0;
912 #endif
913 		goto inserted;
914 	}
915 
916 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
917 
918 	/*
919 	 * Find a segment which begins after this one does.
920 	 */
921 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
922 		if (GETIP(q)->ip_off > ip->ip_off)
923 			break;
924 
925 	/*
926 	 * If there is a preceding segment, it may provide some of
927 	 * our data already.  If so, drop the data from the incoming
928 	 * segment.  If it provides all of our data, drop us, otherwise
929 	 * stick new segment in the proper place.
930 	 *
931 	 * If some of the data is dropped from the the preceding
932 	 * segment, then it's checksum is invalidated.
933 	 */
934 	if (p) {
935 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
936 		if (i > 0) {
937 			if (i >= ip->ip_len)
938 				goto dropfrag;
939 			m_adj(m, i);
940 			m->m_pkthdr.csum_flags = 0;
941 			ip->ip_off += i;
942 			ip->ip_len -= i;
943 		}
944 		m->m_nextpkt = p->m_nextpkt;
945 		p->m_nextpkt = m;
946 	} else {
947 		m->m_nextpkt = fp->ipq_frags;
948 		fp->ipq_frags = m;
949 	}
950 
951 	/*
952 	 * While we overlap succeeding segments trim them or,
953 	 * if they are completely covered, dequeue them.
954 	 */
955 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
956 	     q = nq) {
957 		i = (ip->ip_off + ip->ip_len) -
958 		    GETIP(q)->ip_off;
959 		if (i < GETIP(q)->ip_len) {
960 			GETIP(q)->ip_len -= i;
961 			GETIP(q)->ip_off += i;
962 			m_adj(q, i);
963 			q->m_pkthdr.csum_flags = 0;
964 			break;
965 		}
966 		nq = q->m_nextpkt;
967 		m->m_nextpkt = nq;
968 		m_freem(q);
969 	}
970 
971 inserted:
972 
973 #ifdef IPDIVERT
974 	/*
975 	 * Transfer firewall instructions to the fragment structure.
976 	 * Any fragment diverting causes the whole packet to divert.
977 	 */
978 	fp->ipq_div_info = *divinfo;
979 	fp->ipq_div_cookie = *divcookie;
980 	*divinfo = 0;
981 	*divcookie = 0;
982 #endif
983 
984 	/*
985 	 * Check for complete reassembly.
986 	 */
987 	next = 0;
988 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
989 		if (GETIP(q)->ip_off != next)
990 			return (0);
991 		next += GETIP(q)->ip_len;
992 	}
993 	/* Make sure the last packet didn't have the IP_MF flag */
994 	if (p->m_flags & M_FRAG)
995 		return (0);
996 
997 	/*
998 	 * Reassembly is complete.  Make sure the packet is a sane size.
999 	 */
1000 	q = fp->ipq_frags;
1001 	ip = GETIP(q);
1002 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1003 		ipstat.ips_toolong++;
1004 		ip_freef(head, fp);
1005 		return (0);
1006 	}
1007 
1008 	/*
1009 	 * Concatenate fragments.
1010 	 */
1011 	m = q;
1012 	t = m->m_next;
1013 	m->m_next = 0;
1014 	m_cat(m, t);
1015 	nq = q->m_nextpkt;
1016 	q->m_nextpkt = 0;
1017 	for (q = nq; q != NULL; q = nq) {
1018 		nq = q->m_nextpkt;
1019 		q->m_nextpkt = NULL;
1020 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1021 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1022 		m_cat(m, q);
1023 	}
1024 
1025 #ifdef IPDIVERT
1026 	/*
1027 	 * Extract firewall instructions from the fragment structure.
1028 	 */
1029 	*divinfo = fp->ipq_div_info;
1030 	*divcookie = fp->ipq_div_cookie;
1031 #endif
1032 
1033 	/*
1034 	 * Create header for new ip packet by
1035 	 * modifying header of first packet;
1036 	 * dequeue and discard fragment reassembly header.
1037 	 * Make header visible.
1038 	 */
1039 	ip->ip_len = next;
1040 	ip->ip_src = fp->ipq_src;
1041 	ip->ip_dst = fp->ipq_dst;
1042 	TAILQ_REMOVE(head, fp, ipq_list);
1043 	nipq--;
1044 	(void) m_free(dtom(fp));
1045 	ip_nfragpackets--;
1046 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1047 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1048 	/* some debugging cruft by sklower, below, will go away soon */
1049 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1050 		register int plen = 0;
1051 		for (t = m; t; t = t->m_next)
1052 			plen += t->m_len;
1053 		m->m_pkthdr.len = plen;
1054 	}
1055 	return (m);
1056 
1057 dropfrag:
1058 #ifdef IPDIVERT
1059 	*divinfo = 0;
1060 	*divcookie = 0;
1061 #endif
1062 	ipstat.ips_fragdropped++;
1063 	m_freem(m);
1064 	return (0);
1065 
1066 #undef GETIP
1067 }
1068 
1069 /*
1070  * Free a fragment reassembly header and all
1071  * associated datagrams.
1072  */
1073 static void
1074 ip_freef(fhp, fp)
1075 	struct ipqhead *fhp;
1076 	struct ipq *fp;
1077 {
1078 	register struct mbuf *q;
1079 
1080 	while (fp->ipq_frags) {
1081 		q = fp->ipq_frags;
1082 		fp->ipq_frags = q->m_nextpkt;
1083 		m_freem(q);
1084 	}
1085 	TAILQ_REMOVE(fhp, fp, ipq_list);
1086 	(void) m_free(dtom(fp));
1087 	ip_nfragpackets--;
1088 	nipq--;
1089 }
1090 
1091 /*
1092  * IP timer processing;
1093  * if a timer expires on a reassembly
1094  * queue, discard it.
1095  */
1096 void
1097 ip_slowtimo()
1098 {
1099 	register struct ipq *fp;
1100 	int s = splnet();
1101 	int i;
1102 
1103 	for (i = 0; i < IPREASS_NHASH; i++) {
1104 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1105 			struct ipq *fpp;
1106 
1107 			fpp = fp;
1108 			fp = TAILQ_NEXT(fp, ipq_list);
1109 			if(--fpp->ipq_ttl == 0) {
1110 				ipstat.ips_fragtimeout++;
1111 				ip_freef(&ipq[i], fpp);
1112 			}
1113 		}
1114 	}
1115 	/*
1116 	 * If we are over the maximum number of fragments
1117 	 * (due to the limit being lowered), drain off
1118 	 * enough to get down to the new limit.
1119 	 */
1120 	for (i = 0; i < IPREASS_NHASH; i++) {
1121 		if (ip_maxfragpackets >= 0) {
1122 			while (ip_nfragpackets > ip_maxfragpackets &&
1123 				!TAILQ_EMPTY(&ipq[i])) {
1124 				ipstat.ips_fragdropped++;
1125 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1126 			}
1127 		}
1128 	}
1129 	ipflow_slowtimo();
1130 	splx(s);
1131 }
1132 
1133 /*
1134  * Drain off all datagram fragments.
1135  */
1136 void
1137 ip_drain()
1138 {
1139 	int     i;
1140 
1141 	for (i = 0; i < IPREASS_NHASH; i++) {
1142 		while(!TAILQ_EMPTY(&ipq[i])) {
1143 			ipstat.ips_fragdropped++;
1144 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1145 		}
1146 	}
1147 	in_rtqdrain();
1148 }
1149 
1150 /*
1151  * Do option processing on a datagram,
1152  * possibly discarding it if bad options are encountered,
1153  * or forwarding it if source-routed.
1154  * Returns 1 if packet has been forwarded/freed,
1155  * 0 if the packet should be processed further.
1156  */
1157 static int
1158 ip_dooptions(m)
1159 	struct mbuf *m;
1160 {
1161 	register struct ip *ip = mtod(m, struct ip *);
1162 	register u_char *cp;
1163 	register struct in_ifaddr *ia;
1164 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1165 	struct in_addr *sin, dst;
1166 	n_time ntime;
1167 
1168 	dst = ip->ip_dst;
1169 	cp = (u_char *)(ip + 1);
1170 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1171 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1172 		opt = cp[IPOPT_OPTVAL];
1173 		if (opt == IPOPT_EOL)
1174 			break;
1175 		if (opt == IPOPT_NOP)
1176 			optlen = 1;
1177 		else {
1178 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1179 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1180 				goto bad;
1181 			}
1182 			optlen = cp[IPOPT_OLEN];
1183 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1184 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1185 				goto bad;
1186 			}
1187 		}
1188 		switch (opt) {
1189 
1190 		default:
1191 			break;
1192 
1193 		/*
1194 		 * Source routing with record.
1195 		 * Find interface with current destination address.
1196 		 * If none on this machine then drop if strictly routed,
1197 		 * or do nothing if loosely routed.
1198 		 * Record interface address and bring up next address
1199 		 * component.  If strictly routed make sure next
1200 		 * address is on directly accessible net.
1201 		 */
1202 		case IPOPT_LSRR:
1203 		case IPOPT_SSRR:
1204 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1205 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1206 				goto bad;
1207 			}
1208 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1209 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1210 				goto bad;
1211 			}
1212 			ipaddr.sin_addr = ip->ip_dst;
1213 			ia = (struct in_ifaddr *)
1214 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1215 			if (ia == 0) {
1216 				if (opt == IPOPT_SSRR) {
1217 					type = ICMP_UNREACH;
1218 					code = ICMP_UNREACH_SRCFAIL;
1219 					goto bad;
1220 				}
1221 				if (!ip_dosourceroute)
1222 					goto nosourcerouting;
1223 				/*
1224 				 * Loose routing, and not at next destination
1225 				 * yet; nothing to do except forward.
1226 				 */
1227 				break;
1228 			}
1229 			off--;			/* 0 origin */
1230 			if (off > optlen - (int)sizeof(struct in_addr)) {
1231 				/*
1232 				 * End of source route.  Should be for us.
1233 				 */
1234 				if (!ip_acceptsourceroute)
1235 					goto nosourcerouting;
1236 				save_rte(cp, ip->ip_src);
1237 				break;
1238 			}
1239 
1240 			if (!ip_dosourceroute) {
1241 				if (ipforwarding) {
1242 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1243 					/*
1244 					 * Acting as a router, so generate ICMP
1245 					 */
1246 nosourcerouting:
1247 					strcpy(buf, inet_ntoa(ip->ip_dst));
1248 					log(LOG_WARNING,
1249 					    "attempted source route from %s to %s\n",
1250 					    inet_ntoa(ip->ip_src), buf);
1251 					type = ICMP_UNREACH;
1252 					code = ICMP_UNREACH_SRCFAIL;
1253 					goto bad;
1254 				} else {
1255 					/*
1256 					 * Not acting as a router, so silently drop.
1257 					 */
1258 					ipstat.ips_cantforward++;
1259 					m_freem(m);
1260 					return (1);
1261 				}
1262 			}
1263 
1264 			/*
1265 			 * locate outgoing interface
1266 			 */
1267 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1268 			    sizeof(ipaddr.sin_addr));
1269 
1270 			if (opt == IPOPT_SSRR) {
1271 #define	INA	struct in_ifaddr *
1272 #define	SA	struct sockaddr *
1273 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1274 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1275 			} else
1276 				ia = ip_rtaddr(ipaddr.sin_addr);
1277 			if (ia == 0) {
1278 				type = ICMP_UNREACH;
1279 				code = ICMP_UNREACH_SRCFAIL;
1280 				goto bad;
1281 			}
1282 			ip->ip_dst = ipaddr.sin_addr;
1283 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1284 			    sizeof(struct in_addr));
1285 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1286 			/*
1287 			 * Let ip_intr's mcast routing check handle mcast pkts
1288 			 */
1289 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1290 			break;
1291 
1292 		case IPOPT_RR:
1293 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1294 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1295 				goto bad;
1296 			}
1297 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1298 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1299 				goto bad;
1300 			}
1301 			/*
1302 			 * If no space remains, ignore.
1303 			 */
1304 			off--;			/* 0 origin */
1305 			if (off > optlen - (int)sizeof(struct in_addr))
1306 				break;
1307 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1308 			    sizeof(ipaddr.sin_addr));
1309 			/*
1310 			 * locate outgoing interface; if we're the destination,
1311 			 * use the incoming interface (should be same).
1312 			 */
1313 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1314 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1315 				type = ICMP_UNREACH;
1316 				code = ICMP_UNREACH_HOST;
1317 				goto bad;
1318 			}
1319 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1320 			    sizeof(struct in_addr));
1321 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1322 			break;
1323 
1324 		case IPOPT_TS:
1325 			code = cp - (u_char *)ip;
1326 			if (optlen < 4 || optlen > 40) {
1327 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1328 				goto bad;
1329 			}
1330 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1331 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1332 				goto bad;
1333 			}
1334 			if (off > optlen - (int)sizeof(int32_t)) {
1335 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1336 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1337 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1338 					goto bad;
1339 				}
1340 				break;
1341 			}
1342 			off--;				/* 0 origin */
1343 			sin = (struct in_addr *)(cp + off);
1344 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1345 
1346 			case IPOPT_TS_TSONLY:
1347 				break;
1348 
1349 			case IPOPT_TS_TSANDADDR:
1350 				if (off + sizeof(n_time) +
1351 				    sizeof(struct in_addr) > optlen) {
1352 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1353 					goto bad;
1354 				}
1355 				ipaddr.sin_addr = dst;
1356 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1357 							    m->m_pkthdr.rcvif);
1358 				if (ia == 0)
1359 					continue;
1360 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1361 				    sizeof(struct in_addr));
1362 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1363 				break;
1364 
1365 			case IPOPT_TS_PRESPEC:
1366 				if (off + sizeof(n_time) +
1367 				    sizeof(struct in_addr) > optlen) {
1368 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1369 					goto bad;
1370 				}
1371 				(void)memcpy(&ipaddr.sin_addr, sin,
1372 				    sizeof(struct in_addr));
1373 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1374 					continue;
1375 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1376 				break;
1377 
1378 			default:
1379 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1380 				goto bad;
1381 			}
1382 			ntime = iptime();
1383 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1384 			cp[IPOPT_OFFSET] += sizeof(n_time);
1385 		}
1386 	}
1387 	if (forward && ipforwarding) {
1388 		ip_forward(m, 1);
1389 		return (1);
1390 	}
1391 	return (0);
1392 bad:
1393 	icmp_error(m, type, code, 0, 0);
1394 	ipstat.ips_badoptions++;
1395 	return (1);
1396 }
1397 
1398 /*
1399  * Given address of next destination (final or next hop),
1400  * return internet address info of interface to be used to get there.
1401  */
1402 static struct in_ifaddr *
1403 ip_rtaddr(dst)
1404 	 struct in_addr dst;
1405 {
1406 	register struct sockaddr_in *sin;
1407 
1408 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1409 
1410 	if (ipforward_rt.ro_rt == 0 ||
1411 	    !(ipforward_rt.ro_rt->rt_flags & RTF_UP) ||
1412 	    dst.s_addr != sin->sin_addr.s_addr) {
1413 		if (ipforward_rt.ro_rt) {
1414 			RTFREE(ipforward_rt.ro_rt);
1415 			ipforward_rt.ro_rt = 0;
1416 		}
1417 		sin->sin_family = AF_INET;
1418 		sin->sin_len = sizeof(*sin);
1419 		sin->sin_addr = dst;
1420 
1421 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1422 	}
1423 	if (ipforward_rt.ro_rt == 0)
1424 		return ((struct in_ifaddr *)0);
1425 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1426 }
1427 
1428 /*
1429  * Save incoming source route for use in replies,
1430  * to be picked up later by ip_srcroute if the receiver is interested.
1431  */
1432 void
1433 save_rte(option, dst)
1434 	u_char *option;
1435 	struct in_addr dst;
1436 {
1437 	unsigned olen;
1438 
1439 	olen = option[IPOPT_OLEN];
1440 #ifdef DIAGNOSTIC
1441 	if (ipprintfs)
1442 		printf("save_rte: olen %d\n", olen);
1443 #endif
1444 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1445 		return;
1446 	bcopy(option, ip_srcrt.srcopt, olen);
1447 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1448 	ip_srcrt.dst = dst;
1449 }
1450 
1451 /*
1452  * Retrieve incoming source route for use in replies,
1453  * in the same form used by setsockopt.
1454  * The first hop is placed before the options, will be removed later.
1455  */
1456 struct mbuf *
1457 ip_srcroute()
1458 {
1459 	register struct in_addr *p, *q;
1460 	register struct mbuf *m;
1461 
1462 	if (ip_nhops == 0)
1463 		return ((struct mbuf *)0);
1464 	m = m_get(M_DONTWAIT, MT_HEADER);
1465 	if (m == 0)
1466 		return ((struct mbuf *)0);
1467 
1468 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1469 
1470 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1471 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1472 	    OPTSIZ;
1473 #ifdef DIAGNOSTIC
1474 	if (ipprintfs)
1475 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1476 #endif
1477 
1478 	/*
1479 	 * First save first hop for return route
1480 	 */
1481 	p = &ip_srcrt.route[ip_nhops - 1];
1482 	*(mtod(m, struct in_addr *)) = *p--;
1483 #ifdef DIAGNOSTIC
1484 	if (ipprintfs)
1485 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1486 #endif
1487 
1488 	/*
1489 	 * Copy option fields and padding (nop) to mbuf.
1490 	 */
1491 	ip_srcrt.nop = IPOPT_NOP;
1492 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1493 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1494 	    &ip_srcrt.nop, OPTSIZ);
1495 	q = (struct in_addr *)(mtod(m, caddr_t) +
1496 	    sizeof(struct in_addr) + OPTSIZ);
1497 #undef OPTSIZ
1498 	/*
1499 	 * Record return path as an IP source route,
1500 	 * reversing the path (pointers are now aligned).
1501 	 */
1502 	while (p >= ip_srcrt.route) {
1503 #ifdef DIAGNOSTIC
1504 		if (ipprintfs)
1505 			printf(" %lx", (u_long)ntohl(q->s_addr));
1506 #endif
1507 		*q++ = *p--;
1508 	}
1509 	/*
1510 	 * Last hop goes to final destination.
1511 	 */
1512 	*q = ip_srcrt.dst;
1513 #ifdef DIAGNOSTIC
1514 	if (ipprintfs)
1515 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1516 #endif
1517 	return (m);
1518 }
1519 
1520 /*
1521  * Strip out IP options, at higher
1522  * level protocol in the kernel.
1523  * Second argument is buffer to which options
1524  * will be moved, and return value is their length.
1525  * XXX should be deleted; last arg currently ignored.
1526  */
1527 void
1528 ip_stripoptions(m, mopt)
1529 	register struct mbuf *m;
1530 	struct mbuf *mopt;
1531 {
1532 	register int i;
1533 	struct ip *ip = mtod(m, struct ip *);
1534 	register caddr_t opts;
1535 	int olen;
1536 
1537 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1538 	opts = (caddr_t)(ip + 1);
1539 	i = m->m_len - (sizeof (struct ip) + olen);
1540 	bcopy(opts + olen, opts, (unsigned)i);
1541 	m->m_len -= olen;
1542 	if (m->m_flags & M_PKTHDR)
1543 		m->m_pkthdr.len -= olen;
1544 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1545 }
1546 
1547 u_char inetctlerrmap[PRC_NCMDS] = {
1548 	0,		0,		0,		0,
1549 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1550 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1551 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1552 	0,		0,		0,		0,
1553 	ENOPROTOOPT,	ECONNREFUSED
1554 };
1555 
1556 /*
1557  * Forward a packet.  If some error occurs return the sender
1558  * an icmp packet.  Note we can't always generate a meaningful
1559  * icmp message because icmp doesn't have a large enough repertoire
1560  * of codes and types.
1561  *
1562  * If not forwarding, just drop the packet.  This could be confusing
1563  * if ipforwarding was zero but some routing protocol was advancing
1564  * us as a gateway to somewhere.  However, we must let the routing
1565  * protocol deal with that.
1566  *
1567  * The srcrt parameter indicates whether the packet is being forwarded
1568  * via a source route.
1569  */
1570 static void
1571 ip_forward(m, srcrt)
1572 	struct mbuf *m;
1573 	int srcrt;
1574 {
1575 	register struct ip *ip = mtod(m, struct ip *);
1576 	register struct rtentry *rt;
1577 	int error, type = 0, code = 0;
1578 	struct mbuf *mcopy;
1579 	n_long dest;
1580 	struct ifnet *destifp;
1581 #ifdef IPSEC
1582 	struct ifnet dummyifp;
1583 #endif
1584 
1585 	dest = 0;
1586 #ifdef DIAGNOSTIC
1587 	if (ipprintfs)
1588 		printf("forward: src %lx dst %lx ttl %x\n",
1589 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1590 		    ip->ip_ttl);
1591 #endif
1592 
1593 
1594 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1595 		ipstat.ips_cantforward++;
1596 		m_freem(m);
1597 		return;
1598 	}
1599 #ifdef IPSTEALTH
1600 	if (!ipstealth) {
1601 #endif
1602 		if (ip->ip_ttl <= IPTTLDEC) {
1603 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1604 			    dest, 0);
1605 			return;
1606 		}
1607 #ifdef IPSTEALTH
1608 	}
1609 #endif
1610 
1611 	if (ip_rtaddr(ip->ip_dst) == 0) {
1612 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1613 		return;
1614 	} else
1615 		rt = ipforward_rt.ro_rt;
1616 
1617 	/*
1618 	 * Save the IP header and at most 8 bytes of the payload,
1619 	 * in case we need to generate an ICMP message to the src.
1620 	 *
1621 	 * We don't use m_copy() because it might return a reference
1622 	 * to a shared cluster. Both this function and ip_output()
1623 	 * assume exclusive access to the IP header in `m', so any
1624 	 * data in a cluster may change before we reach icmp_error().
1625 	 */
1626 	MGET(mcopy, M_DONTWAIT, m->m_type);
1627 	if (mcopy != NULL) {
1628 		M_COPY_PKTHDR(mcopy, m);
1629 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1630 		    (int)ip->ip_len);
1631 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1632 	}
1633 
1634 #ifdef IPSTEALTH
1635 	if (!ipstealth) {
1636 #endif
1637 		ip->ip_ttl -= IPTTLDEC;
1638 #ifdef IPSTEALTH
1639 	}
1640 #endif
1641 
1642 	/*
1643 	 * If forwarding packet using same interface that it came in on,
1644 	 * perhaps should send a redirect to sender to shortcut a hop.
1645 	 * Only send redirect if source is sending directly to us,
1646 	 * and if packet was not source routed (or has any options).
1647 	 * Also, don't send redirect if forwarding using a default route
1648 	 * or a route modified by a redirect.
1649 	 */
1650 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1651 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1652 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1653 	    ipsendredirects && !srcrt) {
1654 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1655 		u_long src = ntohl(ip->ip_src.s_addr);
1656 
1657 		if (RTA(rt) &&
1658 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1659 		    if (rt->rt_flags & RTF_GATEWAY)
1660 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1661 		    else
1662 			dest = ip->ip_dst.s_addr;
1663 		    /* Router requirements says to only send host redirects */
1664 		    type = ICMP_REDIRECT;
1665 		    code = ICMP_REDIRECT_HOST;
1666 #ifdef DIAGNOSTIC
1667 		    if (ipprintfs)
1668 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1669 #endif
1670 		}
1671 	}
1672 
1673 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1674 			  IP_FORWARDING, 0);
1675 	if (error)
1676 		ipstat.ips_cantforward++;
1677 	else {
1678 		ipstat.ips_forward++;
1679 		if (type)
1680 			ipstat.ips_redirectsent++;
1681 		else {
1682 			if (mcopy) {
1683 				ipflow_create(&ipforward_rt, mcopy);
1684 				m_freem(mcopy);
1685 			}
1686 			return;
1687 		}
1688 	}
1689 	if (mcopy == NULL)
1690 		return;
1691 	destifp = NULL;
1692 
1693 	switch (error) {
1694 
1695 	case 0:				/* forwarded, but need redirect */
1696 		/* type, code set above */
1697 		break;
1698 
1699 	case ENETUNREACH:		/* shouldn't happen, checked above */
1700 	case EHOSTUNREACH:
1701 	case ENETDOWN:
1702 	case EHOSTDOWN:
1703 	default:
1704 		type = ICMP_UNREACH;
1705 		code = ICMP_UNREACH_HOST;
1706 		break;
1707 
1708 	case EMSGSIZE:
1709 		type = ICMP_UNREACH;
1710 		code = ICMP_UNREACH_NEEDFRAG;
1711 #ifndef IPSEC
1712 		if (ipforward_rt.ro_rt)
1713 			destifp = ipforward_rt.ro_rt->rt_ifp;
1714 #else
1715 		/*
1716 		 * If the packet is routed over IPsec tunnel, tell the
1717 		 * originator the tunnel MTU.
1718 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1719 		 * XXX quickhack!!!
1720 		 */
1721 		if (ipforward_rt.ro_rt) {
1722 			struct secpolicy *sp = NULL;
1723 			int ipsecerror;
1724 			int ipsechdr;
1725 			struct route *ro;
1726 
1727 			sp = ipsec4_getpolicybyaddr(mcopy,
1728 						    IPSEC_DIR_OUTBOUND,
1729 			                            IP_FORWARDING,
1730 			                            &ipsecerror);
1731 
1732 			if (sp == NULL)
1733 				destifp = ipforward_rt.ro_rt->rt_ifp;
1734 			else {
1735 				/* count IPsec header size */
1736 				ipsechdr = ipsec4_hdrsiz(mcopy,
1737 							 IPSEC_DIR_OUTBOUND,
1738 							 NULL);
1739 
1740 				/*
1741 				 * find the correct route for outer IPv4
1742 				 * header, compute tunnel MTU.
1743 				 *
1744 				 * XXX BUG ALERT
1745 				 * The "dummyifp" code relies upon the fact
1746 				 * that icmp_error() touches only ifp->if_mtu.
1747 				 */
1748 				/*XXX*/
1749 				destifp = NULL;
1750 				if (sp->req != NULL
1751 				 && sp->req->sav != NULL
1752 				 && sp->req->sav->sah != NULL) {
1753 					ro = &sp->req->sav->sah->sa_route;
1754 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1755 						dummyifp.if_mtu =
1756 						    ro->ro_rt->rt_ifp->if_mtu;
1757 						dummyifp.if_mtu -= ipsechdr;
1758 						destifp = &dummyifp;
1759 					}
1760 				}
1761 
1762 				key_freesp(sp);
1763 			}
1764 		}
1765 #endif /*IPSEC*/
1766 		ipstat.ips_cantfrag++;
1767 		break;
1768 
1769 	case ENOBUFS:
1770 		type = ICMP_SOURCEQUENCH;
1771 		code = 0;
1772 		break;
1773 
1774 	case EACCES:			/* ipfw denied packet */
1775 		m_freem(mcopy);
1776 		return;
1777 	}
1778 	icmp_error(mcopy, type, code, dest, destifp);
1779 }
1780 
1781 void
1782 ip_savecontrol(inp, mp, ip, m)
1783 	register struct inpcb *inp;
1784 	register struct mbuf **mp;
1785 	register struct ip *ip;
1786 	register struct mbuf *m;
1787 {
1788 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1789 		struct timeval tv;
1790 
1791 		microtime(&tv);
1792 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1793 			SCM_TIMESTAMP, SOL_SOCKET);
1794 		if (*mp)
1795 			mp = &(*mp)->m_next;
1796 	}
1797 	if (inp->inp_flags & INP_RECVDSTADDR) {
1798 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1799 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1800 		if (*mp)
1801 			mp = &(*mp)->m_next;
1802 	}
1803 #ifdef notyet
1804 	/* XXX
1805 	 * Moving these out of udp_input() made them even more broken
1806 	 * than they already were.
1807 	 */
1808 	/* options were tossed already */
1809 	if (inp->inp_flags & INP_RECVOPTS) {
1810 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1811 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1812 		if (*mp)
1813 			mp = &(*mp)->m_next;
1814 	}
1815 	/* ip_srcroute doesn't do what we want here, need to fix */
1816 	if (inp->inp_flags & INP_RECVRETOPTS) {
1817 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1818 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1819 		if (*mp)
1820 			mp = &(*mp)->m_next;
1821 	}
1822 #endif
1823 	if (inp->inp_flags & INP_RECVIF) {
1824 		struct ifnet *ifp;
1825 		struct sdlbuf {
1826 			struct sockaddr_dl sdl;
1827 			u_char	pad[32];
1828 		} sdlbuf;
1829 		struct sockaddr_dl *sdp;
1830 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1831 
1832 		if (((ifp = m->m_pkthdr.rcvif))
1833 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1834 			sdp = (struct sockaddr_dl *)
1835 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1836 			/*
1837 			 * Change our mind and don't try copy.
1838 			 */
1839 			if ((sdp->sdl_family != AF_LINK)
1840 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1841 				goto makedummy;
1842 			}
1843 			bcopy(sdp, sdl2, sdp->sdl_len);
1844 		} else {
1845 makedummy:
1846 			sdl2->sdl_len
1847 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1848 			sdl2->sdl_family = AF_LINK;
1849 			sdl2->sdl_index = 0;
1850 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1851 		}
1852 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1853 			IP_RECVIF, IPPROTO_IP);
1854 		if (*mp)
1855 			mp = &(*mp)->m_next;
1856 	}
1857 }
1858 
1859 int
1860 ip_rsvp_init(struct socket *so)
1861 {
1862 	if (so->so_type != SOCK_RAW ||
1863 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1864 	  return EOPNOTSUPP;
1865 
1866 	if (ip_rsvpd != NULL)
1867 	  return EADDRINUSE;
1868 
1869 	ip_rsvpd = so;
1870 	/*
1871 	 * This may seem silly, but we need to be sure we don't over-increment
1872 	 * the RSVP counter, in case something slips up.
1873 	 */
1874 	if (!ip_rsvp_on) {
1875 		ip_rsvp_on = 1;
1876 		rsvp_on++;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 int
1883 ip_rsvp_done(void)
1884 {
1885 	ip_rsvpd = NULL;
1886 	/*
1887 	 * This may seem silly, but we need to be sure we don't over-decrement
1888 	 * the RSVP counter, in case something slips up.
1889 	 */
1890 	if (ip_rsvp_on) {
1891 		ip_rsvp_on = 0;
1892 		rsvp_on--;
1893 	}
1894 	return 0;
1895 }
1896