xref: /freebsd/sys/netinet/ip_input.c (revision 9a0c3479e22feda1bdb2db4b97f9deb1b5fa6269)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/time.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/pfil.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/netisr.h>
62 #include <net/vnet.h>
63 #include <net/flowtable.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_fw.h>
72 #include <netinet/ip_icmp.h>
73 #include <netinet/ip_options.h>
74 #include <machine/in_cksum.h>
75 #include <netinet/ip_carp.h>
76 #ifdef IPSEC
77 #include <netinet/ip_ipsec.h>
78 #endif /* IPSEC */
79 
80 #include <sys/socketvar.h>
81 
82 #include <security/mac/mac_framework.h>
83 
84 #ifdef CTASSERT
85 CTASSERT(sizeof(struct ip) == 20);
86 #endif
87 
88 struct	rwlock in_ifaddr_lock;
89 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90 
91 VNET_DEFINE(int, rsvp_on);
92 
93 VNET_DEFINE(int, ipforwarding);
94 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &VNET_NAME(ipforwarding), 0,
96     "Enable IP forwarding between interfaces");
97 
98 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99 #define	V_ipsendredirects	VNET(ipsendredirects)
100 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101     &VNET_NAME(ipsendredirects), 0,
102     "Enable sending IP redirects");
103 
104 static VNET_DEFINE(int, ip_keepfaith);
105 #define	V_ip_keepfaith		VNET(ip_keepfaith)
106 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107     &VNET_NAME(ip_keepfaith), 0,
108     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109 
110 static VNET_DEFINE(int, ip_sendsourcequench);
111 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
112 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113     &VNET_NAME(ip_sendsourcequench), 0,
114     "Enable the transmission of source quench packets");
115 
116 VNET_DEFINE(int, ip_do_randomid);
117 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118     &VNET_NAME(ip_do_randomid), 0,
119     "Assign random ip_id values");
120 
121 /*
122  * XXX - Setting ip_checkinterface mostly implements the receive side of
123  * the Strong ES model described in RFC 1122, but since the routing table
124  * and transmit implementation do not implement the Strong ES model,
125  * setting this to 1 results in an odd hybrid.
126  *
127  * XXX - ip_checkinterface currently must be disabled if you use ipnat
128  * to translate the destination address to another local interface.
129  *
130  * XXX - ip_checkinterface must be disabled if you add IP aliases
131  * to the loopback interface instead of the interface where the
132  * packets for those addresses are received.
133  */
134 static VNET_DEFINE(int, ip_checkinterface);
135 #define	V_ip_checkinterface	VNET(ip_checkinterface)
136 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
137     &VNET_NAME(ip_checkinterface), 0,
138     "Verify packet arrives on correct interface");
139 
140 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
141 
142 static struct netisr_handler ip_nh = {
143 	.nh_name = "ip",
144 	.nh_handler = ip_input,
145 	.nh_proto = NETISR_IP,
146 	.nh_policy = NETISR_POLICY_FLOW,
147 };
148 
149 extern	struct domain inetdomain;
150 extern	struct protosw inetsw[];
151 u_char	ip_protox[IPPROTO_MAX];
152 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
153 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
154 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
155 
156 static VNET_DEFINE(uma_zone_t, ipq_zone);
157 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
158 static struct mtx ipqlock;
159 
160 #define	V_ipq_zone		VNET(ipq_zone)
161 #define	V_ipq			VNET(ipq)
162 
163 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
164 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
165 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
166 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
167 
168 static void	maxnipq_update(void);
169 static void	ipq_zone_change(void *);
170 static void	ip_drain_locked(void);
171 
172 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
173 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
174 #define	V_maxnipq		VNET(maxnipq)
175 #define	V_nipq			VNET(nipq)
176 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
177     &VNET_NAME(nipq), 0,
178     "Current number of IPv4 fragment reassembly queue entries");
179 
180 static VNET_DEFINE(int, maxfragsperpacket);
181 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
182 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
183     &VNET_NAME(maxfragsperpacket), 0,
184     "Maximum number of IPv4 fragments allowed per packet");
185 
186 #ifdef IPCTL_DEFMTU
187 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188     &ip_mtu, 0, "Default MTU");
189 #endif
190 
191 #ifdef IPSTEALTH
192 VNET_DEFINE(int, ipstealth);
193 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194     &VNET_NAME(ipstealth), 0,
195     "IP stealth mode, no TTL decrementation on forwarding");
196 #endif
197 
198 #ifdef FLOWTABLE
199 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
200 VNET_DEFINE(struct flowtable *, ip_ft);
201 #define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
202 
203 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
204     &VNET_NAME(ip_output_flowtable_size), 2048,
205     "number of entries in the per-cpu output flow caches");
206 #endif
207 
208 static void	ip_freef(struct ipqhead *, struct ipq *);
209 
210 /*
211  * IP statistics are stored in struct ipstat_p, which is
212  * an "array" of counter(9)s.  Although it isn't a real
213  * array, we treat it as array to reduce code bloat.
214  */
215 VNET_DEFINE(struct ipstat_p, ipstatp);
216 
217 static void
218 vnet_ipstatp_init(const void *unused)
219 {
220 	counter_u64_t *c;
221 	int i;
222 
223 	for (i = 0, c = (counter_u64_t *)&V_ipstatp;
224 	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
225 	    i++, c++) {
226 		*c = counter_u64_alloc(M_WAITOK);
227 		counter_u64_zero(*c);
228 	}
229 }
230 VNET_SYSINIT(vnet_ipstatp_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
231             vnet_ipstatp_init, NULL);
232 
233 #ifdef VIMAGE
234 static void
235 vnet_ipstatp_uninit(const void *unused)
236 {
237 	counter_u64_t *c;
238 	int i;
239 
240 	for (i = 0, c = (counter_u64_t *)&V_ipstatp;
241 	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
242 	    i++, c++)
243 		counter_u64_free(*c);
244 }
245 VNET_SYSUNINIT(vnet_ipstatp_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
246             vnet_ipstatp_uninit, NULL);
247 #endif /* VIMAGE */
248 
249 static int
250 ipstat_sysctl(SYSCTL_HANDLER_ARGS)
251 {
252 	struct ipstat ipstat;
253 	counter_u64_t *c;
254 	uint64_t *v;
255 	int i;
256 
257 	for (i = 0, c = (counter_u64_t *)&V_ipstatp, v = (uint64_t *)&ipstat;
258 	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
259 	    i++, c++, v++) {
260 		*v = counter_u64_fetch(*c);
261 		/*
262 		 * Old interface allowed to rewrite 'struct ipstat', and
263 		 * netstat(1) used it to zero the structure. To keep
264 		 * compatibility with old netstat(1) we will zero out
265 		 * statistics on every write attempt, however we no longer
266 		 * support writing arbitrary fake values to the statistics.
267 		 */
268 		if (req->newptr)
269 			counter_u64_zero(*c);
270 	}
271 
272 	return (SYSCTL_OUT(req, &ipstat, sizeof(ipstat)));
273 }
274 SYSCTL_VNET_PROC(_net_inet_ip, IPCTL_STATS, stats, CTLTYPE_OPAQUE | CTLFLAG_RW,
275     NULL, 0, ipstat_sysctl, "I",
276     "IP statistics (struct ipstat, netinet/ip_var.h)");
277 
278 /*
279  * Kernel module interface for updating ipstat.  The argument is an index
280  * into ipstat treated as an array.
281  */
282 void
283 kmod_ipstat_inc(int statnum)
284 {
285 
286 	counter_u64_add(*((counter_u64_t *)&V_ipstatp + statnum), 1);
287 }
288 
289 void
290 kmod_ipstat_dec(int statnum)
291 {
292 
293 	counter_u64_add(*((counter_u64_t *)&V_ipstatp + statnum), -1);
294 }
295 
296 static int
297 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
298 {
299 	int error, qlimit;
300 
301 	netisr_getqlimit(&ip_nh, &qlimit);
302 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
303 	if (error || !req->newptr)
304 		return (error);
305 	if (qlimit < 1)
306 		return (EINVAL);
307 	return (netisr_setqlimit(&ip_nh, qlimit));
308 }
309 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
310     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
311     "Maximum size of the IP input queue");
312 
313 static int
314 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
315 {
316 	u_int64_t qdrops_long;
317 	int error, qdrops;
318 
319 	netisr_getqdrops(&ip_nh, &qdrops_long);
320 	qdrops = qdrops_long;
321 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
322 	if (error || !req->newptr)
323 		return (error);
324 	if (qdrops != 0)
325 		return (EINVAL);
326 	netisr_clearqdrops(&ip_nh);
327 	return (0);
328 }
329 
330 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
331     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
332     "Number of packets dropped from the IP input queue");
333 
334 /*
335  * IP initialization: fill in IP protocol switch table.
336  * All protocols not implemented in kernel go to raw IP protocol handler.
337  */
338 void
339 ip_init(void)
340 {
341 	struct protosw *pr;
342 	int i;
343 
344 	V_ip_id = time_second & 0xffff;
345 
346 	TAILQ_INIT(&V_in_ifaddrhead);
347 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
348 
349 	/* Initialize IP reassembly queue. */
350 	for (i = 0; i < IPREASS_NHASH; i++)
351 		TAILQ_INIT(&V_ipq[i]);
352 	V_maxnipq = nmbclusters / 32;
353 	V_maxfragsperpacket = 16;
354 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
355 	    NULL, UMA_ALIGN_PTR, 0);
356 	maxnipq_update();
357 
358 	/* Initialize packet filter hooks. */
359 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
360 	V_inet_pfil_hook.ph_af = AF_INET;
361 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
362 		printf("%s: WARNING: unable to register pfil hook, "
363 			"error %d\n", __func__, i);
364 
365 #ifdef FLOWTABLE
366 	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
367 		&V_ip_output_flowtable_size)) {
368 		if (V_ip_output_flowtable_size < 256)
369 			V_ip_output_flowtable_size = 256;
370 		if (!powerof2(V_ip_output_flowtable_size)) {
371 			printf("flowtable must be power of 2 size\n");
372 			V_ip_output_flowtable_size = 2048;
373 		}
374 	} else {
375 		/*
376 		 * round up to the next power of 2
377 		 */
378 		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
379 	}
380 	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
381 #endif
382 
383 	/* Skip initialization of globals for non-default instances. */
384 	if (!IS_DEFAULT_VNET(curvnet))
385 		return;
386 
387 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
388 	if (pr == NULL)
389 		panic("ip_init: PF_INET not found");
390 
391 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
392 	for (i = 0; i < IPPROTO_MAX; i++)
393 		ip_protox[i] = pr - inetsw;
394 	/*
395 	 * Cycle through IP protocols and put them into the appropriate place
396 	 * in ip_protox[].
397 	 */
398 	for (pr = inetdomain.dom_protosw;
399 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
400 		if (pr->pr_domain->dom_family == PF_INET &&
401 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
402 			/* Be careful to only index valid IP protocols. */
403 			if (pr->pr_protocol < IPPROTO_MAX)
404 				ip_protox[pr->pr_protocol] = pr - inetsw;
405 		}
406 
407 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
408 		NULL, EVENTHANDLER_PRI_ANY);
409 
410 	/* Initialize various other remaining things. */
411 	IPQ_LOCK_INIT();
412 	netisr_register(&ip_nh);
413 }
414 
415 #ifdef VIMAGE
416 void
417 ip_destroy(void)
418 {
419 
420 	/* Cleanup in_ifaddr hash table; should be empty. */
421 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
422 
423 	IPQ_LOCK();
424 	ip_drain_locked();
425 	IPQ_UNLOCK();
426 
427 	uma_zdestroy(V_ipq_zone);
428 }
429 #endif
430 
431 /*
432  * Ip input routine.  Checksum and byte swap header.  If fragmented
433  * try to reassemble.  Process options.  Pass to next level.
434  */
435 void
436 ip_input(struct mbuf *m)
437 {
438 	struct ip *ip = NULL;
439 	struct in_ifaddr *ia = NULL;
440 	struct ifaddr *ifa;
441 	struct ifnet *ifp;
442 	int    checkif, hlen = 0;
443 	uint16_t sum, ip_len;
444 	int dchg = 0;				/* dest changed after fw */
445 	struct in_addr odst;			/* original dst address */
446 
447 	M_ASSERTPKTHDR(m);
448 
449 	if (m->m_flags & M_FASTFWD_OURS) {
450 		m->m_flags &= ~M_FASTFWD_OURS;
451 		/* Set up some basics that will be used later. */
452 		ip = mtod(m, struct ip *);
453 		hlen = ip->ip_hl << 2;
454 		ip_len = ntohs(ip->ip_len);
455 		goto ours;
456 	}
457 
458 	IPSTAT_INC(ips_total);
459 
460 	if (m->m_pkthdr.len < sizeof(struct ip))
461 		goto tooshort;
462 
463 	if (m->m_len < sizeof (struct ip) &&
464 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
465 		IPSTAT_INC(ips_toosmall);
466 		return;
467 	}
468 	ip = mtod(m, struct ip *);
469 
470 	if (ip->ip_v != IPVERSION) {
471 		IPSTAT_INC(ips_badvers);
472 		goto bad;
473 	}
474 
475 	hlen = ip->ip_hl << 2;
476 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
477 		IPSTAT_INC(ips_badhlen);
478 		goto bad;
479 	}
480 	if (hlen > m->m_len) {
481 		if ((m = m_pullup(m, hlen)) == NULL) {
482 			IPSTAT_INC(ips_badhlen);
483 			return;
484 		}
485 		ip = mtod(m, struct ip *);
486 	}
487 
488 	/* 127/8 must not appear on wire - RFC1122 */
489 	ifp = m->m_pkthdr.rcvif;
490 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
491 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
492 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
493 			IPSTAT_INC(ips_badaddr);
494 			goto bad;
495 		}
496 	}
497 
498 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
499 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
500 	} else {
501 		if (hlen == sizeof(struct ip)) {
502 			sum = in_cksum_hdr(ip);
503 		} else {
504 			sum = in_cksum(m, hlen);
505 		}
506 	}
507 	if (sum) {
508 		IPSTAT_INC(ips_badsum);
509 		goto bad;
510 	}
511 
512 #ifdef ALTQ
513 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
514 		/* packet is dropped by traffic conditioner */
515 		return;
516 #endif
517 
518 	ip_len = ntohs(ip->ip_len);
519 	if (ip_len < hlen) {
520 		IPSTAT_INC(ips_badlen);
521 		goto bad;
522 	}
523 
524 	/*
525 	 * Check that the amount of data in the buffers
526 	 * is as at least much as the IP header would have us expect.
527 	 * Trim mbufs if longer than we expect.
528 	 * Drop packet if shorter than we expect.
529 	 */
530 	if (m->m_pkthdr.len < ip_len) {
531 tooshort:
532 		IPSTAT_INC(ips_tooshort);
533 		goto bad;
534 	}
535 	if (m->m_pkthdr.len > ip_len) {
536 		if (m->m_len == m->m_pkthdr.len) {
537 			m->m_len = ip_len;
538 			m->m_pkthdr.len = ip_len;
539 		} else
540 			m_adj(m, ip_len - m->m_pkthdr.len);
541 	}
542 #ifdef IPSEC
543 	/*
544 	 * Bypass packet filtering for packets previously handled by IPsec.
545 	 */
546 	if (ip_ipsec_filtertunnel(m))
547 		goto passin;
548 #endif /* IPSEC */
549 
550 	/*
551 	 * Run through list of hooks for input packets.
552 	 *
553 	 * NB: Beware of the destination address changing (e.g.
554 	 *     by NAT rewriting).  When this happens, tell
555 	 *     ip_forward to do the right thing.
556 	 */
557 
558 	/* Jump over all PFIL processing if hooks are not active. */
559 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
560 		goto passin;
561 
562 	odst = ip->ip_dst;
563 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
564 		return;
565 	if (m == NULL)			/* consumed by filter */
566 		return;
567 
568 	ip = mtod(m, struct ip *);
569 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
570 	ifp = m->m_pkthdr.rcvif;
571 
572 	if (m->m_flags & M_FASTFWD_OURS) {
573 		m->m_flags &= ~M_FASTFWD_OURS;
574 		goto ours;
575 	}
576 	if (m->m_flags & M_IP_NEXTHOP) {
577 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
578 		if (dchg != 0) {
579 			/*
580 			 * Directly ship the packet on.  This allows
581 			 * forwarding packets originally destined to us
582 			 * to some other directly connected host.
583 			 */
584 			ip_forward(m, 1);
585 			return;
586 		}
587 	}
588 passin:
589 
590 	/*
591 	 * Process options and, if not destined for us,
592 	 * ship it on.  ip_dooptions returns 1 when an
593 	 * error was detected (causing an icmp message
594 	 * to be sent and the original packet to be freed).
595 	 */
596 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
597 		return;
598 
599         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
600          * matter if it is destined to another node, or whether it is
601          * a multicast one, RSVP wants it! and prevents it from being forwarded
602          * anywhere else. Also checks if the rsvp daemon is running before
603 	 * grabbing the packet.
604          */
605 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
606 		goto ours;
607 
608 	/*
609 	 * Check our list of addresses, to see if the packet is for us.
610 	 * If we don't have any addresses, assume any unicast packet
611 	 * we receive might be for us (and let the upper layers deal
612 	 * with it).
613 	 */
614 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
615 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
616 		goto ours;
617 
618 	/*
619 	 * Enable a consistency check between the destination address
620 	 * and the arrival interface for a unicast packet (the RFC 1122
621 	 * strong ES model) if IP forwarding is disabled and the packet
622 	 * is not locally generated and the packet is not subject to
623 	 * 'ipfw fwd'.
624 	 *
625 	 * XXX - Checking also should be disabled if the destination
626 	 * address is ipnat'ed to a different interface.
627 	 *
628 	 * XXX - Checking is incompatible with IP aliases added
629 	 * to the loopback interface instead of the interface where
630 	 * the packets are received.
631 	 *
632 	 * XXX - This is the case for carp vhost IPs as well so we
633 	 * insert a workaround. If the packet got here, we already
634 	 * checked with carp_iamatch() and carp_forus().
635 	 */
636 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
637 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
638 	    ifp->if_carp == NULL && (dchg == 0);
639 
640 	/*
641 	 * Check for exact addresses in the hash bucket.
642 	 */
643 	/* IN_IFADDR_RLOCK(); */
644 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
645 		/*
646 		 * If the address matches, verify that the packet
647 		 * arrived via the correct interface if checking is
648 		 * enabled.
649 		 */
650 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
651 		    (!checkif || ia->ia_ifp == ifp)) {
652 			ifa_ref(&ia->ia_ifa);
653 			/* IN_IFADDR_RUNLOCK(); */
654 			goto ours;
655 		}
656 	}
657 	/* IN_IFADDR_RUNLOCK(); */
658 
659 	/*
660 	 * Check for broadcast addresses.
661 	 *
662 	 * Only accept broadcast packets that arrive via the matching
663 	 * interface.  Reception of forwarded directed broadcasts would
664 	 * be handled via ip_forward() and ether_output() with the loopback
665 	 * into the stack for SIMPLEX interfaces handled by ether_output().
666 	 */
667 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
668 		IF_ADDR_RLOCK(ifp);
669 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
670 			if (ifa->ifa_addr->sa_family != AF_INET)
671 				continue;
672 			ia = ifatoia(ifa);
673 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
674 			    ip->ip_dst.s_addr) {
675 				ifa_ref(ifa);
676 				IF_ADDR_RUNLOCK(ifp);
677 				goto ours;
678 			}
679 #ifdef BOOTP_COMPAT
680 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
681 				ifa_ref(ifa);
682 				IF_ADDR_RUNLOCK(ifp);
683 				goto ours;
684 			}
685 #endif
686 		}
687 		IF_ADDR_RUNLOCK(ifp);
688 		ia = NULL;
689 	}
690 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
691 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
692 		IPSTAT_INC(ips_cantforward);
693 		m_freem(m);
694 		return;
695 	}
696 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
697 		if (V_ip_mrouter) {
698 			/*
699 			 * If we are acting as a multicast router, all
700 			 * incoming multicast packets are passed to the
701 			 * kernel-level multicast forwarding function.
702 			 * The packet is returned (relatively) intact; if
703 			 * ip_mforward() returns a non-zero value, the packet
704 			 * must be discarded, else it may be accepted below.
705 			 */
706 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
707 				IPSTAT_INC(ips_cantforward);
708 				m_freem(m);
709 				return;
710 			}
711 
712 			/*
713 			 * The process-level routing daemon needs to receive
714 			 * all multicast IGMP packets, whether or not this
715 			 * host belongs to their destination groups.
716 			 */
717 			if (ip->ip_p == IPPROTO_IGMP)
718 				goto ours;
719 			IPSTAT_INC(ips_forward);
720 		}
721 		/*
722 		 * Assume the packet is for us, to avoid prematurely taking
723 		 * a lock on the in_multi hash. Protocols must perform
724 		 * their own filtering and update statistics accordingly.
725 		 */
726 		goto ours;
727 	}
728 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
729 		goto ours;
730 	if (ip->ip_dst.s_addr == INADDR_ANY)
731 		goto ours;
732 
733 	/*
734 	 * FAITH(Firewall Aided Internet Translator)
735 	 */
736 	if (ifp && ifp->if_type == IFT_FAITH) {
737 		if (V_ip_keepfaith) {
738 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
739 				goto ours;
740 		}
741 		m_freem(m);
742 		return;
743 	}
744 
745 	/*
746 	 * Not for us; forward if possible and desirable.
747 	 */
748 	if (V_ipforwarding == 0) {
749 		IPSTAT_INC(ips_cantforward);
750 		m_freem(m);
751 	} else {
752 #ifdef IPSEC
753 		if (ip_ipsec_fwd(m))
754 			goto bad;
755 #endif /* IPSEC */
756 		ip_forward(m, dchg);
757 	}
758 	return;
759 
760 ours:
761 #ifdef IPSTEALTH
762 	/*
763 	 * IPSTEALTH: Process non-routing options only
764 	 * if the packet is destined for us.
765 	 */
766 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
767 		if (ia != NULL)
768 			ifa_free(&ia->ia_ifa);
769 		return;
770 	}
771 #endif /* IPSTEALTH */
772 
773 	/* Count the packet in the ip address stats */
774 	if (ia != NULL) {
775 		ia->ia_ifa.if_ipackets++;
776 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
777 		ifa_free(&ia->ia_ifa);
778 	}
779 
780 	/*
781 	 * Attempt reassembly; if it succeeds, proceed.
782 	 * ip_reass() will return a different mbuf.
783 	 */
784 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
785 		m = ip_reass(m);
786 		if (m == NULL)
787 			return;
788 		ip = mtod(m, struct ip *);
789 		/* Get the header length of the reassembled packet */
790 		hlen = ip->ip_hl << 2;
791 	}
792 
793 #ifdef IPSEC
794 	/*
795 	 * enforce IPsec policy checking if we are seeing last header.
796 	 * note that we do not visit this with protocols with pcb layer
797 	 * code - like udp/tcp/raw ip.
798 	 */
799 	if (ip_ipsec_input(m))
800 		goto bad;
801 #endif /* IPSEC */
802 
803 	/*
804 	 * Switch out to protocol's input routine.
805 	 */
806 	IPSTAT_INC(ips_delivered);
807 
808 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
809 	return;
810 bad:
811 	m_freem(m);
812 }
813 
814 /*
815  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
816  * max has slightly different semantics than the sysctl, for historical
817  * reasons.
818  */
819 static void
820 maxnipq_update(void)
821 {
822 
823 	/*
824 	 * -1 for unlimited allocation.
825 	 */
826 	if (V_maxnipq < 0)
827 		uma_zone_set_max(V_ipq_zone, 0);
828 	/*
829 	 * Positive number for specific bound.
830 	 */
831 	if (V_maxnipq > 0)
832 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
833 	/*
834 	 * Zero specifies no further fragment queue allocation -- set the
835 	 * bound very low, but rely on implementation elsewhere to actually
836 	 * prevent allocation and reclaim current queues.
837 	 */
838 	if (V_maxnipq == 0)
839 		uma_zone_set_max(V_ipq_zone, 1);
840 }
841 
842 static void
843 ipq_zone_change(void *tag)
844 {
845 
846 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
847 		V_maxnipq = nmbclusters / 32;
848 		maxnipq_update();
849 	}
850 }
851 
852 static int
853 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
854 {
855 	int error, i;
856 
857 	i = V_maxnipq;
858 	error = sysctl_handle_int(oidp, &i, 0, req);
859 	if (error || !req->newptr)
860 		return (error);
861 
862 	/*
863 	 * XXXRW: Might be a good idea to sanity check the argument and place
864 	 * an extreme upper bound.
865 	 */
866 	if (i < -1)
867 		return (EINVAL);
868 	V_maxnipq = i;
869 	maxnipq_update();
870 	return (0);
871 }
872 
873 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
874     NULL, 0, sysctl_maxnipq, "I",
875     "Maximum number of IPv4 fragment reassembly queue entries");
876 
877 /*
878  * Take incoming datagram fragment and try to reassemble it into
879  * whole datagram.  If the argument is the first fragment or one
880  * in between the function will return NULL and store the mbuf
881  * in the fragment chain.  If the argument is the last fragment
882  * the packet will be reassembled and the pointer to the new
883  * mbuf returned for further processing.  Only m_tags attached
884  * to the first packet/fragment are preserved.
885  * The IP header is *NOT* adjusted out of iplen.
886  */
887 struct mbuf *
888 ip_reass(struct mbuf *m)
889 {
890 	struct ip *ip;
891 	struct mbuf *p, *q, *nq, *t;
892 	struct ipq *fp = NULL;
893 	struct ipqhead *head;
894 	int i, hlen, next;
895 	u_int8_t ecn, ecn0;
896 	u_short hash;
897 
898 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
899 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
900 		IPSTAT_INC(ips_fragments);
901 		IPSTAT_INC(ips_fragdropped);
902 		m_freem(m);
903 		return (NULL);
904 	}
905 
906 	ip = mtod(m, struct ip *);
907 	hlen = ip->ip_hl << 2;
908 
909 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
910 	head = &V_ipq[hash];
911 	IPQ_LOCK();
912 
913 	/*
914 	 * Look for queue of fragments
915 	 * of this datagram.
916 	 */
917 	TAILQ_FOREACH(fp, head, ipq_list)
918 		if (ip->ip_id == fp->ipq_id &&
919 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
920 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
921 #ifdef MAC
922 		    mac_ipq_match(m, fp) &&
923 #endif
924 		    ip->ip_p == fp->ipq_p)
925 			goto found;
926 
927 	fp = NULL;
928 
929 	/*
930 	 * Attempt to trim the number of allocated fragment queues if it
931 	 * exceeds the administrative limit.
932 	 */
933 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
934 		/*
935 		 * drop something from the tail of the current queue
936 		 * before proceeding further
937 		 */
938 		struct ipq *q = TAILQ_LAST(head, ipqhead);
939 		if (q == NULL) {   /* gak */
940 			for (i = 0; i < IPREASS_NHASH; i++) {
941 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
942 				if (r) {
943 					IPSTAT_ADD(ips_fragtimeout,
944 					    r->ipq_nfrags);
945 					ip_freef(&V_ipq[i], r);
946 					break;
947 				}
948 			}
949 		} else {
950 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
951 			ip_freef(head, q);
952 		}
953 	}
954 
955 found:
956 	/*
957 	 * Adjust ip_len to not reflect header,
958 	 * convert offset of this to bytes.
959 	 */
960 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
961 	if (ip->ip_off & htons(IP_MF)) {
962 		/*
963 		 * Make sure that fragments have a data length
964 		 * that's a non-zero multiple of 8 bytes.
965 		 */
966 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
967 			IPSTAT_INC(ips_toosmall); /* XXX */
968 			goto dropfrag;
969 		}
970 		m->m_flags |= M_FRAG;
971 	} else
972 		m->m_flags &= ~M_FRAG;
973 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
974 
975 	/*
976 	 * Attempt reassembly; if it succeeds, proceed.
977 	 * ip_reass() will return a different mbuf.
978 	 */
979 	IPSTAT_INC(ips_fragments);
980 	m->m_pkthdr.header = ip;
981 
982 	/* Previous ip_reass() started here. */
983 	/*
984 	 * Presence of header sizes in mbufs
985 	 * would confuse code below.
986 	 */
987 	m->m_data += hlen;
988 	m->m_len -= hlen;
989 
990 	/*
991 	 * If first fragment to arrive, create a reassembly queue.
992 	 */
993 	if (fp == NULL) {
994 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
995 		if (fp == NULL)
996 			goto dropfrag;
997 #ifdef MAC
998 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
999 			uma_zfree(V_ipq_zone, fp);
1000 			fp = NULL;
1001 			goto dropfrag;
1002 		}
1003 		mac_ipq_create(m, fp);
1004 #endif
1005 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1006 		V_nipq++;
1007 		fp->ipq_nfrags = 1;
1008 		fp->ipq_ttl = IPFRAGTTL;
1009 		fp->ipq_p = ip->ip_p;
1010 		fp->ipq_id = ip->ip_id;
1011 		fp->ipq_src = ip->ip_src;
1012 		fp->ipq_dst = ip->ip_dst;
1013 		fp->ipq_frags = m;
1014 		m->m_nextpkt = NULL;
1015 		goto done;
1016 	} else {
1017 		fp->ipq_nfrags++;
1018 #ifdef MAC
1019 		mac_ipq_update(m, fp);
1020 #endif
1021 	}
1022 
1023 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1024 
1025 	/*
1026 	 * Handle ECN by comparing this segment with the first one;
1027 	 * if CE is set, do not lose CE.
1028 	 * drop if CE and not-ECT are mixed for the same packet.
1029 	 */
1030 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1031 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1032 	if (ecn == IPTOS_ECN_CE) {
1033 		if (ecn0 == IPTOS_ECN_NOTECT)
1034 			goto dropfrag;
1035 		if (ecn0 != IPTOS_ECN_CE)
1036 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1037 	}
1038 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1039 		goto dropfrag;
1040 
1041 	/*
1042 	 * Find a segment which begins after this one does.
1043 	 */
1044 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1045 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1046 			break;
1047 
1048 	/*
1049 	 * If there is a preceding segment, it may provide some of
1050 	 * our data already.  If so, drop the data from the incoming
1051 	 * segment.  If it provides all of our data, drop us, otherwise
1052 	 * stick new segment in the proper place.
1053 	 *
1054 	 * If some of the data is dropped from the preceding
1055 	 * segment, then it's checksum is invalidated.
1056 	 */
1057 	if (p) {
1058 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1059 		    ntohs(ip->ip_off);
1060 		if (i > 0) {
1061 			if (i >= ntohs(ip->ip_len))
1062 				goto dropfrag;
1063 			m_adj(m, i);
1064 			m->m_pkthdr.csum_flags = 0;
1065 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1066 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1067 		}
1068 		m->m_nextpkt = p->m_nextpkt;
1069 		p->m_nextpkt = m;
1070 	} else {
1071 		m->m_nextpkt = fp->ipq_frags;
1072 		fp->ipq_frags = m;
1073 	}
1074 
1075 	/*
1076 	 * While we overlap succeeding segments trim them or,
1077 	 * if they are completely covered, dequeue them.
1078 	 */
1079 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1080 	    ntohs(GETIP(q)->ip_off); q = nq) {
1081 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1082 		    ntohs(GETIP(q)->ip_off);
1083 		if (i < ntohs(GETIP(q)->ip_len)) {
1084 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1085 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1086 			m_adj(q, i);
1087 			q->m_pkthdr.csum_flags = 0;
1088 			break;
1089 		}
1090 		nq = q->m_nextpkt;
1091 		m->m_nextpkt = nq;
1092 		IPSTAT_INC(ips_fragdropped);
1093 		fp->ipq_nfrags--;
1094 		m_freem(q);
1095 	}
1096 
1097 	/*
1098 	 * Check for complete reassembly and perform frag per packet
1099 	 * limiting.
1100 	 *
1101 	 * Frag limiting is performed here so that the nth frag has
1102 	 * a chance to complete the packet before we drop the packet.
1103 	 * As a result, n+1 frags are actually allowed per packet, but
1104 	 * only n will ever be stored. (n = maxfragsperpacket.)
1105 	 *
1106 	 */
1107 	next = 0;
1108 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1109 		if (ntohs(GETIP(q)->ip_off) != next) {
1110 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1111 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1112 				ip_freef(head, fp);
1113 			}
1114 			goto done;
1115 		}
1116 		next += ntohs(GETIP(q)->ip_len);
1117 	}
1118 	/* Make sure the last packet didn't have the IP_MF flag */
1119 	if (p->m_flags & M_FRAG) {
1120 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1121 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1122 			ip_freef(head, fp);
1123 		}
1124 		goto done;
1125 	}
1126 
1127 	/*
1128 	 * Reassembly is complete.  Make sure the packet is a sane size.
1129 	 */
1130 	q = fp->ipq_frags;
1131 	ip = GETIP(q);
1132 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1133 		IPSTAT_INC(ips_toolong);
1134 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1135 		ip_freef(head, fp);
1136 		goto done;
1137 	}
1138 
1139 	/*
1140 	 * Concatenate fragments.
1141 	 */
1142 	m = q;
1143 	t = m->m_next;
1144 	m->m_next = NULL;
1145 	m_cat(m, t);
1146 	nq = q->m_nextpkt;
1147 	q->m_nextpkt = NULL;
1148 	for (q = nq; q != NULL; q = nq) {
1149 		nq = q->m_nextpkt;
1150 		q->m_nextpkt = NULL;
1151 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1152 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1153 		m_cat(m, q);
1154 	}
1155 	/*
1156 	 * In order to do checksumming faster we do 'end-around carry' here
1157 	 * (and not in for{} loop), though it implies we are not going to
1158 	 * reassemble more than 64k fragments.
1159 	 */
1160 	m->m_pkthdr.csum_data =
1161 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1162 #ifdef MAC
1163 	mac_ipq_reassemble(fp, m);
1164 	mac_ipq_destroy(fp);
1165 #endif
1166 
1167 	/*
1168 	 * Create header for new ip packet by modifying header of first
1169 	 * packet;  dequeue and discard fragment reassembly header.
1170 	 * Make header visible.
1171 	 */
1172 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1173 	ip->ip_src = fp->ipq_src;
1174 	ip->ip_dst = fp->ipq_dst;
1175 	TAILQ_REMOVE(head, fp, ipq_list);
1176 	V_nipq--;
1177 	uma_zfree(V_ipq_zone, fp);
1178 	m->m_len += (ip->ip_hl << 2);
1179 	m->m_data -= (ip->ip_hl << 2);
1180 	/* some debugging cruft by sklower, below, will go away soon */
1181 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1182 		m_fixhdr(m);
1183 	IPSTAT_INC(ips_reassembled);
1184 	IPQ_UNLOCK();
1185 	return (m);
1186 
1187 dropfrag:
1188 	IPSTAT_INC(ips_fragdropped);
1189 	if (fp != NULL)
1190 		fp->ipq_nfrags--;
1191 	m_freem(m);
1192 done:
1193 	IPQ_UNLOCK();
1194 	return (NULL);
1195 
1196 #undef GETIP
1197 }
1198 
1199 /*
1200  * Free a fragment reassembly header and all
1201  * associated datagrams.
1202  */
1203 static void
1204 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1205 {
1206 	struct mbuf *q;
1207 
1208 	IPQ_LOCK_ASSERT();
1209 
1210 	while (fp->ipq_frags) {
1211 		q = fp->ipq_frags;
1212 		fp->ipq_frags = q->m_nextpkt;
1213 		m_freem(q);
1214 	}
1215 	TAILQ_REMOVE(fhp, fp, ipq_list);
1216 	uma_zfree(V_ipq_zone, fp);
1217 	V_nipq--;
1218 }
1219 
1220 /*
1221  * IP timer processing;
1222  * if a timer expires on a reassembly
1223  * queue, discard it.
1224  */
1225 void
1226 ip_slowtimo(void)
1227 {
1228 	VNET_ITERATOR_DECL(vnet_iter);
1229 	struct ipq *fp;
1230 	int i;
1231 
1232 	VNET_LIST_RLOCK_NOSLEEP();
1233 	IPQ_LOCK();
1234 	VNET_FOREACH(vnet_iter) {
1235 		CURVNET_SET(vnet_iter);
1236 		for (i = 0; i < IPREASS_NHASH; i++) {
1237 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1238 				struct ipq *fpp;
1239 
1240 				fpp = fp;
1241 				fp = TAILQ_NEXT(fp, ipq_list);
1242 				if(--fpp->ipq_ttl == 0) {
1243 					IPSTAT_ADD(ips_fragtimeout,
1244 					    fpp->ipq_nfrags);
1245 					ip_freef(&V_ipq[i], fpp);
1246 				}
1247 			}
1248 		}
1249 		/*
1250 		 * If we are over the maximum number of fragments
1251 		 * (due to the limit being lowered), drain off
1252 		 * enough to get down to the new limit.
1253 		 */
1254 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1255 			for (i = 0; i < IPREASS_NHASH; i++) {
1256 				while (V_nipq > V_maxnipq &&
1257 				    !TAILQ_EMPTY(&V_ipq[i])) {
1258 					IPSTAT_ADD(ips_fragdropped,
1259 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1260 					ip_freef(&V_ipq[i],
1261 					    TAILQ_FIRST(&V_ipq[i]));
1262 				}
1263 			}
1264 		}
1265 		CURVNET_RESTORE();
1266 	}
1267 	IPQ_UNLOCK();
1268 	VNET_LIST_RUNLOCK_NOSLEEP();
1269 }
1270 
1271 /*
1272  * Drain off all datagram fragments.
1273  */
1274 static void
1275 ip_drain_locked(void)
1276 {
1277 	int     i;
1278 
1279 	IPQ_LOCK_ASSERT();
1280 
1281 	for (i = 0; i < IPREASS_NHASH; i++) {
1282 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1283 			IPSTAT_ADD(ips_fragdropped,
1284 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1285 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1286 		}
1287 	}
1288 }
1289 
1290 void
1291 ip_drain(void)
1292 {
1293 	VNET_ITERATOR_DECL(vnet_iter);
1294 
1295 	VNET_LIST_RLOCK_NOSLEEP();
1296 	IPQ_LOCK();
1297 	VNET_FOREACH(vnet_iter) {
1298 		CURVNET_SET(vnet_iter);
1299 		ip_drain_locked();
1300 		CURVNET_RESTORE();
1301 	}
1302 	IPQ_UNLOCK();
1303 	VNET_LIST_RUNLOCK_NOSLEEP();
1304 	in_rtqdrain();
1305 }
1306 
1307 /*
1308  * The protocol to be inserted into ip_protox[] must be already registered
1309  * in inetsw[], either statically or through pf_proto_register().
1310  */
1311 int
1312 ipproto_register(short ipproto)
1313 {
1314 	struct protosw *pr;
1315 
1316 	/* Sanity checks. */
1317 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1318 		return (EPROTONOSUPPORT);
1319 
1320 	/*
1321 	 * The protocol slot must not be occupied by another protocol
1322 	 * already.  An index pointing to IPPROTO_RAW is unused.
1323 	 */
1324 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1325 	if (pr == NULL)
1326 		return (EPFNOSUPPORT);
1327 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1328 		return (EEXIST);
1329 
1330 	/* Find the protocol position in inetsw[] and set the index. */
1331 	for (pr = inetdomain.dom_protosw;
1332 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1333 		if (pr->pr_domain->dom_family == PF_INET &&
1334 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1335 			ip_protox[pr->pr_protocol] = pr - inetsw;
1336 			return (0);
1337 		}
1338 	}
1339 	return (EPROTONOSUPPORT);
1340 }
1341 
1342 int
1343 ipproto_unregister(short ipproto)
1344 {
1345 	struct protosw *pr;
1346 
1347 	/* Sanity checks. */
1348 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1349 		return (EPROTONOSUPPORT);
1350 
1351 	/* Check if the protocol was indeed registered. */
1352 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1353 	if (pr == NULL)
1354 		return (EPFNOSUPPORT);
1355 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1356 		return (ENOENT);
1357 
1358 	/* Reset the protocol slot to IPPROTO_RAW. */
1359 	ip_protox[ipproto] = pr - inetsw;
1360 	return (0);
1361 }
1362 
1363 /*
1364  * Given address of next destination (final or next hop), return (referenced)
1365  * internet address info of interface to be used to get there.
1366  */
1367 struct in_ifaddr *
1368 ip_rtaddr(struct in_addr dst, u_int fibnum)
1369 {
1370 	struct route sro;
1371 	struct sockaddr_in *sin;
1372 	struct in_ifaddr *ia;
1373 
1374 	bzero(&sro, sizeof(sro));
1375 	sin = (struct sockaddr_in *)&sro.ro_dst;
1376 	sin->sin_family = AF_INET;
1377 	sin->sin_len = sizeof(*sin);
1378 	sin->sin_addr = dst;
1379 	in_rtalloc_ign(&sro, 0, fibnum);
1380 
1381 	if (sro.ro_rt == NULL)
1382 		return (NULL);
1383 
1384 	ia = ifatoia(sro.ro_rt->rt_ifa);
1385 	ifa_ref(&ia->ia_ifa);
1386 	RTFREE(sro.ro_rt);
1387 	return (ia);
1388 }
1389 
1390 u_char inetctlerrmap[PRC_NCMDS] = {
1391 	0,		0,		0,		0,
1392 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1393 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1394 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1395 	0,		0,		EHOSTUNREACH,	0,
1396 	ENOPROTOOPT,	ECONNREFUSED
1397 };
1398 
1399 /*
1400  * Forward a packet.  If some error occurs return the sender
1401  * an icmp packet.  Note we can't always generate a meaningful
1402  * icmp message because icmp doesn't have a large enough repertoire
1403  * of codes and types.
1404  *
1405  * If not forwarding, just drop the packet.  This could be confusing
1406  * if ipforwarding was zero but some routing protocol was advancing
1407  * us as a gateway to somewhere.  However, we must let the routing
1408  * protocol deal with that.
1409  *
1410  * The srcrt parameter indicates whether the packet is being forwarded
1411  * via a source route.
1412  */
1413 void
1414 ip_forward(struct mbuf *m, int srcrt)
1415 {
1416 	struct ip *ip = mtod(m, struct ip *);
1417 	struct in_ifaddr *ia;
1418 	struct mbuf *mcopy;
1419 	struct in_addr dest;
1420 	struct route ro;
1421 	int error, type = 0, code = 0, mtu = 0;
1422 
1423 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1424 		IPSTAT_INC(ips_cantforward);
1425 		m_freem(m);
1426 		return;
1427 	}
1428 #ifdef IPSTEALTH
1429 	if (!V_ipstealth) {
1430 #endif
1431 		if (ip->ip_ttl <= IPTTLDEC) {
1432 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1433 			    0, 0);
1434 			return;
1435 		}
1436 #ifdef IPSTEALTH
1437 	}
1438 #endif
1439 
1440 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1441 #ifndef IPSEC
1442 	/*
1443 	 * 'ia' may be NULL if there is no route for this destination.
1444 	 * In case of IPsec, Don't discard it just yet, but pass it to
1445 	 * ip_output in case of outgoing IPsec policy.
1446 	 */
1447 	if (!srcrt && ia == NULL) {
1448 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1449 		return;
1450 	}
1451 #endif
1452 
1453 	/*
1454 	 * Save the IP header and at most 8 bytes of the payload,
1455 	 * in case we need to generate an ICMP message to the src.
1456 	 *
1457 	 * XXX this can be optimized a lot by saving the data in a local
1458 	 * buffer on the stack (72 bytes at most), and only allocating the
1459 	 * mbuf if really necessary. The vast majority of the packets
1460 	 * are forwarded without having to send an ICMP back (either
1461 	 * because unnecessary, or because rate limited), so we are
1462 	 * really we are wasting a lot of work here.
1463 	 *
1464 	 * We don't use m_copy() because it might return a reference
1465 	 * to a shared cluster. Both this function and ip_output()
1466 	 * assume exclusive access to the IP header in `m', so any
1467 	 * data in a cluster may change before we reach icmp_error().
1468 	 */
1469 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1470 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1471 		/*
1472 		 * It's probably ok if the pkthdr dup fails (because
1473 		 * the deep copy of the tag chain failed), but for now
1474 		 * be conservative and just discard the copy since
1475 		 * code below may some day want the tags.
1476 		 */
1477 		m_free(mcopy);
1478 		mcopy = NULL;
1479 	}
1480 	if (mcopy != NULL) {
1481 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1482 		mcopy->m_pkthdr.len = mcopy->m_len;
1483 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1484 	}
1485 
1486 #ifdef IPSTEALTH
1487 	if (!V_ipstealth) {
1488 #endif
1489 		ip->ip_ttl -= IPTTLDEC;
1490 #ifdef IPSTEALTH
1491 	}
1492 #endif
1493 
1494 	/*
1495 	 * If forwarding packet using same interface that it came in on,
1496 	 * perhaps should send a redirect to sender to shortcut a hop.
1497 	 * Only send redirect if source is sending directly to us,
1498 	 * and if packet was not source routed (or has any options).
1499 	 * Also, don't send redirect if forwarding using a default route
1500 	 * or a route modified by a redirect.
1501 	 */
1502 	dest.s_addr = 0;
1503 	if (!srcrt && V_ipsendredirects &&
1504 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1505 		struct sockaddr_in *sin;
1506 		struct rtentry *rt;
1507 
1508 		bzero(&ro, sizeof(ro));
1509 		sin = (struct sockaddr_in *)&ro.ro_dst;
1510 		sin->sin_family = AF_INET;
1511 		sin->sin_len = sizeof(*sin);
1512 		sin->sin_addr = ip->ip_dst;
1513 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1514 
1515 		rt = ro.ro_rt;
1516 
1517 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1518 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1519 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1520 			u_long src = ntohl(ip->ip_src.s_addr);
1521 
1522 			if (RTA(rt) &&
1523 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1524 				if (rt->rt_flags & RTF_GATEWAY)
1525 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1526 				else
1527 					dest.s_addr = ip->ip_dst.s_addr;
1528 				/* Router requirements says to only send host redirects */
1529 				type = ICMP_REDIRECT;
1530 				code = ICMP_REDIRECT_HOST;
1531 			}
1532 		}
1533 		if (rt)
1534 			RTFREE(rt);
1535 	}
1536 
1537 	/*
1538 	 * Try to cache the route MTU from ip_output so we can consider it for
1539 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1540 	 */
1541 	bzero(&ro, sizeof(ro));
1542 
1543 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1544 
1545 	if (error == EMSGSIZE && ro.ro_rt)
1546 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1547 	RO_RTFREE(&ro);
1548 
1549 	if (error)
1550 		IPSTAT_INC(ips_cantforward);
1551 	else {
1552 		IPSTAT_INC(ips_forward);
1553 		if (type)
1554 			IPSTAT_INC(ips_redirectsent);
1555 		else {
1556 			if (mcopy)
1557 				m_freem(mcopy);
1558 			if (ia != NULL)
1559 				ifa_free(&ia->ia_ifa);
1560 			return;
1561 		}
1562 	}
1563 	if (mcopy == NULL) {
1564 		if (ia != NULL)
1565 			ifa_free(&ia->ia_ifa);
1566 		return;
1567 	}
1568 
1569 	switch (error) {
1570 
1571 	case 0:				/* forwarded, but need redirect */
1572 		/* type, code set above */
1573 		break;
1574 
1575 	case ENETUNREACH:
1576 	case EHOSTUNREACH:
1577 	case ENETDOWN:
1578 	case EHOSTDOWN:
1579 	default:
1580 		type = ICMP_UNREACH;
1581 		code = ICMP_UNREACH_HOST;
1582 		break;
1583 
1584 	case EMSGSIZE:
1585 		type = ICMP_UNREACH;
1586 		code = ICMP_UNREACH_NEEDFRAG;
1587 
1588 #ifdef IPSEC
1589 		/*
1590 		 * If IPsec is configured for this path,
1591 		 * override any possibly mtu value set by ip_output.
1592 		 */
1593 		mtu = ip_ipsec_mtu(mcopy, mtu);
1594 #endif /* IPSEC */
1595 		/*
1596 		 * If the MTU was set before make sure we are below the
1597 		 * interface MTU.
1598 		 * If the MTU wasn't set before use the interface mtu or
1599 		 * fall back to the next smaller mtu step compared to the
1600 		 * current packet size.
1601 		 */
1602 		if (mtu != 0) {
1603 			if (ia != NULL)
1604 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1605 		} else {
1606 			if (ia != NULL)
1607 				mtu = ia->ia_ifp->if_mtu;
1608 			else
1609 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1610 		}
1611 		IPSTAT_INC(ips_cantfrag);
1612 		break;
1613 
1614 	case ENOBUFS:
1615 		/*
1616 		 * A router should not generate ICMP_SOURCEQUENCH as
1617 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1618 		 * Source quench could be a big problem under DoS attacks,
1619 		 * or if the underlying interface is rate-limited.
1620 		 * Those who need source quench packets may re-enable them
1621 		 * via the net.inet.ip.sendsourcequench sysctl.
1622 		 */
1623 		if (V_ip_sendsourcequench == 0) {
1624 			m_freem(mcopy);
1625 			if (ia != NULL)
1626 				ifa_free(&ia->ia_ifa);
1627 			return;
1628 		} else {
1629 			type = ICMP_SOURCEQUENCH;
1630 			code = 0;
1631 		}
1632 		break;
1633 
1634 	case EACCES:			/* ipfw denied packet */
1635 		m_freem(mcopy);
1636 		if (ia != NULL)
1637 			ifa_free(&ia->ia_ifa);
1638 		return;
1639 	}
1640 	if (ia != NULL)
1641 		ifa_free(&ia->ia_ifa);
1642 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1643 }
1644 
1645 void
1646 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1647     struct mbuf *m)
1648 {
1649 
1650 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1651 		struct bintime bt;
1652 
1653 		bintime(&bt);
1654 		if (inp->inp_socket->so_options & SO_BINTIME) {
1655 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1656 			    SCM_BINTIME, SOL_SOCKET);
1657 			if (*mp)
1658 				mp = &(*mp)->m_next;
1659 		}
1660 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1661 			struct timeval tv;
1662 
1663 			bintime2timeval(&bt, &tv);
1664 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1665 			    SCM_TIMESTAMP, SOL_SOCKET);
1666 			if (*mp)
1667 				mp = &(*mp)->m_next;
1668 		}
1669 	}
1670 	if (inp->inp_flags & INP_RECVDSTADDR) {
1671 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1672 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1673 		if (*mp)
1674 			mp = &(*mp)->m_next;
1675 	}
1676 	if (inp->inp_flags & INP_RECVTTL) {
1677 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1678 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1679 		if (*mp)
1680 			mp = &(*mp)->m_next;
1681 	}
1682 #ifdef notyet
1683 	/* XXX
1684 	 * Moving these out of udp_input() made them even more broken
1685 	 * than they already were.
1686 	 */
1687 	/* options were tossed already */
1688 	if (inp->inp_flags & INP_RECVOPTS) {
1689 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1690 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1691 		if (*mp)
1692 			mp = &(*mp)->m_next;
1693 	}
1694 	/* ip_srcroute doesn't do what we want here, need to fix */
1695 	if (inp->inp_flags & INP_RECVRETOPTS) {
1696 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1697 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1698 		if (*mp)
1699 			mp = &(*mp)->m_next;
1700 	}
1701 #endif
1702 	if (inp->inp_flags & INP_RECVIF) {
1703 		struct ifnet *ifp;
1704 		struct sdlbuf {
1705 			struct sockaddr_dl sdl;
1706 			u_char	pad[32];
1707 		} sdlbuf;
1708 		struct sockaddr_dl *sdp;
1709 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1710 
1711 		if ((ifp = m->m_pkthdr.rcvif) &&
1712 		    ifp->if_index && ifp->if_index <= V_if_index) {
1713 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1714 			/*
1715 			 * Change our mind and don't try copy.
1716 			 */
1717 			if (sdp->sdl_family != AF_LINK ||
1718 			    sdp->sdl_len > sizeof(sdlbuf)) {
1719 				goto makedummy;
1720 			}
1721 			bcopy(sdp, sdl2, sdp->sdl_len);
1722 		} else {
1723 makedummy:
1724 			sdl2->sdl_len =
1725 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1726 			sdl2->sdl_family = AF_LINK;
1727 			sdl2->sdl_index = 0;
1728 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1729 		}
1730 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1731 		    IP_RECVIF, IPPROTO_IP);
1732 		if (*mp)
1733 			mp = &(*mp)->m_next;
1734 	}
1735 	if (inp->inp_flags & INP_RECVTOS) {
1736 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1737 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1738 		if (*mp)
1739 			mp = &(*mp)->m_next;
1740 	}
1741 }
1742 
1743 /*
1744  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1745  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1746  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1747  * compiled.
1748  */
1749 static VNET_DEFINE(int, ip_rsvp_on);
1750 VNET_DEFINE(struct socket *, ip_rsvpd);
1751 
1752 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1753 
1754 int
1755 ip_rsvp_init(struct socket *so)
1756 {
1757 
1758 	if (so->so_type != SOCK_RAW ||
1759 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1760 		return EOPNOTSUPP;
1761 
1762 	if (V_ip_rsvpd != NULL)
1763 		return EADDRINUSE;
1764 
1765 	V_ip_rsvpd = so;
1766 	/*
1767 	 * This may seem silly, but we need to be sure we don't over-increment
1768 	 * the RSVP counter, in case something slips up.
1769 	 */
1770 	if (!V_ip_rsvp_on) {
1771 		V_ip_rsvp_on = 1;
1772 		V_rsvp_on++;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 int
1779 ip_rsvp_done(void)
1780 {
1781 
1782 	V_ip_rsvpd = NULL;
1783 	/*
1784 	 * This may seem silly, but we need to be sure we don't over-decrement
1785 	 * the RSVP counter, in case something slips up.
1786 	 */
1787 	if (V_ip_rsvp_on) {
1788 		V_ip_rsvp_on = 0;
1789 		V_rsvp_on--;
1790 	}
1791 	return 0;
1792 }
1793 
1794 void
1795 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1796 {
1797 
1798 	if (rsvp_input_p) { /* call the real one if loaded */
1799 		rsvp_input_p(m, off);
1800 		return;
1801 	}
1802 
1803 	/* Can still get packets with rsvp_on = 0 if there is a local member
1804 	 * of the group to which the RSVP packet is addressed.  But in this
1805 	 * case we want to throw the packet away.
1806 	 */
1807 
1808 	if (!V_rsvp_on) {
1809 		m_freem(m);
1810 		return;
1811 	}
1812 
1813 	if (V_ip_rsvpd != NULL) {
1814 		rip_input(m, off);
1815 		return;
1816 	}
1817 	/* Drop the packet */
1818 	m_freem(m);
1819 }
1820