xref: /freebsd/sys/netinet/ip_input.c (revision 99e8005137088aafb1350e23b113d69b01b0820f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mbuf.h>
51 #include <sys/malloc.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/time.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/pfil.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/route.h>
65 #include <net/netisr.h>
66 #include <net/intrq.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <machine/in_cksum.h>
76 
77 #include <netinet/ipprotosw.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 
83 #ifdef IPSEC
84 #include <netinet6/ipsec.h>
85 #include <netkey/key.h>
86 #endif
87 
88 #include "faith.h"
89 #if defined(NFAITH) && NFAITH > 0
90 #include <net/if_types.h>
91 #endif
92 
93 #ifdef DUMMYNET
94 #include <netinet/ip_dummynet.h>
95 #endif
96 
97 int rsvp_on = 0;
98 static int ip_rsvp_on;
99 struct socket *ip_rsvpd;
100 
101 int	ipforwarding = 0;
102 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
103     &ipforwarding, 0, "Enable IP forwarding between interfaces");
104 
105 static int	ipsendredirects = 1; /* XXX */
106 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
107     &ipsendredirects, 0, "Enable sending IP redirects");
108 
109 int	ip_defttl = IPDEFTTL;
110 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
111     &ip_defttl, 0, "Maximum TTL on IP packets");
112 
113 static int	ip_dosourceroute = 0;
114 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
115     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
116 
117 static int	ip_acceptsourceroute = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
119     CTLFLAG_RW, &ip_acceptsourceroute, 0,
120     "Enable accepting source routed IP packets");
121 
122 static int	ip_keepfaith = 0;
123 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
124 	&ip_keepfaith,	0,
125 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
126 
127 /*
128  * XXX - Setting ip_checkinterface mostly implements the receive side of
129  * the Strong ES model described in RFC 1122, but since the routing table
130  * and transmit implementation do not implement the Strong ES model,
131  * setting this to 1 results in an odd hybrid.
132  *
133  * XXX - ip_checkinterface currently must be disabled if you use ipnat
134  * to translate the destination address to another local interface.
135  *
136  * XXX - ip_checkinterface must be disabled if you add IP aliases
137  * to the loopback interface instead of the interface where the
138  * packets for those addresses are received.
139  */
140 static int	ip_checkinterface = 1;
141 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
142     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
143 
144 #ifdef DIAGNOSTIC
145 static int	ipprintfs = 0;
146 #endif
147 
148 extern	struct domain inetdomain;
149 extern	struct ipprotosw inetsw[];
150 u_char	ip_protox[IPPROTO_MAX];
151 static int	ipqmaxlen = IFQ_MAXLEN;
152 struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
153 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
154     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
156     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
157 
158 struct ipstat ipstat;
159 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
160     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
161 
162 /* Packet reassembly stuff */
163 #define IPREASS_NHASH_LOG2      6
164 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
165 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
166 #define IPREASS_HASH(x,y) \
167 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
168 
169 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
170 static int    nipq = 0;         /* total # of reass queues */
171 static int    maxnipq;
172 const  int    ipintrq_present = 1;
173 
174 #ifdef IPCTL_DEFMTU
175 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
176     &ip_mtu, 0, "Default MTU");
177 #endif
178 
179 #ifdef IPSTEALTH
180 static int	ipstealth = 0;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
182     &ipstealth, 0, "");
183 #endif
184 
185 
186 /* Firewall hooks */
187 ip_fw_chk_t *ip_fw_chk_ptr;
188 ip_fw_ctl_t *ip_fw_ctl_ptr;
189 int fw_enable = 1 ;
190 
191 #ifdef DUMMYNET
192 ip_dn_ctl_t *ip_dn_ctl_ptr;
193 #endif
194 
195 
196 /*
197  * We need to save the IP options in case a protocol wants to respond
198  * to an incoming packet over the same route if the packet got here
199  * using IP source routing.  This allows connection establishment and
200  * maintenance when the remote end is on a network that is not known
201  * to us.
202  */
203 static int	ip_nhops = 0;
204 static	struct ip_srcrt {
205 	struct	in_addr dst;			/* final destination */
206 	char	nop;				/* one NOP to align */
207 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
208 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
209 } ip_srcrt;
210 
211 struct sockaddr_in *ip_fw_fwd_addr;
212 
213 static void	save_rte __P((u_char *, struct in_addr));
214 static int	ip_dooptions __P((struct mbuf *));
215 static void	ip_forward __P((struct mbuf *, int));
216 static void	ip_freef __P((struct ipqhead *, struct ipq *));
217 #ifdef IPDIVERT
218 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
219 #else
220 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
221 #endif
222 static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
223 static void	ipintr __P((void));
224 
225 /*
226  * IP initialization: fill in IP protocol switch table.
227  * All protocols not implemented in kernel go to raw IP protocol handler.
228  */
229 void
230 ip_init()
231 {
232 	register struct ipprotosw *pr;
233 	register int i;
234 
235 	TAILQ_INIT(&in_ifaddrhead);
236 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
237 	if (pr == 0)
238 		panic("ip_init");
239 	for (i = 0; i < IPPROTO_MAX; i++)
240 		ip_protox[i] = pr - inetsw;
241 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
242 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
243 		if (pr->pr_domain->dom_family == PF_INET &&
244 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
245 			ip_protox[pr->pr_protocol] = pr - inetsw;
246 
247 	for (i = 0; i < IPREASS_NHASH; i++)
248 	    TAILQ_INIT(&ipq[i]);
249 
250 	maxnipq = nmbclusters/4;
251 
252 	ip_id = time_second & 0xffff;
253 	ipintrq.ifq_maxlen = ipqmaxlen;
254 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
255 
256 	register_netisr(NETISR_IP, ipintr);
257 }
258 
259 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
260 struct	route ipforward_rt;
261 
262 /*
263  * Ip input routine.  Checksum and byte swap header.  If fragmented
264  * try to reassemble.  Process options.  Pass to next level.
265  */
266 void
267 ip_input(struct mbuf *m)
268 {
269 	struct ip *ip;
270 	struct ipq *fp;
271 	struct in_ifaddr *ia = NULL;
272 	int    i, hlen, checkif;
273 	u_short sum;
274 	u_int16_t divert_cookie;		/* firewall cookie */
275 	struct in_addr pkt_dst;
276 #ifdef IPDIVERT
277 	u_int32_t divert_info = 0;		/* packet divert/tee info */
278 #endif
279 	struct ip_fw_chain *rule = NULL;
280 #ifdef PFIL_HOOKS
281 	struct packet_filter_hook *pfh;
282 	struct mbuf *m0;
283 	int rv;
284 #endif /* PFIL_HOOKS */
285 
286 #ifdef IPDIVERT
287 	/* Get and reset firewall cookie */
288 	divert_cookie = ip_divert_cookie;
289 	ip_divert_cookie = 0;
290 #else
291 	divert_cookie = 0;
292 #endif
293 
294 #if defined(IPFIREWALL) && defined(DUMMYNET)
295         /*
296          * dummynet packet are prepended a vestigial mbuf with
297          * m_type = MT_DUMMYNET and m_data pointing to the matching
298          * rule.
299          */
300         if (m->m_type == MT_DUMMYNET) {
301             rule = (struct ip_fw_chain *)(m->m_data) ;
302             m = m->m_next ;
303             ip = mtod(m, struct ip *);
304             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
305             goto iphack ;
306         } else
307             rule = NULL ;
308 #endif
309 
310 #ifdef	DIAGNOSTIC
311 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
312 		panic("ip_input no HDR");
313 #endif
314 	ipstat.ips_total++;
315 
316 	if (m->m_pkthdr.len < sizeof(struct ip))
317 		goto tooshort;
318 
319 	if (m->m_len < sizeof (struct ip) &&
320 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
321 		ipstat.ips_toosmall++;
322 		return;
323 	}
324 	ip = mtod(m, struct ip *);
325 
326 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
327 		ipstat.ips_badvers++;
328 		goto bad;
329 	}
330 
331 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
332 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
333 		ipstat.ips_badhlen++;
334 		goto bad;
335 	}
336 	if (hlen > m->m_len) {
337 		if ((m = m_pullup(m, hlen)) == 0) {
338 			ipstat.ips_badhlen++;
339 			return;
340 		}
341 		ip = mtod(m, struct ip *);
342 	}
343 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
344 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
345 	} else {
346 		if (hlen == sizeof(struct ip)) {
347 			sum = in_cksum_hdr(ip);
348 		} else {
349 			sum = in_cksum(m, hlen);
350 		}
351 	}
352 	if (sum) {
353 		ipstat.ips_badsum++;
354 		goto bad;
355 	}
356 
357 	/*
358 	 * Convert fields to host representation.
359 	 */
360 	NTOHS(ip->ip_len);
361 	if (ip->ip_len < hlen) {
362 		ipstat.ips_badlen++;
363 		goto bad;
364 	}
365 	NTOHS(ip->ip_off);
366 
367 	/*
368 	 * Check that the amount of data in the buffers
369 	 * is as at least much as the IP header would have us expect.
370 	 * Trim mbufs if longer than we expect.
371 	 * Drop packet if shorter than we expect.
372 	 */
373 	if (m->m_pkthdr.len < ip->ip_len) {
374 tooshort:
375 		ipstat.ips_tooshort++;
376 		goto bad;
377 	}
378 	if (m->m_pkthdr.len > ip->ip_len) {
379 		if (m->m_len == m->m_pkthdr.len) {
380 			m->m_len = ip->ip_len;
381 			m->m_pkthdr.len = ip->ip_len;
382 		} else
383 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
384 	}
385 
386 	/*
387 	 * Don't accept packets with a loopback destination address
388 	 * unless they arrived via the loopback interface.
389 	 */
390 	if ((ntohl(ip->ip_dst.s_addr) & IN_CLASSA_NET) ==
391 	    (IN_LOOPBACKNET << IN_CLASSA_NSHIFT) &&
392 	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
393 		goto bad;
394 	}
395 
396 	/*
397 	 * IpHack's section.
398 	 * Right now when no processing on packet has done
399 	 * and it is still fresh out of network we do our black
400 	 * deals with it.
401 	 * - Firewall: deny/allow/divert
402 	 * - Xlate: translate packet's addr/port (NAT).
403 	 * - Pipe: pass pkt through dummynet.
404 	 * - Wrap: fake packet's addr/port <unimpl.>
405 	 * - Encapsulate: put it in another IP and send out. <unimp.>
406  	 */
407 
408 #if defined(IPFIREWALL) && defined(DUMMYNET)
409 iphack:
410 #endif
411 
412 #ifdef PFIL_HOOKS
413 	/*
414 	 * Run through list of hooks for input packets.  If there are any
415 	 * filters which require that additional packets in the flow are
416 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
417 	 * Note that filters must _never_ set this flag, as another filter
418 	 * in the list may have previously cleared it.
419 	 */
420 	m0 = m;
421 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
422 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
423 		if (pfh->pfil_func) {
424 			rv = pfh->pfil_func(ip, hlen,
425 					    m->m_pkthdr.rcvif, 0, &m0);
426 			if (rv)
427 				return;
428 			m = m0;
429 			if (m == NULL)
430 				return;
431 			ip = mtod(m, struct ip *);
432 		}
433 #endif /* PFIL_HOOKS */
434 
435 	if (fw_enable && ip_fw_chk_ptr) {
436 #ifdef IPFIREWALL_FORWARD
437 		/*
438 		 * If we've been forwarded from the output side, then
439 		 * skip the firewall a second time
440 		 */
441 		if (ip_fw_fwd_addr)
442 			goto ours;
443 #endif	/* IPFIREWALL_FORWARD */
444 		/*
445 		 * See the comment in ip_output for the return values
446 		 * produced by the firewall.
447 		 */
448 		i = (*ip_fw_chk_ptr)(&ip,
449 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
450 		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
451 		    if (m)
452 			m_freem(m);
453 		    return ;
454 		}
455 		if (m == NULL) {	/* Packet discarded by firewall */
456 		    static int __debug=10;
457 		    if (__debug >0) {
458 			printf("firewall returns NULL, please update!\n");
459 			__debug-- ;
460 		    }
461 		    return;
462 		}
463 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
464 			goto pass;
465 #ifdef DUMMYNET
466                 if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
467                         /* Send packet to the appropriate pipe */
468                         dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
469 				    0);
470 			return;
471 		}
472 #endif
473 #ifdef IPDIVERT
474 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
475 			/* Divert or tee packet */
476 			divert_info = i;
477 			goto ours;
478 		}
479 #endif
480 #ifdef IPFIREWALL_FORWARD
481 		if (i == 0 && ip_fw_fwd_addr != NULL)
482 			goto pass;
483 #endif
484 		/*
485 		 * if we get here, the packet must be dropped
486 		 */
487 		m_freem(m);
488 		return;
489 	}
490 pass:
491 
492 	/*
493 	 * Process options and, if not destined for us,
494 	 * ship it on.  ip_dooptions returns 1 when an
495 	 * error was detected (causing an icmp message
496 	 * to be sent and the original packet to be freed).
497 	 */
498 	ip_nhops = 0;		/* for source routed packets */
499 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
500 #ifdef IPFIREWALL_FORWARD
501 		ip_fw_fwd_addr = NULL;
502 #endif
503 		return;
504 	}
505 
506         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
507          * matter if it is destined to another node, or whether it is
508          * a multicast one, RSVP wants it! and prevents it from being forwarded
509          * anywhere else. Also checks if the rsvp daemon is running before
510 	 * grabbing the packet.
511          */
512 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
513 		goto ours;
514 
515 	/*
516 	 * Check our list of addresses, to see if the packet is for us.
517 	 * If we don't have any addresses, assume any unicast packet
518 	 * we receive might be for us (and let the upper layers deal
519 	 * with it).
520 	 */
521 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
522 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
523 		goto ours;
524 
525 	/*
526 	 * Cache the destination address of the packet; this may be
527 	 * changed by use of 'ipfw fwd'.
528 	 */
529 	pkt_dst = ip_fw_fwd_addr == NULL ?
530 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
531 
532 	/*
533 	 * Enable a consistency check between the destination address
534 	 * and the arrival interface for a unicast packet (the RFC 1122
535 	 * strong ES model) if IP forwarding is disabled and the packet
536 	 * is not locally generated and the packet is not subject to
537 	 * 'ipfw fwd'.
538 	 *
539          * XXX - Checking also should be disabled if the destination
540 	 * address is ipnat'ed to a different interface.
541 	 *
542 	 * XXX - Checking is incompatible with IP aliases added
543 	 * to the loopback interface instead of the interface where
544 	 * the packets are received.
545 	 */
546 	checkif = ip_checkinterface && (ipforwarding == 0) &&
547 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
548 	    (ip_fw_fwd_addr == NULL);
549 
550 	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
551 #define	satosin(sa)	((struct sockaddr_in *)(sa))
552 
553 #ifdef BOOTP_COMPAT
554 		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
555 			goto ours;
556 #endif
557 		/*
558 		 * If the address matches, verify that the packet
559 		 * arrived via the correct interface if checking is
560 		 * enabled.
561 		 */
562 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
563 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
564 			goto ours;
565 		/*
566 		 * Only accept broadcast packets that arrive via the
567 		 * matching interface.  Reception of forwarded directed
568 		 * broadcasts would be handled via ip_forward() and
569 		 * ether_output() with the loopback into the stack for
570 		 * SIMPLEX interfaces handled by ether_output().
571 		 */
572 		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
573 		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
574 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
575 			    pkt_dst.s_addr)
576 				goto ours;
577 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
578 				goto ours;
579 		}
580 	}
581 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
582 		struct in_multi *inm;
583 		if (ip_mrouter) {
584 			/*
585 			 * If we are acting as a multicast router, all
586 			 * incoming multicast packets are passed to the
587 			 * kernel-level multicast forwarding function.
588 			 * The packet is returned (relatively) intact; if
589 			 * ip_mforward() returns a non-zero value, the packet
590 			 * must be discarded, else it may be accepted below.
591 			 */
592 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
593 				ipstat.ips_cantforward++;
594 				m_freem(m);
595 				return;
596 			}
597 
598 			/*
599 			 * The process-level routing demon needs to receive
600 			 * all multicast IGMP packets, whether or not this
601 			 * host belongs to their destination groups.
602 			 */
603 			if (ip->ip_p == IPPROTO_IGMP)
604 				goto ours;
605 			ipstat.ips_forward++;
606 		}
607 		/*
608 		 * See if we belong to the destination multicast group on the
609 		 * arrival interface.
610 		 */
611 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
612 		if (inm == NULL) {
613 			ipstat.ips_notmember++;
614 			m_freem(m);
615 			return;
616 		}
617 		goto ours;
618 	}
619 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
620 		goto ours;
621 	if (ip->ip_dst.s_addr == INADDR_ANY)
622 		goto ours;
623 
624 #if defined(NFAITH) && 0 < NFAITH
625 	/*
626 	 * FAITH(Firewall Aided Internet Translator)
627 	 */
628 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
629 		if (ip_keepfaith) {
630 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
631 				goto ours;
632 		}
633 		m_freem(m);
634 		return;
635 	}
636 #endif
637 	/*
638 	 * Not for us; forward if possible and desirable.
639 	 */
640 	if (ipforwarding == 0) {
641 		ipstat.ips_cantforward++;
642 		m_freem(m);
643 	} else
644 		ip_forward(m, 0);
645 #ifdef IPFIREWALL_FORWARD
646 	ip_fw_fwd_addr = NULL;
647 #endif
648 	return;
649 
650 ours:
651 	/* Count the packet in the ip address stats */
652 	if (ia != NULL) {
653 		ia->ia_ifa.if_ipackets++;
654 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
655 	}
656 
657 	/*
658 	 * If offset or IP_MF are set, must reassemble.
659 	 * Otherwise, nothing need be done.
660 	 * (We could look in the reassembly queue to see
661 	 * if the packet was previously fragmented,
662 	 * but it's not worth the time; just let them time out.)
663 	 */
664 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
665 
666 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
667 		/*
668 		 * Look for queue of fragments
669 		 * of this datagram.
670 		 */
671 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
672 			if (ip->ip_id == fp->ipq_id &&
673 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
674 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
675 			    ip->ip_p == fp->ipq_p)
676 				goto found;
677 
678 		fp = 0;
679 
680 		/* check if there's a place for the new queue */
681 		if (nipq > maxnipq) {
682 		    /*
683 		     * drop something from the tail of the current queue
684 		     * before proceeding further
685 		     */
686 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
687 		    if (q == NULL) {   /* gak */
688 			for (i = 0; i < IPREASS_NHASH; i++) {
689 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
690 			    if (r) {
691 				ip_freef(&ipq[i], r);
692 				break;
693 			    }
694 			}
695 		    } else
696 			ip_freef(&ipq[sum], q);
697 		}
698 found:
699 		/*
700 		 * Adjust ip_len to not reflect header,
701 		 * convert offset of this to bytes.
702 		 */
703 		ip->ip_len -= hlen;
704 		if (ip->ip_off & IP_MF) {
705 		        /*
706 		         * Make sure that fragments have a data length
707 			 * that's a non-zero multiple of 8 bytes.
708 		         */
709 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
710 				ipstat.ips_toosmall++; /* XXX */
711 				goto bad;
712 			}
713 			m->m_flags |= M_FRAG;
714 		}
715 		ip->ip_off <<= 3;
716 
717 		/*
718 		 * Attempt reassembly; if it succeeds, proceed.
719 		 */
720 		ipstat.ips_fragments++;
721 		m->m_pkthdr.header = ip;
722 #ifdef IPDIVERT
723 		m = ip_reass(m,
724 		    &ipq[sum], fp, &divert_info, &divert_cookie);
725 #else
726 		m = ip_reass(m, &ipq[sum], fp);
727 #endif
728 		if (m == 0) {
729 #ifdef IPFIREWALL_FORWARD
730 			ip_fw_fwd_addr = NULL;
731 #endif
732 			return;
733 		}
734 		ipstat.ips_reassembled++;
735 		ip = mtod(m, struct ip *);
736 		/* Get the header length of the reassembled packet */
737 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
738 #ifdef IPDIVERT
739 		/* Restore original checksum before diverting packet */
740 		if (divert_info != 0) {
741 			ip->ip_len += hlen;
742 			HTONS(ip->ip_len);
743 			HTONS(ip->ip_off);
744 			ip->ip_sum = 0;
745 			if (hlen == sizeof(struct ip))
746 				ip->ip_sum = in_cksum_hdr(ip);
747 			else
748 				ip->ip_sum = in_cksum(m, hlen);
749 			NTOHS(ip->ip_off);
750 			NTOHS(ip->ip_len);
751 			ip->ip_len -= hlen;
752 		}
753 #endif
754 	} else
755 		ip->ip_len -= hlen;
756 
757 #ifdef IPDIVERT
758 	/*
759 	 * Divert or tee packet to the divert protocol if required.
760 	 *
761 	 * If divert_info is zero then cookie should be too, so we shouldn't
762 	 * need to clear them here.  Assume divert_packet() does so also.
763 	 */
764 	if (divert_info != 0) {
765 		struct mbuf *clone = NULL;
766 
767 		/* Clone packet if we're doing a 'tee' */
768 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
769 			clone = m_dup(m, M_DONTWAIT);
770 
771 		/* Restore packet header fields to original values */
772 		ip->ip_len += hlen;
773 		HTONS(ip->ip_len);
774 		HTONS(ip->ip_off);
775 
776 		/* Deliver packet to divert input routine */
777 		ip_divert_cookie = divert_cookie;
778 		divert_packet(m, 1, divert_info & 0xffff);
779 		ipstat.ips_delivered++;
780 
781 		/* If 'tee', continue with original packet */
782 		if (clone == NULL)
783 			return;
784 		m = clone;
785 		ip = mtod(m, struct ip *);
786 	}
787 #endif
788 
789 	/*
790 	 * Switch out to protocol's input routine.
791 	 */
792 	ipstat.ips_delivered++;
793     {
794 	int off = hlen, nh = ip->ip_p;
795 
796 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
797 #ifdef	IPFIREWALL_FORWARD
798 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
799 #endif
800 	return;
801     }
802 bad:
803 #ifdef	IPFIREWALL_FORWARD
804 	ip_fw_fwd_addr = NULL;
805 #endif
806 	m_freem(m);
807 }
808 
809 /*
810  * IP software interrupt routine - to go away sometime soon
811  */
812 static void
813 ipintr(void)
814 {
815 	struct mbuf *m;
816 
817 	while (1) {
818 		IF_DEQUEUE(&ipintrq, m);
819 		if (m == 0)
820 			return;
821 		ip_input(m);
822 	}
823 }
824 
825 /*
826  * Take incoming datagram fragment and try to reassemble it into
827  * whole datagram.  If a chain for reassembly of this datagram already
828  * exists, then it is given as fp; otherwise have to make a chain.
829  *
830  * When IPDIVERT enabled, keep additional state with each packet that
831  * tells us if we need to divert or tee the packet we're building.
832  */
833 
834 static struct mbuf *
835 #ifdef IPDIVERT
836 ip_reass(m, head, fp, divinfo, divcookie)
837 #else
838 ip_reass(m, head, fp)
839 #endif
840 	struct mbuf *m;
841 	struct ipqhead *head;
842 	struct ipq *fp;
843 #ifdef IPDIVERT
844 	u_int32_t *divinfo;
845 	u_int16_t *divcookie;
846 #endif
847 {
848 	struct ip *ip = mtod(m, struct ip *);
849 	register struct mbuf *p, *q, *nq;
850 	struct mbuf *t;
851 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
852 	int i, next;
853 
854 	/*
855 	 * Presence of header sizes in mbufs
856 	 * would confuse code below.
857 	 */
858 	m->m_data += hlen;
859 	m->m_len -= hlen;
860 
861 	/*
862 	 * If first fragment to arrive, create a reassembly queue.
863 	 */
864 	if (fp == 0) {
865 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
866 			goto dropfrag;
867 		fp = mtod(t, struct ipq *);
868 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
869 		nipq++;
870 		fp->ipq_ttl = IPFRAGTTL;
871 		fp->ipq_p = ip->ip_p;
872 		fp->ipq_id = ip->ip_id;
873 		fp->ipq_src = ip->ip_src;
874 		fp->ipq_dst = ip->ip_dst;
875 		fp->ipq_frags = m;
876 		m->m_nextpkt = NULL;
877 #ifdef IPDIVERT
878 		fp->ipq_div_info = 0;
879 		fp->ipq_div_cookie = 0;
880 #endif
881 		goto inserted;
882 	}
883 
884 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
885 
886 	/*
887 	 * Find a segment which begins after this one does.
888 	 */
889 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
890 		if (GETIP(q)->ip_off > ip->ip_off)
891 			break;
892 
893 	/*
894 	 * If there is a preceding segment, it may provide some of
895 	 * our data already.  If so, drop the data from the incoming
896 	 * segment.  If it provides all of our data, drop us, otherwise
897 	 * stick new segment in the proper place.
898 	 *
899 	 * If some of the data is dropped from the the preceding
900 	 * segment, then it's checksum is invalidated.
901 	 */
902 	if (p) {
903 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
904 		if (i > 0) {
905 			if (i >= ip->ip_len)
906 				goto dropfrag;
907 			m_adj(m, i);
908 			m->m_pkthdr.csum_flags = 0;
909 			ip->ip_off += i;
910 			ip->ip_len -= i;
911 		}
912 		m->m_nextpkt = p->m_nextpkt;
913 		p->m_nextpkt = m;
914 	} else {
915 		m->m_nextpkt = fp->ipq_frags;
916 		fp->ipq_frags = m;
917 	}
918 
919 	/*
920 	 * While we overlap succeeding segments trim them or,
921 	 * if they are completely covered, dequeue them.
922 	 */
923 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
924 	     q = nq) {
925 		i = (ip->ip_off + ip->ip_len) -
926 		    GETIP(q)->ip_off;
927 		if (i < GETIP(q)->ip_len) {
928 			GETIP(q)->ip_len -= i;
929 			GETIP(q)->ip_off += i;
930 			m_adj(q, i);
931 			q->m_pkthdr.csum_flags = 0;
932 			break;
933 		}
934 		nq = q->m_nextpkt;
935 		m->m_nextpkt = nq;
936 		m_freem(q);
937 	}
938 
939 inserted:
940 
941 #ifdef IPDIVERT
942 	/*
943 	 * Transfer firewall instructions to the fragment structure.
944 	 * Any fragment diverting causes the whole packet to divert.
945 	 */
946 	fp->ipq_div_info = *divinfo;
947 	fp->ipq_div_cookie = *divcookie;
948 	*divinfo = 0;
949 	*divcookie = 0;
950 #endif
951 
952 	/*
953 	 * Check for complete reassembly.
954 	 */
955 	next = 0;
956 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
957 		if (GETIP(q)->ip_off != next)
958 			return (0);
959 		next += GETIP(q)->ip_len;
960 	}
961 	/* Make sure the last packet didn't have the IP_MF flag */
962 	if (p->m_flags & M_FRAG)
963 		return (0);
964 
965 	/*
966 	 * Reassembly is complete.  Make sure the packet is a sane size.
967 	 */
968 	q = fp->ipq_frags;
969 	ip = GETIP(q);
970 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
971 		ipstat.ips_toolong++;
972 		ip_freef(head, fp);
973 		return (0);
974 	}
975 
976 	/*
977 	 * Concatenate fragments.
978 	 */
979 	m = q;
980 	t = m->m_next;
981 	m->m_next = 0;
982 	m_cat(m, t);
983 	nq = q->m_nextpkt;
984 	q->m_nextpkt = 0;
985 	for (q = nq; q != NULL; q = nq) {
986 		nq = q->m_nextpkt;
987 		q->m_nextpkt = NULL;
988 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
989 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
990 		m_cat(m, q);
991 	}
992 
993 #ifdef IPDIVERT
994 	/*
995 	 * Extract firewall instructions from the fragment structure.
996 	 */
997 	*divinfo = fp->ipq_div_info;
998 	*divcookie = fp->ipq_div_cookie;
999 #endif
1000 
1001 	/*
1002 	 * Create header for new ip packet by
1003 	 * modifying header of first packet;
1004 	 * dequeue and discard fragment reassembly header.
1005 	 * Make header visible.
1006 	 */
1007 	ip->ip_len = next;
1008 	ip->ip_src = fp->ipq_src;
1009 	ip->ip_dst = fp->ipq_dst;
1010 	TAILQ_REMOVE(head, fp, ipq_list);
1011 	nipq--;
1012 	(void) m_free(dtom(fp));
1013 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1014 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1015 	/* some debugging cruft by sklower, below, will go away soon */
1016 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1017 		register int plen = 0;
1018 		for (t = m; t; t = t->m_next)
1019 			plen += t->m_len;
1020 		m->m_pkthdr.len = plen;
1021 	}
1022 	return (m);
1023 
1024 dropfrag:
1025 #ifdef IPDIVERT
1026 	*divinfo = 0;
1027 	*divcookie = 0;
1028 #endif
1029 	ipstat.ips_fragdropped++;
1030 	m_freem(m);
1031 	return (0);
1032 
1033 #undef GETIP
1034 }
1035 
1036 /*
1037  * Free a fragment reassembly header and all
1038  * associated datagrams.
1039  */
1040 static void
1041 ip_freef(fhp, fp)
1042 	struct ipqhead *fhp;
1043 	struct ipq *fp;
1044 {
1045 	register struct mbuf *q;
1046 
1047 	while (fp->ipq_frags) {
1048 		q = fp->ipq_frags;
1049 		fp->ipq_frags = q->m_nextpkt;
1050 		m_freem(q);
1051 	}
1052 	TAILQ_REMOVE(fhp, fp, ipq_list);
1053 	(void) m_free(dtom(fp));
1054 	nipq--;
1055 }
1056 
1057 /*
1058  * IP timer processing;
1059  * if a timer expires on a reassembly
1060  * queue, discard it.
1061  */
1062 void
1063 ip_slowtimo()
1064 {
1065 	register struct ipq *fp;
1066 	int s = splnet();
1067 	int i;
1068 
1069 	for (i = 0; i < IPREASS_NHASH; i++) {
1070 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1071 			struct ipq *fpp;
1072 
1073 			fpp = fp;
1074 			fp = TAILQ_NEXT(fp, ipq_list);
1075 			if(--fpp->ipq_ttl == 0) {
1076 				ipstat.ips_fragtimeout++;
1077 				ip_freef(&ipq[i], fpp);
1078 			}
1079 		}
1080 	}
1081 	ipflow_slowtimo();
1082 	splx(s);
1083 }
1084 
1085 /*
1086  * Drain off all datagram fragments.
1087  */
1088 void
1089 ip_drain()
1090 {
1091 	int     i;
1092 
1093 	for (i = 0; i < IPREASS_NHASH; i++) {
1094 		while(!TAILQ_EMPTY(&ipq[i])) {
1095 			ipstat.ips_fragdropped++;
1096 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1097 		}
1098 	}
1099 	in_rtqdrain();
1100 }
1101 
1102 /*
1103  * Do option processing on a datagram,
1104  * possibly discarding it if bad options are encountered,
1105  * or forwarding it if source-routed.
1106  * Returns 1 if packet has been forwarded/freed,
1107  * 0 if the packet should be processed further.
1108  */
1109 static int
1110 ip_dooptions(m)
1111 	struct mbuf *m;
1112 {
1113 	register struct ip *ip = mtod(m, struct ip *);
1114 	register u_char *cp;
1115 	register struct ip_timestamp *ipt;
1116 	register struct in_ifaddr *ia;
1117 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1118 	struct in_addr *sin, dst;
1119 	n_time ntime;
1120 
1121 	dst = ip->ip_dst;
1122 	cp = (u_char *)(ip + 1);
1123 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1124 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1125 		opt = cp[IPOPT_OPTVAL];
1126 		if (opt == IPOPT_EOL)
1127 			break;
1128 		if (opt == IPOPT_NOP)
1129 			optlen = 1;
1130 		else {
1131 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1132 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1133 				goto bad;
1134 			}
1135 			optlen = cp[IPOPT_OLEN];
1136 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1137 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1138 				goto bad;
1139 			}
1140 		}
1141 		switch (opt) {
1142 
1143 		default:
1144 			break;
1145 
1146 		/*
1147 		 * Source routing with record.
1148 		 * Find interface with current destination address.
1149 		 * If none on this machine then drop if strictly routed,
1150 		 * or do nothing if loosely routed.
1151 		 * Record interface address and bring up next address
1152 		 * component.  If strictly routed make sure next
1153 		 * address is on directly accessible net.
1154 		 */
1155 		case IPOPT_LSRR:
1156 		case IPOPT_SSRR:
1157 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1158 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1159 				goto bad;
1160 			}
1161 			ipaddr.sin_addr = ip->ip_dst;
1162 			ia = (struct in_ifaddr *)
1163 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1164 			if (ia == 0) {
1165 				if (opt == IPOPT_SSRR) {
1166 					type = ICMP_UNREACH;
1167 					code = ICMP_UNREACH_SRCFAIL;
1168 					goto bad;
1169 				}
1170 				if (!ip_dosourceroute)
1171 					goto nosourcerouting;
1172 				/*
1173 				 * Loose routing, and not at next destination
1174 				 * yet; nothing to do except forward.
1175 				 */
1176 				break;
1177 			}
1178 			off--;			/* 0 origin */
1179 			if (off > optlen - (int)sizeof(struct in_addr)) {
1180 				/*
1181 				 * End of source route.  Should be for us.
1182 				 */
1183 				if (!ip_acceptsourceroute)
1184 					goto nosourcerouting;
1185 				save_rte(cp, ip->ip_src);
1186 				break;
1187 			}
1188 
1189 			if (!ip_dosourceroute) {
1190 				if (ipforwarding) {
1191 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1192 					/*
1193 					 * Acting as a router, so generate ICMP
1194 					 */
1195 nosourcerouting:
1196 					strcpy(buf, inet_ntoa(ip->ip_dst));
1197 					log(LOG_WARNING,
1198 					    "attempted source route from %s to %s\n",
1199 					    inet_ntoa(ip->ip_src), buf);
1200 					type = ICMP_UNREACH;
1201 					code = ICMP_UNREACH_SRCFAIL;
1202 					goto bad;
1203 				} else {
1204 					/*
1205 					 * Not acting as a router, so silently drop.
1206 					 */
1207 					ipstat.ips_cantforward++;
1208 					m_freem(m);
1209 					return (1);
1210 				}
1211 			}
1212 
1213 			/*
1214 			 * locate outgoing interface
1215 			 */
1216 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1217 			    sizeof(ipaddr.sin_addr));
1218 
1219 			if (opt == IPOPT_SSRR) {
1220 #define	INA	struct in_ifaddr *
1221 #define	SA	struct sockaddr *
1222 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1223 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1224 			} else
1225 				ia = ip_rtaddr(ipaddr.sin_addr);
1226 			if (ia == 0) {
1227 				type = ICMP_UNREACH;
1228 				code = ICMP_UNREACH_SRCFAIL;
1229 				goto bad;
1230 			}
1231 			ip->ip_dst = ipaddr.sin_addr;
1232 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1233 			    sizeof(struct in_addr));
1234 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1235 			/*
1236 			 * Let ip_intr's mcast routing check handle mcast pkts
1237 			 */
1238 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1239 			break;
1240 
1241 		case IPOPT_RR:
1242 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1243 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1244 				goto bad;
1245 			}
1246 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1247 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1248 				goto bad;
1249 			}
1250 			/*
1251 			 * If no space remains, ignore.
1252 			 */
1253 			off--;			/* 0 origin */
1254 			if (off > optlen - (int)sizeof(struct in_addr))
1255 				break;
1256 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1257 			    sizeof(ipaddr.sin_addr));
1258 			/*
1259 			 * locate outgoing interface; if we're the destination,
1260 			 * use the incoming interface (should be same).
1261 			 */
1262 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1263 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1264 				type = ICMP_UNREACH;
1265 				code = ICMP_UNREACH_HOST;
1266 				goto bad;
1267 			}
1268 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1269 			    sizeof(struct in_addr));
1270 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1271 			break;
1272 
1273 		case IPOPT_TS:
1274 			code = cp - (u_char *)ip;
1275 			ipt = (struct ip_timestamp *)cp;
1276 			if (ipt->ipt_len < 5)
1277 				goto bad;
1278 			if (ipt->ipt_ptr >
1279 			    ipt->ipt_len - (int)sizeof(int32_t)) {
1280 				if (++ipt->ipt_oflw == 0)
1281 					goto bad;
1282 				break;
1283 			}
1284 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1285 			switch (ipt->ipt_flg) {
1286 
1287 			case IPOPT_TS_TSONLY:
1288 				break;
1289 
1290 			case IPOPT_TS_TSANDADDR:
1291 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1292 				    sizeof(struct in_addr) > ipt->ipt_len)
1293 					goto bad;
1294 				ipaddr.sin_addr = dst;
1295 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1296 							    m->m_pkthdr.rcvif);
1297 				if (ia == 0)
1298 					continue;
1299 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1300 				    sizeof(struct in_addr));
1301 				ipt->ipt_ptr += sizeof(struct in_addr);
1302 				break;
1303 
1304 			case IPOPT_TS_PRESPEC:
1305 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1306 				    sizeof(struct in_addr) > ipt->ipt_len)
1307 					goto bad;
1308 				(void)memcpy(&ipaddr.sin_addr, sin,
1309 				    sizeof(struct in_addr));
1310 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1311 					continue;
1312 				ipt->ipt_ptr += sizeof(struct in_addr);
1313 				break;
1314 
1315 			default:
1316 				goto bad;
1317 			}
1318 			ntime = iptime();
1319 			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1320 			    sizeof(n_time));
1321 			ipt->ipt_ptr += sizeof(n_time);
1322 		}
1323 	}
1324 	if (forward && ipforwarding) {
1325 		ip_forward(m, 1);
1326 		return (1);
1327 	}
1328 	return (0);
1329 bad:
1330 	icmp_error(m, type, code, 0, 0);
1331 	ipstat.ips_badoptions++;
1332 	return (1);
1333 }
1334 
1335 /*
1336  * Given address of next destination (final or next hop),
1337  * return internet address info of interface to be used to get there.
1338  */
1339 static struct in_ifaddr *
1340 ip_rtaddr(dst)
1341 	 struct in_addr dst;
1342 {
1343 	register struct sockaddr_in *sin;
1344 
1345 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1346 
1347 	if (ipforward_rt.ro_rt == 0 ||
1348 	    !(ipforward_rt.ro_rt->rt_flags & RTF_UP) ||
1349 	    dst.s_addr != sin->sin_addr.s_addr) {
1350 		if (ipforward_rt.ro_rt) {
1351 			RTFREE(ipforward_rt.ro_rt);
1352 			ipforward_rt.ro_rt = 0;
1353 		}
1354 		sin->sin_family = AF_INET;
1355 		sin->sin_len = sizeof(*sin);
1356 		sin->sin_addr = dst;
1357 
1358 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1359 	}
1360 	if (ipforward_rt.ro_rt == 0)
1361 		return ((struct in_ifaddr *)0);
1362 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1363 }
1364 
1365 /*
1366  * Save incoming source route for use in replies,
1367  * to be picked up later by ip_srcroute if the receiver is interested.
1368  */
1369 void
1370 save_rte(option, dst)
1371 	u_char *option;
1372 	struct in_addr dst;
1373 {
1374 	unsigned olen;
1375 
1376 	olen = option[IPOPT_OLEN];
1377 #ifdef DIAGNOSTIC
1378 	if (ipprintfs)
1379 		printf("save_rte: olen %d\n", olen);
1380 #endif
1381 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1382 		return;
1383 	bcopy(option, ip_srcrt.srcopt, olen);
1384 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1385 	ip_srcrt.dst = dst;
1386 }
1387 
1388 /*
1389  * Retrieve incoming source route for use in replies,
1390  * in the same form used by setsockopt.
1391  * The first hop is placed before the options, will be removed later.
1392  */
1393 struct mbuf *
1394 ip_srcroute()
1395 {
1396 	register struct in_addr *p, *q;
1397 	register struct mbuf *m;
1398 
1399 	if (ip_nhops == 0)
1400 		return ((struct mbuf *)0);
1401 	m = m_get(M_DONTWAIT, MT_HEADER);
1402 	if (m == 0)
1403 		return ((struct mbuf *)0);
1404 
1405 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1406 
1407 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1408 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1409 	    OPTSIZ;
1410 #ifdef DIAGNOSTIC
1411 	if (ipprintfs)
1412 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1413 #endif
1414 
1415 	/*
1416 	 * First save first hop for return route
1417 	 */
1418 	p = &ip_srcrt.route[ip_nhops - 1];
1419 	*(mtod(m, struct in_addr *)) = *p--;
1420 #ifdef DIAGNOSTIC
1421 	if (ipprintfs)
1422 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1423 #endif
1424 
1425 	/*
1426 	 * Copy option fields and padding (nop) to mbuf.
1427 	 */
1428 	ip_srcrt.nop = IPOPT_NOP;
1429 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1430 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1431 	    &ip_srcrt.nop, OPTSIZ);
1432 	q = (struct in_addr *)(mtod(m, caddr_t) +
1433 	    sizeof(struct in_addr) + OPTSIZ);
1434 #undef OPTSIZ
1435 	/*
1436 	 * Record return path as an IP source route,
1437 	 * reversing the path (pointers are now aligned).
1438 	 */
1439 	while (p >= ip_srcrt.route) {
1440 #ifdef DIAGNOSTIC
1441 		if (ipprintfs)
1442 			printf(" %lx", (u_long)ntohl(q->s_addr));
1443 #endif
1444 		*q++ = *p--;
1445 	}
1446 	/*
1447 	 * Last hop goes to final destination.
1448 	 */
1449 	*q = ip_srcrt.dst;
1450 #ifdef DIAGNOSTIC
1451 	if (ipprintfs)
1452 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1453 #endif
1454 	return (m);
1455 }
1456 
1457 /*
1458  * Strip out IP options, at higher
1459  * level protocol in the kernel.
1460  * Second argument is buffer to which options
1461  * will be moved, and return value is their length.
1462  * XXX should be deleted; last arg currently ignored.
1463  */
1464 void
1465 ip_stripoptions(m, mopt)
1466 	register struct mbuf *m;
1467 	struct mbuf *mopt;
1468 {
1469 	register int i;
1470 	struct ip *ip = mtod(m, struct ip *);
1471 	register caddr_t opts;
1472 	int olen;
1473 
1474 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1475 	opts = (caddr_t)(ip + 1);
1476 	i = m->m_len - (sizeof (struct ip) + olen);
1477 	bcopy(opts + olen, opts, (unsigned)i);
1478 	m->m_len -= olen;
1479 	if (m->m_flags & M_PKTHDR)
1480 		m->m_pkthdr.len -= olen;
1481 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1482 }
1483 
1484 u_char inetctlerrmap[PRC_NCMDS] = {
1485 	0,		0,		0,		0,
1486 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1487 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1488 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1489 	0,		0,		0,		0,
1490 	ENOPROTOOPT,	ENETRESET
1491 };
1492 
1493 /*
1494  * Forward a packet.  If some error occurs return the sender
1495  * an icmp packet.  Note we can't always generate a meaningful
1496  * icmp message because icmp doesn't have a large enough repertoire
1497  * of codes and types.
1498  *
1499  * If not forwarding, just drop the packet.  This could be confusing
1500  * if ipforwarding was zero but some routing protocol was advancing
1501  * us as a gateway to somewhere.  However, we must let the routing
1502  * protocol deal with that.
1503  *
1504  * The srcrt parameter indicates whether the packet is being forwarded
1505  * via a source route.
1506  */
1507 static void
1508 ip_forward(m, srcrt)
1509 	struct mbuf *m;
1510 	int srcrt;
1511 {
1512 	register struct ip *ip = mtod(m, struct ip *);
1513 	register struct rtentry *rt;
1514 	int error, type = 0, code = 0;
1515 	struct mbuf *mcopy;
1516 	n_long dest;
1517 	struct ifnet *destifp;
1518 #ifdef IPSEC
1519 	struct ifnet dummyifp;
1520 #endif
1521 
1522 	dest = 0;
1523 #ifdef DIAGNOSTIC
1524 	if (ipprintfs)
1525 		printf("forward: src %lx dst %lx ttl %x\n",
1526 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1527 		    ip->ip_ttl);
1528 #endif
1529 
1530 
1531 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1532 		ipstat.ips_cantforward++;
1533 		m_freem(m);
1534 		return;
1535 	}
1536 #ifdef IPSTEALTH
1537 	if (!ipstealth) {
1538 #endif
1539 		if (ip->ip_ttl <= IPTTLDEC) {
1540 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1541 			    dest, 0);
1542 			return;
1543 		}
1544 #ifdef IPSTEALTH
1545 	}
1546 #endif
1547 
1548 	if (ip_rtaddr(ip->ip_dst) == 0) {
1549 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1550 		return;
1551 	} else
1552 		rt = ipforward_rt.ro_rt;
1553 
1554 	/*
1555 	 * Save the IP header and at most 8 bytes of the payload,
1556 	 * in case we need to generate an ICMP message to the src.
1557 	 *
1558 	 * We don't use m_copy() because it might return a reference
1559 	 * to a shared cluster. Both this function and ip_output()
1560 	 * assume exclusive access to the IP header in `m', so any
1561 	 * data in a cluster may change before we reach icmp_error().
1562 	 */
1563 	MGET(mcopy, M_DONTWAIT, m->m_type);
1564 	if (mcopy != NULL) {
1565 		M_COPY_PKTHDR(mcopy, m);
1566 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1567 		    (int)ip->ip_len);
1568 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1569 	}
1570 
1571 #ifdef IPSTEALTH
1572 	if (!ipstealth) {
1573 #endif
1574 		ip->ip_ttl -= IPTTLDEC;
1575 #ifdef IPSTEALTH
1576 	}
1577 #endif
1578 
1579 	/*
1580 	 * If forwarding packet using same interface that it came in on,
1581 	 * perhaps should send a redirect to sender to shortcut a hop.
1582 	 * Only send redirect if source is sending directly to us,
1583 	 * and if packet was not source routed (or has any options).
1584 	 * Also, don't send redirect if forwarding using a default route
1585 	 * or a route modified by a redirect.
1586 	 */
1587 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1588 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1589 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1590 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1591 	    ipsendredirects && !srcrt) {
1592 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1593 		u_long src = ntohl(ip->ip_src.s_addr);
1594 
1595 		if (RTA(rt) &&
1596 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1597 		    if (rt->rt_flags & RTF_GATEWAY)
1598 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1599 		    else
1600 			dest = ip->ip_dst.s_addr;
1601 		    /* Router requirements says to only send host redirects */
1602 		    type = ICMP_REDIRECT;
1603 		    code = ICMP_REDIRECT_HOST;
1604 #ifdef DIAGNOSTIC
1605 		    if (ipprintfs)
1606 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1607 #endif
1608 		}
1609 	}
1610 
1611 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1612 			  IP_FORWARDING, 0);
1613 	if (error)
1614 		ipstat.ips_cantforward++;
1615 	else {
1616 		ipstat.ips_forward++;
1617 		if (type)
1618 			ipstat.ips_redirectsent++;
1619 		else {
1620 			if (mcopy) {
1621 				ipflow_create(&ipforward_rt, mcopy);
1622 				m_freem(mcopy);
1623 			}
1624 			return;
1625 		}
1626 	}
1627 	if (mcopy == NULL)
1628 		return;
1629 	destifp = NULL;
1630 
1631 	switch (error) {
1632 
1633 	case 0:				/* forwarded, but need redirect */
1634 		/* type, code set above */
1635 		break;
1636 
1637 	case ENETUNREACH:		/* shouldn't happen, checked above */
1638 	case EHOSTUNREACH:
1639 	case ENETDOWN:
1640 	case EHOSTDOWN:
1641 	default:
1642 		type = ICMP_UNREACH;
1643 		code = ICMP_UNREACH_HOST;
1644 		break;
1645 
1646 	case EMSGSIZE:
1647 		type = ICMP_UNREACH;
1648 		code = ICMP_UNREACH_NEEDFRAG;
1649 #ifndef IPSEC
1650 		if (ipforward_rt.ro_rt)
1651 			destifp = ipforward_rt.ro_rt->rt_ifp;
1652 #else
1653 		/*
1654 		 * If the packet is routed over IPsec tunnel, tell the
1655 		 * originator the tunnel MTU.
1656 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1657 		 * XXX quickhack!!!
1658 		 */
1659 		if (ipforward_rt.ro_rt) {
1660 			struct secpolicy *sp = NULL;
1661 			int ipsecerror;
1662 			int ipsechdr;
1663 			struct route *ro;
1664 
1665 			sp = ipsec4_getpolicybyaddr(mcopy,
1666 						    IPSEC_DIR_OUTBOUND,
1667 			                            IP_FORWARDING,
1668 			                            &ipsecerror);
1669 
1670 			if (sp == NULL)
1671 				destifp = ipforward_rt.ro_rt->rt_ifp;
1672 			else {
1673 				/* count IPsec header size */
1674 				ipsechdr = ipsec4_hdrsiz(mcopy,
1675 							 IPSEC_DIR_OUTBOUND,
1676 							 NULL);
1677 
1678 				/*
1679 				 * find the correct route for outer IPv4
1680 				 * header, compute tunnel MTU.
1681 				 *
1682 				 * XXX BUG ALERT
1683 				 * The "dummyifp" code relies upon the fact
1684 				 * that icmp_error() touches only ifp->if_mtu.
1685 				 */
1686 				/*XXX*/
1687 				destifp = NULL;
1688 				if (sp->req != NULL
1689 				 && sp->req->sav != NULL
1690 				 && sp->req->sav->sah != NULL) {
1691 					ro = &sp->req->sav->sah->sa_route;
1692 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1693 						dummyifp.if_mtu =
1694 						    ro->ro_rt->rt_ifp->if_mtu;
1695 						dummyifp.if_mtu -= ipsechdr;
1696 						destifp = &dummyifp;
1697 					}
1698 				}
1699 
1700 				key_freesp(sp);
1701 			}
1702 		}
1703 #endif /*IPSEC*/
1704 		ipstat.ips_cantfrag++;
1705 		break;
1706 
1707 	case ENOBUFS:
1708 		type = ICMP_SOURCEQUENCH;
1709 		code = 0;
1710 		break;
1711 
1712 	case EACCES:			/* ipfw denied packet */
1713 		m_freem(mcopy);
1714 		return;
1715 	}
1716 	icmp_error(mcopy, type, code, dest, destifp);
1717 }
1718 
1719 void
1720 ip_savecontrol(inp, mp, ip, m)
1721 	register struct inpcb *inp;
1722 	register struct mbuf **mp;
1723 	register struct ip *ip;
1724 	register struct mbuf *m;
1725 {
1726 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1727 		struct timeval tv;
1728 
1729 		microtime(&tv);
1730 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1731 			SCM_TIMESTAMP, SOL_SOCKET);
1732 		if (*mp)
1733 			mp = &(*mp)->m_next;
1734 	}
1735 	if (inp->inp_flags & INP_RECVDSTADDR) {
1736 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1737 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1738 		if (*mp)
1739 			mp = &(*mp)->m_next;
1740 	}
1741 #ifdef notyet
1742 	/* XXX
1743 	 * Moving these out of udp_input() made them even more broken
1744 	 * than they already were.
1745 	 */
1746 	/* options were tossed already */
1747 	if (inp->inp_flags & INP_RECVOPTS) {
1748 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1749 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1750 		if (*mp)
1751 			mp = &(*mp)->m_next;
1752 	}
1753 	/* ip_srcroute doesn't do what we want here, need to fix */
1754 	if (inp->inp_flags & INP_RECVRETOPTS) {
1755 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1756 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1757 		if (*mp)
1758 			mp = &(*mp)->m_next;
1759 	}
1760 #endif
1761 	if (inp->inp_flags & INP_RECVIF) {
1762 		struct ifnet *ifp;
1763 		struct sdlbuf {
1764 			struct sockaddr_dl sdl;
1765 			u_char	pad[32];
1766 		} sdlbuf;
1767 		struct sockaddr_dl *sdp;
1768 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1769 
1770 		if (((ifp = m->m_pkthdr.rcvif))
1771 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1772 			sdp = (struct sockaddr_dl *)(ifnet_addrs
1773 					[ifp->if_index - 1]->ifa_addr);
1774 			/*
1775 			 * Change our mind and don't try copy.
1776 			 */
1777 			if ((sdp->sdl_family != AF_LINK)
1778 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1779 				goto makedummy;
1780 			}
1781 			bcopy(sdp, sdl2, sdp->sdl_len);
1782 		} else {
1783 makedummy:
1784 			sdl2->sdl_len
1785 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1786 			sdl2->sdl_family = AF_LINK;
1787 			sdl2->sdl_index = 0;
1788 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1789 		}
1790 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1791 			IP_RECVIF, IPPROTO_IP);
1792 		if (*mp)
1793 			mp = &(*mp)->m_next;
1794 	}
1795 }
1796 
1797 int
1798 ip_rsvp_init(struct socket *so)
1799 {
1800 	if (so->so_type != SOCK_RAW ||
1801 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1802 	  return EOPNOTSUPP;
1803 
1804 	if (ip_rsvpd != NULL)
1805 	  return EADDRINUSE;
1806 
1807 	ip_rsvpd = so;
1808 	/*
1809 	 * This may seem silly, but we need to be sure we don't over-increment
1810 	 * the RSVP counter, in case something slips up.
1811 	 */
1812 	if (!ip_rsvp_on) {
1813 		ip_rsvp_on = 1;
1814 		rsvp_on++;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 int
1821 ip_rsvp_done(void)
1822 {
1823 	ip_rsvpd = NULL;
1824 	/*
1825 	 * This may seem silly, but we need to be sure we don't over-decrement
1826 	 * the RSVP counter, in case something slips up.
1827 	 */
1828 	if (ip_rsvp_on) {
1829 		ip_rsvp_on = 0;
1830 		rsvp_on--;
1831 	}
1832 	return 0;
1833 }
1834