xref: /freebsd/sys/netinet/ip_input.c (revision 991633af2eaf0dbf661ab974973d69ed472e9653)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/rwlock.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 #include <sys/vimage.h>
57 
58 #include <net/pfil.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/route.h>
64 #include <net/netisr.h>
65 #include <net/vnet.h>
66 #include <net/flowtable.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #include <netinet/vinet.h>
78 #ifdef DEV_CARP
79 #include <netinet/ip_carp.h>
80 #endif
81 #ifdef IPSEC
82 #include <netinet/ip_ipsec.h>
83 #endif /* IPSEC */
84 
85 #include <sys/socketvar.h>
86 
87 #include <security/mac/mac_framework.h>
88 
89 #ifdef CTASSERT
90 CTASSERT(sizeof(struct ip) == 20);
91 #endif
92 
93 #ifndef VIMAGE
94 #ifndef VIMAGE_GLOBALS
95 struct vnet_inet vnet_inet_0;
96 #endif
97 #endif
98 
99 #ifdef VIMAGE_GLOBALS
100 static int	ipsendredirects;
101 static int	ip_checkinterface;
102 static int	ip_keepfaith;
103 static int	ip_sendsourcequench;
104 int	ip_defttl;
105 int	ip_do_randomid;
106 int	ipforwarding;
107 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
108 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
109 u_long 	in_ifaddrhmask;				/* mask for hash table */
110 struct ipstat ipstat;
111 static int ip_rsvp_on;
112 struct socket *ip_rsvpd;
113 int	rsvp_on;
114 static struct ipqhead ipq[IPREASS_NHASH];
115 static int	maxnipq;	/* Administrative limit on # reass queues. */
116 static int	maxfragsperpacket;
117 int	ipstealth;
118 static int	nipq;	/* Total # of reass queues */
119 #endif
120 
121 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
122     forwarding, CTLFLAG_RW, ipforwarding, 0,
123     "Enable IP forwarding between interfaces");
124 
125 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
126     redirect, CTLFLAG_RW, ipsendredirects, 0,
127     "Enable sending IP redirects");
128 
129 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
130     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
131 
132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
133     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
134     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
135 
136 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
137     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
138     "Enable the transmission of source quench packets");
139 
140 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
141     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
142 
143 /*
144  * XXX - Setting ip_checkinterface mostly implements the receive side of
145  * the Strong ES model described in RFC 1122, but since the routing table
146  * and transmit implementation do not implement the Strong ES model,
147  * setting this to 1 results in an odd hybrid.
148  *
149  * XXX - ip_checkinterface currently must be disabled if you use ipnat
150  * to translate the destination address to another local interface.
151  *
152  * XXX - ip_checkinterface must be disabled if you add IP aliases
153  * to the loopback interface instead of the interface where the
154  * packets for those addresses are received.
155  */
156 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
157     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
158     "Verify packet arrives on correct interface");
159 
160 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
161 
162 static struct netisr_handler ip_nh = {
163 	.nh_name = "ip",
164 	.nh_handler = ip_input,
165 	.nh_proto = NETISR_IP,
166 	.nh_policy = NETISR_POLICY_FLOW,
167 };
168 
169 extern	struct domain inetdomain;
170 extern	struct protosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 
173 
174 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176 
177 #ifdef VIMAGE_GLOBALS
178 static uma_zone_t ipq_zone;
179 #endif
180 static struct mtx ipqlock;
181 
182 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
183 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
184 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
185 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
186 
187 static void	maxnipq_update(void);
188 static void	ipq_zone_change(void *);
189 
190 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
191     CTLFLAG_RD, nipq, 0,
192     "Current number of IPv4 fragment reassembly queue entries");
193 
194 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
195     CTLFLAG_RW, maxfragsperpacket, 0,
196     "Maximum number of IPv4 fragments allowed per packet");
197 
198 struct callout	ipport_tick_callout;
199 
200 #ifdef IPCTL_DEFMTU
201 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
202     &ip_mtu, 0, "Default MTU");
203 #endif
204 
205 #ifdef IPSTEALTH
206 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
207     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
208 #endif
209 #ifdef FLOWTABLE
210 #ifdef VIMAGE_GLOBALS
211 static int ip_output_flowtable_size;
212 struct flowtable *ip_ft;
213 #endif
214 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, output_flowtable_size,
215     CTLFLAG_RDTUN, ip_output_flowtable_size, 2048,
216     "number of entries in the per-cpu output flow caches");
217 #endif
218 
219 #ifdef VIMAGE_GLOBALS
220 int fw_one_pass;
221 #endif
222 
223 static void	ip_freef(struct ipqhead *, struct ipq *);
224 
225 #ifndef VIMAGE_GLOBALS
226 static void vnet_inet_register(void);
227 
228 static const vnet_modinfo_t vnet_inet_modinfo = {
229 	.vmi_id		= VNET_MOD_INET,
230 	.vmi_name	= "inet",
231 	.vmi_size	= sizeof(struct vnet_inet)
232 };
233 
234 static void vnet_inet_register()
235 {
236 
237 	vnet_mod_register(&vnet_inet_modinfo);
238 }
239 
240 SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
241 #endif
242 
243 static int
244 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
245 {
246 	int error, qlimit;
247 
248 	netisr_getqlimit(&ip_nh, &qlimit);
249 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
250 	if (error || !req->newptr)
251 		return (error);
252 	if (qlimit < 1)
253 		return (EINVAL);
254 	return (netisr_setqlimit(&ip_nh, qlimit));
255 }
256 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
257     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
258     "Maximum size of the IP input queue");
259 
260 static int
261 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
262 {
263 	u_int64_t qdrops_long;
264 	int error, qdrops;
265 
266 	netisr_getqdrops(&ip_nh, &qdrops_long);
267 	qdrops = qdrops_long;
268 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
269 	if (error || !req->newptr)
270 		return (error);
271 	if (qdrops != 0)
272 		return (EINVAL);
273 	netisr_clearqdrops(&ip_nh);
274 	return (0);
275 }
276 
277 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
278     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
279     "Number of packets dropped from the IP input queue");
280 
281 /*
282  * IP initialization: fill in IP protocol switch table.
283  * All protocols not implemented in kernel go to raw IP protocol handler.
284  */
285 void
286 ip_init(void)
287 {
288 	INIT_VNET_INET(curvnet);
289 	struct protosw *pr;
290 	int i;
291 
292 	V_ipsendredirects = 1; /* XXX */
293 	V_ip_checkinterface = 0;
294 	V_ip_keepfaith = 0;
295 	V_ip_sendsourcequench = 0;
296 	V_rsvp_on = 0;
297 	V_ip_defttl = IPDEFTTL;
298 	V_ip_do_randomid = 0;
299 	V_ip_id = time_second & 0xffff;
300 	V_ipforwarding = 0;
301 	V_ipstealth = 0;
302 	V_nipq = 0;	/* Total # of reass queues */
303 
304 	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
305 	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
306 	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
307 	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
308 	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
309 	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
310 	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
311 	V_ipport_reservedlow = 0;
312 	V_ipport_randomized = 1;	/* user controlled via sysctl */
313 	V_ipport_randomcps = 10;	/* user controlled via sysctl */
314 	V_ipport_randomtime = 45;	/* user controlled via sysctl */
315 	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
316 
317 	V_fw_one_pass = 1;
318 
319 #ifdef NOTYET
320 	/* XXX global static but not instantiated in this file */
321 	V_ipfastforward_active = 0;
322 	V_subnetsarelocal = 0;
323 	V_sameprefixcarponly = 0;
324 #endif
325 
326 	TAILQ_INIT(&V_in_ifaddrhead);
327 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
328 
329 	/* Initialize IP reassembly queue. */
330 	for (i = 0; i < IPREASS_NHASH; i++)
331 		TAILQ_INIT(&V_ipq[i]);
332 	V_maxnipq = nmbclusters / 32;
333 	V_maxfragsperpacket = 16;
334 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
335 	    NULL, UMA_ALIGN_PTR, 0);
336 	maxnipq_update();
337 
338 #ifdef FLOWTABLE
339 	V_ip_output_flowtable_size = 2048;
340 	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
341 	    &V_ip_output_flowtable_size);
342 	V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
343 #endif
344 
345 	/* Skip initialization of globals for non-default instances. */
346 	if (!IS_DEFAULT_VNET(curvnet))
347 		return;
348 
349 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
350 	if (pr == NULL)
351 		panic("ip_init: PF_INET not found");
352 
353 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
354 	for (i = 0; i < IPPROTO_MAX; i++)
355 		ip_protox[i] = pr - inetsw;
356 	/*
357 	 * Cycle through IP protocols and put them into the appropriate place
358 	 * in ip_protox[].
359 	 */
360 	for (pr = inetdomain.dom_protosw;
361 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
362 		if (pr->pr_domain->dom_family == PF_INET &&
363 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
364 			/* Be careful to only index valid IP protocols. */
365 			if (pr->pr_protocol < IPPROTO_MAX)
366 				ip_protox[pr->pr_protocol] = pr - inetsw;
367 		}
368 
369 	/* Initialize packet filter hooks. */
370 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
371 	inet_pfil_hook.ph_af = AF_INET;
372 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
373 		printf("%s: WARNING: unable to register pfil hook, "
374 			"error %d\n", __func__, i);
375 
376 	/* Start ipport_tick. */
377 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
378 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
379 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
380 		SHUTDOWN_PRI_DEFAULT);
381 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
382 		NULL, EVENTHANDLER_PRI_ANY);
383 
384 	/* Initialize various other remaining things. */
385 	IPQ_LOCK_INIT();
386 	netisr_register(&ip_nh);
387 }
388 
389 void
390 ip_fini(void *xtp)
391 {
392 
393 	callout_stop(&ipport_tick_callout);
394 }
395 
396 /*
397  * Ip input routine.  Checksum and byte swap header.  If fragmented
398  * try to reassemble.  Process options.  Pass to next level.
399  */
400 void
401 ip_input(struct mbuf *m)
402 {
403 	INIT_VNET_INET(curvnet);
404 	struct ip *ip = NULL;
405 	struct in_ifaddr *ia = NULL;
406 	struct ifaddr *ifa;
407 	struct ifnet *ifp;
408 	int    checkif, hlen = 0;
409 	u_short sum;
410 	int dchg = 0;				/* dest changed after fw */
411 	struct in_addr odst;			/* original dst address */
412 
413 	M_ASSERTPKTHDR(m);
414 
415 	if (m->m_flags & M_FASTFWD_OURS) {
416 		/*
417 		 * Firewall or NAT changed destination to local.
418 		 * We expect ip_len and ip_off to be in host byte order.
419 		 */
420 		m->m_flags &= ~M_FASTFWD_OURS;
421 		/* Set up some basics that will be used later. */
422 		ip = mtod(m, struct ip *);
423 		hlen = ip->ip_hl << 2;
424 		goto ours;
425 	}
426 
427 	IPSTAT_INC(ips_total);
428 
429 	if (m->m_pkthdr.len < sizeof(struct ip))
430 		goto tooshort;
431 
432 	if (m->m_len < sizeof (struct ip) &&
433 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
434 		IPSTAT_INC(ips_toosmall);
435 		return;
436 	}
437 	ip = mtod(m, struct ip *);
438 
439 	if (ip->ip_v != IPVERSION) {
440 		IPSTAT_INC(ips_badvers);
441 		goto bad;
442 	}
443 
444 	hlen = ip->ip_hl << 2;
445 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
446 		IPSTAT_INC(ips_badhlen);
447 		goto bad;
448 	}
449 	if (hlen > m->m_len) {
450 		if ((m = m_pullup(m, hlen)) == NULL) {
451 			IPSTAT_INC(ips_badhlen);
452 			return;
453 		}
454 		ip = mtod(m, struct ip *);
455 	}
456 
457 	/* 127/8 must not appear on wire - RFC1122 */
458 	ifp = m->m_pkthdr.rcvif;
459 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
460 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
461 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
462 			IPSTAT_INC(ips_badaddr);
463 			goto bad;
464 		}
465 	}
466 
467 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
468 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
469 	} else {
470 		if (hlen == sizeof(struct ip)) {
471 			sum = in_cksum_hdr(ip);
472 		} else {
473 			sum = in_cksum(m, hlen);
474 		}
475 	}
476 	if (sum) {
477 		IPSTAT_INC(ips_badsum);
478 		goto bad;
479 	}
480 
481 #ifdef ALTQ
482 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
483 		/* packet is dropped by traffic conditioner */
484 		return;
485 #endif
486 
487 	/*
488 	 * Convert fields to host representation.
489 	 */
490 	ip->ip_len = ntohs(ip->ip_len);
491 	if (ip->ip_len < hlen) {
492 		IPSTAT_INC(ips_badlen);
493 		goto bad;
494 	}
495 	ip->ip_off = ntohs(ip->ip_off);
496 
497 	/*
498 	 * Check that the amount of data in the buffers
499 	 * is as at least much as the IP header would have us expect.
500 	 * Trim mbufs if longer than we expect.
501 	 * Drop packet if shorter than we expect.
502 	 */
503 	if (m->m_pkthdr.len < ip->ip_len) {
504 tooshort:
505 		IPSTAT_INC(ips_tooshort);
506 		goto bad;
507 	}
508 	if (m->m_pkthdr.len > ip->ip_len) {
509 		if (m->m_len == m->m_pkthdr.len) {
510 			m->m_len = ip->ip_len;
511 			m->m_pkthdr.len = ip->ip_len;
512 		} else
513 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
514 	}
515 #ifdef IPSEC
516 	/*
517 	 * Bypass packet filtering for packets from a tunnel (gif).
518 	 */
519 	if (ip_ipsec_filtertunnel(m))
520 		goto passin;
521 #endif /* IPSEC */
522 
523 	/*
524 	 * Run through list of hooks for input packets.
525 	 *
526 	 * NB: Beware of the destination address changing (e.g.
527 	 *     by NAT rewriting).  When this happens, tell
528 	 *     ip_forward to do the right thing.
529 	 */
530 
531 	/* Jump over all PFIL processing if hooks are not active. */
532 	if (!PFIL_HOOKED(&inet_pfil_hook))
533 		goto passin;
534 
535 	odst = ip->ip_dst;
536 	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
537 		return;
538 	if (m == NULL)			/* consumed by filter */
539 		return;
540 
541 	ip = mtod(m, struct ip *);
542 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
543 	ifp = m->m_pkthdr.rcvif;
544 
545 #ifdef IPFIREWALL_FORWARD
546 	if (m->m_flags & M_FASTFWD_OURS) {
547 		m->m_flags &= ~M_FASTFWD_OURS;
548 		goto ours;
549 	}
550 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
551 		/*
552 		 * Directly ship on the packet.  This allows to forward packets
553 		 * that were destined for us to some other directly connected
554 		 * host.
555 		 */
556 		ip_forward(m, dchg);
557 		return;
558 	}
559 #endif /* IPFIREWALL_FORWARD */
560 
561 passin:
562 	/*
563 	 * Process options and, if not destined for us,
564 	 * ship it on.  ip_dooptions returns 1 when an
565 	 * error was detected (causing an icmp message
566 	 * to be sent and the original packet to be freed).
567 	 */
568 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
569 		return;
570 
571         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
572          * matter if it is destined to another node, or whether it is
573          * a multicast one, RSVP wants it! and prevents it from being forwarded
574          * anywhere else. Also checks if the rsvp daemon is running before
575 	 * grabbing the packet.
576          */
577 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
578 		goto ours;
579 
580 	/*
581 	 * Check our list of addresses, to see if the packet is for us.
582 	 * If we don't have any addresses, assume any unicast packet
583 	 * we receive might be for us (and let the upper layers deal
584 	 * with it).
585 	 */
586 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
587 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
588 		goto ours;
589 
590 	/*
591 	 * Enable a consistency check between the destination address
592 	 * and the arrival interface for a unicast packet (the RFC 1122
593 	 * strong ES model) if IP forwarding is disabled and the packet
594 	 * is not locally generated and the packet is not subject to
595 	 * 'ipfw fwd'.
596 	 *
597 	 * XXX - Checking also should be disabled if the destination
598 	 * address is ipnat'ed to a different interface.
599 	 *
600 	 * XXX - Checking is incompatible with IP aliases added
601 	 * to the loopback interface instead of the interface where
602 	 * the packets are received.
603 	 *
604 	 * XXX - This is the case for carp vhost IPs as well so we
605 	 * insert a workaround. If the packet got here, we already
606 	 * checked with carp_iamatch() and carp_forus().
607 	 */
608 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
609 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
610 #ifdef DEV_CARP
611 	    !ifp->if_carp &&
612 #endif
613 	    (dchg == 0);
614 
615 	/*
616 	 * Check for exact addresses in the hash bucket.
617 	 */
618 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
619 		/*
620 		 * If the address matches, verify that the packet
621 		 * arrived via the correct interface if checking is
622 		 * enabled.
623 		 */
624 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
625 		    (!checkif || ia->ia_ifp == ifp))
626 			goto ours;
627 	}
628 	/*
629 	 * Check for broadcast addresses.
630 	 *
631 	 * Only accept broadcast packets that arrive via the matching
632 	 * interface.  Reception of forwarded directed broadcasts would
633 	 * be handled via ip_forward() and ether_output() with the loopback
634 	 * into the stack for SIMPLEX interfaces handled by ether_output().
635 	 */
636 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
637 		IF_ADDR_LOCK(ifp);
638 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
639 			if (ifa->ifa_addr->sa_family != AF_INET)
640 				continue;
641 			ia = ifatoia(ifa);
642 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
643 			    ip->ip_dst.s_addr) {
644 				IF_ADDR_UNLOCK(ifp);
645 				goto ours;
646 			}
647 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
648 				IF_ADDR_UNLOCK(ifp);
649 				goto ours;
650 			}
651 #ifdef BOOTP_COMPAT
652 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
653 				IF_ADDR_UNLOCK(ifp);
654 				goto ours;
655 			}
656 #endif
657 		}
658 		IF_ADDR_UNLOCK(ifp);
659 	}
660 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
661 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
662 		IPSTAT_INC(ips_cantforward);
663 		m_freem(m);
664 		return;
665 	}
666 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
667 		if (V_ip_mrouter) {
668 			/*
669 			 * If we are acting as a multicast router, all
670 			 * incoming multicast packets are passed to the
671 			 * kernel-level multicast forwarding function.
672 			 * The packet is returned (relatively) intact; if
673 			 * ip_mforward() returns a non-zero value, the packet
674 			 * must be discarded, else it may be accepted below.
675 			 */
676 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
677 				IPSTAT_INC(ips_cantforward);
678 				m_freem(m);
679 				return;
680 			}
681 
682 			/*
683 			 * The process-level routing daemon needs to receive
684 			 * all multicast IGMP packets, whether or not this
685 			 * host belongs to their destination groups.
686 			 */
687 			if (ip->ip_p == IPPROTO_IGMP)
688 				goto ours;
689 			IPSTAT_INC(ips_forward);
690 		}
691 		/*
692 		 * Assume the packet is for us, to avoid prematurely taking
693 		 * a lock on the in_multi hash. Protocols must perform
694 		 * their own filtering and update statistics accordingly.
695 		 */
696 		goto ours;
697 	}
698 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
699 		goto ours;
700 	if (ip->ip_dst.s_addr == INADDR_ANY)
701 		goto ours;
702 
703 	/*
704 	 * FAITH(Firewall Aided Internet Translator)
705 	 */
706 	if (ifp && ifp->if_type == IFT_FAITH) {
707 		if (V_ip_keepfaith) {
708 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
709 				goto ours;
710 		}
711 		m_freem(m);
712 		return;
713 	}
714 
715 	/*
716 	 * Not for us; forward if possible and desirable.
717 	 */
718 	if (V_ipforwarding == 0) {
719 		IPSTAT_INC(ips_cantforward);
720 		m_freem(m);
721 	} else {
722 #ifdef IPSEC
723 		if (ip_ipsec_fwd(m))
724 			goto bad;
725 #endif /* IPSEC */
726 		ip_forward(m, dchg);
727 	}
728 	return;
729 
730 ours:
731 #ifdef IPSTEALTH
732 	/*
733 	 * IPSTEALTH: Process non-routing options only
734 	 * if the packet is destined for us.
735 	 */
736 	if (V_ipstealth && hlen > sizeof (struct ip) &&
737 	    ip_dooptions(m, 1))
738 		return;
739 #endif /* IPSTEALTH */
740 
741 	/* Count the packet in the ip address stats */
742 	if (ia != NULL) {
743 		ia->ia_ifa.if_ipackets++;
744 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
745 	}
746 
747 	/*
748 	 * Attempt reassembly; if it succeeds, proceed.
749 	 * ip_reass() will return a different mbuf.
750 	 */
751 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
752 		m = ip_reass(m);
753 		if (m == NULL)
754 			return;
755 		ip = mtod(m, struct ip *);
756 		/* Get the header length of the reassembled packet */
757 		hlen = ip->ip_hl << 2;
758 	}
759 
760 	/*
761 	 * Further protocols expect the packet length to be w/o the
762 	 * IP header.
763 	 */
764 	ip->ip_len -= hlen;
765 
766 #ifdef IPSEC
767 	/*
768 	 * enforce IPsec policy checking if we are seeing last header.
769 	 * note that we do not visit this with protocols with pcb layer
770 	 * code - like udp/tcp/raw ip.
771 	 */
772 	if (ip_ipsec_input(m))
773 		goto bad;
774 #endif /* IPSEC */
775 
776 	/*
777 	 * Switch out to protocol's input routine.
778 	 */
779 	IPSTAT_INC(ips_delivered);
780 
781 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
782 	return;
783 bad:
784 	m_freem(m);
785 }
786 
787 /*
788  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
789  * max has slightly different semantics than the sysctl, for historical
790  * reasons.
791  */
792 static void
793 maxnipq_update(void)
794 {
795 	INIT_VNET_INET(curvnet);
796 
797 	/*
798 	 * -1 for unlimited allocation.
799 	 */
800 	if (V_maxnipq < 0)
801 		uma_zone_set_max(V_ipq_zone, 0);
802 	/*
803 	 * Positive number for specific bound.
804 	 */
805 	if (V_maxnipq > 0)
806 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
807 	/*
808 	 * Zero specifies no further fragment queue allocation -- set the
809 	 * bound very low, but rely on implementation elsewhere to actually
810 	 * prevent allocation and reclaim current queues.
811 	 */
812 	if (V_maxnipq == 0)
813 		uma_zone_set_max(V_ipq_zone, 1);
814 }
815 
816 static void
817 ipq_zone_change(void *tag)
818 {
819 	INIT_VNET_INET(curvnet);
820 
821 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
822 		V_maxnipq = nmbclusters / 32;
823 		maxnipq_update();
824 	}
825 }
826 
827 static int
828 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
829 {
830 	INIT_VNET_INET(curvnet);
831 	int error, i;
832 
833 	i = V_maxnipq;
834 	error = sysctl_handle_int(oidp, &i, 0, req);
835 	if (error || !req->newptr)
836 		return (error);
837 
838 	/*
839 	 * XXXRW: Might be a good idea to sanity check the argument and place
840 	 * an extreme upper bound.
841 	 */
842 	if (i < -1)
843 		return (EINVAL);
844 	V_maxnipq = i;
845 	maxnipq_update();
846 	return (0);
847 }
848 
849 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
850     NULL, 0, sysctl_maxnipq, "I",
851     "Maximum number of IPv4 fragment reassembly queue entries");
852 
853 /*
854  * Take incoming datagram fragment and try to reassemble it into
855  * whole datagram.  If the argument is the first fragment or one
856  * in between the function will return NULL and store the mbuf
857  * in the fragment chain.  If the argument is the last fragment
858  * the packet will be reassembled and the pointer to the new
859  * mbuf returned for further processing.  Only m_tags attached
860  * to the first packet/fragment are preserved.
861  * The IP header is *NOT* adjusted out of iplen.
862  */
863 struct mbuf *
864 ip_reass(struct mbuf *m)
865 {
866 	INIT_VNET_INET(curvnet);
867 	struct ip *ip;
868 	struct mbuf *p, *q, *nq, *t;
869 	struct ipq *fp = NULL;
870 	struct ipqhead *head;
871 	int i, hlen, next;
872 	u_int8_t ecn, ecn0;
873 	u_short hash;
874 
875 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
876 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
877 		IPSTAT_INC(ips_fragments);
878 		IPSTAT_INC(ips_fragdropped);
879 		m_freem(m);
880 		return (NULL);
881 	}
882 
883 	ip = mtod(m, struct ip *);
884 	hlen = ip->ip_hl << 2;
885 
886 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
887 	head = &V_ipq[hash];
888 	IPQ_LOCK();
889 
890 	/*
891 	 * Look for queue of fragments
892 	 * of this datagram.
893 	 */
894 	TAILQ_FOREACH(fp, head, ipq_list)
895 		if (ip->ip_id == fp->ipq_id &&
896 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
897 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
898 #ifdef MAC
899 		    mac_ipq_match(m, fp) &&
900 #endif
901 		    ip->ip_p == fp->ipq_p)
902 			goto found;
903 
904 	fp = NULL;
905 
906 	/*
907 	 * Attempt to trim the number of allocated fragment queues if it
908 	 * exceeds the administrative limit.
909 	 */
910 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
911 		/*
912 		 * drop something from the tail of the current queue
913 		 * before proceeding further
914 		 */
915 		struct ipq *q = TAILQ_LAST(head, ipqhead);
916 		if (q == NULL) {   /* gak */
917 			for (i = 0; i < IPREASS_NHASH; i++) {
918 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
919 				if (r) {
920 					IPSTAT_ADD(ips_fragtimeout,
921 					    r->ipq_nfrags);
922 					ip_freef(&V_ipq[i], r);
923 					break;
924 				}
925 			}
926 		} else {
927 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
928 			ip_freef(head, q);
929 		}
930 	}
931 
932 found:
933 	/*
934 	 * Adjust ip_len to not reflect header,
935 	 * convert offset of this to bytes.
936 	 */
937 	ip->ip_len -= hlen;
938 	if (ip->ip_off & IP_MF) {
939 		/*
940 		 * Make sure that fragments have a data length
941 		 * that's a non-zero multiple of 8 bytes.
942 		 */
943 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
944 			IPSTAT_INC(ips_toosmall); /* XXX */
945 			goto dropfrag;
946 		}
947 		m->m_flags |= M_FRAG;
948 	} else
949 		m->m_flags &= ~M_FRAG;
950 	ip->ip_off <<= 3;
951 
952 
953 	/*
954 	 * Attempt reassembly; if it succeeds, proceed.
955 	 * ip_reass() will return a different mbuf.
956 	 */
957 	IPSTAT_INC(ips_fragments);
958 	m->m_pkthdr.header = ip;
959 
960 	/* Previous ip_reass() started here. */
961 	/*
962 	 * Presence of header sizes in mbufs
963 	 * would confuse code below.
964 	 */
965 	m->m_data += hlen;
966 	m->m_len -= hlen;
967 
968 	/*
969 	 * If first fragment to arrive, create a reassembly queue.
970 	 */
971 	if (fp == NULL) {
972 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
973 		if (fp == NULL)
974 			goto dropfrag;
975 #ifdef MAC
976 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
977 			uma_zfree(V_ipq_zone, fp);
978 			fp = NULL;
979 			goto dropfrag;
980 		}
981 		mac_ipq_create(m, fp);
982 #endif
983 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
984 		V_nipq++;
985 		fp->ipq_nfrags = 1;
986 		fp->ipq_ttl = IPFRAGTTL;
987 		fp->ipq_p = ip->ip_p;
988 		fp->ipq_id = ip->ip_id;
989 		fp->ipq_src = ip->ip_src;
990 		fp->ipq_dst = ip->ip_dst;
991 		fp->ipq_frags = m;
992 		m->m_nextpkt = NULL;
993 		goto done;
994 	} else {
995 		fp->ipq_nfrags++;
996 #ifdef MAC
997 		mac_ipq_update(m, fp);
998 #endif
999 	}
1000 
1001 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1002 
1003 	/*
1004 	 * Handle ECN by comparing this segment with the first one;
1005 	 * if CE is set, do not lose CE.
1006 	 * drop if CE and not-ECT are mixed for the same packet.
1007 	 */
1008 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1009 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1010 	if (ecn == IPTOS_ECN_CE) {
1011 		if (ecn0 == IPTOS_ECN_NOTECT)
1012 			goto dropfrag;
1013 		if (ecn0 != IPTOS_ECN_CE)
1014 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1015 	}
1016 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1017 		goto dropfrag;
1018 
1019 	/*
1020 	 * Find a segment which begins after this one does.
1021 	 */
1022 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1023 		if (GETIP(q)->ip_off > ip->ip_off)
1024 			break;
1025 
1026 	/*
1027 	 * If there is a preceding segment, it may provide some of
1028 	 * our data already.  If so, drop the data from the incoming
1029 	 * segment.  If it provides all of our data, drop us, otherwise
1030 	 * stick new segment in the proper place.
1031 	 *
1032 	 * If some of the data is dropped from the the preceding
1033 	 * segment, then it's checksum is invalidated.
1034 	 */
1035 	if (p) {
1036 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1037 		if (i > 0) {
1038 			if (i >= ip->ip_len)
1039 				goto dropfrag;
1040 			m_adj(m, i);
1041 			m->m_pkthdr.csum_flags = 0;
1042 			ip->ip_off += i;
1043 			ip->ip_len -= i;
1044 		}
1045 		m->m_nextpkt = p->m_nextpkt;
1046 		p->m_nextpkt = m;
1047 	} else {
1048 		m->m_nextpkt = fp->ipq_frags;
1049 		fp->ipq_frags = m;
1050 	}
1051 
1052 	/*
1053 	 * While we overlap succeeding segments trim them or,
1054 	 * if they are completely covered, dequeue them.
1055 	 */
1056 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1057 	     q = nq) {
1058 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1059 		if (i < GETIP(q)->ip_len) {
1060 			GETIP(q)->ip_len -= i;
1061 			GETIP(q)->ip_off += i;
1062 			m_adj(q, i);
1063 			q->m_pkthdr.csum_flags = 0;
1064 			break;
1065 		}
1066 		nq = q->m_nextpkt;
1067 		m->m_nextpkt = nq;
1068 		IPSTAT_INC(ips_fragdropped);
1069 		fp->ipq_nfrags--;
1070 		m_freem(q);
1071 	}
1072 
1073 	/*
1074 	 * Check for complete reassembly and perform frag per packet
1075 	 * limiting.
1076 	 *
1077 	 * Frag limiting is performed here so that the nth frag has
1078 	 * a chance to complete the packet before we drop the packet.
1079 	 * As a result, n+1 frags are actually allowed per packet, but
1080 	 * only n will ever be stored. (n = maxfragsperpacket.)
1081 	 *
1082 	 */
1083 	next = 0;
1084 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1085 		if (GETIP(q)->ip_off != next) {
1086 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1087 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1088 				ip_freef(head, fp);
1089 			}
1090 			goto done;
1091 		}
1092 		next += GETIP(q)->ip_len;
1093 	}
1094 	/* Make sure the last packet didn't have the IP_MF flag */
1095 	if (p->m_flags & M_FRAG) {
1096 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1097 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1098 			ip_freef(head, fp);
1099 		}
1100 		goto done;
1101 	}
1102 
1103 	/*
1104 	 * Reassembly is complete.  Make sure the packet is a sane size.
1105 	 */
1106 	q = fp->ipq_frags;
1107 	ip = GETIP(q);
1108 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1109 		IPSTAT_INC(ips_toolong);
1110 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1111 		ip_freef(head, fp);
1112 		goto done;
1113 	}
1114 
1115 	/*
1116 	 * Concatenate fragments.
1117 	 */
1118 	m = q;
1119 	t = m->m_next;
1120 	m->m_next = NULL;
1121 	m_cat(m, t);
1122 	nq = q->m_nextpkt;
1123 	q->m_nextpkt = NULL;
1124 	for (q = nq; q != NULL; q = nq) {
1125 		nq = q->m_nextpkt;
1126 		q->m_nextpkt = NULL;
1127 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1128 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1129 		m_cat(m, q);
1130 	}
1131 	/*
1132 	 * In order to do checksumming faster we do 'end-around carry' here
1133 	 * (and not in for{} loop), though it implies we are not going to
1134 	 * reassemble more than 64k fragments.
1135 	 */
1136 	m->m_pkthdr.csum_data =
1137 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1138 #ifdef MAC
1139 	mac_ipq_reassemble(fp, m);
1140 	mac_ipq_destroy(fp);
1141 #endif
1142 
1143 	/*
1144 	 * Create header for new ip packet by modifying header of first
1145 	 * packet;  dequeue and discard fragment reassembly header.
1146 	 * Make header visible.
1147 	 */
1148 	ip->ip_len = (ip->ip_hl << 2) + next;
1149 	ip->ip_src = fp->ipq_src;
1150 	ip->ip_dst = fp->ipq_dst;
1151 	TAILQ_REMOVE(head, fp, ipq_list);
1152 	V_nipq--;
1153 	uma_zfree(V_ipq_zone, fp);
1154 	m->m_len += (ip->ip_hl << 2);
1155 	m->m_data -= (ip->ip_hl << 2);
1156 	/* some debugging cruft by sklower, below, will go away soon */
1157 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1158 		m_fixhdr(m);
1159 	IPSTAT_INC(ips_reassembled);
1160 	IPQ_UNLOCK();
1161 	return (m);
1162 
1163 dropfrag:
1164 	IPSTAT_INC(ips_fragdropped);
1165 	if (fp != NULL)
1166 		fp->ipq_nfrags--;
1167 	m_freem(m);
1168 done:
1169 	IPQ_UNLOCK();
1170 	return (NULL);
1171 
1172 #undef GETIP
1173 }
1174 
1175 /*
1176  * Free a fragment reassembly header and all
1177  * associated datagrams.
1178  */
1179 static void
1180 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1181 {
1182 	INIT_VNET_INET(curvnet);
1183 	struct mbuf *q;
1184 
1185 	IPQ_LOCK_ASSERT();
1186 
1187 	while (fp->ipq_frags) {
1188 		q = fp->ipq_frags;
1189 		fp->ipq_frags = q->m_nextpkt;
1190 		m_freem(q);
1191 	}
1192 	TAILQ_REMOVE(fhp, fp, ipq_list);
1193 	uma_zfree(V_ipq_zone, fp);
1194 	V_nipq--;
1195 }
1196 
1197 /*
1198  * IP timer processing;
1199  * if a timer expires on a reassembly
1200  * queue, discard it.
1201  */
1202 void
1203 ip_slowtimo(void)
1204 {
1205 	VNET_ITERATOR_DECL(vnet_iter);
1206 	struct ipq *fp;
1207 	int i;
1208 
1209 	IPQ_LOCK();
1210 	VNET_LIST_RLOCK();
1211 	VNET_FOREACH(vnet_iter) {
1212 		CURVNET_SET(vnet_iter);
1213 		INIT_VNET_INET(vnet_iter);
1214 		for (i = 0; i < IPREASS_NHASH; i++) {
1215 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1216 				struct ipq *fpp;
1217 
1218 				fpp = fp;
1219 				fp = TAILQ_NEXT(fp, ipq_list);
1220 				if(--fpp->ipq_ttl == 0) {
1221 					IPSTAT_ADD(ips_fragtimeout,
1222 					    fpp->ipq_nfrags);
1223 					ip_freef(&V_ipq[i], fpp);
1224 				}
1225 			}
1226 		}
1227 		/*
1228 		 * If we are over the maximum number of fragments
1229 		 * (due to the limit being lowered), drain off
1230 		 * enough to get down to the new limit.
1231 		 */
1232 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1233 			for (i = 0; i < IPREASS_NHASH; i++) {
1234 				while (V_nipq > V_maxnipq &&
1235 				    !TAILQ_EMPTY(&V_ipq[i])) {
1236 					IPSTAT_ADD(ips_fragdropped,
1237 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1238 					ip_freef(&V_ipq[i],
1239 					    TAILQ_FIRST(&V_ipq[i]));
1240 				}
1241 			}
1242 		}
1243 		CURVNET_RESTORE();
1244 	}
1245 	VNET_LIST_RUNLOCK();
1246 	IPQ_UNLOCK();
1247 }
1248 
1249 /*
1250  * Drain off all datagram fragments.
1251  */
1252 void
1253 ip_drain(void)
1254 {
1255 	VNET_ITERATOR_DECL(vnet_iter);
1256 	int     i;
1257 
1258 	IPQ_LOCK();
1259 	VNET_LIST_RLOCK();
1260 	VNET_FOREACH(vnet_iter) {
1261 		CURVNET_SET(vnet_iter);
1262 		INIT_VNET_INET(vnet_iter);
1263 		for (i = 0; i < IPREASS_NHASH; i++) {
1264 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1265 				IPSTAT_ADD(ips_fragdropped,
1266 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1267 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1268 			}
1269 		}
1270 		CURVNET_RESTORE();
1271 	}
1272 	VNET_LIST_RUNLOCK();
1273 	IPQ_UNLOCK();
1274 	in_rtqdrain();
1275 }
1276 
1277 /*
1278  * The protocol to be inserted into ip_protox[] must be already registered
1279  * in inetsw[], either statically or through pf_proto_register().
1280  */
1281 int
1282 ipproto_register(u_char ipproto)
1283 {
1284 	struct protosw *pr;
1285 
1286 	/* Sanity checks. */
1287 	if (ipproto == 0)
1288 		return (EPROTONOSUPPORT);
1289 
1290 	/*
1291 	 * The protocol slot must not be occupied by another protocol
1292 	 * already.  An index pointing to IPPROTO_RAW is unused.
1293 	 */
1294 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1295 	if (pr == NULL)
1296 		return (EPFNOSUPPORT);
1297 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1298 		return (EEXIST);
1299 
1300 	/* Find the protocol position in inetsw[] and set the index. */
1301 	for (pr = inetdomain.dom_protosw;
1302 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1303 		if (pr->pr_domain->dom_family == PF_INET &&
1304 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1305 			/* Be careful to only index valid IP protocols. */
1306 			if (pr->pr_protocol < IPPROTO_MAX) {
1307 				ip_protox[pr->pr_protocol] = pr - inetsw;
1308 				return (0);
1309 			} else
1310 				return (EINVAL);
1311 		}
1312 	}
1313 	return (EPROTONOSUPPORT);
1314 }
1315 
1316 int
1317 ipproto_unregister(u_char ipproto)
1318 {
1319 	struct protosw *pr;
1320 
1321 	/* Sanity checks. */
1322 	if (ipproto == 0)
1323 		return (EPROTONOSUPPORT);
1324 
1325 	/* Check if the protocol was indeed registered. */
1326 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1327 	if (pr == NULL)
1328 		return (EPFNOSUPPORT);
1329 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1330 		return (ENOENT);
1331 
1332 	/* Reset the protocol slot to IPPROTO_RAW. */
1333 	ip_protox[ipproto] = pr - inetsw;
1334 	return (0);
1335 }
1336 
1337 /*
1338  * Given address of next destination (final or next hop),
1339  * return internet address info of interface to be used to get there.
1340  */
1341 struct in_ifaddr *
1342 ip_rtaddr(struct in_addr dst, u_int fibnum)
1343 {
1344 	struct route sro;
1345 	struct sockaddr_in *sin;
1346 	struct in_ifaddr *ifa;
1347 
1348 	bzero(&sro, sizeof(sro));
1349 	sin = (struct sockaddr_in *)&sro.ro_dst;
1350 	sin->sin_family = AF_INET;
1351 	sin->sin_len = sizeof(*sin);
1352 	sin->sin_addr = dst;
1353 	in_rtalloc_ign(&sro, 0, fibnum);
1354 
1355 	if (sro.ro_rt == NULL)
1356 		return (NULL);
1357 
1358 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1359 	RTFREE(sro.ro_rt);
1360 	return (ifa);
1361 }
1362 
1363 u_char inetctlerrmap[PRC_NCMDS] = {
1364 	0,		0,		0,		0,
1365 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1366 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1367 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1368 	0,		0,		EHOSTUNREACH,	0,
1369 	ENOPROTOOPT,	ECONNREFUSED
1370 };
1371 
1372 /*
1373  * Forward a packet.  If some error occurs return the sender
1374  * an icmp packet.  Note we can't always generate a meaningful
1375  * icmp message because icmp doesn't have a large enough repertoire
1376  * of codes and types.
1377  *
1378  * If not forwarding, just drop the packet.  This could be confusing
1379  * if ipforwarding was zero but some routing protocol was advancing
1380  * us as a gateway to somewhere.  However, we must let the routing
1381  * protocol deal with that.
1382  *
1383  * The srcrt parameter indicates whether the packet is being forwarded
1384  * via a source route.
1385  */
1386 void
1387 ip_forward(struct mbuf *m, int srcrt)
1388 {
1389 	INIT_VNET_INET(curvnet);
1390 	struct ip *ip = mtod(m, struct ip *);
1391 	struct in_ifaddr *ia;
1392 	struct mbuf *mcopy;
1393 	struct in_addr dest;
1394 	struct route ro;
1395 	int error, type = 0, code = 0, mtu = 0;
1396 
1397 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1398 		IPSTAT_INC(ips_cantforward);
1399 		m_freem(m);
1400 		return;
1401 	}
1402 #ifdef IPSTEALTH
1403 	if (!V_ipstealth) {
1404 #endif
1405 		if (ip->ip_ttl <= IPTTLDEC) {
1406 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1407 			    0, 0);
1408 			return;
1409 		}
1410 #ifdef IPSTEALTH
1411 	}
1412 #endif
1413 
1414 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1415 #ifndef IPSEC
1416 	/*
1417 	 * 'ia' may be NULL if there is no route for this destination.
1418 	 * In case of IPsec, Don't discard it just yet, but pass it to
1419 	 * ip_output in case of outgoing IPsec policy.
1420 	 */
1421 	if (!srcrt && ia == NULL) {
1422 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1423 		return;
1424 	}
1425 #endif
1426 
1427 	/*
1428 	 * Save the IP header and at most 8 bytes of the payload,
1429 	 * in case we need to generate an ICMP message to the src.
1430 	 *
1431 	 * XXX this can be optimized a lot by saving the data in a local
1432 	 * buffer on the stack (72 bytes at most), and only allocating the
1433 	 * mbuf if really necessary. The vast majority of the packets
1434 	 * are forwarded without having to send an ICMP back (either
1435 	 * because unnecessary, or because rate limited), so we are
1436 	 * really we are wasting a lot of work here.
1437 	 *
1438 	 * We don't use m_copy() because it might return a reference
1439 	 * to a shared cluster. Both this function and ip_output()
1440 	 * assume exclusive access to the IP header in `m', so any
1441 	 * data in a cluster may change before we reach icmp_error().
1442 	 */
1443 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1444 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1445 		/*
1446 		 * It's probably ok if the pkthdr dup fails (because
1447 		 * the deep copy of the tag chain failed), but for now
1448 		 * be conservative and just discard the copy since
1449 		 * code below may some day want the tags.
1450 		 */
1451 		m_free(mcopy);
1452 		mcopy = NULL;
1453 	}
1454 	if (mcopy != NULL) {
1455 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1456 		mcopy->m_pkthdr.len = mcopy->m_len;
1457 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1458 	}
1459 
1460 #ifdef IPSTEALTH
1461 	if (!V_ipstealth) {
1462 #endif
1463 		ip->ip_ttl -= IPTTLDEC;
1464 #ifdef IPSTEALTH
1465 	}
1466 #endif
1467 
1468 	/*
1469 	 * If forwarding packet using same interface that it came in on,
1470 	 * perhaps should send a redirect to sender to shortcut a hop.
1471 	 * Only send redirect if source is sending directly to us,
1472 	 * and if packet was not source routed (or has any options).
1473 	 * Also, don't send redirect if forwarding using a default route
1474 	 * or a route modified by a redirect.
1475 	 */
1476 	dest.s_addr = 0;
1477 	if (!srcrt && V_ipsendredirects &&
1478 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1479 		struct sockaddr_in *sin;
1480 		struct rtentry *rt;
1481 
1482 		bzero(&ro, sizeof(ro));
1483 		sin = (struct sockaddr_in *)&ro.ro_dst;
1484 		sin->sin_family = AF_INET;
1485 		sin->sin_len = sizeof(*sin);
1486 		sin->sin_addr = ip->ip_dst;
1487 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1488 
1489 		rt = ro.ro_rt;
1490 
1491 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1492 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1493 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1494 			u_long src = ntohl(ip->ip_src.s_addr);
1495 
1496 			if (RTA(rt) &&
1497 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1498 				if (rt->rt_flags & RTF_GATEWAY)
1499 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1500 				else
1501 					dest.s_addr = ip->ip_dst.s_addr;
1502 				/* Router requirements says to only send host redirects */
1503 				type = ICMP_REDIRECT;
1504 				code = ICMP_REDIRECT_HOST;
1505 			}
1506 		}
1507 		if (rt)
1508 			RTFREE(rt);
1509 	}
1510 
1511 	/*
1512 	 * Try to cache the route MTU from ip_output so we can consider it for
1513 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1514 	 */
1515 	bzero(&ro, sizeof(ro));
1516 
1517 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1518 
1519 	if (error == EMSGSIZE && ro.ro_rt)
1520 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1521 	if (ro.ro_rt)
1522 		RTFREE(ro.ro_rt);
1523 
1524 	if (error)
1525 		IPSTAT_INC(ips_cantforward);
1526 	else {
1527 		IPSTAT_INC(ips_forward);
1528 		if (type)
1529 			IPSTAT_INC(ips_redirectsent);
1530 		else {
1531 			if (mcopy)
1532 				m_freem(mcopy);
1533 			return;
1534 		}
1535 	}
1536 	if (mcopy == NULL)
1537 		return;
1538 
1539 	switch (error) {
1540 
1541 	case 0:				/* forwarded, but need redirect */
1542 		/* type, code set above */
1543 		break;
1544 
1545 	case ENETUNREACH:
1546 	case EHOSTUNREACH:
1547 	case ENETDOWN:
1548 	case EHOSTDOWN:
1549 	default:
1550 		type = ICMP_UNREACH;
1551 		code = ICMP_UNREACH_HOST;
1552 		break;
1553 
1554 	case EMSGSIZE:
1555 		type = ICMP_UNREACH;
1556 		code = ICMP_UNREACH_NEEDFRAG;
1557 
1558 #ifdef IPSEC
1559 		/*
1560 		 * If IPsec is configured for this path,
1561 		 * override any possibly mtu value set by ip_output.
1562 		 */
1563 		mtu = ip_ipsec_mtu(m, mtu);
1564 #endif /* IPSEC */
1565 		/*
1566 		 * If the MTU was set before make sure we are below the
1567 		 * interface MTU.
1568 		 * If the MTU wasn't set before use the interface mtu or
1569 		 * fall back to the next smaller mtu step compared to the
1570 		 * current packet size.
1571 		 */
1572 		if (mtu != 0) {
1573 			if (ia != NULL)
1574 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1575 		} else {
1576 			if (ia != NULL)
1577 				mtu = ia->ia_ifp->if_mtu;
1578 			else
1579 				mtu = ip_next_mtu(ip->ip_len, 0);
1580 		}
1581 		IPSTAT_INC(ips_cantfrag);
1582 		break;
1583 
1584 	case ENOBUFS:
1585 		/*
1586 		 * A router should not generate ICMP_SOURCEQUENCH as
1587 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1588 		 * Source quench could be a big problem under DoS attacks,
1589 		 * or if the underlying interface is rate-limited.
1590 		 * Those who need source quench packets may re-enable them
1591 		 * via the net.inet.ip.sendsourcequench sysctl.
1592 		 */
1593 		if (V_ip_sendsourcequench == 0) {
1594 			m_freem(mcopy);
1595 			return;
1596 		} else {
1597 			type = ICMP_SOURCEQUENCH;
1598 			code = 0;
1599 		}
1600 		break;
1601 
1602 	case EACCES:			/* ipfw denied packet */
1603 		m_freem(mcopy);
1604 		return;
1605 	}
1606 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1607 }
1608 
1609 void
1610 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1611     struct mbuf *m)
1612 {
1613 	INIT_VNET_NET(inp->inp_vnet);
1614 
1615 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1616 		struct bintime bt;
1617 
1618 		bintime(&bt);
1619 		if (inp->inp_socket->so_options & SO_BINTIME) {
1620 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1621 			SCM_BINTIME, SOL_SOCKET);
1622 			if (*mp)
1623 				mp = &(*mp)->m_next;
1624 		}
1625 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1626 			struct timeval tv;
1627 
1628 			bintime2timeval(&bt, &tv);
1629 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1630 				SCM_TIMESTAMP, SOL_SOCKET);
1631 			if (*mp)
1632 				mp = &(*mp)->m_next;
1633 		}
1634 	}
1635 	if (inp->inp_flags & INP_RECVDSTADDR) {
1636 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1637 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1638 		if (*mp)
1639 			mp = &(*mp)->m_next;
1640 	}
1641 	if (inp->inp_flags & INP_RECVTTL) {
1642 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1643 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1644 		if (*mp)
1645 			mp = &(*mp)->m_next;
1646 	}
1647 #ifdef notyet
1648 	/* XXX
1649 	 * Moving these out of udp_input() made them even more broken
1650 	 * than they already were.
1651 	 */
1652 	/* options were tossed already */
1653 	if (inp->inp_flags & INP_RECVOPTS) {
1654 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1655 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1656 		if (*mp)
1657 			mp = &(*mp)->m_next;
1658 	}
1659 	/* ip_srcroute doesn't do what we want here, need to fix */
1660 	if (inp->inp_flags & INP_RECVRETOPTS) {
1661 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1662 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1663 		if (*mp)
1664 			mp = &(*mp)->m_next;
1665 	}
1666 #endif
1667 	if (inp->inp_flags & INP_RECVIF) {
1668 		struct ifnet *ifp;
1669 		struct sdlbuf {
1670 			struct sockaddr_dl sdl;
1671 			u_char	pad[32];
1672 		} sdlbuf;
1673 		struct sockaddr_dl *sdp;
1674 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1675 
1676 		if (((ifp = m->m_pkthdr.rcvif))
1677 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1678 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1679 			/*
1680 			 * Change our mind and don't try copy.
1681 			 */
1682 			if ((sdp->sdl_family != AF_LINK)
1683 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1684 				goto makedummy;
1685 			}
1686 			bcopy(sdp, sdl2, sdp->sdl_len);
1687 		} else {
1688 makedummy:
1689 			sdl2->sdl_len
1690 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1691 			sdl2->sdl_family = AF_LINK;
1692 			sdl2->sdl_index = 0;
1693 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1694 		}
1695 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1696 			IP_RECVIF, IPPROTO_IP);
1697 		if (*mp)
1698 			mp = &(*mp)->m_next;
1699 	}
1700 }
1701 
1702 /*
1703  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1704  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1705  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1706  * compiled.
1707  */
1708 int
1709 ip_rsvp_init(struct socket *so)
1710 {
1711 	INIT_VNET_INET(so->so_vnet);
1712 
1713 	if (so->so_type != SOCK_RAW ||
1714 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1715 		return EOPNOTSUPP;
1716 
1717 	if (V_ip_rsvpd != NULL)
1718 		return EADDRINUSE;
1719 
1720 	V_ip_rsvpd = so;
1721 	/*
1722 	 * This may seem silly, but we need to be sure we don't over-increment
1723 	 * the RSVP counter, in case something slips up.
1724 	 */
1725 	if (!V_ip_rsvp_on) {
1726 		V_ip_rsvp_on = 1;
1727 		V_rsvp_on++;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 int
1734 ip_rsvp_done(void)
1735 {
1736 	INIT_VNET_INET(curvnet);
1737 
1738 	V_ip_rsvpd = NULL;
1739 	/*
1740 	 * This may seem silly, but we need to be sure we don't over-decrement
1741 	 * the RSVP counter, in case something slips up.
1742 	 */
1743 	if (V_ip_rsvp_on) {
1744 		V_ip_rsvp_on = 0;
1745 		V_rsvp_on--;
1746 	}
1747 	return 0;
1748 }
1749 
1750 void
1751 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1752 {
1753 	INIT_VNET_INET(curvnet);
1754 
1755 	if (rsvp_input_p) { /* call the real one if loaded */
1756 		rsvp_input_p(m, off);
1757 		return;
1758 	}
1759 
1760 	/* Can still get packets with rsvp_on = 0 if there is a local member
1761 	 * of the group to which the RSVP packet is addressed.  But in this
1762 	 * case we want to throw the packet away.
1763 	 */
1764 
1765 	if (!V_rsvp_on) {
1766 		m_freem(m);
1767 		return;
1768 	}
1769 
1770 	if (V_ip_rsvpd != NULL) {
1771 		rip_input(m, off);
1772 		return;
1773 	}
1774 	/* Drop the packet */
1775 	m_freem(m);
1776 }
1777