1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 #include <netinet/ip_mroute.h> 86 87 #include <netipsec/ipsec_support.h> 88 89 #include <sys/socketvar.h> 90 91 #include <security/mac/mac_framework.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof(struct ip) == 20); 95 #endif 96 97 /* IP reassembly functions are defined in ip_reass.c. */ 98 extern void ipreass_init(void); 99 extern void ipreass_drain(void); 100 extern void ipreass_slowtimo(void); 101 #ifdef VIMAGE 102 extern void ipreass_destroy(void); 103 #endif 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 /* 113 * Respond with an ICMP host redirect when we forward a packet out of 114 * the same interface on which it was received. See RFC 792. 115 */ 116 VNET_DEFINE(int, ipsendredirects) = 1; 117 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 118 &VNET_NAME(ipsendredirects), 0, 119 "Enable sending IP redirects"); 120 121 VNET_DEFINE_STATIC(bool, ip_strong_es) = false; 122 #define V_ip_strong_es VNET(ip_strong_es) 123 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, rfc1122_strong_es, 124 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_strong_es), false, 125 "Packet's IP destination address must match address on arrival interface"); 126 127 VNET_DEFINE_STATIC(bool, ip_sav) = true; 128 #define V_ip_sav VNET(ip_sav) 129 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, source_address_validation, 130 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_sav), true, 131 "Drop incoming packets with source address that is a local address"); 132 133 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 134 135 static struct netisr_handler ip_nh = { 136 .nh_name = "ip", 137 .nh_handler = ip_input, 138 .nh_proto = NETISR_IP, 139 #ifdef RSS 140 .nh_m2cpuid = rss_soft_m2cpuid_v4, 141 .nh_policy = NETISR_POLICY_CPU, 142 .nh_dispatch = NETISR_DISPATCH_HYBRID, 143 #else 144 .nh_policy = NETISR_POLICY_FLOW, 145 #endif 146 }; 147 148 #ifdef RSS 149 /* 150 * Directly dispatched frames are currently assumed 151 * to have a flowid already calculated. 152 * 153 * It should likely have something that assert it 154 * actually has valid flow details. 155 */ 156 static struct netisr_handler ip_direct_nh = { 157 .nh_name = "ip_direct", 158 .nh_handler = ip_direct_input, 159 .nh_proto = NETISR_IP_DIRECT, 160 .nh_m2cpuid = rss_soft_m2cpuid_v4, 161 .nh_policy = NETISR_POLICY_CPU, 162 .nh_dispatch = NETISR_DISPATCH_HYBRID, 163 }; 164 #endif 165 166 extern struct domain inetdomain; 167 extern struct protosw inetsw[]; 168 u_char ip_protox[IPPROTO_MAX]; 169 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 170 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 171 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 172 173 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 174 CTASSERT(sizeof(struct in_ifaddrhashhead) == sizeof(LIST_HEAD(, in_addr))); 175 176 #ifdef IPCTL_DEFMTU 177 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 178 &ip_mtu, 0, "Default MTU"); 179 #endif 180 181 #ifdef IPSTEALTH 182 VNET_DEFINE(int, ipstealth); 183 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 184 &VNET_NAME(ipstealth), 0, 185 "IP stealth mode, no TTL decrementation on forwarding"); 186 #endif 187 188 /* 189 * IP statistics are stored in the "array" of counter(9)s. 190 */ 191 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 192 VNET_PCPUSTAT_SYSINIT(ipstat); 193 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 194 "IP statistics (struct ipstat, netinet/ip_var.h)"); 195 196 #ifdef VIMAGE 197 VNET_PCPUSTAT_SYSUNINIT(ipstat); 198 #endif /* VIMAGE */ 199 200 /* 201 * Kernel module interface for updating ipstat. The argument is an index 202 * into ipstat treated as an array. 203 */ 204 void 205 kmod_ipstat_inc(int statnum) 206 { 207 208 counter_u64_add(VNET(ipstat)[statnum], 1); 209 } 210 211 void 212 kmod_ipstat_dec(int statnum) 213 { 214 215 counter_u64_add(VNET(ipstat)[statnum], -1); 216 } 217 218 static int 219 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 220 { 221 int error, qlimit; 222 223 netisr_getqlimit(&ip_nh, &qlimit); 224 error = sysctl_handle_int(oidp, &qlimit, 0, req); 225 if (error || !req->newptr) 226 return (error); 227 if (qlimit < 1) 228 return (EINVAL); 229 return (netisr_setqlimit(&ip_nh, qlimit)); 230 } 231 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 232 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 233 sysctl_netinet_intr_queue_maxlen, "I", 234 "Maximum size of the IP input queue"); 235 236 static int 237 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 238 { 239 u_int64_t qdrops_long; 240 int error, qdrops; 241 242 netisr_getqdrops(&ip_nh, &qdrops_long); 243 qdrops = qdrops_long; 244 error = sysctl_handle_int(oidp, &qdrops, 0, req); 245 if (error || !req->newptr) 246 return (error); 247 if (qdrops != 0) 248 return (EINVAL); 249 netisr_clearqdrops(&ip_nh); 250 return (0); 251 } 252 253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 254 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 255 0, 0, sysctl_netinet_intr_queue_drops, "I", 256 "Number of packets dropped from the IP input queue"); 257 258 #ifdef RSS 259 static int 260 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 261 { 262 int error, qlimit; 263 264 netisr_getqlimit(&ip_direct_nh, &qlimit); 265 error = sysctl_handle_int(oidp, &qlimit, 0, req); 266 if (error || !req->newptr) 267 return (error); 268 if (qlimit < 1) 269 return (EINVAL); 270 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 271 } 272 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 273 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 274 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 275 "I", "Maximum size of the IP direct input queue"); 276 277 static int 278 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 279 { 280 u_int64_t qdrops_long; 281 int error, qdrops; 282 283 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 284 qdrops = qdrops_long; 285 error = sysctl_handle_int(oidp, &qdrops, 0, req); 286 if (error || !req->newptr) 287 return (error); 288 if (qdrops != 0) 289 return (EINVAL); 290 netisr_clearqdrops(&ip_direct_nh); 291 return (0); 292 } 293 294 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 295 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 296 sysctl_netinet_intr_direct_queue_drops, "I", 297 "Number of packets dropped from the IP direct input queue"); 298 #endif /* RSS */ 299 300 /* 301 * IP initialization: fill in IP protocol switch table. 302 * All protocols not implemented in kernel go to raw IP protocol handler. 303 */ 304 void 305 ip_init(void) 306 { 307 struct pfil_head_args args; 308 struct protosw *pr; 309 int i; 310 311 CK_STAILQ_INIT(&V_in_ifaddrhead); 312 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 313 314 /* Initialize IP reassembly queue. */ 315 ipreass_init(); 316 317 /* Initialize packet filter hooks. */ 318 args.pa_version = PFIL_VERSION; 319 args.pa_flags = PFIL_IN | PFIL_OUT; 320 args.pa_type = PFIL_TYPE_IP4; 321 args.pa_headname = PFIL_INET_NAME; 322 V_inet_pfil_head = pfil_head_register(&args); 323 324 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 325 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 326 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 327 printf("%s: WARNING: unable to register input helper hook\n", 328 __func__); 329 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 330 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 331 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 332 printf("%s: WARNING: unable to register output helper hook\n", 333 __func__); 334 335 /* Skip initialization of globals for non-default instances. */ 336 #ifdef VIMAGE 337 if (!IS_DEFAULT_VNET(curvnet)) { 338 netisr_register_vnet(&ip_nh); 339 #ifdef RSS 340 netisr_register_vnet(&ip_direct_nh); 341 #endif 342 return; 343 } 344 #endif 345 346 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 347 if (pr == NULL) 348 panic("ip_init: PF_INET not found"); 349 350 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 351 for (i = 0; i < IPPROTO_MAX; i++) 352 ip_protox[i] = pr - inetsw; 353 /* 354 * Cycle through IP protocols and put them into the appropriate place 355 * in ip_protox[]. 356 */ 357 for (pr = inetdomain.dom_protosw; 358 pr < inetdomain.dom_protoswNPROTOSW; pr++) 359 if (pr->pr_domain->dom_family == PF_INET && 360 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 361 /* Be careful to only index valid IP protocols. */ 362 if (pr->pr_protocol < IPPROTO_MAX) 363 ip_protox[pr->pr_protocol] = pr - inetsw; 364 } 365 366 netisr_register(&ip_nh); 367 #ifdef RSS 368 netisr_register(&ip_direct_nh); 369 #endif 370 } 371 372 #ifdef VIMAGE 373 static void 374 ip_destroy(void *unused __unused) 375 { 376 int error; 377 378 #ifdef RSS 379 netisr_unregister_vnet(&ip_direct_nh); 380 #endif 381 netisr_unregister_vnet(&ip_nh); 382 383 pfil_head_unregister(V_inet_pfil_head); 384 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 385 if (error != 0) { 386 printf("%s: WARNING: unable to deregister input helper hook " 387 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 388 "error %d returned\n", __func__, error); 389 } 390 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 391 if (error != 0) { 392 printf("%s: WARNING: unable to deregister output helper hook " 393 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 394 "error %d returned\n", __func__, error); 395 } 396 397 /* Remove the IPv4 addresses from all interfaces. */ 398 in_ifscrub_all(); 399 400 /* Make sure the IPv4 routes are gone as well. */ 401 rib_flush_routes_family(AF_INET); 402 403 /* Destroy IP reassembly queue. */ 404 ipreass_destroy(); 405 406 /* Cleanup in_ifaddr hash table; should be empty. */ 407 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 408 } 409 410 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 411 #endif 412 413 #ifdef RSS 414 /* 415 * IP direct input routine. 416 * 417 * This is called when reinjecting completed fragments where 418 * all of the previous checking and book-keeping has been done. 419 */ 420 void 421 ip_direct_input(struct mbuf *m) 422 { 423 struct ip *ip; 424 int hlen; 425 426 ip = mtod(m, struct ip *); 427 hlen = ip->ip_hl << 2; 428 429 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 430 if (IPSEC_ENABLED(ipv4)) { 431 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 432 return; 433 } 434 #endif /* IPSEC */ 435 IPSTAT_INC(ips_delivered); 436 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 437 return; 438 } 439 #endif 440 441 /* 442 * Ip input routine. Checksum and byte swap header. If fragmented 443 * try to reassemble. Process options. Pass to next level. 444 */ 445 void 446 ip_input(struct mbuf *m) 447 { 448 MROUTER_RLOCK_TRACKER; 449 struct ip *ip = NULL; 450 struct in_ifaddr *ia = NULL; 451 struct ifaddr *ifa; 452 struct ifnet *ifp; 453 int hlen = 0; 454 uint16_t sum, ip_len; 455 int dchg = 0; /* dest changed after fw */ 456 struct in_addr odst; /* original dst address */ 457 bool strong_es; 458 459 M_ASSERTPKTHDR(m); 460 NET_EPOCH_ASSERT(); 461 462 if (m->m_flags & M_FASTFWD_OURS) { 463 m->m_flags &= ~M_FASTFWD_OURS; 464 /* Set up some basics that will be used later. */ 465 ip = mtod(m, struct ip *); 466 hlen = ip->ip_hl << 2; 467 ip_len = ntohs(ip->ip_len); 468 goto ours; 469 } 470 471 IPSTAT_INC(ips_total); 472 473 if (__predict_false(m->m_pkthdr.len < sizeof(struct ip))) 474 goto tooshort; 475 476 if (m->m_len < sizeof(struct ip)) { 477 m = m_pullup(m, sizeof(struct ip)); 478 if (__predict_false(m == NULL)) { 479 IPSTAT_INC(ips_toosmall); 480 return; 481 } 482 } 483 ip = mtod(m, struct ip *); 484 485 if (__predict_false(ip->ip_v != IPVERSION)) { 486 IPSTAT_INC(ips_badvers); 487 goto bad; 488 } 489 490 hlen = ip->ip_hl << 2; 491 if (__predict_false(hlen < sizeof(struct ip))) { /* minimum header length */ 492 IPSTAT_INC(ips_badhlen); 493 goto bad; 494 } 495 if (hlen > m->m_len) { 496 m = m_pullup(m, hlen); 497 if (__predict_false(m == NULL)) { 498 IPSTAT_INC(ips_badhlen); 499 return; 500 } 501 ip = mtod(m, struct ip *); 502 } 503 504 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 505 506 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 507 ifp = m->m_pkthdr.rcvif; 508 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 509 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 510 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 511 IPSTAT_INC(ips_badaddr); 512 goto bad; 513 } 514 } 515 516 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 517 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 518 } else { 519 if (hlen == sizeof(struct ip)) { 520 sum = in_cksum_hdr(ip); 521 } else { 522 sum = in_cksum(m, hlen); 523 } 524 } 525 if (__predict_false(sum)) { 526 IPSTAT_INC(ips_badsum); 527 goto bad; 528 } 529 530 #ifdef ALTQ 531 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 532 /* packet is dropped by traffic conditioner */ 533 return; 534 #endif 535 536 ip_len = ntohs(ip->ip_len); 537 if (__predict_false(ip_len < hlen)) { 538 IPSTAT_INC(ips_badlen); 539 goto bad; 540 } 541 542 /* 543 * Check that the amount of data in the buffers 544 * is as at least much as the IP header would have us expect. 545 * Trim mbufs if longer than we expect. 546 * Drop packet if shorter than we expect. 547 */ 548 if (__predict_false(m->m_pkthdr.len < ip_len)) { 549 tooshort: 550 IPSTAT_INC(ips_tooshort); 551 goto bad; 552 } 553 if (m->m_pkthdr.len > ip_len) { 554 if (m->m_len == m->m_pkthdr.len) { 555 m->m_len = ip_len; 556 m->m_pkthdr.len = ip_len; 557 } else 558 m_adj(m, ip_len - m->m_pkthdr.len); 559 } 560 561 /* 562 * Try to forward the packet, but if we fail continue. 563 * ip_tryforward() may generate redirects these days. 564 * XXX the logic below falling through to normal processing 565 * if redirects are required should be revisited as well. 566 * ip_tryforward() does inbound and outbound packet firewall 567 * processing. If firewall has decided that destination becomes 568 * our local address, it sets M_FASTFWD_OURS flag. In this 569 * case skip another inbound firewall processing and update 570 * ip pointer. 571 */ 572 if (V_ipforwarding != 0 573 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 574 && (!IPSEC_ENABLED(ipv4) || 575 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 576 #endif 577 ) { 578 /* 579 * ip_dooptions() was run so we can ignore the source route (or 580 * any IP options case) case for redirects in ip_tryforward(). 581 */ 582 if ((m = ip_tryforward(m)) == NULL) 583 return; 584 if (m->m_flags & M_FASTFWD_OURS) { 585 m->m_flags &= ~M_FASTFWD_OURS; 586 ip = mtod(m, struct ip *); 587 goto ours; 588 } 589 } 590 591 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 592 /* 593 * Bypass packet filtering for packets previously handled by IPsec. 594 */ 595 if (IPSEC_ENABLED(ipv4) && 596 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 597 goto passin; 598 #endif 599 600 /* 601 * Run through list of hooks for input packets. 602 * 603 * NB: Beware of the destination address changing (e.g. 604 * by NAT rewriting). When this happens, tell 605 * ip_forward to do the right thing. 606 */ 607 608 /* Jump over all PFIL processing if hooks are not active. */ 609 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 610 goto passin; 611 612 odst = ip->ip_dst; 613 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 614 PFIL_PASS) 615 return; 616 if (m == NULL) /* consumed by filter */ 617 return; 618 619 ip = mtod(m, struct ip *); 620 dchg = (odst.s_addr != ip->ip_dst.s_addr); 621 622 if (m->m_flags & M_FASTFWD_OURS) { 623 m->m_flags &= ~M_FASTFWD_OURS; 624 goto ours; 625 } 626 if (m->m_flags & M_IP_NEXTHOP) { 627 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 628 /* 629 * Directly ship the packet on. This allows 630 * forwarding packets originally destined to us 631 * to some other directly connected host. 632 */ 633 ip_forward(m, 1); 634 return; 635 } 636 } 637 passin: 638 639 /* 640 * Process options and, if not destined for us, 641 * ship it on. ip_dooptions returns 1 when an 642 * error was detected (causing an icmp message 643 * to be sent and the original packet to be freed). 644 */ 645 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 646 return; 647 648 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 649 * matter if it is destined to another node, or whether it is 650 * a multicast one, RSVP wants it! and prevents it from being forwarded 651 * anywhere else. Also checks if the rsvp daemon is running before 652 * grabbing the packet. 653 */ 654 if (ip->ip_p == IPPROTO_RSVP && V_rsvp_on) 655 goto ours; 656 657 /* 658 * Check our list of addresses, to see if the packet is for us. 659 * If we don't have any addresses, assume any unicast packet 660 * we receive might be for us (and let the upper layers deal 661 * with it). 662 */ 663 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 664 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 665 goto ours; 666 667 /* 668 * Enable a consistency check between the destination address 669 * and the arrival interface for a unicast packet (the RFC 1122 670 * strong ES model) with a list of additional predicates: 671 * - if IP forwarding is disabled 672 * - the packet is not locally generated 673 * - the packet is not subject to 'ipfw fwd' 674 * - Interface is not running CARP. If the packet got here, we already 675 * checked it with carp_iamatch() and carp_forus(). 676 */ 677 strong_es = V_ip_strong_es && (V_ipforwarding == 0) && 678 ((ifp->if_flags & IFF_LOOPBACK) == 0) && 679 ifp->if_carp == NULL && (dchg == 0); 680 681 /* 682 * Check for exact addresses in the hash bucket. 683 */ 684 CK_LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 685 if (IA_SIN(ia)->sin_addr.s_addr != ip->ip_dst.s_addr) 686 continue; 687 688 /* 689 * net.inet.ip.rfc1122_strong_es: the address matches, verify 690 * that the packet arrived via the correct interface. 691 */ 692 if (__predict_false(strong_es && ia->ia_ifp != ifp)) { 693 IPSTAT_INC(ips_badaddr); 694 goto bad; 695 } 696 697 /* 698 * net.inet.ip.source_address_validation: drop incoming 699 * packets that pretend to be ours. 700 */ 701 if (V_ip_sav && !(ifp->if_flags & IFF_LOOPBACK) && 702 __predict_false(in_localip_fib(ip->ip_src, ifp->if_fib))) { 703 IPSTAT_INC(ips_badaddr); 704 goto bad; 705 } 706 707 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 708 counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); 709 goto ours; 710 } 711 712 /* 713 * Check for broadcast addresses. 714 * 715 * Only accept broadcast packets that arrive via the matching 716 * interface. Reception of forwarded directed broadcasts would 717 * be handled via ip_forward() and ether_output() with the loopback 718 * into the stack for SIMPLEX interfaces handled by ether_output(). 719 */ 720 if (ifp->if_flags & IFF_BROADCAST) { 721 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 722 if (ifa->ifa_addr->sa_family != AF_INET) 723 continue; 724 ia = ifatoia(ifa); 725 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 726 ip->ip_dst.s_addr) { 727 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 728 counter_u64_add(ia->ia_ifa.ifa_ibytes, 729 m->m_pkthdr.len); 730 goto ours; 731 } 732 #ifdef BOOTP_COMPAT 733 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 734 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 735 counter_u64_add(ia->ia_ifa.ifa_ibytes, 736 m->m_pkthdr.len); 737 goto ours; 738 } 739 #endif 740 } 741 ia = NULL; 742 } 743 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 744 MROUTER_RLOCK(); 745 /* 746 * RFC 3927 2.7: Do not forward multicast packets from 747 * IN_LINKLOCAL. 748 */ 749 if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 750 /* 751 * If we are acting as a multicast router, all 752 * incoming multicast packets are passed to the 753 * kernel-level multicast forwarding function. 754 * The packet is returned (relatively) intact; if 755 * ip_mforward() returns a non-zero value, the packet 756 * must be discarded, else it may be accepted below. 757 */ 758 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 759 MROUTER_RUNLOCK(); 760 IPSTAT_INC(ips_cantforward); 761 m_freem(m); 762 return; 763 } 764 765 /* 766 * The process-level routing daemon needs to receive 767 * all multicast IGMP packets, whether or not this 768 * host belongs to their destination groups. 769 */ 770 if (ip->ip_p == IPPROTO_IGMP) { 771 MROUTER_RUNLOCK(); 772 goto ours; 773 } 774 IPSTAT_INC(ips_forward); 775 } 776 MROUTER_RUNLOCK(); 777 /* 778 * Assume the packet is for us, to avoid prematurely taking 779 * a lock on the in_multi hash. Protocols must perform 780 * their own filtering and update statistics accordingly. 781 */ 782 goto ours; 783 } 784 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 785 goto ours; 786 if (ip->ip_dst.s_addr == INADDR_ANY) 787 goto ours; 788 /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */ 789 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || 790 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 791 IPSTAT_INC(ips_cantforward); 792 m_freem(m); 793 return; 794 } 795 796 /* 797 * Not for us; forward if possible and desirable. 798 */ 799 if (V_ipforwarding == 0) { 800 IPSTAT_INC(ips_cantforward); 801 m_freem(m); 802 } else { 803 ip_forward(m, dchg); 804 } 805 return; 806 807 ours: 808 #ifdef IPSTEALTH 809 /* 810 * IPSTEALTH: Process non-routing options only 811 * if the packet is destined for us. 812 */ 813 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 814 return; 815 #endif /* IPSTEALTH */ 816 817 /* 818 * Attempt reassembly; if it succeeds, proceed. 819 * ip_reass() will return a different mbuf. 820 */ 821 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 822 /* XXXGL: shouldn't we save & set m_flags? */ 823 m = ip_reass(m); 824 if (m == NULL) 825 return; 826 ip = mtod(m, struct ip *); 827 /* Get the header length of the reassembled packet */ 828 hlen = ip->ip_hl << 2; 829 } 830 831 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 832 if (IPSEC_ENABLED(ipv4)) { 833 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 834 return; 835 } 836 #endif /* IPSEC */ 837 838 /* 839 * Switch out to protocol's input routine. 840 */ 841 IPSTAT_INC(ips_delivered); 842 843 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 844 return; 845 bad: 846 m_freem(m); 847 } 848 849 /* 850 * IP timer processing; 851 * if a timer expires on a reassembly 852 * queue, discard it. 853 */ 854 void 855 ip_slowtimo(void) 856 { 857 VNET_ITERATOR_DECL(vnet_iter); 858 859 VNET_LIST_RLOCK_NOSLEEP(); 860 VNET_FOREACH(vnet_iter) { 861 CURVNET_SET(vnet_iter); 862 ipreass_slowtimo(); 863 CURVNET_RESTORE(); 864 } 865 VNET_LIST_RUNLOCK_NOSLEEP(); 866 } 867 868 void 869 ip_drain(void) 870 { 871 VNET_ITERATOR_DECL(vnet_iter); 872 873 VNET_LIST_RLOCK_NOSLEEP(); 874 VNET_FOREACH(vnet_iter) { 875 CURVNET_SET(vnet_iter); 876 ipreass_drain(); 877 CURVNET_RESTORE(); 878 } 879 VNET_LIST_RUNLOCK_NOSLEEP(); 880 } 881 882 /* 883 * The protocol to be inserted into ip_protox[] must be already registered 884 * in inetsw[], either statically or through pf_proto_register(). 885 */ 886 int 887 ipproto_register(short ipproto) 888 { 889 struct protosw *pr; 890 891 /* Sanity checks. */ 892 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 893 return (EPROTONOSUPPORT); 894 895 /* 896 * The protocol slot must not be occupied by another protocol 897 * already. An index pointing to IPPROTO_RAW is unused. 898 */ 899 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 900 if (pr == NULL) 901 return (EPFNOSUPPORT); 902 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 903 return (EEXIST); 904 905 /* Find the protocol position in inetsw[] and set the index. */ 906 for (pr = inetdomain.dom_protosw; 907 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 908 if (pr->pr_domain->dom_family == PF_INET && 909 pr->pr_protocol && pr->pr_protocol == ipproto) { 910 ip_protox[pr->pr_protocol] = pr - inetsw; 911 return (0); 912 } 913 } 914 return (EPROTONOSUPPORT); 915 } 916 917 int 918 ipproto_unregister(short ipproto) 919 { 920 struct protosw *pr; 921 922 /* Sanity checks. */ 923 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 924 return (EPROTONOSUPPORT); 925 926 /* Check if the protocol was indeed registered. */ 927 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 928 if (pr == NULL) 929 return (EPFNOSUPPORT); 930 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 931 return (ENOENT); 932 933 /* Reset the protocol slot to IPPROTO_RAW. */ 934 ip_protox[ipproto] = pr - inetsw; 935 return (0); 936 } 937 938 u_char inetctlerrmap[PRC_NCMDS] = { 939 0, 0, 0, 0, 940 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 941 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 942 EMSGSIZE, EHOSTUNREACH, 0, 0, 943 0, 0, EHOSTUNREACH, 0, 944 ENOPROTOOPT, ECONNREFUSED 945 }; 946 947 /* 948 * Forward a packet. If some error occurs return the sender 949 * an icmp packet. Note we can't always generate a meaningful 950 * icmp message because icmp doesn't have a large enough repertoire 951 * of codes and types. 952 * 953 * If not forwarding, just drop the packet. This could be confusing 954 * if ipforwarding was zero but some routing protocol was advancing 955 * us as a gateway to somewhere. However, we must let the routing 956 * protocol deal with that. 957 * 958 * The srcrt parameter indicates whether the packet is being forwarded 959 * via a source route. 960 */ 961 void 962 ip_forward(struct mbuf *m, int srcrt) 963 { 964 struct ip *ip = mtod(m, struct ip *); 965 struct in_ifaddr *ia; 966 struct mbuf *mcopy; 967 struct sockaddr_in *sin; 968 struct in_addr dest; 969 struct route ro; 970 uint32_t flowid; 971 int error, type = 0, code = 0, mtu = 0; 972 973 NET_EPOCH_ASSERT(); 974 975 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 976 IPSTAT_INC(ips_cantforward); 977 m_freem(m); 978 return; 979 } 980 if ( 981 #ifdef IPSTEALTH 982 V_ipstealth == 0 && 983 #endif 984 ip->ip_ttl <= IPTTLDEC) { 985 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 986 return; 987 } 988 989 bzero(&ro, sizeof(ro)); 990 sin = (struct sockaddr_in *)&ro.ro_dst; 991 sin->sin_family = AF_INET; 992 sin->sin_len = sizeof(*sin); 993 sin->sin_addr = ip->ip_dst; 994 flowid = m->m_pkthdr.flowid; 995 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 996 if (ro.ro_nh != NULL) { 997 ia = ifatoia(ro.ro_nh->nh_ifa); 998 } else 999 ia = NULL; 1000 /* 1001 * Save the IP header and at most 8 bytes of the payload, 1002 * in case we need to generate an ICMP message to the src. 1003 * 1004 * XXX this can be optimized a lot by saving the data in a local 1005 * buffer on the stack (72 bytes at most), and only allocating the 1006 * mbuf if really necessary. The vast majority of the packets 1007 * are forwarded without having to send an ICMP back (either 1008 * because unnecessary, or because rate limited), so we are 1009 * really we are wasting a lot of work here. 1010 * 1011 * We don't use m_copym() because it might return a reference 1012 * to a shared cluster. Both this function and ip_output() 1013 * assume exclusive access to the IP header in `m', so any 1014 * data in a cluster may change before we reach icmp_error(). 1015 */ 1016 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1017 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1018 /* 1019 * It's probably ok if the pkthdr dup fails (because 1020 * the deep copy of the tag chain failed), but for now 1021 * be conservative and just discard the copy since 1022 * code below may some day want the tags. 1023 */ 1024 m_free(mcopy); 1025 mcopy = NULL; 1026 } 1027 if (mcopy != NULL) { 1028 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1029 mcopy->m_pkthdr.len = mcopy->m_len; 1030 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1031 } 1032 #ifdef IPSTEALTH 1033 if (V_ipstealth == 0) 1034 #endif 1035 ip->ip_ttl -= IPTTLDEC; 1036 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1037 if (IPSEC_ENABLED(ipv4)) { 1038 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1039 /* mbuf consumed by IPsec */ 1040 RO_NHFREE(&ro); 1041 m_freem(mcopy); 1042 if (error != EINPROGRESS) 1043 IPSTAT_INC(ips_cantforward); 1044 return; 1045 } 1046 /* No IPsec processing required */ 1047 } 1048 #endif /* IPSEC */ 1049 /* 1050 * If forwarding packet using same interface that it came in on, 1051 * perhaps should send a redirect to sender to shortcut a hop. 1052 * Only send redirect if source is sending directly to us, 1053 * and if packet was not source routed (or has any options). 1054 * Also, don't send redirect if forwarding using a default route 1055 * or a route modified by a redirect. 1056 */ 1057 dest.s_addr = 0; 1058 if (!srcrt && V_ipsendredirects && 1059 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1060 struct nhop_object *nh; 1061 1062 nh = ro.ro_nh; 1063 1064 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1065 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1066 u_long src = ntohl(ip->ip_src.s_addr); 1067 1068 if (nh_ia != NULL && 1069 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1070 /* Router requirements says to only send host redirects */ 1071 type = ICMP_REDIRECT; 1072 code = ICMP_REDIRECT_HOST; 1073 if (nh->nh_flags & NHF_GATEWAY) { 1074 if (nh->gw_sa.sa_family == AF_INET) 1075 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1076 else /* Do not redirect in case gw is AF_INET6 */ 1077 type = 0; 1078 } else 1079 dest.s_addr = ip->ip_dst.s_addr; 1080 } 1081 } 1082 } 1083 1084 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1085 1086 if (error == EMSGSIZE && ro.ro_nh) 1087 mtu = ro.ro_nh->nh_mtu; 1088 RO_NHFREE(&ro); 1089 1090 if (error) 1091 IPSTAT_INC(ips_cantforward); 1092 else { 1093 IPSTAT_INC(ips_forward); 1094 if (type) 1095 IPSTAT_INC(ips_redirectsent); 1096 else { 1097 if (mcopy) 1098 m_freem(mcopy); 1099 return; 1100 } 1101 } 1102 if (mcopy == NULL) 1103 return; 1104 1105 switch (error) { 1106 case 0: /* forwarded, but need redirect */ 1107 /* type, code set above */ 1108 break; 1109 1110 case ENETUNREACH: 1111 case EHOSTUNREACH: 1112 case ENETDOWN: 1113 case EHOSTDOWN: 1114 default: 1115 type = ICMP_UNREACH; 1116 code = ICMP_UNREACH_HOST; 1117 break; 1118 1119 case EMSGSIZE: 1120 type = ICMP_UNREACH; 1121 code = ICMP_UNREACH_NEEDFRAG; 1122 /* 1123 * If the MTU was set before make sure we are below the 1124 * interface MTU. 1125 * If the MTU wasn't set before use the interface mtu or 1126 * fall back to the next smaller mtu step compared to the 1127 * current packet size. 1128 */ 1129 if (mtu != 0) { 1130 if (ia != NULL) 1131 mtu = min(mtu, ia->ia_ifp->if_mtu); 1132 } else { 1133 if (ia != NULL) 1134 mtu = ia->ia_ifp->if_mtu; 1135 else 1136 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1137 } 1138 IPSTAT_INC(ips_cantfrag); 1139 break; 1140 1141 case ENOBUFS: 1142 case EACCES: /* ipfw denied packet */ 1143 m_freem(mcopy); 1144 return; 1145 } 1146 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1147 } 1148 1149 #define CHECK_SO_CT(sp, ct) \ 1150 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1151 1152 void 1153 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1154 struct mbuf *m) 1155 { 1156 bool stamped; 1157 1158 stamped = false; 1159 if ((inp->inp_socket->so_options & SO_BINTIME) || 1160 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1161 struct bintime boottimebin, bt; 1162 struct timespec ts1; 1163 1164 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1165 M_TSTMP)) { 1166 mbuf_tstmp2timespec(m, &ts1); 1167 timespec2bintime(&ts1, &bt); 1168 getboottimebin(&boottimebin); 1169 bintime_add(&bt, &boottimebin); 1170 } else { 1171 bintime(&bt); 1172 } 1173 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1174 SCM_BINTIME, SOL_SOCKET); 1175 if (*mp != NULL) { 1176 mp = &(*mp)->m_next; 1177 stamped = true; 1178 } 1179 } 1180 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1181 struct bintime boottimebin, bt1; 1182 struct timespec ts1; 1183 struct timeval tv; 1184 1185 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1186 M_TSTMP)) { 1187 mbuf_tstmp2timespec(m, &ts1); 1188 timespec2bintime(&ts1, &bt1); 1189 getboottimebin(&boottimebin); 1190 bintime_add(&bt1, &boottimebin); 1191 bintime2timeval(&bt1, &tv); 1192 } else { 1193 microtime(&tv); 1194 } 1195 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1196 SCM_TIMESTAMP, SOL_SOCKET); 1197 if (*mp != NULL) { 1198 mp = &(*mp)->m_next; 1199 stamped = true; 1200 } 1201 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1202 struct bintime boottimebin; 1203 struct timespec ts, ts1; 1204 1205 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1206 M_TSTMP)) { 1207 mbuf_tstmp2timespec(m, &ts); 1208 getboottimebin(&boottimebin); 1209 bintime2timespec(&boottimebin, &ts1); 1210 timespecadd(&ts, &ts1, &ts); 1211 } else { 1212 nanotime(&ts); 1213 } 1214 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1215 SCM_REALTIME, SOL_SOCKET); 1216 if (*mp != NULL) { 1217 mp = &(*mp)->m_next; 1218 stamped = true; 1219 } 1220 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1221 struct timespec ts; 1222 1223 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1224 M_TSTMP)) 1225 mbuf_tstmp2timespec(m, &ts); 1226 else 1227 nanouptime(&ts); 1228 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1229 SCM_MONOTONIC, SOL_SOCKET); 1230 if (*mp != NULL) { 1231 mp = &(*mp)->m_next; 1232 stamped = true; 1233 } 1234 } 1235 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1236 M_TSTMP)) { 1237 struct sock_timestamp_info sti; 1238 1239 bzero(&sti, sizeof(sti)); 1240 sti.st_info_flags = ST_INFO_HW; 1241 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1242 sti.st_info_flags |= ST_INFO_HW_HPREC; 1243 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1244 SOL_SOCKET); 1245 if (*mp != NULL) 1246 mp = &(*mp)->m_next; 1247 } 1248 if (inp->inp_flags & INP_RECVDSTADDR) { 1249 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1250 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1251 if (*mp) 1252 mp = &(*mp)->m_next; 1253 } 1254 if (inp->inp_flags & INP_RECVTTL) { 1255 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1256 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1257 if (*mp) 1258 mp = &(*mp)->m_next; 1259 } 1260 #ifdef notyet 1261 /* XXX 1262 * Moving these out of udp_input() made them even more broken 1263 * than they already were. 1264 */ 1265 /* options were tossed already */ 1266 if (inp->inp_flags & INP_RECVOPTS) { 1267 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1268 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1269 if (*mp) 1270 mp = &(*mp)->m_next; 1271 } 1272 /* ip_srcroute doesn't do what we want here, need to fix */ 1273 if (inp->inp_flags & INP_RECVRETOPTS) { 1274 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1275 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1276 if (*mp) 1277 mp = &(*mp)->m_next; 1278 } 1279 #endif 1280 if (inp->inp_flags & INP_RECVIF) { 1281 struct ifnet *ifp; 1282 struct sdlbuf { 1283 struct sockaddr_dl sdl; 1284 u_char pad[32]; 1285 } sdlbuf; 1286 struct sockaddr_dl *sdp; 1287 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1288 1289 if ((ifp = m->m_pkthdr.rcvif)) { 1290 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1291 /* 1292 * Change our mind and don't try copy. 1293 */ 1294 if (sdp->sdl_family != AF_LINK || 1295 sdp->sdl_len > sizeof(sdlbuf)) { 1296 goto makedummy; 1297 } 1298 bcopy(sdp, sdl2, sdp->sdl_len); 1299 } else { 1300 makedummy: 1301 sdl2->sdl_len = 1302 offsetof(struct sockaddr_dl, sdl_data[0]); 1303 sdl2->sdl_family = AF_LINK; 1304 sdl2->sdl_index = 0; 1305 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1306 } 1307 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1308 IP_RECVIF, IPPROTO_IP); 1309 if (*mp) 1310 mp = &(*mp)->m_next; 1311 } 1312 if (inp->inp_flags & INP_RECVTOS) { 1313 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1314 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1315 if (*mp) 1316 mp = &(*mp)->m_next; 1317 } 1318 1319 if (inp->inp_flags2 & INP_RECVFLOWID) { 1320 uint32_t flowid, flow_type; 1321 1322 flowid = m->m_pkthdr.flowid; 1323 flow_type = M_HASHTYPE_GET(m); 1324 1325 /* 1326 * XXX should handle the failure of one or the 1327 * other - don't populate both? 1328 */ 1329 *mp = sbcreatecontrol((caddr_t) &flowid, 1330 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1331 if (*mp) 1332 mp = &(*mp)->m_next; 1333 *mp = sbcreatecontrol((caddr_t) &flow_type, 1334 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1335 if (*mp) 1336 mp = &(*mp)->m_next; 1337 } 1338 1339 #ifdef RSS 1340 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1341 uint32_t flowid, flow_type; 1342 uint32_t rss_bucketid; 1343 1344 flowid = m->m_pkthdr.flowid; 1345 flow_type = M_HASHTYPE_GET(m); 1346 1347 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1348 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1349 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1350 if (*mp) 1351 mp = &(*mp)->m_next; 1352 } 1353 } 1354 #endif 1355 } 1356 1357 /* 1358 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1359 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1360 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1361 * compiled. 1362 */ 1363 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1364 VNET_DEFINE(struct socket *, ip_rsvpd); 1365 1366 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1367 1368 int 1369 ip_rsvp_init(struct socket *so) 1370 { 1371 1372 if (so->so_type != SOCK_RAW || 1373 so->so_proto->pr_protocol != IPPROTO_RSVP) 1374 return EOPNOTSUPP; 1375 1376 if (V_ip_rsvpd != NULL) 1377 return EADDRINUSE; 1378 1379 V_ip_rsvpd = so; 1380 /* 1381 * This may seem silly, but we need to be sure we don't over-increment 1382 * the RSVP counter, in case something slips up. 1383 */ 1384 if (!V_ip_rsvp_on) { 1385 V_ip_rsvp_on = 1; 1386 V_rsvp_on++; 1387 } 1388 1389 return 0; 1390 } 1391 1392 int 1393 ip_rsvp_done(void) 1394 { 1395 1396 V_ip_rsvpd = NULL; 1397 /* 1398 * This may seem silly, but we need to be sure we don't over-decrement 1399 * the RSVP counter, in case something slips up. 1400 */ 1401 if (V_ip_rsvp_on) { 1402 V_ip_rsvp_on = 0; 1403 V_rsvp_on--; 1404 } 1405 return 0; 1406 } 1407 1408 int 1409 rsvp_input(struct mbuf **mp, int *offp, int proto) 1410 { 1411 struct mbuf *m; 1412 1413 m = *mp; 1414 *mp = NULL; 1415 1416 if (rsvp_input_p) { /* call the real one if loaded */ 1417 *mp = m; 1418 rsvp_input_p(mp, offp, proto); 1419 return (IPPROTO_DONE); 1420 } 1421 1422 /* Can still get packets with rsvp_on = 0 if there is a local member 1423 * of the group to which the RSVP packet is addressed. But in this 1424 * case we want to throw the packet away. 1425 */ 1426 1427 if (!V_rsvp_on) { 1428 m_freem(m); 1429 return (IPPROTO_DONE); 1430 } 1431 1432 if (V_ip_rsvpd != NULL) { 1433 *mp = m; 1434 rip_input(mp, offp, proto); 1435 return (IPPROTO_DONE); 1436 } 1437 /* Drop the packet */ 1438 m_freem(m); 1439 return (IPPROTO_DONE); 1440 } 1441