1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $Id: ip_input.c,v 1.1.1.2 1997/04/03 10:39:25 darrenr Exp $ 35 * $ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $ 36 */ 37 38 #define _IP_VHL 39 40 #include "opt_ipfw.h" 41 42 #include <stddef.h> 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/errno.h> 52 #include <sys/time.h> 53 #include <sys/kernel.h> 54 #include <sys/syslog.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/netisr.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/in_var.h> 68 #include <netinet/ip_var.h> 69 #include <netinet/ip_icmp.h> 70 #include <machine/in_cksum.h> 71 72 #include <sys/socketvar.h> 73 74 #ifdef IPFIREWALL 75 #include <netinet/ip_fw.h> 76 #endif 77 78 int rsvp_on = 0; 79 static int ip_rsvp_on; 80 struct socket *ip_rsvpd; 81 82 static int ipforwarding = 0; 83 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 84 &ipforwarding, 0, ""); 85 86 static int ipsendredirects = 1; /* XXX */ 87 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 88 &ipsendredirects, 0, ""); 89 90 int ip_defttl = IPDEFTTL; 91 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 92 &ip_defttl, 0, ""); 93 94 static int ip_dosourceroute = 0; 95 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 96 &ip_dosourceroute, 0, ""); 97 #ifdef DIAGNOSTIC 98 static int ipprintfs = 0; 99 #endif 100 101 extern struct domain inetdomain; 102 extern struct protosw inetsw[]; 103 u_char ip_protox[IPPROTO_MAX]; 104 static int ipqmaxlen = IFQ_MAXLEN; 105 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 106 struct ifqueue ipintrq; 107 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD, 108 &ipintrq.ifq_maxlen, 0, ""); 109 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 110 &ipintrq.ifq_drops, 0, ""); 111 112 struct ipstat ipstat; 113 static struct ipq ipq; 114 115 #ifdef IPCTL_DEFMTU 116 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 117 &ip_mtu, 0, ""); 118 #endif 119 120 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1 121 #undef COMPAT_IPFW 122 #define COMPAT_IPFW 1 123 #else 124 #undef COMPAT_IPFW 125 #endif 126 127 #ifdef COMPAT_IPFW 128 /* Firewall hooks */ 129 ip_fw_chk_t *ip_fw_chk_ptr; 130 ip_fw_ctl_t *ip_fw_ctl_ptr; 131 132 /* IP Network Address Translation (NAT) hooks */ 133 ip_nat_t *ip_nat_ptr; 134 ip_nat_ctl_t *ip_nat_ctl_ptr; 135 #endif 136 137 #if defined(IPFILTER_LKM) || defined(IPFILTER) 138 int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **)); 139 int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL; 140 #endif 141 142 143 /* 144 * We need to save the IP options in case a protocol wants to respond 145 * to an incoming packet over the same route if the packet got here 146 * using IP source routing. This allows connection establishment and 147 * maintenance when the remote end is on a network that is not known 148 * to us. 149 */ 150 static int ip_nhops = 0; 151 static struct ip_srcrt { 152 struct in_addr dst; /* final destination */ 153 char nop; /* one NOP to align */ 154 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 155 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 156 } ip_srcrt; 157 158 #ifdef IPDIVERT 159 /* 160 * Shared variable between ip_input() and ip_reass() to communicate 161 * about which packets, once assembled from fragments, get diverted, 162 * and to which port. 163 */ 164 static u_short frag_divert_port; 165 #endif 166 167 static void save_rte __P((u_char *, struct in_addr)); 168 static void ip_deq __P((struct ipasfrag *)); 169 static int ip_dooptions __P((struct mbuf *)); 170 static void ip_enq __P((struct ipasfrag *, struct ipasfrag *)); 171 static void ip_forward __P((struct mbuf *, int)); 172 static void ip_freef __P((struct ipq *)); 173 static struct ip * 174 ip_reass __P((struct ipasfrag *, struct ipq *)); 175 static struct in_ifaddr * 176 ip_rtaddr __P((struct in_addr)); 177 static void ipintr __P((void)); 178 /* 179 * IP initialization: fill in IP protocol switch table. 180 * All protocols not implemented in kernel go to raw IP protocol handler. 181 */ 182 void 183 ip_init() 184 { 185 register struct protosw *pr; 186 register int i; 187 188 TAILQ_INIT(&in_ifaddrhead); 189 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 190 if (pr == 0) 191 panic("ip_init"); 192 for (i = 0; i < IPPROTO_MAX; i++) 193 ip_protox[i] = pr - inetsw; 194 for (pr = inetdomain.dom_protosw; 195 pr < inetdomain.dom_protoswNPROTOSW; pr++) 196 if (pr->pr_domain->dom_family == PF_INET && 197 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 198 ip_protox[pr->pr_protocol] = pr - inetsw; 199 ipq.next = ipq.prev = &ipq; 200 ip_id = time.tv_sec & 0xffff; 201 ipintrq.ifq_maxlen = ipqmaxlen; 202 #ifdef IPFIREWALL 203 ip_fw_init(); 204 #endif 205 #ifdef IPNAT 206 ip_nat_init(); 207 #endif 208 209 } 210 211 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 212 static struct route ipforward_rt; 213 214 /* 215 * Ip input routine. Checksum and byte swap header. If fragmented 216 * try to reassemble. Process options. Pass to next level. 217 */ 218 void 219 ip_input(struct mbuf *m) 220 { 221 struct ip *ip; 222 struct ipq *fp; 223 struct in_ifaddr *ia; 224 int hlen; 225 u_short sum; 226 227 #ifdef DIAGNOSTIC 228 if ((m->m_flags & M_PKTHDR) == 0) 229 panic("ip_input no HDR"); 230 #endif 231 /* 232 * If no IP addresses have been set yet but the interfaces 233 * are receiving, can't do anything with incoming packets yet. 234 * XXX This is broken! We should be able to receive broadcasts 235 * and multicasts even without any local addresses configured. 236 */ 237 if (TAILQ_EMPTY(&in_ifaddrhead)) 238 goto bad; 239 ipstat.ips_total++; 240 241 if (m->m_pkthdr.len < sizeof(struct ip)) 242 goto tooshort; 243 244 #ifdef DIAGNOSTIC 245 if (m->m_len < sizeof(struct ip)) 246 panic("ipintr mbuf too short"); 247 #endif 248 249 if (m->m_len < sizeof (struct ip) && 250 (m = m_pullup(m, sizeof (struct ip))) == 0) { 251 ipstat.ips_toosmall++; 252 return; 253 } 254 ip = mtod(m, struct ip *); 255 256 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 257 ipstat.ips_badvers++; 258 goto bad; 259 } 260 261 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 262 if (hlen < sizeof(struct ip)) { /* minimum header length */ 263 ipstat.ips_badhlen++; 264 goto bad; 265 } 266 if (hlen > m->m_len) { 267 if ((m = m_pullup(m, hlen)) == 0) { 268 ipstat.ips_badhlen++; 269 return; 270 } 271 ip = mtod(m, struct ip *); 272 } 273 if (hlen == sizeof(struct ip)) { 274 sum = in_cksum_hdr(ip); 275 } else { 276 sum = in_cksum(m, hlen); 277 } 278 if (sum) { 279 ipstat.ips_badsum++; 280 goto bad; 281 } 282 283 /* 284 * Convert fields to host representation. 285 */ 286 NTOHS(ip->ip_len); 287 if (ip->ip_len < hlen) { 288 ipstat.ips_badlen++; 289 goto bad; 290 } 291 NTOHS(ip->ip_id); 292 NTOHS(ip->ip_off); 293 294 /* 295 * Check that the amount of data in the buffers 296 * is as at least much as the IP header would have us expect. 297 * Trim mbufs if longer than we expect. 298 * Drop packet if shorter than we expect. 299 */ 300 if (m->m_pkthdr.len < ip->ip_len) { 301 tooshort: 302 ipstat.ips_tooshort++; 303 goto bad; 304 } 305 if (m->m_pkthdr.len > ip->ip_len) { 306 if (m->m_len == m->m_pkthdr.len) { 307 m->m_len = ip->ip_len; 308 m->m_pkthdr.len = ip->ip_len; 309 } else 310 m_adj(m, ip->ip_len - m->m_pkthdr.len); 311 } 312 /* 313 * IpHack's section. 314 * Right now when no processing on packet has done 315 * and it is still fresh out of network we do our black 316 * deals with it. 317 * - Firewall: deny/allow/divert 318 * - Xlate: translate packet's addr/port (NAT). 319 * - Wrap: fake packet's addr/port <unimpl.> 320 * - Encapsulate: put it in another IP and send out. <unimp.> 321 */ 322 #if defined(IPFILTER) || defined(IPFILTER_LKM) 323 /* 324 * Check if we want to allow this packet to be processed. 325 * Consider it to be bad if not. 326 */ 327 if (fr_check) { 328 struct mbuf *m1 = m; 329 330 if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1) 331 return; 332 ip = mtod(m = m1, struct ip *); 333 } 334 #endif 335 #ifdef COMPAT_IPFW 336 if (ip_fw_chk_ptr) { 337 int action; 338 339 #ifdef IPDIVERT 340 action = (*ip_fw_chk_ptr)(&ip, hlen, 341 m->m_pkthdr.rcvif, ip_divert_ignore, &m); 342 ip_divert_ignore = 0; 343 #else 344 action = (*ip_fw_chk_ptr)(&ip, hlen, m->m_pkthdr.rcvif, 0, &m); 345 #endif 346 if (action == -1) 347 return; 348 if (action != 0) { 349 #ifdef IPDIVERT 350 frag_divert_port = action; 351 goto ours; 352 #else 353 goto bad; /* ipfw said divert but we can't */ 354 #endif 355 } 356 } 357 358 if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN)) 359 return; 360 #endif 361 362 /* 363 * Process options and, if not destined for us, 364 * ship it on. ip_dooptions returns 1 when an 365 * error was detected (causing an icmp message 366 * to be sent and the original packet to be freed). 367 */ 368 ip_nhops = 0; /* for source routed packets */ 369 if (hlen > sizeof (struct ip) && ip_dooptions(m)) 370 return; 371 372 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 373 * matter if it is destined to another node, or whether it is 374 * a multicast one, RSVP wants it! and prevents it from being forwarded 375 * anywhere else. Also checks if the rsvp daemon is running before 376 * grabbing the packet. 377 */ 378 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 379 goto ours; 380 381 /* 382 * Check our list of addresses, to see if the packet is for us. 383 */ 384 for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) { 385 #define satosin(sa) ((struct sockaddr_in *)(sa)) 386 387 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) 388 goto ours; 389 if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) { 390 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 391 ip->ip_dst.s_addr) 392 goto ours; 393 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr) 394 goto ours; 395 } 396 } 397 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 398 struct in_multi *inm; 399 if (ip_mrouter) { 400 /* 401 * If we are acting as a multicast router, all 402 * incoming multicast packets are passed to the 403 * kernel-level multicast forwarding function. 404 * The packet is returned (relatively) intact; if 405 * ip_mforward() returns a non-zero value, the packet 406 * must be discarded, else it may be accepted below. 407 * 408 * (The IP ident field is put in the same byte order 409 * as expected when ip_mforward() is called from 410 * ip_output().) 411 */ 412 ip->ip_id = htons(ip->ip_id); 413 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 414 ipstat.ips_cantforward++; 415 m_freem(m); 416 return; 417 } 418 ip->ip_id = ntohs(ip->ip_id); 419 420 /* 421 * The process-level routing demon needs to receive 422 * all multicast IGMP packets, whether or not this 423 * host belongs to their destination groups. 424 */ 425 if (ip->ip_p == IPPROTO_IGMP) 426 goto ours; 427 ipstat.ips_forward++; 428 } 429 /* 430 * See if we belong to the destination multicast group on the 431 * arrival interface. 432 */ 433 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 434 if (inm == NULL) { 435 ipstat.ips_notmember++; 436 m_freem(m); 437 return; 438 } 439 goto ours; 440 } 441 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 442 goto ours; 443 if (ip->ip_dst.s_addr == INADDR_ANY) 444 goto ours; 445 446 /* 447 * Not for us; forward if possible and desirable. 448 */ 449 if (ipforwarding == 0) { 450 ipstat.ips_cantforward++; 451 m_freem(m); 452 } else 453 ip_forward(m, 0); 454 return; 455 456 ours: 457 458 /* 459 * If offset or IP_MF are set, must reassemble. 460 * Otherwise, nothing need be done. 461 * (We could look in the reassembly queue to see 462 * if the packet was previously fragmented, 463 * but it's not worth the time; just let them time out.) 464 */ 465 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 466 if (m->m_flags & M_EXT) { /* XXX */ 467 if ((m = m_pullup(m, sizeof (struct ip))) == 0) { 468 ipstat.ips_toosmall++; 469 #ifdef IPDIVERT 470 frag_divert_port = 0; 471 #endif 472 return; 473 } 474 ip = mtod(m, struct ip *); 475 } 476 /* 477 * Look for queue of fragments 478 * of this datagram. 479 */ 480 for (fp = ipq.next; fp != &ipq; fp = fp->next) 481 if (ip->ip_id == fp->ipq_id && 482 ip->ip_src.s_addr == fp->ipq_src.s_addr && 483 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 484 ip->ip_p == fp->ipq_p) 485 goto found; 486 fp = 0; 487 found: 488 489 /* 490 * Adjust ip_len to not reflect header, 491 * set ip_mff if more fragments are expected, 492 * convert offset of this to bytes. 493 */ 494 ip->ip_len -= hlen; 495 ((struct ipasfrag *)ip)->ipf_mff &= ~1; 496 if (ip->ip_off & IP_MF) 497 ((struct ipasfrag *)ip)->ipf_mff |= 1; 498 ip->ip_off <<= 3; 499 500 /* 501 * If datagram marked as having more fragments 502 * or if this is not the first fragment, 503 * attempt reassembly; if it succeeds, proceed. 504 */ 505 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) { 506 ipstat.ips_fragments++; 507 ip = ip_reass((struct ipasfrag *)ip, fp); 508 if (ip == 0) 509 return; 510 ipstat.ips_reassembled++; 511 m = dtom(ip); 512 } else 513 if (fp) 514 ip_freef(fp); 515 } else 516 ip->ip_len -= hlen; 517 518 #ifdef IPDIVERT 519 /* 520 * Divert packets here to the divert protocol if required 521 */ 522 if (frag_divert_port) { 523 ip_divert_port = frag_divert_port; 524 frag_divert_port = 0; 525 (*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen); 526 return; 527 } 528 #endif 529 530 /* 531 * Switch out to protocol's input routine. 532 */ 533 ipstat.ips_delivered++; 534 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 535 return; 536 bad: 537 m_freem(m); 538 } 539 540 /* 541 * IP software interrupt routine - to go away sometime soon 542 */ 543 static void 544 ipintr(void) 545 { 546 int s; 547 struct mbuf *m; 548 549 while(1) { 550 s = splimp(); 551 IF_DEQUEUE(&ipintrq, m); 552 splx(s); 553 if (m == 0) 554 return; 555 ip_input(m); 556 } 557 } 558 559 NETISR_SET(NETISR_IP, ipintr); 560 561 /* 562 * Take incoming datagram fragment and try to 563 * reassemble it into whole datagram. If a chain for 564 * reassembly of this datagram already exists, then it 565 * is given as fp; otherwise have to make a chain. 566 */ 567 static struct ip * 568 ip_reass(ip, fp) 569 register struct ipasfrag *ip; 570 register struct ipq *fp; 571 { 572 register struct mbuf *m = dtom(ip); 573 register struct ipasfrag *q; 574 struct mbuf *t; 575 int hlen = ip->ip_hl << 2; 576 int i, next; 577 578 /* 579 * Presence of header sizes in mbufs 580 * would confuse code below. 581 */ 582 m->m_data += hlen; 583 m->m_len -= hlen; 584 585 /* 586 * If first fragment to arrive, create a reassembly queue. 587 */ 588 if (fp == 0) { 589 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 590 goto dropfrag; 591 fp = mtod(t, struct ipq *); 592 insque(fp, &ipq); 593 fp->ipq_ttl = IPFRAGTTL; 594 fp->ipq_p = ip->ip_p; 595 fp->ipq_id = ip->ip_id; 596 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp; 597 fp->ipq_src = ((struct ip *)ip)->ip_src; 598 fp->ipq_dst = ((struct ip *)ip)->ip_dst; 599 #ifdef IPDIVERT 600 fp->ipq_divert = 0; 601 #endif 602 q = (struct ipasfrag *)fp; 603 goto insert; 604 } 605 606 /* 607 * Find a segment which begins after this one does. 608 */ 609 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) 610 if (q->ip_off > ip->ip_off) 611 break; 612 613 /* 614 * If there is a preceding segment, it may provide some of 615 * our data already. If so, drop the data from the incoming 616 * segment. If it provides all of our data, drop us. 617 */ 618 if (q->ipf_prev != (struct ipasfrag *)fp) { 619 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off; 620 if (i > 0) { 621 if (i >= ip->ip_len) 622 goto dropfrag; 623 m_adj(dtom(ip), i); 624 ip->ip_off += i; 625 ip->ip_len -= i; 626 } 627 } 628 629 /* 630 * While we overlap succeeding segments trim them or, 631 * if they are completely covered, dequeue them. 632 */ 633 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) { 634 struct mbuf *m0; 635 636 i = (ip->ip_off + ip->ip_len) - q->ip_off; 637 if (i < q->ip_len) { 638 q->ip_len -= i; 639 q->ip_off += i; 640 m_adj(dtom(q), i); 641 break; 642 } 643 m0 = dtom(q); 644 q = q->ipf_next; 645 ip_deq(q->ipf_prev); 646 m_freem(m0); 647 } 648 649 insert: 650 651 #ifdef IPDIVERT 652 /* 653 * Any fragment diverting causes the whole packet to divert 654 */ 655 if (frag_divert_port != 0) 656 fp->ipq_divert = frag_divert_port; 657 frag_divert_port = 0; 658 #endif 659 660 /* 661 * Stick new segment in its place; 662 * check for complete reassembly. 663 */ 664 ip_enq(ip, q->ipf_prev); 665 next = 0; 666 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) { 667 if (q->ip_off != next) 668 return (0); 669 next += q->ip_len; 670 } 671 if (q->ipf_prev->ipf_mff & 1) 672 return (0); 673 674 /* 675 * Reassembly is complete. Make sure the packet is a sane size. 676 */ 677 if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2) 678 > IP_MAXPACKET) { 679 ipstat.ips_toolong++; 680 ip_freef(fp); 681 return (0); 682 } 683 684 /* 685 * Concatenate fragments. 686 */ 687 q = fp->ipq_next; 688 m = dtom(q); 689 t = m->m_next; 690 m->m_next = 0; 691 m_cat(m, t); 692 q = q->ipf_next; 693 while (q != (struct ipasfrag *)fp) { 694 t = dtom(q); 695 q = q->ipf_next; 696 m_cat(m, t); 697 } 698 699 #ifdef IPDIVERT 700 /* 701 * Record divert port for packet, if any 702 */ 703 frag_divert_port = fp->ipq_divert; 704 #endif 705 706 /* 707 * Create header for new ip packet by 708 * modifying header of first packet; 709 * dequeue and discard fragment reassembly header. 710 * Make header visible. 711 */ 712 ip = fp->ipq_next; 713 ip->ip_len = next; 714 ip->ipf_mff &= ~1; 715 ((struct ip *)ip)->ip_src = fp->ipq_src; 716 ((struct ip *)ip)->ip_dst = fp->ipq_dst; 717 remque(fp); 718 (void) m_free(dtom(fp)); 719 m = dtom(ip); 720 m->m_len += (ip->ip_hl << 2); 721 m->m_data -= (ip->ip_hl << 2); 722 /* some debugging cruft by sklower, below, will go away soon */ 723 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 724 register int plen = 0; 725 for (t = m; m; m = m->m_next) 726 plen += m->m_len; 727 t->m_pkthdr.len = plen; 728 } 729 return ((struct ip *)ip); 730 731 dropfrag: 732 ipstat.ips_fragdropped++; 733 m_freem(m); 734 return (0); 735 } 736 737 /* 738 * Free a fragment reassembly header and all 739 * associated datagrams. 740 */ 741 static void 742 ip_freef(fp) 743 struct ipq *fp; 744 { 745 register struct ipasfrag *q, *p; 746 747 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) { 748 p = q->ipf_next; 749 ip_deq(q); 750 m_freem(dtom(q)); 751 } 752 remque(fp); 753 (void) m_free(dtom(fp)); 754 } 755 756 /* 757 * Put an ip fragment on a reassembly chain. 758 * Like insque, but pointers in middle of structure. 759 */ 760 static void 761 ip_enq(p, prev) 762 register struct ipasfrag *p, *prev; 763 { 764 765 p->ipf_prev = prev; 766 p->ipf_next = prev->ipf_next; 767 prev->ipf_next->ipf_prev = p; 768 prev->ipf_next = p; 769 } 770 771 /* 772 * To ip_enq as remque is to insque. 773 */ 774 static void 775 ip_deq(p) 776 register struct ipasfrag *p; 777 { 778 779 p->ipf_prev->ipf_next = p->ipf_next; 780 p->ipf_next->ipf_prev = p->ipf_prev; 781 } 782 783 /* 784 * IP timer processing; 785 * if a timer expires on a reassembly 786 * queue, discard it. 787 */ 788 void 789 ip_slowtimo() 790 { 791 register struct ipq *fp; 792 int s = splnet(); 793 794 fp = ipq.next; 795 if (fp == 0) { 796 splx(s); 797 return; 798 } 799 while (fp != &ipq) { 800 --fp->ipq_ttl; 801 fp = fp->next; 802 if (fp->prev->ipq_ttl == 0) { 803 ipstat.ips_fragtimeout++; 804 ip_freef(fp->prev); 805 } 806 } 807 splx(s); 808 } 809 810 /* 811 * Drain off all datagram fragments. 812 */ 813 void 814 ip_drain() 815 { 816 while (ipq.next != &ipq) { 817 ipstat.ips_fragdropped++; 818 ip_freef(ipq.next); 819 } 820 821 in_rtqdrain(); 822 } 823 824 /* 825 * Do option processing on a datagram, 826 * possibly discarding it if bad options are encountered, 827 * or forwarding it if source-routed. 828 * Returns 1 if packet has been forwarded/freed, 829 * 0 if the packet should be processed further. 830 */ 831 static int 832 ip_dooptions(m) 833 struct mbuf *m; 834 { 835 register struct ip *ip = mtod(m, struct ip *); 836 register u_char *cp; 837 register struct ip_timestamp *ipt; 838 register struct in_ifaddr *ia; 839 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 840 struct in_addr *sin, dst; 841 n_time ntime; 842 843 dst = ip->ip_dst; 844 cp = (u_char *)(ip + 1); 845 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 846 for (; cnt > 0; cnt -= optlen, cp += optlen) { 847 opt = cp[IPOPT_OPTVAL]; 848 if (opt == IPOPT_EOL) 849 break; 850 if (opt == IPOPT_NOP) 851 optlen = 1; 852 else { 853 optlen = cp[IPOPT_OLEN]; 854 if (optlen <= 0 || optlen > cnt) { 855 code = &cp[IPOPT_OLEN] - (u_char *)ip; 856 goto bad; 857 } 858 } 859 switch (opt) { 860 861 default: 862 break; 863 864 /* 865 * Source routing with record. 866 * Find interface with current destination address. 867 * If none on this machine then drop if strictly routed, 868 * or do nothing if loosely routed. 869 * Record interface address and bring up next address 870 * component. If strictly routed make sure next 871 * address is on directly accessible net. 872 */ 873 case IPOPT_LSRR: 874 case IPOPT_SSRR: 875 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 876 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 877 goto bad; 878 } 879 ipaddr.sin_addr = ip->ip_dst; 880 ia = (struct in_ifaddr *) 881 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 882 if (ia == 0) { 883 if (opt == IPOPT_SSRR) { 884 type = ICMP_UNREACH; 885 code = ICMP_UNREACH_SRCFAIL; 886 goto bad; 887 } 888 /* 889 * Loose routing, and not at next destination 890 * yet; nothing to do except forward. 891 */ 892 break; 893 } 894 off--; /* 0 origin */ 895 if (off > optlen - sizeof(struct in_addr)) { 896 /* 897 * End of source route. Should be for us. 898 */ 899 save_rte(cp, ip->ip_src); 900 break; 901 } 902 903 if (!ip_dosourceroute) { 904 char buf[4*sizeof "123"]; 905 strcpy(buf, inet_ntoa(ip->ip_dst)); 906 907 log(LOG_WARNING, 908 "attempted source route from %s to %s\n", 909 inet_ntoa(ip->ip_src), buf); 910 type = ICMP_UNREACH; 911 code = ICMP_UNREACH_SRCFAIL; 912 goto bad; 913 } 914 915 /* 916 * locate outgoing interface 917 */ 918 (void)memcpy(&ipaddr.sin_addr, cp + off, 919 sizeof(ipaddr.sin_addr)); 920 921 if (opt == IPOPT_SSRR) { 922 #define INA struct in_ifaddr * 923 #define SA struct sockaddr * 924 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 925 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 926 } else 927 ia = ip_rtaddr(ipaddr.sin_addr); 928 if (ia == 0) { 929 type = ICMP_UNREACH; 930 code = ICMP_UNREACH_SRCFAIL; 931 goto bad; 932 } 933 ip->ip_dst = ipaddr.sin_addr; 934 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 935 sizeof(struct in_addr)); 936 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 937 /* 938 * Let ip_intr's mcast routing check handle mcast pkts 939 */ 940 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 941 break; 942 943 case IPOPT_RR: 944 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 945 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 946 goto bad; 947 } 948 /* 949 * If no space remains, ignore. 950 */ 951 off--; /* 0 origin */ 952 if (off > optlen - sizeof(struct in_addr)) 953 break; 954 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 955 sizeof(ipaddr.sin_addr)); 956 /* 957 * locate outgoing interface; if we're the destination, 958 * use the incoming interface (should be same). 959 */ 960 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 961 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { 962 type = ICMP_UNREACH; 963 code = ICMP_UNREACH_HOST; 964 goto bad; 965 } 966 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 967 sizeof(struct in_addr)); 968 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 969 break; 970 971 case IPOPT_TS: 972 code = cp - (u_char *)ip; 973 ipt = (struct ip_timestamp *)cp; 974 if (ipt->ipt_len < 5) 975 goto bad; 976 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) { 977 if (++ipt->ipt_oflw == 0) 978 goto bad; 979 break; 980 } 981 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); 982 switch (ipt->ipt_flg) { 983 984 case IPOPT_TS_TSONLY: 985 break; 986 987 case IPOPT_TS_TSANDADDR: 988 if (ipt->ipt_ptr + sizeof(n_time) + 989 sizeof(struct in_addr) > ipt->ipt_len) 990 goto bad; 991 ipaddr.sin_addr = dst; 992 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 993 m->m_pkthdr.rcvif); 994 if (ia == 0) 995 continue; 996 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 997 sizeof(struct in_addr)); 998 ipt->ipt_ptr += sizeof(struct in_addr); 999 break; 1000 1001 case IPOPT_TS_PRESPEC: 1002 if (ipt->ipt_ptr + sizeof(n_time) + 1003 sizeof(struct in_addr) > ipt->ipt_len) 1004 goto bad; 1005 (void)memcpy(&ipaddr.sin_addr, sin, 1006 sizeof(struct in_addr)); 1007 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1008 continue; 1009 ipt->ipt_ptr += sizeof(struct in_addr); 1010 break; 1011 1012 default: 1013 goto bad; 1014 } 1015 ntime = iptime(); 1016 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime, 1017 sizeof(n_time)); 1018 ipt->ipt_ptr += sizeof(n_time); 1019 } 1020 } 1021 if (forward) { 1022 ip_forward(m, 1); 1023 return (1); 1024 } 1025 return (0); 1026 bad: 1027 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */ 1028 icmp_error(m, type, code, 0, 0); 1029 ipstat.ips_badoptions++; 1030 return (1); 1031 } 1032 1033 /* 1034 * Given address of next destination (final or next hop), 1035 * return internet address info of interface to be used to get there. 1036 */ 1037 static struct in_ifaddr * 1038 ip_rtaddr(dst) 1039 struct in_addr dst; 1040 { 1041 register struct sockaddr_in *sin; 1042 1043 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst; 1044 1045 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) { 1046 if (ipforward_rt.ro_rt) { 1047 RTFREE(ipforward_rt.ro_rt); 1048 ipforward_rt.ro_rt = 0; 1049 } 1050 sin->sin_family = AF_INET; 1051 sin->sin_len = sizeof(*sin); 1052 sin->sin_addr = dst; 1053 1054 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1055 } 1056 if (ipforward_rt.ro_rt == 0) 1057 return ((struct in_ifaddr *)0); 1058 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa); 1059 } 1060 1061 /* 1062 * Save incoming source route for use in replies, 1063 * to be picked up later by ip_srcroute if the receiver is interested. 1064 */ 1065 void 1066 save_rte(option, dst) 1067 u_char *option; 1068 struct in_addr dst; 1069 { 1070 unsigned olen; 1071 1072 olen = option[IPOPT_OLEN]; 1073 #ifdef DIAGNOSTIC 1074 if (ipprintfs) 1075 printf("save_rte: olen %d\n", olen); 1076 #endif 1077 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1078 return; 1079 bcopy(option, ip_srcrt.srcopt, olen); 1080 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1081 ip_srcrt.dst = dst; 1082 } 1083 1084 /* 1085 * Retrieve incoming source route for use in replies, 1086 * in the same form used by setsockopt. 1087 * The first hop is placed before the options, will be removed later. 1088 */ 1089 struct mbuf * 1090 ip_srcroute() 1091 { 1092 register struct in_addr *p, *q; 1093 register struct mbuf *m; 1094 1095 if (ip_nhops == 0) 1096 return ((struct mbuf *)0); 1097 m = m_get(M_DONTWAIT, MT_SOOPTS); 1098 if (m == 0) 1099 return ((struct mbuf *)0); 1100 1101 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1102 1103 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1104 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1105 OPTSIZ; 1106 #ifdef DIAGNOSTIC 1107 if (ipprintfs) 1108 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1109 #endif 1110 1111 /* 1112 * First save first hop for return route 1113 */ 1114 p = &ip_srcrt.route[ip_nhops - 1]; 1115 *(mtod(m, struct in_addr *)) = *p--; 1116 #ifdef DIAGNOSTIC 1117 if (ipprintfs) 1118 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr)); 1119 #endif 1120 1121 /* 1122 * Copy option fields and padding (nop) to mbuf. 1123 */ 1124 ip_srcrt.nop = IPOPT_NOP; 1125 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1126 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1127 &ip_srcrt.nop, OPTSIZ); 1128 q = (struct in_addr *)(mtod(m, caddr_t) + 1129 sizeof(struct in_addr) + OPTSIZ); 1130 #undef OPTSIZ 1131 /* 1132 * Record return path as an IP source route, 1133 * reversing the path (pointers are now aligned). 1134 */ 1135 while (p >= ip_srcrt.route) { 1136 #ifdef DIAGNOSTIC 1137 if (ipprintfs) 1138 printf(" %lx", ntohl(q->s_addr)); 1139 #endif 1140 *q++ = *p--; 1141 } 1142 /* 1143 * Last hop goes to final destination. 1144 */ 1145 *q = ip_srcrt.dst; 1146 #ifdef DIAGNOSTIC 1147 if (ipprintfs) 1148 printf(" %lx\n", ntohl(q->s_addr)); 1149 #endif 1150 return (m); 1151 } 1152 1153 /* 1154 * Strip out IP options, at higher 1155 * level protocol in the kernel. 1156 * Second argument is buffer to which options 1157 * will be moved, and return value is their length. 1158 * XXX should be deleted; last arg currently ignored. 1159 */ 1160 void 1161 ip_stripoptions(m, mopt) 1162 register struct mbuf *m; 1163 struct mbuf *mopt; 1164 { 1165 register int i; 1166 struct ip *ip = mtod(m, struct ip *); 1167 register caddr_t opts; 1168 int olen; 1169 1170 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1171 opts = (caddr_t)(ip + 1); 1172 i = m->m_len - (sizeof (struct ip) + olen); 1173 bcopy(opts + olen, opts, (unsigned)i); 1174 m->m_len -= olen; 1175 if (m->m_flags & M_PKTHDR) 1176 m->m_pkthdr.len -= olen; 1177 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1178 } 1179 1180 u_char inetctlerrmap[PRC_NCMDS] = { 1181 0, 0, 0, 0, 1182 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1183 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1184 EMSGSIZE, EHOSTUNREACH, 0, 0, 1185 0, 0, 0, 0, 1186 ENOPROTOOPT 1187 }; 1188 1189 /* 1190 * Forward a packet. If some error occurs return the sender 1191 * an icmp packet. Note we can't always generate a meaningful 1192 * icmp message because icmp doesn't have a large enough repertoire 1193 * of codes and types. 1194 * 1195 * If not forwarding, just drop the packet. This could be confusing 1196 * if ipforwarding was zero but some routing protocol was advancing 1197 * us as a gateway to somewhere. However, we must let the routing 1198 * protocol deal with that. 1199 * 1200 * The srcrt parameter indicates whether the packet is being forwarded 1201 * via a source route. 1202 */ 1203 static void 1204 ip_forward(m, srcrt) 1205 struct mbuf *m; 1206 int srcrt; 1207 { 1208 register struct ip *ip = mtod(m, struct ip *); 1209 register struct sockaddr_in *sin; 1210 register struct rtentry *rt; 1211 int error, type = 0, code = 0; 1212 struct mbuf *mcopy; 1213 n_long dest; 1214 struct ifnet *destifp; 1215 1216 dest = 0; 1217 #ifdef DIAGNOSTIC 1218 if (ipprintfs) 1219 printf("forward: src %lx dst %lx ttl %x\n", 1220 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl); 1221 #endif 1222 1223 1224 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) { 1225 ipstat.ips_cantforward++; 1226 m_freem(m); 1227 return; 1228 } 1229 HTONS(ip->ip_id); 1230 if (ip->ip_ttl <= IPTTLDEC) { 1231 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); 1232 return; 1233 } 1234 ip->ip_ttl -= IPTTLDEC; 1235 1236 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst; 1237 if ((rt = ipforward_rt.ro_rt) == 0 || 1238 ip->ip_dst.s_addr != sin->sin_addr.s_addr) { 1239 if (ipforward_rt.ro_rt) { 1240 RTFREE(ipforward_rt.ro_rt); 1241 ipforward_rt.ro_rt = 0; 1242 } 1243 sin->sin_family = AF_INET; 1244 sin->sin_len = sizeof(*sin); 1245 sin->sin_addr = ip->ip_dst; 1246 1247 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1248 if (ipforward_rt.ro_rt == 0) { 1249 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1250 return; 1251 } 1252 rt = ipforward_rt.ro_rt; 1253 } 1254 1255 /* 1256 * Save at most 64 bytes of the packet in case 1257 * we need to generate an ICMP message to the src. 1258 */ 1259 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64)); 1260 1261 /* 1262 * If forwarding packet using same interface that it came in on, 1263 * perhaps should send a redirect to sender to shortcut a hop. 1264 * Only send redirect if source is sending directly to us, 1265 * and if packet was not source routed (or has any options). 1266 * Also, don't send redirect if forwarding using a default route 1267 * or a route modified by a redirect. 1268 */ 1269 #define satosin(sa) ((struct sockaddr_in *)(sa)) 1270 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1271 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1272 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1273 ipsendredirects && !srcrt) { 1274 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1275 u_long src = ntohl(ip->ip_src.s_addr); 1276 1277 if (RTA(rt) && 1278 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1279 if (rt->rt_flags & RTF_GATEWAY) 1280 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1281 else 1282 dest = ip->ip_dst.s_addr; 1283 /* Router requirements says to only send host redirects */ 1284 type = ICMP_REDIRECT; 1285 code = ICMP_REDIRECT_HOST; 1286 #ifdef DIAGNOSTIC 1287 if (ipprintfs) 1288 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1289 #endif 1290 } 1291 } 1292 1293 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1294 IP_FORWARDING, 0); 1295 if (error) 1296 ipstat.ips_cantforward++; 1297 else { 1298 ipstat.ips_forward++; 1299 if (type) 1300 ipstat.ips_redirectsent++; 1301 else { 1302 if (mcopy) 1303 m_freem(mcopy); 1304 return; 1305 } 1306 } 1307 if (mcopy == NULL) 1308 return; 1309 destifp = NULL; 1310 1311 switch (error) { 1312 1313 case 0: /* forwarded, but need redirect */ 1314 /* type, code set above */ 1315 break; 1316 1317 case ENETUNREACH: /* shouldn't happen, checked above */ 1318 case EHOSTUNREACH: 1319 case ENETDOWN: 1320 case EHOSTDOWN: 1321 default: 1322 type = ICMP_UNREACH; 1323 code = ICMP_UNREACH_HOST; 1324 break; 1325 1326 case EMSGSIZE: 1327 type = ICMP_UNREACH; 1328 code = ICMP_UNREACH_NEEDFRAG; 1329 if (ipforward_rt.ro_rt) 1330 destifp = ipforward_rt.ro_rt->rt_ifp; 1331 ipstat.ips_cantfrag++; 1332 break; 1333 1334 case ENOBUFS: 1335 type = ICMP_SOURCEQUENCH; 1336 code = 0; 1337 break; 1338 } 1339 icmp_error(mcopy, type, code, dest, destifp); 1340 } 1341 1342 void 1343 ip_savecontrol(inp, mp, ip, m) 1344 register struct inpcb *inp; 1345 register struct mbuf **mp; 1346 register struct ip *ip; 1347 register struct mbuf *m; 1348 { 1349 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1350 struct timeval tv; 1351 1352 microtime(&tv); 1353 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1354 SCM_TIMESTAMP, SOL_SOCKET); 1355 if (*mp) 1356 mp = &(*mp)->m_next; 1357 } 1358 if (inp->inp_flags & INP_RECVDSTADDR) { 1359 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1360 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1361 if (*mp) 1362 mp = &(*mp)->m_next; 1363 } 1364 #ifdef notyet 1365 /* XXX 1366 * Moving these out of udp_input() made them even more broken 1367 * than they already were. 1368 */ 1369 /* options were tossed already */ 1370 if (inp->inp_flags & INP_RECVOPTS) { 1371 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1372 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1373 if (*mp) 1374 mp = &(*mp)->m_next; 1375 } 1376 /* ip_srcroute doesn't do what we want here, need to fix */ 1377 if (inp->inp_flags & INP_RECVRETOPTS) { 1378 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1379 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1380 if (*mp) 1381 mp = &(*mp)->m_next; 1382 } 1383 #endif 1384 if (inp->inp_flags & INP_RECVIF) { 1385 struct sockaddr_dl sdl; 1386 1387 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); 1388 sdl.sdl_family = AF_LINK; 1389 sdl.sdl_index = m->m_pkthdr.rcvif ? 1390 m->m_pkthdr.rcvif->if_index : 0; 1391 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0; 1392 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len, 1393 IP_RECVIF, IPPROTO_IP); 1394 if (*mp) 1395 mp = &(*mp)->m_next; 1396 } 1397 } 1398 1399 int 1400 ip_rsvp_init(struct socket *so) 1401 { 1402 if (so->so_type != SOCK_RAW || 1403 so->so_proto->pr_protocol != IPPROTO_RSVP) 1404 return EOPNOTSUPP; 1405 1406 if (ip_rsvpd != NULL) 1407 return EADDRINUSE; 1408 1409 ip_rsvpd = so; 1410 /* 1411 * This may seem silly, but we need to be sure we don't over-increment 1412 * the RSVP counter, in case something slips up. 1413 */ 1414 if (!ip_rsvp_on) { 1415 ip_rsvp_on = 1; 1416 rsvp_on++; 1417 } 1418 1419 return 0; 1420 } 1421 1422 int 1423 ip_rsvp_done(void) 1424 { 1425 ip_rsvpd = NULL; 1426 /* 1427 * This may seem silly, but we need to be sure we don't over-decrement 1428 * the RSVP counter, in case something slips up. 1429 */ 1430 if (ip_rsvp_on) { 1431 ip_rsvp_on = 0; 1432 rsvp_on--; 1433 } 1434 return 0; 1435 } 1436