1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #define _IP_VHL 38 39 #include "opt_bootp.h" 40 #include "opt_ipfw.h" 41 #include "opt_ipdn.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 #include "opt_ipstealth.h" 45 #include "opt_ipsec.h" 46 #include "opt_pfil_hooks.h" 47 #include "opt_random_ip_id.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/mbuf.h> 52 #include <sys/malloc.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/time.h> 57 #include <sys/kernel.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 61 #include <net/pfil.h> 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/if_var.h> 65 #include <net/if_dl.h> 66 #include <net/route.h> 67 #include <net/netisr.h> 68 #include <net/intrq.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/ip_var.h> 76 #include <netinet/ip_icmp.h> 77 #include <machine/in_cksum.h> 78 79 #include <sys/socketvar.h> 80 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_dummynet.h> 83 84 #ifdef IPSEC 85 #include <netinet6/ipsec.h> 86 #include <netkey/key.h> 87 #endif 88 89 int rsvp_on = 0; 90 static int ip_rsvp_on; 91 struct socket *ip_rsvpd; 92 93 int ipforwarding = 0; 94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 95 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 96 97 static int ipsendredirects = 1; /* XXX */ 98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 99 &ipsendredirects, 0, "Enable sending IP redirects"); 100 101 int ip_defttl = IPDEFTTL; 102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 103 &ip_defttl, 0, "Maximum TTL on IP packets"); 104 105 static int ip_dosourceroute = 0; 106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 107 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 108 109 static int ip_acceptsourceroute = 0; 110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 111 CTLFLAG_RW, &ip_acceptsourceroute, 0, 112 "Enable accepting source routed IP packets"); 113 114 static int ip_keepfaith = 0; 115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 116 &ip_keepfaith, 0, 117 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 118 119 static int ip_nfragpackets = 0; 120 static int ip_maxfragpackets; /* initialized in ip_init() */ 121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 122 &ip_maxfragpackets, 0, 123 "Maximum number of IPv4 fragment reassembly queue entries"); 124 125 /* 126 * XXX - Setting ip_checkinterface mostly implements the receive side of 127 * the Strong ES model described in RFC 1122, but since the routing table 128 * and transmit implementation do not implement the Strong ES model, 129 * setting this to 1 results in an odd hybrid. 130 * 131 * XXX - ip_checkinterface currently must be disabled if you use ipnat 132 * to translate the destination address to another local interface. 133 * 134 * XXX - ip_checkinterface must be disabled if you add IP aliases 135 * to the loopback interface instead of the interface where the 136 * packets for those addresses are received. 137 */ 138 static int ip_checkinterface = 1; 139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 140 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 141 142 #ifdef DIAGNOSTIC 143 static int ipprintfs = 0; 144 #endif 145 146 static int ipqmaxlen = IFQ_MAXLEN; 147 148 extern struct domain inetdomain; 149 extern struct protosw inetsw[]; 150 u_char ip_protox[IPPROTO_MAX]; 151 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 152 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 153 u_long in_ifaddrhmask; /* mask for hash table */ 154 155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 156 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 158 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 159 160 struct ipstat ipstat; 161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 162 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 163 164 /* Packet reassembly stuff */ 165 #define IPREASS_NHASH_LOG2 6 166 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 167 #define IPREASS_HMASK (IPREASS_NHASH - 1) 168 #define IPREASS_HASH(x,y) \ 169 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 170 171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 172 static int nipq = 0; /* total # of reass queues */ 173 static int maxnipq; 174 const int ipintrq_present = 1; 175 176 #ifdef IPCTL_DEFMTU 177 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 178 &ip_mtu, 0, "Default MTU"); 179 #endif 180 181 #ifdef IPSTEALTH 182 static int ipstealth = 0; 183 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 184 &ipstealth, 0, ""); 185 #endif 186 187 188 /* Firewall hooks */ 189 ip_fw_chk_t *ip_fw_chk_ptr; 190 int fw_enable = 1 ; 191 192 /* Dummynet hooks */ 193 ip_dn_io_t *ip_dn_io_ptr; 194 195 196 /* 197 * We need to save the IP options in case a protocol wants to respond 198 * to an incoming packet over the same route if the packet got here 199 * using IP source routing. This allows connection establishment and 200 * maintenance when the remote end is on a network that is not known 201 * to us. 202 */ 203 static int ip_nhops = 0; 204 static struct ip_srcrt { 205 struct in_addr dst; /* final destination */ 206 char nop; /* one NOP to align */ 207 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 208 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 209 } ip_srcrt; 210 211 struct sockaddr_in *ip_fw_fwd_addr; 212 213 static void save_rte __P((u_char *, struct in_addr)); 214 static int ip_dooptions __P((struct mbuf *)); 215 static void ip_forward __P((struct mbuf *, int)); 216 static void ip_freef __P((struct ipqhead *, struct ipq *)); 217 #ifdef IPDIVERT 218 static struct mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *)); 219 #else 220 static struct mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *)); 221 #endif 222 static void ipintr __P((void)); 223 224 /* 225 * IP initialization: fill in IP protocol switch table. 226 * All protocols not implemented in kernel go to raw IP protocol handler. 227 */ 228 void 229 ip_init() 230 { 231 register struct protosw *pr; 232 register int i; 233 234 TAILQ_INIT(&in_ifaddrhead); 235 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 236 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 237 if (pr == 0) 238 panic("ip_init"); 239 for (i = 0; i < IPPROTO_MAX; i++) 240 ip_protox[i] = pr - inetsw; 241 for (pr = inetdomain.dom_protosw; 242 pr < inetdomain.dom_protoswNPROTOSW; pr++) 243 if (pr->pr_domain->dom_family == PF_INET && 244 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 245 ip_protox[pr->pr_protocol] = pr - inetsw; 246 247 for (i = 0; i < IPREASS_NHASH; i++) 248 TAILQ_INIT(&ipq[i]); 249 250 maxnipq = nmbclusters / 4; 251 ip_maxfragpackets = nmbclusters / 4; 252 253 #ifndef RANDOM_IP_ID 254 ip_id = time_second & 0xffff; 255 #endif 256 ipintrq.ifq_maxlen = ipqmaxlen; 257 mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF); 258 259 register_netisr(NETISR_IP, ipintr); 260 } 261 262 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 263 struct route ipforward_rt; 264 265 /* 266 * Ip input routine. Checksum and byte swap header. If fragmented 267 * try to reassemble. Process options. Pass to next level. 268 */ 269 void 270 ip_input(struct mbuf *m) 271 { 272 struct ip *ip; 273 struct ipq *fp; 274 struct in_ifaddr *ia = NULL; 275 struct ifaddr *ifa; 276 int i, hlen, checkif; 277 u_short sum; 278 u_int16_t divert_cookie; /* firewall cookie */ 279 struct in_addr pkt_dst; 280 #ifdef IPDIVERT 281 u_int32_t divert_info = 0; /* packet divert/tee info */ 282 #endif 283 struct ip_fw *rule = NULL; 284 #ifdef PFIL_HOOKS 285 struct packet_filter_hook *pfh; 286 struct mbuf *m0; 287 int rv; 288 #endif /* PFIL_HOOKS */ 289 290 #ifdef IPDIVERT 291 /* Get and reset firewall cookie */ 292 divert_cookie = ip_divert_cookie; 293 ip_divert_cookie = 0; 294 #else 295 divert_cookie = 0; 296 #endif 297 298 /* 299 * dummynet packet are prepended a vestigial mbuf with 300 * m_type = MT_DUMMYNET and m_data pointing to the matching 301 * rule. 302 */ 303 if (m->m_type == MT_DUMMYNET) { 304 rule = (struct ip_fw *)(m->m_data) ; 305 m = m->m_next ; 306 ip = mtod(m, struct ip *); 307 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 308 goto iphack ; 309 } else 310 rule = NULL ; 311 312 #ifdef DIAGNOSTIC 313 if (m == NULL || (m->m_flags & M_PKTHDR) == 0) 314 panic("ip_input no HDR"); 315 #endif 316 ipstat.ips_total++; 317 318 if (m->m_pkthdr.len < sizeof(struct ip)) 319 goto tooshort; 320 321 if (m->m_len < sizeof (struct ip) && 322 (m = m_pullup(m, sizeof (struct ip))) == 0) { 323 ipstat.ips_toosmall++; 324 return; 325 } 326 ip = mtod(m, struct ip *); 327 328 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 329 ipstat.ips_badvers++; 330 goto bad; 331 } 332 333 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 334 if (hlen < sizeof(struct ip)) { /* minimum header length */ 335 ipstat.ips_badhlen++; 336 goto bad; 337 } 338 if (hlen > m->m_len) { 339 if ((m = m_pullup(m, hlen)) == 0) { 340 ipstat.ips_badhlen++; 341 return; 342 } 343 ip = mtod(m, struct ip *); 344 } 345 346 /* 127/8 must not appear on wire - RFC1122 */ 347 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 348 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 349 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 350 ipstat.ips_badaddr++; 351 goto bad; 352 } 353 } 354 355 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 356 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 357 } else { 358 if (hlen == sizeof(struct ip)) { 359 sum = in_cksum_hdr(ip); 360 } else { 361 sum = in_cksum(m, hlen); 362 } 363 } 364 if (sum) { 365 ipstat.ips_badsum++; 366 goto bad; 367 } 368 369 /* 370 * Convert fields to host representation. 371 */ 372 NTOHS(ip->ip_len); 373 if (ip->ip_len < hlen) { 374 ipstat.ips_badlen++; 375 goto bad; 376 } 377 NTOHS(ip->ip_off); 378 379 /* 380 * Check that the amount of data in the buffers 381 * is as at least much as the IP header would have us expect. 382 * Trim mbufs if longer than we expect. 383 * Drop packet if shorter than we expect. 384 */ 385 if (m->m_pkthdr.len < ip->ip_len) { 386 tooshort: 387 ipstat.ips_tooshort++; 388 goto bad; 389 } 390 if (m->m_pkthdr.len > ip->ip_len) { 391 if (m->m_len == m->m_pkthdr.len) { 392 m->m_len = ip->ip_len; 393 m->m_pkthdr.len = ip->ip_len; 394 } else 395 m_adj(m, ip->ip_len - m->m_pkthdr.len); 396 } 397 398 #ifdef IPSEC 399 if (ipsec_gethist(m, NULL)) 400 goto pass; 401 #endif 402 403 /* 404 * IpHack's section. 405 * Right now when no processing on packet has done 406 * and it is still fresh out of network we do our black 407 * deals with it. 408 * - Firewall: deny/allow/divert 409 * - Xlate: translate packet's addr/port (NAT). 410 * - Pipe: pass pkt through dummynet. 411 * - Wrap: fake packet's addr/port <unimpl.> 412 * - Encapsulate: put it in another IP and send out. <unimp.> 413 */ 414 415 iphack: 416 417 #ifdef PFIL_HOOKS 418 /* 419 * Run through list of hooks for input packets. If there are any 420 * filters which require that additional packets in the flow are 421 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 422 * Note that filters must _never_ set this flag, as another filter 423 * in the list may have previously cleared it. 424 */ 425 m0 = m; 426 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 427 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 428 if (pfh->pfil_func) { 429 rv = pfh->pfil_func(ip, hlen, 430 m->m_pkthdr.rcvif, 0, &m0); 431 if (rv) 432 return; 433 m = m0; 434 if (m == NULL) 435 return; 436 ip = mtod(m, struct ip *); 437 } 438 #endif /* PFIL_HOOKS */ 439 440 if (fw_enable && IPFW_LOADED) { 441 #ifdef IPFIREWALL_FORWARD 442 /* 443 * If we've been forwarded from the output side, then 444 * skip the firewall a second time 445 */ 446 if (ip_fw_fwd_addr) 447 goto ours; 448 #endif /* IPFIREWALL_FORWARD */ 449 /* 450 * See the comment in ip_output for the return values 451 * produced by the firewall. 452 */ 453 i = ip_fw_chk_ptr(&ip, 454 hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr); 455 if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */ 456 if (m) 457 m_freem(m); 458 return ; 459 } 460 if (m == NULL) { /* Packet discarded by firewall */ 461 static int __debug=10; 462 if (__debug >0) { 463 printf("firewall returns NULL, please update!\n"); 464 __debug-- ; 465 } 466 return; 467 } 468 if (i == 0 && ip_fw_fwd_addr == NULL) /* common case */ 469 goto pass; 470 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 471 /* Send packet to the appropriate pipe */ 472 ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule, 473 0); 474 return; 475 } 476 #ifdef IPDIVERT 477 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 478 /* Divert or tee packet */ 479 divert_info = i; 480 goto ours; 481 } 482 #endif 483 #ifdef IPFIREWALL_FORWARD 484 if (i == 0 && ip_fw_fwd_addr != NULL) 485 goto pass; 486 #endif 487 /* 488 * if we get here, the packet must be dropped 489 */ 490 m_freem(m); 491 return; 492 } 493 pass: 494 495 /* 496 * Process options and, if not destined for us, 497 * ship it on. ip_dooptions returns 1 when an 498 * error was detected (causing an icmp message 499 * to be sent and the original packet to be freed). 500 */ 501 ip_nhops = 0; /* for source routed packets */ 502 if (hlen > sizeof (struct ip) && ip_dooptions(m)) { 503 #ifdef IPFIREWALL_FORWARD 504 ip_fw_fwd_addr = NULL; 505 #endif 506 return; 507 } 508 509 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 510 * matter if it is destined to another node, or whether it is 511 * a multicast one, RSVP wants it! and prevents it from being forwarded 512 * anywhere else. Also checks if the rsvp daemon is running before 513 * grabbing the packet. 514 */ 515 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 516 goto ours; 517 518 /* 519 * Check our list of addresses, to see if the packet is for us. 520 * If we don't have any addresses, assume any unicast packet 521 * we receive might be for us (and let the upper layers deal 522 * with it). 523 */ 524 if (TAILQ_EMPTY(&in_ifaddrhead) && 525 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 526 goto ours; 527 528 /* 529 * Cache the destination address of the packet; this may be 530 * changed by use of 'ipfw fwd'. 531 */ 532 pkt_dst = ip_fw_fwd_addr == NULL ? 533 ip->ip_dst : ip_fw_fwd_addr->sin_addr; 534 535 /* 536 * Enable a consistency check between the destination address 537 * and the arrival interface for a unicast packet (the RFC 1122 538 * strong ES model) if IP forwarding is disabled and the packet 539 * is not locally generated and the packet is not subject to 540 * 'ipfw fwd'. 541 * 542 * XXX - Checking also should be disabled if the destination 543 * address is ipnat'ed to a different interface. 544 * 545 * XXX - Checking is incompatible with IP aliases added 546 * to the loopback interface instead of the interface where 547 * the packets are received. 548 */ 549 checkif = ip_checkinterface && (ipforwarding == 0) && 550 m->m_pkthdr.rcvif != NULL && 551 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 552 (ip_fw_fwd_addr == NULL); 553 554 /* 555 * Check for exact addresses in the hash bucket. 556 */ 557 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 558 /* 559 * If the address matches, verify that the packet 560 * arrived via the correct interface if checking is 561 * enabled. 562 */ 563 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 564 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 565 goto ours; 566 } 567 /* 568 * Check for broadcast addresses. 569 * 570 * Only accept broadcast packets that arrive via the matching 571 * interface. Reception of forwarded directed broadcasts would 572 * be handled via ip_forward() and ether_output() with the loopback 573 * into the stack for SIMPLEX interfaces handled by ether_output(). 574 */ 575 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 576 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 577 if (ifa->ifa_addr->sa_family != AF_INET) 578 continue; 579 ia = ifatoia(ifa); 580 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 581 pkt_dst.s_addr) 582 goto ours; 583 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 584 goto ours; 585 #ifdef BOOTP_COMPAT 586 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 587 goto ours; 588 #endif 589 } 590 } 591 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 592 struct in_multi *inm; 593 if (ip_mrouter) { 594 /* 595 * If we are acting as a multicast router, all 596 * incoming multicast packets are passed to the 597 * kernel-level multicast forwarding function. 598 * The packet is returned (relatively) intact; if 599 * ip_mforward() returns a non-zero value, the packet 600 * must be discarded, else it may be accepted below. 601 */ 602 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 603 ipstat.ips_cantforward++; 604 m_freem(m); 605 return; 606 } 607 608 /* 609 * The process-level routing demon needs to receive 610 * all multicast IGMP packets, whether or not this 611 * host belongs to their destination groups. 612 */ 613 if (ip->ip_p == IPPROTO_IGMP) 614 goto ours; 615 ipstat.ips_forward++; 616 } 617 /* 618 * See if we belong to the destination multicast group on the 619 * arrival interface. 620 */ 621 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 622 if (inm == NULL) { 623 ipstat.ips_notmember++; 624 m_freem(m); 625 return; 626 } 627 goto ours; 628 } 629 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 630 goto ours; 631 if (ip->ip_dst.s_addr == INADDR_ANY) 632 goto ours; 633 634 /* 635 * FAITH(Firewall Aided Internet Translator) 636 */ 637 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 638 if (ip_keepfaith) { 639 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 640 goto ours; 641 } 642 m_freem(m); 643 return; 644 } 645 646 /* 647 * Not for us; forward if possible and desirable. 648 */ 649 if (ipforwarding == 0) { 650 ipstat.ips_cantforward++; 651 m_freem(m); 652 } else 653 ip_forward(m, 0); 654 #ifdef IPFIREWALL_FORWARD 655 ip_fw_fwd_addr = NULL; 656 #endif 657 return; 658 659 ours: 660 /* Count the packet in the ip address stats */ 661 if (ia != NULL) { 662 ia->ia_ifa.if_ipackets++; 663 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 664 } 665 666 /* 667 * If offset or IP_MF are set, must reassemble. 668 * Otherwise, nothing need be done. 669 * (We could look in the reassembly queue to see 670 * if the packet was previously fragmented, 671 * but it's not worth the time; just let them time out.) 672 */ 673 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 674 675 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 676 /* 677 * Look for queue of fragments 678 * of this datagram. 679 */ 680 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 681 if (ip->ip_id == fp->ipq_id && 682 ip->ip_src.s_addr == fp->ipq_src.s_addr && 683 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 684 ip->ip_p == fp->ipq_p) 685 goto found; 686 687 fp = 0; 688 689 /* check if there's a place for the new queue */ 690 if (nipq > maxnipq) { 691 /* 692 * drop something from the tail of the current queue 693 * before proceeding further 694 */ 695 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 696 if (q == NULL) { /* gak */ 697 for (i = 0; i < IPREASS_NHASH; i++) { 698 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 699 if (r) { 700 ip_freef(&ipq[i], r); 701 break; 702 } 703 } 704 } else 705 ip_freef(&ipq[sum], q); 706 } 707 found: 708 /* 709 * Adjust ip_len to not reflect header, 710 * convert offset of this to bytes. 711 */ 712 ip->ip_len -= hlen; 713 if (ip->ip_off & IP_MF) { 714 /* 715 * Make sure that fragments have a data length 716 * that's a non-zero multiple of 8 bytes. 717 */ 718 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 719 ipstat.ips_toosmall++; /* XXX */ 720 goto bad; 721 } 722 m->m_flags |= M_FRAG; 723 } 724 ip->ip_off <<= 3; 725 726 /* 727 * Attempt reassembly; if it succeeds, proceed. 728 */ 729 ipstat.ips_fragments++; 730 m->m_pkthdr.header = ip; 731 #ifdef IPDIVERT 732 m = ip_reass(m, 733 &ipq[sum], fp, &divert_info, &divert_cookie); 734 #else 735 m = ip_reass(m, &ipq[sum], fp); 736 #endif 737 if (m == 0) { 738 #ifdef IPFIREWALL_FORWARD 739 ip_fw_fwd_addr = NULL; 740 #endif 741 return; 742 } 743 ipstat.ips_reassembled++; 744 ip = mtod(m, struct ip *); 745 /* Get the header length of the reassembled packet */ 746 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 747 #ifdef IPDIVERT 748 /* Restore original checksum before diverting packet */ 749 if (divert_info != 0) { 750 ip->ip_len += hlen; 751 HTONS(ip->ip_len); 752 HTONS(ip->ip_off); 753 ip->ip_sum = 0; 754 if (hlen == sizeof(struct ip)) 755 ip->ip_sum = in_cksum_hdr(ip); 756 else 757 ip->ip_sum = in_cksum(m, hlen); 758 NTOHS(ip->ip_off); 759 NTOHS(ip->ip_len); 760 ip->ip_len -= hlen; 761 } 762 #endif 763 } else 764 ip->ip_len -= hlen; 765 766 #ifdef IPDIVERT 767 /* 768 * Divert or tee packet to the divert protocol if required. 769 * 770 * If divert_info is zero then cookie should be too, so we shouldn't 771 * need to clear them here. Assume divert_packet() does so also. 772 */ 773 if (divert_info != 0) { 774 struct mbuf *clone = NULL; 775 776 /* Clone packet if we're doing a 'tee' */ 777 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 778 clone = m_dup(m, M_DONTWAIT); 779 780 /* Restore packet header fields to original values */ 781 ip->ip_len += hlen; 782 HTONS(ip->ip_len); 783 HTONS(ip->ip_off); 784 785 /* Deliver packet to divert input routine */ 786 ip_divert_cookie = divert_cookie; 787 divert_packet(m, 1, divert_info & 0xffff); 788 ipstat.ips_delivered++; 789 790 /* If 'tee', continue with original packet */ 791 if (clone == NULL) 792 return; 793 m = clone; 794 ip = mtod(m, struct ip *); 795 } 796 #endif 797 798 #ifdef IPSEC 799 /* 800 * enforce IPsec policy checking if we are seeing last header. 801 * note that we do not visit this with protocols with pcb layer 802 * code - like udp/tcp/raw ip. 803 */ 804 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 805 ipsec4_in_reject(m, NULL)) { 806 ipsecstat.in_polvio++; 807 goto bad; 808 } 809 #endif 810 811 /* 812 * Switch out to protocol's input routine. 813 */ 814 ipstat.ips_delivered++; 815 { 816 int off = hlen; 817 818 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off); 819 #ifdef IPFIREWALL_FORWARD 820 ip_fw_fwd_addr = NULL; /* tcp needed it */ 821 #endif 822 return; 823 } 824 bad: 825 #ifdef IPFIREWALL_FORWARD 826 ip_fw_fwd_addr = NULL; 827 #endif 828 m_freem(m); 829 } 830 831 /* 832 * IP software interrupt routine - to go away sometime soon 833 */ 834 static void 835 ipintr(void) 836 { 837 struct mbuf *m; 838 839 while (1) { 840 IF_DEQUEUE(&ipintrq, m); 841 if (m == 0) 842 return; 843 ip_input(m); 844 } 845 } 846 847 /* 848 * Take incoming datagram fragment and try to reassemble it into 849 * whole datagram. If a chain for reassembly of this datagram already 850 * exists, then it is given as fp; otherwise have to make a chain. 851 * 852 * When IPDIVERT enabled, keep additional state with each packet that 853 * tells us if we need to divert or tee the packet we're building. 854 */ 855 856 static struct mbuf * 857 #ifdef IPDIVERT 858 ip_reass(m, head, fp, divinfo, divcookie) 859 #else 860 ip_reass(m, head, fp) 861 #endif 862 struct mbuf *m; 863 struct ipqhead *head; 864 struct ipq *fp; 865 #ifdef IPDIVERT 866 u_int32_t *divinfo; 867 u_int16_t *divcookie; 868 #endif 869 { 870 struct ip *ip = mtod(m, struct ip *); 871 register struct mbuf *p, *q, *nq; 872 struct mbuf *t; 873 int hlen = IP_VHL_HL(ip->ip_vhl) << 2; 874 int i, next; 875 876 /* 877 * Presence of header sizes in mbufs 878 * would confuse code below. 879 */ 880 m->m_data += hlen; 881 m->m_len -= hlen; 882 883 /* 884 * If first fragment to arrive, create a reassembly queue. 885 */ 886 if (fp == 0) { 887 /* 888 * Enforce upper bound on number of fragmented packets 889 * for which we attempt reassembly; 890 * If maxfrag is 0, never accept fragments. 891 * If maxfrag is -1, accept all fragments without limitation. 892 */ 893 if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets)) 894 goto dropfrag; 895 ip_nfragpackets++; 896 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 897 goto dropfrag; 898 fp = mtod(t, struct ipq *); 899 TAILQ_INSERT_HEAD(head, fp, ipq_list); 900 nipq++; 901 fp->ipq_ttl = IPFRAGTTL; 902 fp->ipq_p = ip->ip_p; 903 fp->ipq_id = ip->ip_id; 904 fp->ipq_src = ip->ip_src; 905 fp->ipq_dst = ip->ip_dst; 906 fp->ipq_frags = m; 907 m->m_nextpkt = NULL; 908 #ifdef IPDIVERT 909 fp->ipq_div_info = 0; 910 fp->ipq_div_cookie = 0; 911 #endif 912 goto inserted; 913 } 914 915 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 916 917 /* 918 * Find a segment which begins after this one does. 919 */ 920 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 921 if (GETIP(q)->ip_off > ip->ip_off) 922 break; 923 924 /* 925 * If there is a preceding segment, it may provide some of 926 * our data already. If so, drop the data from the incoming 927 * segment. If it provides all of our data, drop us, otherwise 928 * stick new segment in the proper place. 929 * 930 * If some of the data is dropped from the the preceding 931 * segment, then it's checksum is invalidated. 932 */ 933 if (p) { 934 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 935 if (i > 0) { 936 if (i >= ip->ip_len) 937 goto dropfrag; 938 m_adj(m, i); 939 m->m_pkthdr.csum_flags = 0; 940 ip->ip_off += i; 941 ip->ip_len -= i; 942 } 943 m->m_nextpkt = p->m_nextpkt; 944 p->m_nextpkt = m; 945 } else { 946 m->m_nextpkt = fp->ipq_frags; 947 fp->ipq_frags = m; 948 } 949 950 /* 951 * While we overlap succeeding segments trim them or, 952 * if they are completely covered, dequeue them. 953 */ 954 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 955 q = nq) { 956 i = (ip->ip_off + ip->ip_len) - 957 GETIP(q)->ip_off; 958 if (i < GETIP(q)->ip_len) { 959 GETIP(q)->ip_len -= i; 960 GETIP(q)->ip_off += i; 961 m_adj(q, i); 962 q->m_pkthdr.csum_flags = 0; 963 break; 964 } 965 nq = q->m_nextpkt; 966 m->m_nextpkt = nq; 967 m_freem(q); 968 } 969 970 inserted: 971 972 #ifdef IPDIVERT 973 /* 974 * Transfer firewall instructions to the fragment structure. 975 * Any fragment diverting causes the whole packet to divert. 976 */ 977 fp->ipq_div_info = *divinfo; 978 fp->ipq_div_cookie = *divcookie; 979 *divinfo = 0; 980 *divcookie = 0; 981 #endif 982 983 /* 984 * Check for complete reassembly. 985 */ 986 next = 0; 987 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 988 if (GETIP(q)->ip_off != next) 989 return (0); 990 next += GETIP(q)->ip_len; 991 } 992 /* Make sure the last packet didn't have the IP_MF flag */ 993 if (p->m_flags & M_FRAG) 994 return (0); 995 996 /* 997 * Reassembly is complete. Make sure the packet is a sane size. 998 */ 999 q = fp->ipq_frags; 1000 ip = GETIP(q); 1001 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { 1002 ipstat.ips_toolong++; 1003 ip_freef(head, fp); 1004 return (0); 1005 } 1006 1007 /* 1008 * Concatenate fragments. 1009 */ 1010 m = q; 1011 t = m->m_next; 1012 m->m_next = 0; 1013 m_cat(m, t); 1014 nq = q->m_nextpkt; 1015 q->m_nextpkt = 0; 1016 for (q = nq; q != NULL; q = nq) { 1017 nq = q->m_nextpkt; 1018 q->m_nextpkt = NULL; 1019 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1020 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1021 m_cat(m, q); 1022 } 1023 1024 #ifdef IPDIVERT 1025 /* 1026 * Extract firewall instructions from the fragment structure. 1027 */ 1028 *divinfo = fp->ipq_div_info; 1029 *divcookie = fp->ipq_div_cookie; 1030 #endif 1031 1032 /* 1033 * Create header for new ip packet by 1034 * modifying header of first packet; 1035 * dequeue and discard fragment reassembly header. 1036 * Make header visible. 1037 */ 1038 ip->ip_len = next; 1039 ip->ip_src = fp->ipq_src; 1040 ip->ip_dst = fp->ipq_dst; 1041 TAILQ_REMOVE(head, fp, ipq_list); 1042 nipq--; 1043 (void) m_free(dtom(fp)); 1044 ip_nfragpackets--; 1045 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); 1046 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); 1047 /* some debugging cruft by sklower, below, will go away soon */ 1048 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 1049 register int plen = 0; 1050 for (t = m; t; t = t->m_next) 1051 plen += t->m_len; 1052 m->m_pkthdr.len = plen; 1053 } 1054 return (m); 1055 1056 dropfrag: 1057 #ifdef IPDIVERT 1058 *divinfo = 0; 1059 *divcookie = 0; 1060 #endif 1061 ipstat.ips_fragdropped++; 1062 m_freem(m); 1063 return (0); 1064 1065 #undef GETIP 1066 } 1067 1068 /* 1069 * Free a fragment reassembly header and all 1070 * associated datagrams. 1071 */ 1072 static void 1073 ip_freef(fhp, fp) 1074 struct ipqhead *fhp; 1075 struct ipq *fp; 1076 { 1077 register struct mbuf *q; 1078 1079 while (fp->ipq_frags) { 1080 q = fp->ipq_frags; 1081 fp->ipq_frags = q->m_nextpkt; 1082 m_freem(q); 1083 } 1084 TAILQ_REMOVE(fhp, fp, ipq_list); 1085 (void) m_free(dtom(fp)); 1086 ip_nfragpackets--; 1087 nipq--; 1088 } 1089 1090 /* 1091 * IP timer processing; 1092 * if a timer expires on a reassembly 1093 * queue, discard it. 1094 */ 1095 void 1096 ip_slowtimo() 1097 { 1098 register struct ipq *fp; 1099 int s = splnet(); 1100 int i; 1101 1102 for (i = 0; i < IPREASS_NHASH; i++) { 1103 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1104 struct ipq *fpp; 1105 1106 fpp = fp; 1107 fp = TAILQ_NEXT(fp, ipq_list); 1108 if(--fpp->ipq_ttl == 0) { 1109 ipstat.ips_fragtimeout++; 1110 ip_freef(&ipq[i], fpp); 1111 } 1112 } 1113 } 1114 /* 1115 * If we are over the maximum number of fragments 1116 * (due to the limit being lowered), drain off 1117 * enough to get down to the new limit. 1118 */ 1119 for (i = 0; i < IPREASS_NHASH; i++) { 1120 if (ip_maxfragpackets >= 0) { 1121 while (ip_nfragpackets > ip_maxfragpackets && 1122 !TAILQ_EMPTY(&ipq[i])) { 1123 ipstat.ips_fragdropped++; 1124 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1125 } 1126 } 1127 } 1128 ipflow_slowtimo(); 1129 splx(s); 1130 } 1131 1132 /* 1133 * Drain off all datagram fragments. 1134 */ 1135 void 1136 ip_drain() 1137 { 1138 int i; 1139 1140 for (i = 0; i < IPREASS_NHASH; i++) { 1141 while(!TAILQ_EMPTY(&ipq[i])) { 1142 ipstat.ips_fragdropped++; 1143 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1144 } 1145 } 1146 in_rtqdrain(); 1147 } 1148 1149 /* 1150 * Do option processing on a datagram, 1151 * possibly discarding it if bad options are encountered, 1152 * or forwarding it if source-routed. 1153 * Returns 1 if packet has been forwarded/freed, 1154 * 0 if the packet should be processed further. 1155 */ 1156 static int 1157 ip_dooptions(m) 1158 struct mbuf *m; 1159 { 1160 register struct ip *ip = mtod(m, struct ip *); 1161 register u_char *cp; 1162 register struct in_ifaddr *ia; 1163 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1164 struct in_addr *sin, dst; 1165 n_time ntime; 1166 1167 dst = ip->ip_dst; 1168 cp = (u_char *)(ip + 1); 1169 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1170 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1171 opt = cp[IPOPT_OPTVAL]; 1172 if (opt == IPOPT_EOL) 1173 break; 1174 if (opt == IPOPT_NOP) 1175 optlen = 1; 1176 else { 1177 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1178 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1179 goto bad; 1180 } 1181 optlen = cp[IPOPT_OLEN]; 1182 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1183 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1184 goto bad; 1185 } 1186 } 1187 switch (opt) { 1188 1189 default: 1190 break; 1191 1192 /* 1193 * Source routing with record. 1194 * Find interface with current destination address. 1195 * If none on this machine then drop if strictly routed, 1196 * or do nothing if loosely routed. 1197 * Record interface address and bring up next address 1198 * component. If strictly routed make sure next 1199 * address is on directly accessible net. 1200 */ 1201 case IPOPT_LSRR: 1202 case IPOPT_SSRR: 1203 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1204 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1205 goto bad; 1206 } 1207 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1208 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1209 goto bad; 1210 } 1211 ipaddr.sin_addr = ip->ip_dst; 1212 ia = (struct in_ifaddr *) 1213 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1214 if (ia == 0) { 1215 if (opt == IPOPT_SSRR) { 1216 type = ICMP_UNREACH; 1217 code = ICMP_UNREACH_SRCFAIL; 1218 goto bad; 1219 } 1220 if (!ip_dosourceroute) 1221 goto nosourcerouting; 1222 /* 1223 * Loose routing, and not at next destination 1224 * yet; nothing to do except forward. 1225 */ 1226 break; 1227 } 1228 off--; /* 0 origin */ 1229 if (off > optlen - (int)sizeof(struct in_addr)) { 1230 /* 1231 * End of source route. Should be for us. 1232 */ 1233 if (!ip_acceptsourceroute) 1234 goto nosourcerouting; 1235 save_rte(cp, ip->ip_src); 1236 break; 1237 } 1238 1239 if (!ip_dosourceroute) { 1240 if (ipforwarding) { 1241 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1242 /* 1243 * Acting as a router, so generate ICMP 1244 */ 1245 nosourcerouting: 1246 strcpy(buf, inet_ntoa(ip->ip_dst)); 1247 log(LOG_WARNING, 1248 "attempted source route from %s to %s\n", 1249 inet_ntoa(ip->ip_src), buf); 1250 type = ICMP_UNREACH; 1251 code = ICMP_UNREACH_SRCFAIL; 1252 goto bad; 1253 } else { 1254 /* 1255 * Not acting as a router, so silently drop. 1256 */ 1257 ipstat.ips_cantforward++; 1258 m_freem(m); 1259 return (1); 1260 } 1261 } 1262 1263 /* 1264 * locate outgoing interface 1265 */ 1266 (void)memcpy(&ipaddr.sin_addr, cp + off, 1267 sizeof(ipaddr.sin_addr)); 1268 1269 if (opt == IPOPT_SSRR) { 1270 #define INA struct in_ifaddr * 1271 #define SA struct sockaddr * 1272 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1273 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1274 } else 1275 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1276 if (ia == 0) { 1277 type = ICMP_UNREACH; 1278 code = ICMP_UNREACH_SRCFAIL; 1279 goto bad; 1280 } 1281 ip->ip_dst = ipaddr.sin_addr; 1282 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1283 sizeof(struct in_addr)); 1284 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1285 /* 1286 * Let ip_intr's mcast routing check handle mcast pkts 1287 */ 1288 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1289 break; 1290 1291 case IPOPT_RR: 1292 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1293 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1294 goto bad; 1295 } 1296 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1297 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1298 goto bad; 1299 } 1300 /* 1301 * If no space remains, ignore. 1302 */ 1303 off--; /* 0 origin */ 1304 if (off > optlen - (int)sizeof(struct in_addr)) 1305 break; 1306 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1307 sizeof(ipaddr.sin_addr)); 1308 /* 1309 * locate outgoing interface; if we're the destination, 1310 * use the incoming interface (should be same). 1311 */ 1312 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1313 (ia = ip_rtaddr(ipaddr.sin_addr, 1314 &ipforward_rt)) == 0) { 1315 type = ICMP_UNREACH; 1316 code = ICMP_UNREACH_HOST; 1317 goto bad; 1318 } 1319 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1320 sizeof(struct in_addr)); 1321 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1322 break; 1323 1324 case IPOPT_TS: 1325 code = cp - (u_char *)ip; 1326 if (optlen < 4 || optlen > 40) { 1327 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1328 goto bad; 1329 } 1330 if ((off = cp[IPOPT_OFFSET]) < 5) { 1331 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1332 goto bad; 1333 } 1334 if (off > optlen - (int)sizeof(int32_t)) { 1335 cp[IPOPT_OFFSET + 1] += (1 << 4); 1336 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1337 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1338 goto bad; 1339 } 1340 break; 1341 } 1342 off--; /* 0 origin */ 1343 sin = (struct in_addr *)(cp + off); 1344 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1345 1346 case IPOPT_TS_TSONLY: 1347 break; 1348 1349 case IPOPT_TS_TSANDADDR: 1350 if (off + sizeof(n_time) + 1351 sizeof(struct in_addr) > optlen) { 1352 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1353 goto bad; 1354 } 1355 ipaddr.sin_addr = dst; 1356 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1357 m->m_pkthdr.rcvif); 1358 if (ia == 0) 1359 continue; 1360 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1361 sizeof(struct in_addr)); 1362 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1363 break; 1364 1365 case IPOPT_TS_PRESPEC: 1366 if (off + sizeof(n_time) + 1367 sizeof(struct in_addr) > optlen) { 1368 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1369 goto bad; 1370 } 1371 (void)memcpy(&ipaddr.sin_addr, sin, 1372 sizeof(struct in_addr)); 1373 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1374 continue; 1375 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1376 break; 1377 1378 default: 1379 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1380 goto bad; 1381 } 1382 ntime = iptime(); 1383 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1384 cp[IPOPT_OFFSET] += sizeof(n_time); 1385 } 1386 } 1387 if (forward && ipforwarding) { 1388 ip_forward(m, 1); 1389 return (1); 1390 } 1391 return (0); 1392 bad: 1393 icmp_error(m, type, code, 0, 0); 1394 ipstat.ips_badoptions++; 1395 return (1); 1396 } 1397 1398 /* 1399 * Given address of next destination (final or next hop), 1400 * return internet address info of interface to be used to get there. 1401 */ 1402 struct in_ifaddr * 1403 ip_rtaddr(dst, rt) 1404 struct in_addr dst; 1405 struct route *rt; 1406 { 1407 register struct sockaddr_in *sin; 1408 1409 sin = (struct sockaddr_in *)&rt->ro_dst; 1410 1411 if (rt->ro_rt == 0 || 1412 !(rt->ro_rt->rt_flags & RTF_UP) || 1413 dst.s_addr != sin->sin_addr.s_addr) { 1414 if (rt->ro_rt) { 1415 RTFREE(rt->ro_rt); 1416 rt->ro_rt = 0; 1417 } 1418 sin->sin_family = AF_INET; 1419 sin->sin_len = sizeof(*sin); 1420 sin->sin_addr = dst; 1421 1422 rtalloc_ign(rt, RTF_PRCLONING); 1423 } 1424 if (rt->ro_rt == 0) 1425 return ((struct in_ifaddr *)0); 1426 return (ifatoia(rt->ro_rt->rt_ifa)); 1427 } 1428 1429 /* 1430 * Save incoming source route for use in replies, 1431 * to be picked up later by ip_srcroute if the receiver is interested. 1432 */ 1433 void 1434 save_rte(option, dst) 1435 u_char *option; 1436 struct in_addr dst; 1437 { 1438 unsigned olen; 1439 1440 olen = option[IPOPT_OLEN]; 1441 #ifdef DIAGNOSTIC 1442 if (ipprintfs) 1443 printf("save_rte: olen %d\n", olen); 1444 #endif 1445 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1446 return; 1447 bcopy(option, ip_srcrt.srcopt, olen); 1448 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1449 ip_srcrt.dst = dst; 1450 } 1451 1452 /* 1453 * Retrieve incoming source route for use in replies, 1454 * in the same form used by setsockopt. 1455 * The first hop is placed before the options, will be removed later. 1456 */ 1457 struct mbuf * 1458 ip_srcroute() 1459 { 1460 register struct in_addr *p, *q; 1461 register struct mbuf *m; 1462 1463 if (ip_nhops == 0) 1464 return ((struct mbuf *)0); 1465 m = m_get(M_DONTWAIT, MT_HEADER); 1466 if (m == 0) 1467 return ((struct mbuf *)0); 1468 1469 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1470 1471 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1472 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1473 OPTSIZ; 1474 #ifdef DIAGNOSTIC 1475 if (ipprintfs) 1476 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1477 #endif 1478 1479 /* 1480 * First save first hop for return route 1481 */ 1482 p = &ip_srcrt.route[ip_nhops - 1]; 1483 *(mtod(m, struct in_addr *)) = *p--; 1484 #ifdef DIAGNOSTIC 1485 if (ipprintfs) 1486 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1487 #endif 1488 1489 /* 1490 * Copy option fields and padding (nop) to mbuf. 1491 */ 1492 ip_srcrt.nop = IPOPT_NOP; 1493 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1494 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1495 &ip_srcrt.nop, OPTSIZ); 1496 q = (struct in_addr *)(mtod(m, caddr_t) + 1497 sizeof(struct in_addr) + OPTSIZ); 1498 #undef OPTSIZ 1499 /* 1500 * Record return path as an IP source route, 1501 * reversing the path (pointers are now aligned). 1502 */ 1503 while (p >= ip_srcrt.route) { 1504 #ifdef DIAGNOSTIC 1505 if (ipprintfs) 1506 printf(" %lx", (u_long)ntohl(q->s_addr)); 1507 #endif 1508 *q++ = *p--; 1509 } 1510 /* 1511 * Last hop goes to final destination. 1512 */ 1513 *q = ip_srcrt.dst; 1514 #ifdef DIAGNOSTIC 1515 if (ipprintfs) 1516 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1517 #endif 1518 return (m); 1519 } 1520 1521 /* 1522 * Strip out IP options, at higher 1523 * level protocol in the kernel. 1524 * Second argument is buffer to which options 1525 * will be moved, and return value is their length. 1526 * XXX should be deleted; last arg currently ignored. 1527 */ 1528 void 1529 ip_stripoptions(m, mopt) 1530 register struct mbuf *m; 1531 struct mbuf *mopt; 1532 { 1533 register int i; 1534 struct ip *ip = mtod(m, struct ip *); 1535 register caddr_t opts; 1536 int olen; 1537 1538 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1539 opts = (caddr_t)(ip + 1); 1540 i = m->m_len - (sizeof (struct ip) + olen); 1541 bcopy(opts + olen, opts, (unsigned)i); 1542 m->m_len -= olen; 1543 if (m->m_flags & M_PKTHDR) 1544 m->m_pkthdr.len -= olen; 1545 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1546 } 1547 1548 u_char inetctlerrmap[PRC_NCMDS] = { 1549 0, 0, 0, 0, 1550 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1551 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1552 EMSGSIZE, EHOSTUNREACH, 0, 0, 1553 0, 0, 0, 0, 1554 ENOPROTOOPT, ECONNREFUSED 1555 }; 1556 1557 /* 1558 * Forward a packet. If some error occurs return the sender 1559 * an icmp packet. Note we can't always generate a meaningful 1560 * icmp message because icmp doesn't have a large enough repertoire 1561 * of codes and types. 1562 * 1563 * If not forwarding, just drop the packet. This could be confusing 1564 * if ipforwarding was zero but some routing protocol was advancing 1565 * us as a gateway to somewhere. However, we must let the routing 1566 * protocol deal with that. 1567 * 1568 * The srcrt parameter indicates whether the packet is being forwarded 1569 * via a source route. 1570 */ 1571 static void 1572 ip_forward(m, srcrt) 1573 struct mbuf *m; 1574 int srcrt; 1575 { 1576 register struct ip *ip = mtod(m, struct ip *); 1577 register struct rtentry *rt; 1578 int error, type = 0, code = 0; 1579 struct mbuf *mcopy; 1580 n_long dest; 1581 struct ifnet *destifp; 1582 #ifdef IPSEC 1583 struct ifnet dummyifp; 1584 #endif 1585 1586 dest = 0; 1587 #ifdef DIAGNOSTIC 1588 if (ipprintfs) 1589 printf("forward: src %lx dst %lx ttl %x\n", 1590 (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr, 1591 ip->ip_ttl); 1592 #endif 1593 1594 1595 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 1596 ipstat.ips_cantforward++; 1597 m_freem(m); 1598 return; 1599 } 1600 #ifdef IPSTEALTH 1601 if (!ipstealth) { 1602 #endif 1603 if (ip->ip_ttl <= IPTTLDEC) { 1604 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1605 dest, 0); 1606 return; 1607 } 1608 #ifdef IPSTEALTH 1609 } 1610 #endif 1611 1612 if (ip_rtaddr(ip->ip_dst, &ipforward_rt) == 0) { 1613 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1614 return; 1615 } else 1616 rt = ipforward_rt.ro_rt; 1617 1618 /* 1619 * Save the IP header and at most 8 bytes of the payload, 1620 * in case we need to generate an ICMP message to the src. 1621 * 1622 * We don't use m_copy() because it might return a reference 1623 * to a shared cluster. Both this function and ip_output() 1624 * assume exclusive access to the IP header in `m', so any 1625 * data in a cluster may change before we reach icmp_error(). 1626 */ 1627 MGET(mcopy, M_DONTWAIT, m->m_type); 1628 if (mcopy != NULL) { 1629 M_COPY_PKTHDR(mcopy, m); 1630 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, 1631 (int)ip->ip_len); 1632 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1633 } 1634 1635 #ifdef IPSTEALTH 1636 if (!ipstealth) { 1637 #endif 1638 ip->ip_ttl -= IPTTLDEC; 1639 #ifdef IPSTEALTH 1640 } 1641 #endif 1642 1643 /* 1644 * If forwarding packet using same interface that it came in on, 1645 * perhaps should send a redirect to sender to shortcut a hop. 1646 * Only send redirect if source is sending directly to us, 1647 * and if packet was not source routed (or has any options). 1648 * Also, don't send redirect if forwarding using a default route 1649 * or a route modified by a redirect. 1650 */ 1651 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1652 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1653 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1654 ipsendredirects && !srcrt) { 1655 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1656 u_long src = ntohl(ip->ip_src.s_addr); 1657 1658 if (RTA(rt) && 1659 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1660 if (rt->rt_flags & RTF_GATEWAY) 1661 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1662 else 1663 dest = ip->ip_dst.s_addr; 1664 /* Router requirements says to only send host redirects */ 1665 type = ICMP_REDIRECT; 1666 code = ICMP_REDIRECT_HOST; 1667 #ifdef DIAGNOSTIC 1668 if (ipprintfs) 1669 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1670 #endif 1671 } 1672 } 1673 1674 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1675 IP_FORWARDING, 0); 1676 if (error) 1677 ipstat.ips_cantforward++; 1678 else { 1679 ipstat.ips_forward++; 1680 if (type) 1681 ipstat.ips_redirectsent++; 1682 else { 1683 if (mcopy) { 1684 ipflow_create(&ipforward_rt, mcopy); 1685 m_freem(mcopy); 1686 } 1687 return; 1688 } 1689 } 1690 if (mcopy == NULL) 1691 return; 1692 destifp = NULL; 1693 1694 switch (error) { 1695 1696 case 0: /* forwarded, but need redirect */ 1697 /* type, code set above */ 1698 break; 1699 1700 case ENETUNREACH: /* shouldn't happen, checked above */ 1701 case EHOSTUNREACH: 1702 case ENETDOWN: 1703 case EHOSTDOWN: 1704 default: 1705 type = ICMP_UNREACH; 1706 code = ICMP_UNREACH_HOST; 1707 break; 1708 1709 case EMSGSIZE: 1710 type = ICMP_UNREACH; 1711 code = ICMP_UNREACH_NEEDFRAG; 1712 #ifndef IPSEC 1713 if (ipforward_rt.ro_rt) 1714 destifp = ipforward_rt.ro_rt->rt_ifp; 1715 #else 1716 /* 1717 * If the packet is routed over IPsec tunnel, tell the 1718 * originator the tunnel MTU. 1719 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1720 * XXX quickhack!!! 1721 */ 1722 if (ipforward_rt.ro_rt) { 1723 struct secpolicy *sp = NULL; 1724 int ipsecerror; 1725 int ipsechdr; 1726 struct route *ro; 1727 1728 sp = ipsec4_getpolicybyaddr(mcopy, 1729 IPSEC_DIR_OUTBOUND, 1730 IP_FORWARDING, 1731 &ipsecerror); 1732 1733 if (sp == NULL) 1734 destifp = ipforward_rt.ro_rt->rt_ifp; 1735 else { 1736 /* count IPsec header size */ 1737 ipsechdr = ipsec4_hdrsiz(mcopy, 1738 IPSEC_DIR_OUTBOUND, 1739 NULL); 1740 1741 /* 1742 * find the correct route for outer IPv4 1743 * header, compute tunnel MTU. 1744 * 1745 * XXX BUG ALERT 1746 * The "dummyifp" code relies upon the fact 1747 * that icmp_error() touches only ifp->if_mtu. 1748 */ 1749 /*XXX*/ 1750 destifp = NULL; 1751 if (sp->req != NULL 1752 && sp->req->sav != NULL 1753 && sp->req->sav->sah != NULL) { 1754 ro = &sp->req->sav->sah->sa_route; 1755 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1756 dummyifp.if_mtu = 1757 ro->ro_rt->rt_ifp->if_mtu; 1758 dummyifp.if_mtu -= ipsechdr; 1759 destifp = &dummyifp; 1760 } 1761 } 1762 1763 key_freesp(sp); 1764 } 1765 } 1766 #endif /*IPSEC*/ 1767 ipstat.ips_cantfrag++; 1768 break; 1769 1770 case ENOBUFS: 1771 type = ICMP_SOURCEQUENCH; 1772 code = 0; 1773 break; 1774 1775 case EACCES: /* ipfw denied packet */ 1776 m_freem(mcopy); 1777 return; 1778 } 1779 icmp_error(mcopy, type, code, dest, destifp); 1780 } 1781 1782 void 1783 ip_savecontrol(inp, mp, ip, m) 1784 register struct inpcb *inp; 1785 register struct mbuf **mp; 1786 register struct ip *ip; 1787 register struct mbuf *m; 1788 { 1789 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1790 struct timeval tv; 1791 1792 microtime(&tv); 1793 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1794 SCM_TIMESTAMP, SOL_SOCKET); 1795 if (*mp) 1796 mp = &(*mp)->m_next; 1797 } 1798 if (inp->inp_flags & INP_RECVDSTADDR) { 1799 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1800 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1801 if (*mp) 1802 mp = &(*mp)->m_next; 1803 } 1804 #ifdef notyet 1805 /* XXX 1806 * Moving these out of udp_input() made them even more broken 1807 * than they already were. 1808 */ 1809 /* options were tossed already */ 1810 if (inp->inp_flags & INP_RECVOPTS) { 1811 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1812 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1813 if (*mp) 1814 mp = &(*mp)->m_next; 1815 } 1816 /* ip_srcroute doesn't do what we want here, need to fix */ 1817 if (inp->inp_flags & INP_RECVRETOPTS) { 1818 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1819 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1820 if (*mp) 1821 mp = &(*mp)->m_next; 1822 } 1823 #endif 1824 if (inp->inp_flags & INP_RECVIF) { 1825 struct ifnet *ifp; 1826 struct sdlbuf { 1827 struct sockaddr_dl sdl; 1828 u_char pad[32]; 1829 } sdlbuf; 1830 struct sockaddr_dl *sdp; 1831 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1832 1833 if (((ifp = m->m_pkthdr.rcvif)) 1834 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1835 sdp = (struct sockaddr_dl *) 1836 (ifaddr_byindex(ifp->if_index)->ifa_addr); 1837 /* 1838 * Change our mind and don't try copy. 1839 */ 1840 if ((sdp->sdl_family != AF_LINK) 1841 || (sdp->sdl_len > sizeof(sdlbuf))) { 1842 goto makedummy; 1843 } 1844 bcopy(sdp, sdl2, sdp->sdl_len); 1845 } else { 1846 makedummy: 1847 sdl2->sdl_len 1848 = offsetof(struct sockaddr_dl, sdl_data[0]); 1849 sdl2->sdl_family = AF_LINK; 1850 sdl2->sdl_index = 0; 1851 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1852 } 1853 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1854 IP_RECVIF, IPPROTO_IP); 1855 if (*mp) 1856 mp = &(*mp)->m_next; 1857 } 1858 } 1859 1860 int 1861 ip_rsvp_init(struct socket *so) 1862 { 1863 if (so->so_type != SOCK_RAW || 1864 so->so_proto->pr_protocol != IPPROTO_RSVP) 1865 return EOPNOTSUPP; 1866 1867 if (ip_rsvpd != NULL) 1868 return EADDRINUSE; 1869 1870 ip_rsvpd = so; 1871 /* 1872 * This may seem silly, but we need to be sure we don't over-increment 1873 * the RSVP counter, in case something slips up. 1874 */ 1875 if (!ip_rsvp_on) { 1876 ip_rsvp_on = 1; 1877 rsvp_on++; 1878 } 1879 1880 return 0; 1881 } 1882 1883 int 1884 ip_rsvp_done(void) 1885 { 1886 ip_rsvpd = NULL; 1887 /* 1888 * This may seem silly, but we need to be sure we don't over-decrement 1889 * the RSVP counter, in case something slips up. 1890 */ 1891 if (ip_rsvp_on) { 1892 ip_rsvp_on = 0; 1893 rsvp_on--; 1894 } 1895 return 0; 1896 } 1897