xref: /freebsd/sys/netinet/ip_input.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 int rsvp_on = 0;
90 static int ip_rsvp_on;
91 struct socket *ip_rsvpd;
92 
93 int	ipforwarding = 0;
94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &ipforwarding, 0, "Enable IP forwarding between interfaces");
96 
97 static int	ipsendredirects = 1; /* XXX */
98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99     &ipsendredirects, 0, "Enable sending IP redirects");
100 
101 int	ip_defttl = IPDEFTTL;
102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103     &ip_defttl, 0, "Maximum TTL on IP packets");
104 
105 static int	ip_dosourceroute = 0;
106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
107     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
108 
109 static int	ip_acceptsourceroute = 0;
110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
111     CTLFLAG_RW, &ip_acceptsourceroute, 0,
112     "Enable accepting source routed IP packets");
113 
114 static int	ip_keepfaith = 0;
115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
116 	&ip_keepfaith,	0,
117 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
118 
119 static int	ip_nfragpackets = 0;
120 static int	ip_maxfragpackets;	/* initialized in ip_init() */
121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
122 	&ip_maxfragpackets, 0,
123 	"Maximum number of IPv4 fragment reassembly queue entries");
124 
125 /*
126  * XXX - Setting ip_checkinterface mostly implements the receive side of
127  * the Strong ES model described in RFC 1122, but since the routing table
128  * and transmit implementation do not implement the Strong ES model,
129  * setting this to 1 results in an odd hybrid.
130  *
131  * XXX - ip_checkinterface currently must be disabled if you use ipnat
132  * to translate the destination address to another local interface.
133  *
134  * XXX - ip_checkinterface must be disabled if you add IP aliases
135  * to the loopback interface instead of the interface where the
136  * packets for those addresses are received.
137  */
138 static int	ip_checkinterface = 1;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
141 
142 #ifdef DIAGNOSTIC
143 static int	ipprintfs = 0;
144 #endif
145 
146 static int	ipqmaxlen = IFQ_MAXLEN;
147 
148 extern	struct domain inetdomain;
149 extern	struct protosw inetsw[];
150 u_char	ip_protox[IPPROTO_MAX];
151 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
152 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
153 u_long 	in_ifaddrhmask;				/* mask for hash table */
154 
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
156     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
158     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
159 
160 struct ipstat ipstat;
161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
162     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
163 
164 /* Packet reassembly stuff */
165 #define IPREASS_NHASH_LOG2      6
166 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
168 #define IPREASS_HASH(x,y) \
169 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170 
171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
172 static int    nipq = 0;         /* total # of reass queues */
173 static int    maxnipq;
174 const  int    ipintrq_present = 1;
175 
176 #ifdef IPCTL_DEFMTU
177 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
178     &ip_mtu, 0, "Default MTU");
179 #endif
180 
181 #ifdef IPSTEALTH
182 static int	ipstealth = 0;
183 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
184     &ipstealth, 0, "");
185 #endif
186 
187 
188 /* Firewall hooks */
189 ip_fw_chk_t *ip_fw_chk_ptr;
190 int fw_enable = 1 ;
191 
192 /* Dummynet hooks */
193 ip_dn_io_t *ip_dn_io_ptr;
194 
195 
196 /*
197  * We need to save the IP options in case a protocol wants to respond
198  * to an incoming packet over the same route if the packet got here
199  * using IP source routing.  This allows connection establishment and
200  * maintenance when the remote end is on a network that is not known
201  * to us.
202  */
203 static int	ip_nhops = 0;
204 static	struct ip_srcrt {
205 	struct	in_addr dst;			/* final destination */
206 	char	nop;				/* one NOP to align */
207 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
208 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
209 } ip_srcrt;
210 
211 struct sockaddr_in *ip_fw_fwd_addr;
212 
213 static void	save_rte __P((u_char *, struct in_addr));
214 static int	ip_dooptions __P((struct mbuf *));
215 static void	ip_forward __P((struct mbuf *, int));
216 static void	ip_freef __P((struct ipqhead *, struct ipq *));
217 #ifdef IPDIVERT
218 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
219 #else
220 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
221 #endif
222 static void	ipintr __P((void));
223 
224 /*
225  * IP initialization: fill in IP protocol switch table.
226  * All protocols not implemented in kernel go to raw IP protocol handler.
227  */
228 void
229 ip_init()
230 {
231 	register struct protosw *pr;
232 	register int i;
233 
234 	TAILQ_INIT(&in_ifaddrhead);
235 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
236 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
237 	if (pr == 0)
238 		panic("ip_init");
239 	for (i = 0; i < IPPROTO_MAX; i++)
240 		ip_protox[i] = pr - inetsw;
241 	for (pr = inetdomain.dom_protosw;
242 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
243 		if (pr->pr_domain->dom_family == PF_INET &&
244 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
245 			ip_protox[pr->pr_protocol] = pr - inetsw;
246 
247 	for (i = 0; i < IPREASS_NHASH; i++)
248 	    TAILQ_INIT(&ipq[i]);
249 
250 	maxnipq = nmbclusters / 4;
251 	ip_maxfragpackets = nmbclusters / 4;
252 
253 #ifndef RANDOM_IP_ID
254 	ip_id = time_second & 0xffff;
255 #endif
256 	ipintrq.ifq_maxlen = ipqmaxlen;
257 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
258 
259 	register_netisr(NETISR_IP, ipintr);
260 }
261 
262 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
263 struct	route ipforward_rt;
264 
265 /*
266  * Ip input routine.  Checksum and byte swap header.  If fragmented
267  * try to reassemble.  Process options.  Pass to next level.
268  */
269 void
270 ip_input(struct mbuf *m)
271 {
272 	struct ip *ip;
273 	struct ipq *fp;
274 	struct in_ifaddr *ia = NULL;
275 	struct ifaddr *ifa;
276 	int    i, hlen, checkif;
277 	u_short sum;
278 	u_int16_t divert_cookie;		/* firewall cookie */
279 	struct in_addr pkt_dst;
280 #ifdef IPDIVERT
281 	u_int32_t divert_info = 0;		/* packet divert/tee info */
282 #endif
283 	struct ip_fw *rule = NULL;
284 #ifdef PFIL_HOOKS
285 	struct packet_filter_hook *pfh;
286 	struct mbuf *m0;
287 	int rv;
288 #endif /* PFIL_HOOKS */
289 
290 #ifdef IPDIVERT
291 	/* Get and reset firewall cookie */
292 	divert_cookie = ip_divert_cookie;
293 	ip_divert_cookie = 0;
294 #else
295 	divert_cookie = 0;
296 #endif
297 
298         /*
299          * dummynet packet are prepended a vestigial mbuf with
300          * m_type = MT_DUMMYNET and m_data pointing to the matching
301          * rule.
302          */
303         if (m->m_type == MT_DUMMYNET) {
304             rule = (struct ip_fw *)(m->m_data) ;
305             m = m->m_next ;
306             ip = mtod(m, struct ip *);
307             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
308             goto iphack ;
309         } else
310             rule = NULL ;
311 
312 #ifdef	DIAGNOSTIC
313 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
314 		panic("ip_input no HDR");
315 #endif
316 	ipstat.ips_total++;
317 
318 	if (m->m_pkthdr.len < sizeof(struct ip))
319 		goto tooshort;
320 
321 	if (m->m_len < sizeof (struct ip) &&
322 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
323 		ipstat.ips_toosmall++;
324 		return;
325 	}
326 	ip = mtod(m, struct ip *);
327 
328 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
329 		ipstat.ips_badvers++;
330 		goto bad;
331 	}
332 
333 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
334 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
335 		ipstat.ips_badhlen++;
336 		goto bad;
337 	}
338 	if (hlen > m->m_len) {
339 		if ((m = m_pullup(m, hlen)) == 0) {
340 			ipstat.ips_badhlen++;
341 			return;
342 		}
343 		ip = mtod(m, struct ip *);
344 	}
345 
346 	/* 127/8 must not appear on wire - RFC1122 */
347 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
348 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
349 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
350 			ipstat.ips_badaddr++;
351 			goto bad;
352 		}
353 	}
354 
355 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
356 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
357 	} else {
358 		if (hlen == sizeof(struct ip)) {
359 			sum = in_cksum_hdr(ip);
360 		} else {
361 			sum = in_cksum(m, hlen);
362 		}
363 	}
364 	if (sum) {
365 		ipstat.ips_badsum++;
366 		goto bad;
367 	}
368 
369 	/*
370 	 * Convert fields to host representation.
371 	 */
372 	NTOHS(ip->ip_len);
373 	if (ip->ip_len < hlen) {
374 		ipstat.ips_badlen++;
375 		goto bad;
376 	}
377 	NTOHS(ip->ip_off);
378 
379 	/*
380 	 * Check that the amount of data in the buffers
381 	 * is as at least much as the IP header would have us expect.
382 	 * Trim mbufs if longer than we expect.
383 	 * Drop packet if shorter than we expect.
384 	 */
385 	if (m->m_pkthdr.len < ip->ip_len) {
386 tooshort:
387 		ipstat.ips_tooshort++;
388 		goto bad;
389 	}
390 	if (m->m_pkthdr.len > ip->ip_len) {
391 		if (m->m_len == m->m_pkthdr.len) {
392 			m->m_len = ip->ip_len;
393 			m->m_pkthdr.len = ip->ip_len;
394 		} else
395 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
396 	}
397 
398 #ifdef IPSEC
399 	if (ipsec_gethist(m, NULL))
400 		goto pass;
401 #endif
402 
403 	/*
404 	 * IpHack's section.
405 	 * Right now when no processing on packet has done
406 	 * and it is still fresh out of network we do our black
407 	 * deals with it.
408 	 * - Firewall: deny/allow/divert
409 	 * - Xlate: translate packet's addr/port (NAT).
410 	 * - Pipe: pass pkt through dummynet.
411 	 * - Wrap: fake packet's addr/port <unimpl.>
412 	 * - Encapsulate: put it in another IP and send out. <unimp.>
413  	 */
414 
415 iphack:
416 
417 #ifdef PFIL_HOOKS
418 	/*
419 	 * Run through list of hooks for input packets.  If there are any
420 	 * filters which require that additional packets in the flow are
421 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
422 	 * Note that filters must _never_ set this flag, as another filter
423 	 * in the list may have previously cleared it.
424 	 */
425 	m0 = m;
426 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
427 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
428 		if (pfh->pfil_func) {
429 			rv = pfh->pfil_func(ip, hlen,
430 					    m->m_pkthdr.rcvif, 0, &m0);
431 			if (rv)
432 				return;
433 			m = m0;
434 			if (m == NULL)
435 				return;
436 			ip = mtod(m, struct ip *);
437 		}
438 #endif /* PFIL_HOOKS */
439 
440 	if (fw_enable && IPFW_LOADED) {
441 #ifdef IPFIREWALL_FORWARD
442 		/*
443 		 * If we've been forwarded from the output side, then
444 		 * skip the firewall a second time
445 		 */
446 		if (ip_fw_fwd_addr)
447 			goto ours;
448 #endif	/* IPFIREWALL_FORWARD */
449 		/*
450 		 * See the comment in ip_output for the return values
451 		 * produced by the firewall.
452 		 */
453 		i = ip_fw_chk_ptr(&ip,
454 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
455 		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
456 		    if (m)
457 			m_freem(m);
458 		    return ;
459 		}
460 		if (m == NULL) {	/* Packet discarded by firewall */
461 		    static int __debug=10;
462 		    if (__debug >0) {
463 			printf("firewall returns NULL, please update!\n");
464 			__debug-- ;
465 		    }
466 		    return;
467 		}
468 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
469 			goto pass;
470                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
471                         /* Send packet to the appropriate pipe */
472                         ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
473 				    0);
474 			return;
475 		}
476 #ifdef IPDIVERT
477 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
478 			/* Divert or tee packet */
479 			divert_info = i;
480 			goto ours;
481 		}
482 #endif
483 #ifdef IPFIREWALL_FORWARD
484 		if (i == 0 && ip_fw_fwd_addr != NULL)
485 			goto pass;
486 #endif
487 		/*
488 		 * if we get here, the packet must be dropped
489 		 */
490 		m_freem(m);
491 		return;
492 	}
493 pass:
494 
495 	/*
496 	 * Process options and, if not destined for us,
497 	 * ship it on.  ip_dooptions returns 1 when an
498 	 * error was detected (causing an icmp message
499 	 * to be sent and the original packet to be freed).
500 	 */
501 	ip_nhops = 0;		/* for source routed packets */
502 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
503 #ifdef IPFIREWALL_FORWARD
504 		ip_fw_fwd_addr = NULL;
505 #endif
506 		return;
507 	}
508 
509         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
510          * matter if it is destined to another node, or whether it is
511          * a multicast one, RSVP wants it! and prevents it from being forwarded
512          * anywhere else. Also checks if the rsvp daemon is running before
513 	 * grabbing the packet.
514          */
515 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
516 		goto ours;
517 
518 	/*
519 	 * Check our list of addresses, to see if the packet is for us.
520 	 * If we don't have any addresses, assume any unicast packet
521 	 * we receive might be for us (and let the upper layers deal
522 	 * with it).
523 	 */
524 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
525 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
526 		goto ours;
527 
528 	/*
529 	 * Cache the destination address of the packet; this may be
530 	 * changed by use of 'ipfw fwd'.
531 	 */
532 	pkt_dst = ip_fw_fwd_addr == NULL ?
533 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
534 
535 	/*
536 	 * Enable a consistency check between the destination address
537 	 * and the arrival interface for a unicast packet (the RFC 1122
538 	 * strong ES model) if IP forwarding is disabled and the packet
539 	 * is not locally generated and the packet is not subject to
540 	 * 'ipfw fwd'.
541 	 *
542 	 * XXX - Checking also should be disabled if the destination
543 	 * address is ipnat'ed to a different interface.
544 	 *
545 	 * XXX - Checking is incompatible with IP aliases added
546 	 * to the loopback interface instead of the interface where
547 	 * the packets are received.
548 	 */
549 	checkif = ip_checkinterface && (ipforwarding == 0) &&
550 	    m->m_pkthdr.rcvif != NULL &&
551 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
552 	    (ip_fw_fwd_addr == NULL);
553 
554 	/*
555 	 * Check for exact addresses in the hash bucket.
556 	 */
557 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
558 		/*
559 		 * If the address matches, verify that the packet
560 		 * arrived via the correct interface if checking is
561 		 * enabled.
562 		 */
563 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
564 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
565 			goto ours;
566 	}
567 	/*
568 	 * Check for broadcast addresses.
569 	 *
570 	 * Only accept broadcast packets that arrive via the matching
571 	 * interface.  Reception of forwarded directed broadcasts would
572 	 * be handled via ip_forward() and ether_output() with the loopback
573 	 * into the stack for SIMPLEX interfaces handled by ether_output().
574 	 */
575 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
576 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
577 			if (ifa->ifa_addr->sa_family != AF_INET)
578 				continue;
579 			ia = ifatoia(ifa);
580 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
581 			    pkt_dst.s_addr)
582 				goto ours;
583 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
584 				goto ours;
585 #ifdef BOOTP_COMPAT
586 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
587 				goto ours;
588 #endif
589 		}
590 	}
591 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
592 		struct in_multi *inm;
593 		if (ip_mrouter) {
594 			/*
595 			 * If we are acting as a multicast router, all
596 			 * incoming multicast packets are passed to the
597 			 * kernel-level multicast forwarding function.
598 			 * The packet is returned (relatively) intact; if
599 			 * ip_mforward() returns a non-zero value, the packet
600 			 * must be discarded, else it may be accepted below.
601 			 */
602 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
603 				ipstat.ips_cantforward++;
604 				m_freem(m);
605 				return;
606 			}
607 
608 			/*
609 			 * The process-level routing demon needs to receive
610 			 * all multicast IGMP packets, whether or not this
611 			 * host belongs to their destination groups.
612 			 */
613 			if (ip->ip_p == IPPROTO_IGMP)
614 				goto ours;
615 			ipstat.ips_forward++;
616 		}
617 		/*
618 		 * See if we belong to the destination multicast group on the
619 		 * arrival interface.
620 		 */
621 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
622 		if (inm == NULL) {
623 			ipstat.ips_notmember++;
624 			m_freem(m);
625 			return;
626 		}
627 		goto ours;
628 	}
629 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
630 		goto ours;
631 	if (ip->ip_dst.s_addr == INADDR_ANY)
632 		goto ours;
633 
634 	/*
635 	 * FAITH(Firewall Aided Internet Translator)
636 	 */
637 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
638 		if (ip_keepfaith) {
639 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
640 				goto ours;
641 		}
642 		m_freem(m);
643 		return;
644 	}
645 
646 	/*
647 	 * Not for us; forward if possible and desirable.
648 	 */
649 	if (ipforwarding == 0) {
650 		ipstat.ips_cantforward++;
651 		m_freem(m);
652 	} else
653 		ip_forward(m, 0);
654 #ifdef IPFIREWALL_FORWARD
655 	ip_fw_fwd_addr = NULL;
656 #endif
657 	return;
658 
659 ours:
660 	/* Count the packet in the ip address stats */
661 	if (ia != NULL) {
662 		ia->ia_ifa.if_ipackets++;
663 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
664 	}
665 
666 	/*
667 	 * If offset or IP_MF are set, must reassemble.
668 	 * Otherwise, nothing need be done.
669 	 * (We could look in the reassembly queue to see
670 	 * if the packet was previously fragmented,
671 	 * but it's not worth the time; just let them time out.)
672 	 */
673 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
674 
675 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
676 		/*
677 		 * Look for queue of fragments
678 		 * of this datagram.
679 		 */
680 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
681 			if (ip->ip_id == fp->ipq_id &&
682 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
683 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
684 			    ip->ip_p == fp->ipq_p)
685 				goto found;
686 
687 		fp = 0;
688 
689 		/* check if there's a place for the new queue */
690 		if (nipq > maxnipq) {
691 		    /*
692 		     * drop something from the tail of the current queue
693 		     * before proceeding further
694 		     */
695 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
696 		    if (q == NULL) {   /* gak */
697 			for (i = 0; i < IPREASS_NHASH; i++) {
698 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
699 			    if (r) {
700 				ip_freef(&ipq[i], r);
701 				break;
702 			    }
703 			}
704 		    } else
705 			ip_freef(&ipq[sum], q);
706 		}
707 found:
708 		/*
709 		 * Adjust ip_len to not reflect header,
710 		 * convert offset of this to bytes.
711 		 */
712 		ip->ip_len -= hlen;
713 		if (ip->ip_off & IP_MF) {
714 		        /*
715 		         * Make sure that fragments have a data length
716 			 * that's a non-zero multiple of 8 bytes.
717 		         */
718 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
719 				ipstat.ips_toosmall++; /* XXX */
720 				goto bad;
721 			}
722 			m->m_flags |= M_FRAG;
723 		}
724 		ip->ip_off <<= 3;
725 
726 		/*
727 		 * Attempt reassembly; if it succeeds, proceed.
728 		 */
729 		ipstat.ips_fragments++;
730 		m->m_pkthdr.header = ip;
731 #ifdef IPDIVERT
732 		m = ip_reass(m,
733 		    &ipq[sum], fp, &divert_info, &divert_cookie);
734 #else
735 		m = ip_reass(m, &ipq[sum], fp);
736 #endif
737 		if (m == 0) {
738 #ifdef IPFIREWALL_FORWARD
739 			ip_fw_fwd_addr = NULL;
740 #endif
741 			return;
742 		}
743 		ipstat.ips_reassembled++;
744 		ip = mtod(m, struct ip *);
745 		/* Get the header length of the reassembled packet */
746 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
747 #ifdef IPDIVERT
748 		/* Restore original checksum before diverting packet */
749 		if (divert_info != 0) {
750 			ip->ip_len += hlen;
751 			HTONS(ip->ip_len);
752 			HTONS(ip->ip_off);
753 			ip->ip_sum = 0;
754 			if (hlen == sizeof(struct ip))
755 				ip->ip_sum = in_cksum_hdr(ip);
756 			else
757 				ip->ip_sum = in_cksum(m, hlen);
758 			NTOHS(ip->ip_off);
759 			NTOHS(ip->ip_len);
760 			ip->ip_len -= hlen;
761 		}
762 #endif
763 	} else
764 		ip->ip_len -= hlen;
765 
766 #ifdef IPDIVERT
767 	/*
768 	 * Divert or tee packet to the divert protocol if required.
769 	 *
770 	 * If divert_info is zero then cookie should be too, so we shouldn't
771 	 * need to clear them here.  Assume divert_packet() does so also.
772 	 */
773 	if (divert_info != 0) {
774 		struct mbuf *clone = NULL;
775 
776 		/* Clone packet if we're doing a 'tee' */
777 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
778 			clone = m_dup(m, M_DONTWAIT);
779 
780 		/* Restore packet header fields to original values */
781 		ip->ip_len += hlen;
782 		HTONS(ip->ip_len);
783 		HTONS(ip->ip_off);
784 
785 		/* Deliver packet to divert input routine */
786 		ip_divert_cookie = divert_cookie;
787 		divert_packet(m, 1, divert_info & 0xffff);
788 		ipstat.ips_delivered++;
789 
790 		/* If 'tee', continue with original packet */
791 		if (clone == NULL)
792 			return;
793 		m = clone;
794 		ip = mtod(m, struct ip *);
795 	}
796 #endif
797 
798 #ifdef IPSEC
799 	/*
800 	 * enforce IPsec policy checking if we are seeing last header.
801 	 * note that we do not visit this with protocols with pcb layer
802 	 * code - like udp/tcp/raw ip.
803 	 */
804 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
805 	    ipsec4_in_reject(m, NULL)) {
806 		ipsecstat.in_polvio++;
807 		goto bad;
808 	}
809 #endif
810 
811 	/*
812 	 * Switch out to protocol's input routine.
813 	 */
814 	ipstat.ips_delivered++;
815     {
816 	int off = hlen;
817 
818 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off);
819 #ifdef	IPFIREWALL_FORWARD
820 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
821 #endif
822 	return;
823     }
824 bad:
825 #ifdef	IPFIREWALL_FORWARD
826 	ip_fw_fwd_addr = NULL;
827 #endif
828 	m_freem(m);
829 }
830 
831 /*
832  * IP software interrupt routine - to go away sometime soon
833  */
834 static void
835 ipintr(void)
836 {
837 	struct mbuf *m;
838 
839 	while (1) {
840 		IF_DEQUEUE(&ipintrq, m);
841 		if (m == 0)
842 			return;
843 		ip_input(m);
844 	}
845 }
846 
847 /*
848  * Take incoming datagram fragment and try to reassemble it into
849  * whole datagram.  If a chain for reassembly of this datagram already
850  * exists, then it is given as fp; otherwise have to make a chain.
851  *
852  * When IPDIVERT enabled, keep additional state with each packet that
853  * tells us if we need to divert or tee the packet we're building.
854  */
855 
856 static struct mbuf *
857 #ifdef IPDIVERT
858 ip_reass(m, head, fp, divinfo, divcookie)
859 #else
860 ip_reass(m, head, fp)
861 #endif
862 	struct mbuf *m;
863 	struct ipqhead *head;
864 	struct ipq *fp;
865 #ifdef IPDIVERT
866 	u_int32_t *divinfo;
867 	u_int16_t *divcookie;
868 #endif
869 {
870 	struct ip *ip = mtod(m, struct ip *);
871 	register struct mbuf *p, *q, *nq;
872 	struct mbuf *t;
873 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
874 	int i, next;
875 
876 	/*
877 	 * Presence of header sizes in mbufs
878 	 * would confuse code below.
879 	 */
880 	m->m_data += hlen;
881 	m->m_len -= hlen;
882 
883 	/*
884 	 * If first fragment to arrive, create a reassembly queue.
885 	 */
886 	if (fp == 0) {
887 		/*
888 		 * Enforce upper bound on number of fragmented packets
889 		 * for which we attempt reassembly;
890 		 * If maxfrag is 0, never accept fragments.
891 		 * If maxfrag is -1, accept all fragments without limitation.
892 		 */
893 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
894 			goto dropfrag;
895 		ip_nfragpackets++;
896 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
897 			goto dropfrag;
898 		fp = mtod(t, struct ipq *);
899 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
900 		nipq++;
901 		fp->ipq_ttl = IPFRAGTTL;
902 		fp->ipq_p = ip->ip_p;
903 		fp->ipq_id = ip->ip_id;
904 		fp->ipq_src = ip->ip_src;
905 		fp->ipq_dst = ip->ip_dst;
906 		fp->ipq_frags = m;
907 		m->m_nextpkt = NULL;
908 #ifdef IPDIVERT
909 		fp->ipq_div_info = 0;
910 		fp->ipq_div_cookie = 0;
911 #endif
912 		goto inserted;
913 	}
914 
915 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
916 
917 	/*
918 	 * Find a segment which begins after this one does.
919 	 */
920 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
921 		if (GETIP(q)->ip_off > ip->ip_off)
922 			break;
923 
924 	/*
925 	 * If there is a preceding segment, it may provide some of
926 	 * our data already.  If so, drop the data from the incoming
927 	 * segment.  If it provides all of our data, drop us, otherwise
928 	 * stick new segment in the proper place.
929 	 *
930 	 * If some of the data is dropped from the the preceding
931 	 * segment, then it's checksum is invalidated.
932 	 */
933 	if (p) {
934 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
935 		if (i > 0) {
936 			if (i >= ip->ip_len)
937 				goto dropfrag;
938 			m_adj(m, i);
939 			m->m_pkthdr.csum_flags = 0;
940 			ip->ip_off += i;
941 			ip->ip_len -= i;
942 		}
943 		m->m_nextpkt = p->m_nextpkt;
944 		p->m_nextpkt = m;
945 	} else {
946 		m->m_nextpkt = fp->ipq_frags;
947 		fp->ipq_frags = m;
948 	}
949 
950 	/*
951 	 * While we overlap succeeding segments trim them or,
952 	 * if they are completely covered, dequeue them.
953 	 */
954 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
955 	     q = nq) {
956 		i = (ip->ip_off + ip->ip_len) -
957 		    GETIP(q)->ip_off;
958 		if (i < GETIP(q)->ip_len) {
959 			GETIP(q)->ip_len -= i;
960 			GETIP(q)->ip_off += i;
961 			m_adj(q, i);
962 			q->m_pkthdr.csum_flags = 0;
963 			break;
964 		}
965 		nq = q->m_nextpkt;
966 		m->m_nextpkt = nq;
967 		m_freem(q);
968 	}
969 
970 inserted:
971 
972 #ifdef IPDIVERT
973 	/*
974 	 * Transfer firewall instructions to the fragment structure.
975 	 * Any fragment diverting causes the whole packet to divert.
976 	 */
977 	fp->ipq_div_info = *divinfo;
978 	fp->ipq_div_cookie = *divcookie;
979 	*divinfo = 0;
980 	*divcookie = 0;
981 #endif
982 
983 	/*
984 	 * Check for complete reassembly.
985 	 */
986 	next = 0;
987 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
988 		if (GETIP(q)->ip_off != next)
989 			return (0);
990 		next += GETIP(q)->ip_len;
991 	}
992 	/* Make sure the last packet didn't have the IP_MF flag */
993 	if (p->m_flags & M_FRAG)
994 		return (0);
995 
996 	/*
997 	 * Reassembly is complete.  Make sure the packet is a sane size.
998 	 */
999 	q = fp->ipq_frags;
1000 	ip = GETIP(q);
1001 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1002 		ipstat.ips_toolong++;
1003 		ip_freef(head, fp);
1004 		return (0);
1005 	}
1006 
1007 	/*
1008 	 * Concatenate fragments.
1009 	 */
1010 	m = q;
1011 	t = m->m_next;
1012 	m->m_next = 0;
1013 	m_cat(m, t);
1014 	nq = q->m_nextpkt;
1015 	q->m_nextpkt = 0;
1016 	for (q = nq; q != NULL; q = nq) {
1017 		nq = q->m_nextpkt;
1018 		q->m_nextpkt = NULL;
1019 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1020 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1021 		m_cat(m, q);
1022 	}
1023 
1024 #ifdef IPDIVERT
1025 	/*
1026 	 * Extract firewall instructions from the fragment structure.
1027 	 */
1028 	*divinfo = fp->ipq_div_info;
1029 	*divcookie = fp->ipq_div_cookie;
1030 #endif
1031 
1032 	/*
1033 	 * Create header for new ip packet by
1034 	 * modifying header of first packet;
1035 	 * dequeue and discard fragment reassembly header.
1036 	 * Make header visible.
1037 	 */
1038 	ip->ip_len = next;
1039 	ip->ip_src = fp->ipq_src;
1040 	ip->ip_dst = fp->ipq_dst;
1041 	TAILQ_REMOVE(head, fp, ipq_list);
1042 	nipq--;
1043 	(void) m_free(dtom(fp));
1044 	ip_nfragpackets--;
1045 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1046 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1047 	/* some debugging cruft by sklower, below, will go away soon */
1048 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1049 		register int plen = 0;
1050 		for (t = m; t; t = t->m_next)
1051 			plen += t->m_len;
1052 		m->m_pkthdr.len = plen;
1053 	}
1054 	return (m);
1055 
1056 dropfrag:
1057 #ifdef IPDIVERT
1058 	*divinfo = 0;
1059 	*divcookie = 0;
1060 #endif
1061 	ipstat.ips_fragdropped++;
1062 	m_freem(m);
1063 	return (0);
1064 
1065 #undef GETIP
1066 }
1067 
1068 /*
1069  * Free a fragment reassembly header and all
1070  * associated datagrams.
1071  */
1072 static void
1073 ip_freef(fhp, fp)
1074 	struct ipqhead *fhp;
1075 	struct ipq *fp;
1076 {
1077 	register struct mbuf *q;
1078 
1079 	while (fp->ipq_frags) {
1080 		q = fp->ipq_frags;
1081 		fp->ipq_frags = q->m_nextpkt;
1082 		m_freem(q);
1083 	}
1084 	TAILQ_REMOVE(fhp, fp, ipq_list);
1085 	(void) m_free(dtom(fp));
1086 	ip_nfragpackets--;
1087 	nipq--;
1088 }
1089 
1090 /*
1091  * IP timer processing;
1092  * if a timer expires on a reassembly
1093  * queue, discard it.
1094  */
1095 void
1096 ip_slowtimo()
1097 {
1098 	register struct ipq *fp;
1099 	int s = splnet();
1100 	int i;
1101 
1102 	for (i = 0; i < IPREASS_NHASH; i++) {
1103 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1104 			struct ipq *fpp;
1105 
1106 			fpp = fp;
1107 			fp = TAILQ_NEXT(fp, ipq_list);
1108 			if(--fpp->ipq_ttl == 0) {
1109 				ipstat.ips_fragtimeout++;
1110 				ip_freef(&ipq[i], fpp);
1111 			}
1112 		}
1113 	}
1114 	/*
1115 	 * If we are over the maximum number of fragments
1116 	 * (due to the limit being lowered), drain off
1117 	 * enough to get down to the new limit.
1118 	 */
1119 	for (i = 0; i < IPREASS_NHASH; i++) {
1120 		if (ip_maxfragpackets >= 0) {
1121 			while (ip_nfragpackets > ip_maxfragpackets &&
1122 				!TAILQ_EMPTY(&ipq[i])) {
1123 				ipstat.ips_fragdropped++;
1124 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1125 			}
1126 		}
1127 	}
1128 	ipflow_slowtimo();
1129 	splx(s);
1130 }
1131 
1132 /*
1133  * Drain off all datagram fragments.
1134  */
1135 void
1136 ip_drain()
1137 {
1138 	int     i;
1139 
1140 	for (i = 0; i < IPREASS_NHASH; i++) {
1141 		while(!TAILQ_EMPTY(&ipq[i])) {
1142 			ipstat.ips_fragdropped++;
1143 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1144 		}
1145 	}
1146 	in_rtqdrain();
1147 }
1148 
1149 /*
1150  * Do option processing on a datagram,
1151  * possibly discarding it if bad options are encountered,
1152  * or forwarding it if source-routed.
1153  * Returns 1 if packet has been forwarded/freed,
1154  * 0 if the packet should be processed further.
1155  */
1156 static int
1157 ip_dooptions(m)
1158 	struct mbuf *m;
1159 {
1160 	register struct ip *ip = mtod(m, struct ip *);
1161 	register u_char *cp;
1162 	register struct in_ifaddr *ia;
1163 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1164 	struct in_addr *sin, dst;
1165 	n_time ntime;
1166 
1167 	dst = ip->ip_dst;
1168 	cp = (u_char *)(ip + 1);
1169 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1170 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1171 		opt = cp[IPOPT_OPTVAL];
1172 		if (opt == IPOPT_EOL)
1173 			break;
1174 		if (opt == IPOPT_NOP)
1175 			optlen = 1;
1176 		else {
1177 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1178 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1179 				goto bad;
1180 			}
1181 			optlen = cp[IPOPT_OLEN];
1182 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1183 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1184 				goto bad;
1185 			}
1186 		}
1187 		switch (opt) {
1188 
1189 		default:
1190 			break;
1191 
1192 		/*
1193 		 * Source routing with record.
1194 		 * Find interface with current destination address.
1195 		 * If none on this machine then drop if strictly routed,
1196 		 * or do nothing if loosely routed.
1197 		 * Record interface address and bring up next address
1198 		 * component.  If strictly routed make sure next
1199 		 * address is on directly accessible net.
1200 		 */
1201 		case IPOPT_LSRR:
1202 		case IPOPT_SSRR:
1203 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1204 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1205 				goto bad;
1206 			}
1207 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1208 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1209 				goto bad;
1210 			}
1211 			ipaddr.sin_addr = ip->ip_dst;
1212 			ia = (struct in_ifaddr *)
1213 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1214 			if (ia == 0) {
1215 				if (opt == IPOPT_SSRR) {
1216 					type = ICMP_UNREACH;
1217 					code = ICMP_UNREACH_SRCFAIL;
1218 					goto bad;
1219 				}
1220 				if (!ip_dosourceroute)
1221 					goto nosourcerouting;
1222 				/*
1223 				 * Loose routing, and not at next destination
1224 				 * yet; nothing to do except forward.
1225 				 */
1226 				break;
1227 			}
1228 			off--;			/* 0 origin */
1229 			if (off > optlen - (int)sizeof(struct in_addr)) {
1230 				/*
1231 				 * End of source route.  Should be for us.
1232 				 */
1233 				if (!ip_acceptsourceroute)
1234 					goto nosourcerouting;
1235 				save_rte(cp, ip->ip_src);
1236 				break;
1237 			}
1238 
1239 			if (!ip_dosourceroute) {
1240 				if (ipforwarding) {
1241 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1242 					/*
1243 					 * Acting as a router, so generate ICMP
1244 					 */
1245 nosourcerouting:
1246 					strcpy(buf, inet_ntoa(ip->ip_dst));
1247 					log(LOG_WARNING,
1248 					    "attempted source route from %s to %s\n",
1249 					    inet_ntoa(ip->ip_src), buf);
1250 					type = ICMP_UNREACH;
1251 					code = ICMP_UNREACH_SRCFAIL;
1252 					goto bad;
1253 				} else {
1254 					/*
1255 					 * Not acting as a router, so silently drop.
1256 					 */
1257 					ipstat.ips_cantforward++;
1258 					m_freem(m);
1259 					return (1);
1260 				}
1261 			}
1262 
1263 			/*
1264 			 * locate outgoing interface
1265 			 */
1266 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1267 			    sizeof(ipaddr.sin_addr));
1268 
1269 			if (opt == IPOPT_SSRR) {
1270 #define	INA	struct in_ifaddr *
1271 #define	SA	struct sockaddr *
1272 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1273 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1274 			} else
1275 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1276 			if (ia == 0) {
1277 				type = ICMP_UNREACH;
1278 				code = ICMP_UNREACH_SRCFAIL;
1279 				goto bad;
1280 			}
1281 			ip->ip_dst = ipaddr.sin_addr;
1282 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1283 			    sizeof(struct in_addr));
1284 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1285 			/*
1286 			 * Let ip_intr's mcast routing check handle mcast pkts
1287 			 */
1288 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1289 			break;
1290 
1291 		case IPOPT_RR:
1292 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1293 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1294 				goto bad;
1295 			}
1296 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1297 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1298 				goto bad;
1299 			}
1300 			/*
1301 			 * If no space remains, ignore.
1302 			 */
1303 			off--;			/* 0 origin */
1304 			if (off > optlen - (int)sizeof(struct in_addr))
1305 				break;
1306 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1307 			    sizeof(ipaddr.sin_addr));
1308 			/*
1309 			 * locate outgoing interface; if we're the destination,
1310 			 * use the incoming interface (should be same).
1311 			 */
1312 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1313 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1314 			    &ipforward_rt)) == 0) {
1315 				type = ICMP_UNREACH;
1316 				code = ICMP_UNREACH_HOST;
1317 				goto bad;
1318 			}
1319 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1320 			    sizeof(struct in_addr));
1321 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1322 			break;
1323 
1324 		case IPOPT_TS:
1325 			code = cp - (u_char *)ip;
1326 			if (optlen < 4 || optlen > 40) {
1327 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1328 				goto bad;
1329 			}
1330 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1331 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1332 				goto bad;
1333 			}
1334 			if (off > optlen - (int)sizeof(int32_t)) {
1335 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1336 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1337 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1338 					goto bad;
1339 				}
1340 				break;
1341 			}
1342 			off--;				/* 0 origin */
1343 			sin = (struct in_addr *)(cp + off);
1344 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1345 
1346 			case IPOPT_TS_TSONLY:
1347 				break;
1348 
1349 			case IPOPT_TS_TSANDADDR:
1350 				if (off + sizeof(n_time) +
1351 				    sizeof(struct in_addr) > optlen) {
1352 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1353 					goto bad;
1354 				}
1355 				ipaddr.sin_addr = dst;
1356 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1357 							    m->m_pkthdr.rcvif);
1358 				if (ia == 0)
1359 					continue;
1360 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1361 				    sizeof(struct in_addr));
1362 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1363 				break;
1364 
1365 			case IPOPT_TS_PRESPEC:
1366 				if (off + sizeof(n_time) +
1367 				    sizeof(struct in_addr) > optlen) {
1368 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1369 					goto bad;
1370 				}
1371 				(void)memcpy(&ipaddr.sin_addr, sin,
1372 				    sizeof(struct in_addr));
1373 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1374 					continue;
1375 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1376 				break;
1377 
1378 			default:
1379 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1380 				goto bad;
1381 			}
1382 			ntime = iptime();
1383 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1384 			cp[IPOPT_OFFSET] += sizeof(n_time);
1385 		}
1386 	}
1387 	if (forward && ipforwarding) {
1388 		ip_forward(m, 1);
1389 		return (1);
1390 	}
1391 	return (0);
1392 bad:
1393 	icmp_error(m, type, code, 0, 0);
1394 	ipstat.ips_badoptions++;
1395 	return (1);
1396 }
1397 
1398 /*
1399  * Given address of next destination (final or next hop),
1400  * return internet address info of interface to be used to get there.
1401  */
1402 struct in_ifaddr *
1403 ip_rtaddr(dst, rt)
1404 	struct in_addr dst;
1405 	struct route *rt;
1406 {
1407 	register struct sockaddr_in *sin;
1408 
1409 	sin = (struct sockaddr_in *)&rt->ro_dst;
1410 
1411 	if (rt->ro_rt == 0 ||
1412 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1413 	    dst.s_addr != sin->sin_addr.s_addr) {
1414 		if (rt->ro_rt) {
1415 			RTFREE(rt->ro_rt);
1416 			rt->ro_rt = 0;
1417 		}
1418 		sin->sin_family = AF_INET;
1419 		sin->sin_len = sizeof(*sin);
1420 		sin->sin_addr = dst;
1421 
1422 		rtalloc_ign(rt, RTF_PRCLONING);
1423 	}
1424 	if (rt->ro_rt == 0)
1425 		return ((struct in_ifaddr *)0);
1426 	return (ifatoia(rt->ro_rt->rt_ifa));
1427 }
1428 
1429 /*
1430  * Save incoming source route for use in replies,
1431  * to be picked up later by ip_srcroute if the receiver is interested.
1432  */
1433 void
1434 save_rte(option, dst)
1435 	u_char *option;
1436 	struct in_addr dst;
1437 {
1438 	unsigned olen;
1439 
1440 	olen = option[IPOPT_OLEN];
1441 #ifdef DIAGNOSTIC
1442 	if (ipprintfs)
1443 		printf("save_rte: olen %d\n", olen);
1444 #endif
1445 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1446 		return;
1447 	bcopy(option, ip_srcrt.srcopt, olen);
1448 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1449 	ip_srcrt.dst = dst;
1450 }
1451 
1452 /*
1453  * Retrieve incoming source route for use in replies,
1454  * in the same form used by setsockopt.
1455  * The first hop is placed before the options, will be removed later.
1456  */
1457 struct mbuf *
1458 ip_srcroute()
1459 {
1460 	register struct in_addr *p, *q;
1461 	register struct mbuf *m;
1462 
1463 	if (ip_nhops == 0)
1464 		return ((struct mbuf *)0);
1465 	m = m_get(M_DONTWAIT, MT_HEADER);
1466 	if (m == 0)
1467 		return ((struct mbuf *)0);
1468 
1469 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1470 
1471 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1472 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1473 	    OPTSIZ;
1474 #ifdef DIAGNOSTIC
1475 	if (ipprintfs)
1476 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1477 #endif
1478 
1479 	/*
1480 	 * First save first hop for return route
1481 	 */
1482 	p = &ip_srcrt.route[ip_nhops - 1];
1483 	*(mtod(m, struct in_addr *)) = *p--;
1484 #ifdef DIAGNOSTIC
1485 	if (ipprintfs)
1486 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1487 #endif
1488 
1489 	/*
1490 	 * Copy option fields and padding (nop) to mbuf.
1491 	 */
1492 	ip_srcrt.nop = IPOPT_NOP;
1493 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1494 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1495 	    &ip_srcrt.nop, OPTSIZ);
1496 	q = (struct in_addr *)(mtod(m, caddr_t) +
1497 	    sizeof(struct in_addr) + OPTSIZ);
1498 #undef OPTSIZ
1499 	/*
1500 	 * Record return path as an IP source route,
1501 	 * reversing the path (pointers are now aligned).
1502 	 */
1503 	while (p >= ip_srcrt.route) {
1504 #ifdef DIAGNOSTIC
1505 		if (ipprintfs)
1506 			printf(" %lx", (u_long)ntohl(q->s_addr));
1507 #endif
1508 		*q++ = *p--;
1509 	}
1510 	/*
1511 	 * Last hop goes to final destination.
1512 	 */
1513 	*q = ip_srcrt.dst;
1514 #ifdef DIAGNOSTIC
1515 	if (ipprintfs)
1516 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1517 #endif
1518 	return (m);
1519 }
1520 
1521 /*
1522  * Strip out IP options, at higher
1523  * level protocol in the kernel.
1524  * Second argument is buffer to which options
1525  * will be moved, and return value is their length.
1526  * XXX should be deleted; last arg currently ignored.
1527  */
1528 void
1529 ip_stripoptions(m, mopt)
1530 	register struct mbuf *m;
1531 	struct mbuf *mopt;
1532 {
1533 	register int i;
1534 	struct ip *ip = mtod(m, struct ip *);
1535 	register caddr_t opts;
1536 	int olen;
1537 
1538 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1539 	opts = (caddr_t)(ip + 1);
1540 	i = m->m_len - (sizeof (struct ip) + olen);
1541 	bcopy(opts + olen, opts, (unsigned)i);
1542 	m->m_len -= olen;
1543 	if (m->m_flags & M_PKTHDR)
1544 		m->m_pkthdr.len -= olen;
1545 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1546 }
1547 
1548 u_char inetctlerrmap[PRC_NCMDS] = {
1549 	0,		0,		0,		0,
1550 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1551 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1552 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1553 	0,		0,		0,		0,
1554 	ENOPROTOOPT,	ECONNREFUSED
1555 };
1556 
1557 /*
1558  * Forward a packet.  If some error occurs return the sender
1559  * an icmp packet.  Note we can't always generate a meaningful
1560  * icmp message because icmp doesn't have a large enough repertoire
1561  * of codes and types.
1562  *
1563  * If not forwarding, just drop the packet.  This could be confusing
1564  * if ipforwarding was zero but some routing protocol was advancing
1565  * us as a gateway to somewhere.  However, we must let the routing
1566  * protocol deal with that.
1567  *
1568  * The srcrt parameter indicates whether the packet is being forwarded
1569  * via a source route.
1570  */
1571 static void
1572 ip_forward(m, srcrt)
1573 	struct mbuf *m;
1574 	int srcrt;
1575 {
1576 	register struct ip *ip = mtod(m, struct ip *);
1577 	register struct rtentry *rt;
1578 	int error, type = 0, code = 0;
1579 	struct mbuf *mcopy;
1580 	n_long dest;
1581 	struct ifnet *destifp;
1582 #ifdef IPSEC
1583 	struct ifnet dummyifp;
1584 #endif
1585 
1586 	dest = 0;
1587 #ifdef DIAGNOSTIC
1588 	if (ipprintfs)
1589 		printf("forward: src %lx dst %lx ttl %x\n",
1590 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1591 		    ip->ip_ttl);
1592 #endif
1593 
1594 
1595 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1596 		ipstat.ips_cantforward++;
1597 		m_freem(m);
1598 		return;
1599 	}
1600 #ifdef IPSTEALTH
1601 	if (!ipstealth) {
1602 #endif
1603 		if (ip->ip_ttl <= IPTTLDEC) {
1604 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1605 			    dest, 0);
1606 			return;
1607 		}
1608 #ifdef IPSTEALTH
1609 	}
1610 #endif
1611 
1612 	if (ip_rtaddr(ip->ip_dst, &ipforward_rt) == 0) {
1613 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1614 		return;
1615 	} else
1616 		rt = ipforward_rt.ro_rt;
1617 
1618 	/*
1619 	 * Save the IP header and at most 8 bytes of the payload,
1620 	 * in case we need to generate an ICMP message to the src.
1621 	 *
1622 	 * We don't use m_copy() because it might return a reference
1623 	 * to a shared cluster. Both this function and ip_output()
1624 	 * assume exclusive access to the IP header in `m', so any
1625 	 * data in a cluster may change before we reach icmp_error().
1626 	 */
1627 	MGET(mcopy, M_DONTWAIT, m->m_type);
1628 	if (mcopy != NULL) {
1629 		M_COPY_PKTHDR(mcopy, m);
1630 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1631 		    (int)ip->ip_len);
1632 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1633 	}
1634 
1635 #ifdef IPSTEALTH
1636 	if (!ipstealth) {
1637 #endif
1638 		ip->ip_ttl -= IPTTLDEC;
1639 #ifdef IPSTEALTH
1640 	}
1641 #endif
1642 
1643 	/*
1644 	 * If forwarding packet using same interface that it came in on,
1645 	 * perhaps should send a redirect to sender to shortcut a hop.
1646 	 * Only send redirect if source is sending directly to us,
1647 	 * and if packet was not source routed (or has any options).
1648 	 * Also, don't send redirect if forwarding using a default route
1649 	 * or a route modified by a redirect.
1650 	 */
1651 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1652 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1653 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1654 	    ipsendredirects && !srcrt) {
1655 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1656 		u_long src = ntohl(ip->ip_src.s_addr);
1657 
1658 		if (RTA(rt) &&
1659 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1660 		    if (rt->rt_flags & RTF_GATEWAY)
1661 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1662 		    else
1663 			dest = ip->ip_dst.s_addr;
1664 		    /* Router requirements says to only send host redirects */
1665 		    type = ICMP_REDIRECT;
1666 		    code = ICMP_REDIRECT_HOST;
1667 #ifdef DIAGNOSTIC
1668 		    if (ipprintfs)
1669 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1670 #endif
1671 		}
1672 	}
1673 
1674 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1675 			  IP_FORWARDING, 0);
1676 	if (error)
1677 		ipstat.ips_cantforward++;
1678 	else {
1679 		ipstat.ips_forward++;
1680 		if (type)
1681 			ipstat.ips_redirectsent++;
1682 		else {
1683 			if (mcopy) {
1684 				ipflow_create(&ipforward_rt, mcopy);
1685 				m_freem(mcopy);
1686 			}
1687 			return;
1688 		}
1689 	}
1690 	if (mcopy == NULL)
1691 		return;
1692 	destifp = NULL;
1693 
1694 	switch (error) {
1695 
1696 	case 0:				/* forwarded, but need redirect */
1697 		/* type, code set above */
1698 		break;
1699 
1700 	case ENETUNREACH:		/* shouldn't happen, checked above */
1701 	case EHOSTUNREACH:
1702 	case ENETDOWN:
1703 	case EHOSTDOWN:
1704 	default:
1705 		type = ICMP_UNREACH;
1706 		code = ICMP_UNREACH_HOST;
1707 		break;
1708 
1709 	case EMSGSIZE:
1710 		type = ICMP_UNREACH;
1711 		code = ICMP_UNREACH_NEEDFRAG;
1712 #ifndef IPSEC
1713 		if (ipforward_rt.ro_rt)
1714 			destifp = ipforward_rt.ro_rt->rt_ifp;
1715 #else
1716 		/*
1717 		 * If the packet is routed over IPsec tunnel, tell the
1718 		 * originator the tunnel MTU.
1719 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1720 		 * XXX quickhack!!!
1721 		 */
1722 		if (ipforward_rt.ro_rt) {
1723 			struct secpolicy *sp = NULL;
1724 			int ipsecerror;
1725 			int ipsechdr;
1726 			struct route *ro;
1727 
1728 			sp = ipsec4_getpolicybyaddr(mcopy,
1729 						    IPSEC_DIR_OUTBOUND,
1730 			                            IP_FORWARDING,
1731 			                            &ipsecerror);
1732 
1733 			if (sp == NULL)
1734 				destifp = ipforward_rt.ro_rt->rt_ifp;
1735 			else {
1736 				/* count IPsec header size */
1737 				ipsechdr = ipsec4_hdrsiz(mcopy,
1738 							 IPSEC_DIR_OUTBOUND,
1739 							 NULL);
1740 
1741 				/*
1742 				 * find the correct route for outer IPv4
1743 				 * header, compute tunnel MTU.
1744 				 *
1745 				 * XXX BUG ALERT
1746 				 * The "dummyifp" code relies upon the fact
1747 				 * that icmp_error() touches only ifp->if_mtu.
1748 				 */
1749 				/*XXX*/
1750 				destifp = NULL;
1751 				if (sp->req != NULL
1752 				 && sp->req->sav != NULL
1753 				 && sp->req->sav->sah != NULL) {
1754 					ro = &sp->req->sav->sah->sa_route;
1755 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1756 						dummyifp.if_mtu =
1757 						    ro->ro_rt->rt_ifp->if_mtu;
1758 						dummyifp.if_mtu -= ipsechdr;
1759 						destifp = &dummyifp;
1760 					}
1761 				}
1762 
1763 				key_freesp(sp);
1764 			}
1765 		}
1766 #endif /*IPSEC*/
1767 		ipstat.ips_cantfrag++;
1768 		break;
1769 
1770 	case ENOBUFS:
1771 		type = ICMP_SOURCEQUENCH;
1772 		code = 0;
1773 		break;
1774 
1775 	case EACCES:			/* ipfw denied packet */
1776 		m_freem(mcopy);
1777 		return;
1778 	}
1779 	icmp_error(mcopy, type, code, dest, destifp);
1780 }
1781 
1782 void
1783 ip_savecontrol(inp, mp, ip, m)
1784 	register struct inpcb *inp;
1785 	register struct mbuf **mp;
1786 	register struct ip *ip;
1787 	register struct mbuf *m;
1788 {
1789 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1790 		struct timeval tv;
1791 
1792 		microtime(&tv);
1793 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1794 			SCM_TIMESTAMP, SOL_SOCKET);
1795 		if (*mp)
1796 			mp = &(*mp)->m_next;
1797 	}
1798 	if (inp->inp_flags & INP_RECVDSTADDR) {
1799 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1800 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1801 		if (*mp)
1802 			mp = &(*mp)->m_next;
1803 	}
1804 #ifdef notyet
1805 	/* XXX
1806 	 * Moving these out of udp_input() made them even more broken
1807 	 * than they already were.
1808 	 */
1809 	/* options were tossed already */
1810 	if (inp->inp_flags & INP_RECVOPTS) {
1811 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1812 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1813 		if (*mp)
1814 			mp = &(*mp)->m_next;
1815 	}
1816 	/* ip_srcroute doesn't do what we want here, need to fix */
1817 	if (inp->inp_flags & INP_RECVRETOPTS) {
1818 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1819 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1820 		if (*mp)
1821 			mp = &(*mp)->m_next;
1822 	}
1823 #endif
1824 	if (inp->inp_flags & INP_RECVIF) {
1825 		struct ifnet *ifp;
1826 		struct sdlbuf {
1827 			struct sockaddr_dl sdl;
1828 			u_char	pad[32];
1829 		} sdlbuf;
1830 		struct sockaddr_dl *sdp;
1831 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1832 
1833 		if (((ifp = m->m_pkthdr.rcvif))
1834 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1835 			sdp = (struct sockaddr_dl *)
1836 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1837 			/*
1838 			 * Change our mind and don't try copy.
1839 			 */
1840 			if ((sdp->sdl_family != AF_LINK)
1841 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1842 				goto makedummy;
1843 			}
1844 			bcopy(sdp, sdl2, sdp->sdl_len);
1845 		} else {
1846 makedummy:
1847 			sdl2->sdl_len
1848 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1849 			sdl2->sdl_family = AF_LINK;
1850 			sdl2->sdl_index = 0;
1851 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1852 		}
1853 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1854 			IP_RECVIF, IPPROTO_IP);
1855 		if (*mp)
1856 			mp = &(*mp)->m_next;
1857 	}
1858 }
1859 
1860 int
1861 ip_rsvp_init(struct socket *so)
1862 {
1863 	if (so->so_type != SOCK_RAW ||
1864 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1865 	  return EOPNOTSUPP;
1866 
1867 	if (ip_rsvpd != NULL)
1868 	  return EADDRINUSE;
1869 
1870 	ip_rsvpd = so;
1871 	/*
1872 	 * This may seem silly, but we need to be sure we don't over-increment
1873 	 * the RSVP counter, in case something slips up.
1874 	 */
1875 	if (!ip_rsvp_on) {
1876 		ip_rsvp_on = 1;
1877 		rsvp_on++;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 int
1884 ip_rsvp_done(void)
1885 {
1886 	ip_rsvpd = NULL;
1887 	/*
1888 	 * This may seem silly, but we need to be sure we don't over-decrement
1889 	 * the RSVP counter, in case something slips up.
1890 	 */
1891 	if (ip_rsvp_on) {
1892 		ip_rsvp_on = 0;
1893 		rsvp_on--;
1894 	}
1895 	return 0;
1896 }
1897