xref: /freebsd/sys/netinet/ip_input.c (revision 8d6f425ddd8021ae2257ba9682f8844254ecdde1)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_rss.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/sdt.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/rss_config.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_kdtrace.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_fw.h>
75 #include <netinet/ip_icmp.h>
76 #include <netinet/ip_options.h>
77 #include <machine/in_cksum.h>
78 #include <netinet/ip_carp.h>
79 #ifdef IPSEC
80 #include <netinet/ip_ipsec.h>
81 #endif /* IPSEC */
82 #include <netinet/in_rss.h>
83 
84 #include <sys/socketvar.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof(struct ip) == 20);
90 #endif
91 
92 struct	rwlock in_ifaddr_lock;
93 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
94 
95 VNET_DEFINE(int, rsvp_on);
96 
97 VNET_DEFINE(int, ipforwarding);
98 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW,
99     &VNET_NAME(ipforwarding), 0,
100     "Enable IP forwarding between interfaces");
101 
102 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
103 #define	V_ipsendredirects	VNET(ipsendredirects)
104 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW,
105     &VNET_NAME(ipsendredirects), 0,
106     "Enable sending IP redirects");
107 
108 /*
109  * XXX - Setting ip_checkinterface mostly implements the receive side of
110  * the Strong ES model described in RFC 1122, but since the routing table
111  * and transmit implementation do not implement the Strong ES model,
112  * setting this to 1 results in an odd hybrid.
113  *
114  * XXX - ip_checkinterface currently must be disabled if you use ipnat
115  * to translate the destination address to another local interface.
116  *
117  * XXX - ip_checkinterface must be disabled if you add IP aliases
118  * to the loopback interface instead of the interface where the
119  * packets for those addresses are received.
120  */
121 static VNET_DEFINE(int, ip_checkinterface);
122 #define	V_ip_checkinterface	VNET(ip_checkinterface)
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(ip_checkinterface), 0,
125     "Verify packet arrives on correct interface");
126 
127 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
128 
129 static struct netisr_handler ip_nh = {
130 	.nh_name = "ip",
131 	.nh_handler = ip_input,
132 	.nh_proto = NETISR_IP,
133 #ifdef	RSS
134 	.nh_m2cpuid = rss_soft_m2cpuid,
135 	.nh_policy = NETISR_POLICY_CPU,
136 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
137 #else
138 	.nh_policy = NETISR_POLICY_FLOW,
139 #endif
140 };
141 
142 #ifdef	RSS
143 /*
144  * Directly dispatched frames are currently assumed
145  * to have a flowid already calculated.
146  *
147  * It should likely have something that assert it
148  * actually has valid flow details.
149  */
150 static struct netisr_handler ip_direct_nh = {
151 	.nh_name = "ip_direct",
152 	.nh_handler = ip_direct_input,
153 	.nh_proto = NETISR_IP_DIRECT,
154 	.nh_m2cpuid = rss_m2cpuid,
155 	.nh_policy = NETISR_POLICY_CPU,
156 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
157 };
158 #endif
159 
160 extern	struct domain inetdomain;
161 extern	struct protosw inetsw[];
162 u_char	ip_protox[IPPROTO_MAX];
163 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
164 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
165 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
166 
167 static VNET_DEFINE(uma_zone_t, ipq_zone);
168 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
169 static struct mtx ipqlock;
170 
171 #define	V_ipq_zone		VNET(ipq_zone)
172 #define	V_ipq			VNET(ipq)
173 
174 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
175 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
176 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
177 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
178 
179 static void	maxnipq_update(void);
180 static void	ipq_zone_change(void *);
181 static void	ip_drain_locked(void);
182 
183 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
184 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
185 #define	V_maxnipq		VNET(maxnipq)
186 #define	V_nipq			VNET(nipq)
187 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET | CTLFLAG_RD,
188     &VNET_NAME(nipq), 0,
189     "Current number of IPv4 fragment reassembly queue entries");
190 
191 static VNET_DEFINE(int, maxfragsperpacket);
192 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
193 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
194     &VNET_NAME(maxfragsperpacket), 0,
195     "Maximum number of IPv4 fragments allowed per packet");
196 
197 #ifdef IPCTL_DEFMTU
198 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
199     &ip_mtu, 0, "Default MTU");
200 #endif
201 
202 #ifdef IPSTEALTH
203 VNET_DEFINE(int, ipstealth);
204 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW,
205     &VNET_NAME(ipstealth), 0,
206     "IP stealth mode, no TTL decrementation on forwarding");
207 #endif
208 
209 static void	ip_freef(struct ipqhead *, struct ipq *);
210 
211 /*
212  * IP statistics are stored in the "array" of counter(9)s.
213  */
214 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
215 VNET_PCPUSTAT_SYSINIT(ipstat);
216 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
217     "IP statistics (struct ipstat, netinet/ip_var.h)");
218 
219 #ifdef VIMAGE
220 VNET_PCPUSTAT_SYSUNINIT(ipstat);
221 #endif /* VIMAGE */
222 
223 /*
224  * Kernel module interface for updating ipstat.  The argument is an index
225  * into ipstat treated as an array.
226  */
227 void
228 kmod_ipstat_inc(int statnum)
229 {
230 
231 	counter_u64_add(VNET(ipstat)[statnum], 1);
232 }
233 
234 void
235 kmod_ipstat_dec(int statnum)
236 {
237 
238 	counter_u64_add(VNET(ipstat)[statnum], -1);
239 }
240 
241 static int
242 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
243 {
244 	int error, qlimit;
245 
246 	netisr_getqlimit(&ip_nh, &qlimit);
247 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
248 	if (error || !req->newptr)
249 		return (error);
250 	if (qlimit < 1)
251 		return (EINVAL);
252 	return (netisr_setqlimit(&ip_nh, qlimit));
253 }
254 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
255     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
256     "Maximum size of the IP input queue");
257 
258 static int
259 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
260 {
261 	u_int64_t qdrops_long;
262 	int error, qdrops;
263 
264 	netisr_getqdrops(&ip_nh, &qdrops_long);
265 	qdrops = qdrops_long;
266 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
267 	if (error || !req->newptr)
268 		return (error);
269 	if (qdrops != 0)
270 		return (EINVAL);
271 	netisr_clearqdrops(&ip_nh);
272 	return (0);
273 }
274 
275 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
276     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
277     "Number of packets dropped from the IP input queue");
278 
279 #ifdef	RSS
280 static int
281 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
282 {
283 	int error, qlimit;
284 
285 	netisr_getqlimit(&ip_direct_nh, &qlimit);
286 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
287 	if (error || !req->newptr)
288 		return (error);
289 	if (qlimit < 1)
290 		return (EINVAL);
291 	return (netisr_setqlimit(&ip_direct_nh, qlimit));
292 }
293 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
294     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
295     "Maximum size of the IP direct input queue");
296 
297 static int
298 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
299 {
300 	u_int64_t qdrops_long;
301 	int error, qdrops;
302 
303 	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
304 	qdrops = qdrops_long;
305 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
306 	if (error || !req->newptr)
307 		return (error);
308 	if (qdrops != 0)
309 		return (EINVAL);
310 	netisr_clearqdrops(&ip_direct_nh);
311 	return (0);
312 }
313 
314 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
315     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
316     "Number of packets dropped from the IP direct input queue");
317 #endif	/* RSS */
318 
319 /*
320  * IP initialization: fill in IP protocol switch table.
321  * All protocols not implemented in kernel go to raw IP protocol handler.
322  */
323 void
324 ip_init(void)
325 {
326 	struct protosw *pr;
327 	int i;
328 
329 	TAILQ_INIT(&V_in_ifaddrhead);
330 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
331 
332 	/* Initialize IP reassembly queue. */
333 	for (i = 0; i < IPREASS_NHASH; i++)
334 		TAILQ_INIT(&V_ipq[i]);
335 	V_maxnipq = nmbclusters / 32;
336 	V_maxfragsperpacket = 16;
337 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
338 	    NULL, UMA_ALIGN_PTR, 0);
339 	maxnipq_update();
340 
341 	/* Initialize packet filter hooks. */
342 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
343 	V_inet_pfil_hook.ph_af = AF_INET;
344 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
345 		printf("%s: WARNING: unable to register pfil hook, "
346 			"error %d\n", __func__, i);
347 
348 	/* Skip initialization of globals for non-default instances. */
349 	if (!IS_DEFAULT_VNET(curvnet))
350 		return;
351 
352 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
353 	if (pr == NULL)
354 		panic("ip_init: PF_INET not found");
355 
356 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
357 	for (i = 0; i < IPPROTO_MAX; i++)
358 		ip_protox[i] = pr - inetsw;
359 	/*
360 	 * Cycle through IP protocols and put them into the appropriate place
361 	 * in ip_protox[].
362 	 */
363 	for (pr = inetdomain.dom_protosw;
364 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
365 		if (pr->pr_domain->dom_family == PF_INET &&
366 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
367 			/* Be careful to only index valid IP protocols. */
368 			if (pr->pr_protocol < IPPROTO_MAX)
369 				ip_protox[pr->pr_protocol] = pr - inetsw;
370 		}
371 
372 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
373 		NULL, EVENTHANDLER_PRI_ANY);
374 
375 	/* Initialize various other remaining things. */
376 	IPQ_LOCK_INIT();
377 	netisr_register(&ip_nh);
378 #ifdef	RSS
379 	netisr_register(&ip_direct_nh);
380 #endif
381 }
382 
383 #ifdef VIMAGE
384 void
385 ip_destroy(void)
386 {
387 	int i;
388 
389 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
390 		printf("%s: WARNING: unable to unregister pfil hook, "
391 		    "error %d\n", __func__, i);
392 
393 	/* Cleanup in_ifaddr hash table; should be empty. */
394 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
395 
396 	IPQ_LOCK();
397 	ip_drain_locked();
398 	IPQ_UNLOCK();
399 
400 	uma_zdestroy(V_ipq_zone);
401 }
402 #endif
403 
404 #ifdef	RSS
405 /*
406  * IP direct input routine.
407  *
408  * This is called when reinjecting completed fragments where
409  * all of the previous checking and book-keeping has been done.
410  */
411 void
412 ip_direct_input(struct mbuf *m)
413 {
414 	struct ip *ip;
415 	int hlen;
416 
417 	ip = mtod(m, struct ip *);
418 	hlen = ip->ip_hl << 2;
419 
420 	IPSTAT_INC(ips_delivered);
421 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
422 	return;
423 }
424 #endif
425 
426 /*
427  * Ip input routine.  Checksum and byte swap header.  If fragmented
428  * try to reassemble.  Process options.  Pass to next level.
429  */
430 void
431 ip_input(struct mbuf *m)
432 {
433 	struct ip *ip = NULL;
434 	struct in_ifaddr *ia = NULL;
435 	struct ifaddr *ifa;
436 	struct ifnet *ifp;
437 	int    checkif, hlen = 0;
438 	uint16_t sum, ip_len;
439 	int dchg = 0;				/* dest changed after fw */
440 	struct in_addr odst;			/* original dst address */
441 
442 	M_ASSERTPKTHDR(m);
443 
444 	if (m->m_flags & M_FASTFWD_OURS) {
445 		m->m_flags &= ~M_FASTFWD_OURS;
446 		/* Set up some basics that will be used later. */
447 		ip = mtod(m, struct ip *);
448 		hlen = ip->ip_hl << 2;
449 		ip_len = ntohs(ip->ip_len);
450 		goto ours;
451 	}
452 
453 	IPSTAT_INC(ips_total);
454 
455 	if (m->m_pkthdr.len < sizeof(struct ip))
456 		goto tooshort;
457 
458 	if (m->m_len < sizeof (struct ip) &&
459 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
460 		IPSTAT_INC(ips_toosmall);
461 		return;
462 	}
463 	ip = mtod(m, struct ip *);
464 
465 	if (ip->ip_v != IPVERSION) {
466 		IPSTAT_INC(ips_badvers);
467 		goto bad;
468 	}
469 
470 	hlen = ip->ip_hl << 2;
471 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
472 		IPSTAT_INC(ips_badhlen);
473 		goto bad;
474 	}
475 	if (hlen > m->m_len) {
476 		if ((m = m_pullup(m, hlen)) == NULL) {
477 			IPSTAT_INC(ips_badhlen);
478 			return;
479 		}
480 		ip = mtod(m, struct ip *);
481 	}
482 
483 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
484 
485 	/* 127/8 must not appear on wire - RFC1122 */
486 	ifp = m->m_pkthdr.rcvif;
487 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
488 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
489 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
490 			IPSTAT_INC(ips_badaddr);
491 			goto bad;
492 		}
493 	}
494 
495 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
496 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
497 	} else {
498 		if (hlen == sizeof(struct ip)) {
499 			sum = in_cksum_hdr(ip);
500 		} else {
501 			sum = in_cksum(m, hlen);
502 		}
503 	}
504 	if (sum) {
505 		IPSTAT_INC(ips_badsum);
506 		goto bad;
507 	}
508 
509 #ifdef ALTQ
510 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
511 		/* packet is dropped by traffic conditioner */
512 		return;
513 #endif
514 
515 	ip_len = ntohs(ip->ip_len);
516 	if (ip_len < hlen) {
517 		IPSTAT_INC(ips_badlen);
518 		goto bad;
519 	}
520 
521 	/*
522 	 * Check that the amount of data in the buffers
523 	 * is as at least much as the IP header would have us expect.
524 	 * Trim mbufs if longer than we expect.
525 	 * Drop packet if shorter than we expect.
526 	 */
527 	if (m->m_pkthdr.len < ip_len) {
528 tooshort:
529 		IPSTAT_INC(ips_tooshort);
530 		goto bad;
531 	}
532 	if (m->m_pkthdr.len > ip_len) {
533 		if (m->m_len == m->m_pkthdr.len) {
534 			m->m_len = ip_len;
535 			m->m_pkthdr.len = ip_len;
536 		} else
537 			m_adj(m, ip_len - m->m_pkthdr.len);
538 	}
539 
540 #ifdef IPSEC
541 	/*
542 	 * Bypass packet filtering for packets previously handled by IPsec.
543 	 */
544 	if (ip_ipsec_filtertunnel(m))
545 		goto passin;
546 #endif /* IPSEC */
547 
548 	/*
549 	 * Run through list of hooks for input packets.
550 	 *
551 	 * NB: Beware of the destination address changing (e.g.
552 	 *     by NAT rewriting).  When this happens, tell
553 	 *     ip_forward to do the right thing.
554 	 */
555 
556 	/* Jump over all PFIL processing if hooks are not active. */
557 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
558 		goto passin;
559 
560 	odst = ip->ip_dst;
561 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
562 		return;
563 	if (m == NULL)			/* consumed by filter */
564 		return;
565 
566 	ip = mtod(m, struct ip *);
567 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
568 	ifp = m->m_pkthdr.rcvif;
569 
570 	if (m->m_flags & M_FASTFWD_OURS) {
571 		m->m_flags &= ~M_FASTFWD_OURS;
572 		goto ours;
573 	}
574 	if (m->m_flags & M_IP_NEXTHOP) {
575 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
576 		if (dchg != 0) {
577 			/*
578 			 * Directly ship the packet on.  This allows
579 			 * forwarding packets originally destined to us
580 			 * to some other directly connected host.
581 			 */
582 			ip_forward(m, 1);
583 			return;
584 		}
585 	}
586 passin:
587 
588 	/*
589 	 * Process options and, if not destined for us,
590 	 * ship it on.  ip_dooptions returns 1 when an
591 	 * error was detected (causing an icmp message
592 	 * to be sent and the original packet to be freed).
593 	 */
594 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
595 		return;
596 
597         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
598          * matter if it is destined to another node, or whether it is
599          * a multicast one, RSVP wants it! and prevents it from being forwarded
600          * anywhere else. Also checks if the rsvp daemon is running before
601 	 * grabbing the packet.
602          */
603 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
604 		goto ours;
605 
606 	/*
607 	 * Check our list of addresses, to see if the packet is for us.
608 	 * If we don't have any addresses, assume any unicast packet
609 	 * we receive might be for us (and let the upper layers deal
610 	 * with it).
611 	 */
612 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
613 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
614 		goto ours;
615 
616 	/*
617 	 * Enable a consistency check between the destination address
618 	 * and the arrival interface for a unicast packet (the RFC 1122
619 	 * strong ES model) if IP forwarding is disabled and the packet
620 	 * is not locally generated and the packet is not subject to
621 	 * 'ipfw fwd'.
622 	 *
623 	 * XXX - Checking also should be disabled if the destination
624 	 * address is ipnat'ed to a different interface.
625 	 *
626 	 * XXX - Checking is incompatible with IP aliases added
627 	 * to the loopback interface instead of the interface where
628 	 * the packets are received.
629 	 *
630 	 * XXX - This is the case for carp vhost IPs as well so we
631 	 * insert a workaround. If the packet got here, we already
632 	 * checked with carp_iamatch() and carp_forus().
633 	 */
634 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
635 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
636 	    ifp->if_carp == NULL && (dchg == 0);
637 
638 	/*
639 	 * Check for exact addresses in the hash bucket.
640 	 */
641 	/* IN_IFADDR_RLOCK(); */
642 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
643 		/*
644 		 * If the address matches, verify that the packet
645 		 * arrived via the correct interface if checking is
646 		 * enabled.
647 		 */
648 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
649 		    (!checkif || ia->ia_ifp == ifp)) {
650 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
651 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
652 			    m->m_pkthdr.len);
653 			/* IN_IFADDR_RUNLOCK(); */
654 			goto ours;
655 		}
656 	}
657 	/* IN_IFADDR_RUNLOCK(); */
658 
659 	/*
660 	 * Check for broadcast addresses.
661 	 *
662 	 * Only accept broadcast packets that arrive via the matching
663 	 * interface.  Reception of forwarded directed broadcasts would
664 	 * be handled via ip_forward() and ether_output() with the loopback
665 	 * into the stack for SIMPLEX interfaces handled by ether_output().
666 	 */
667 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
668 		IF_ADDR_RLOCK(ifp);
669 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
670 			if (ifa->ifa_addr->sa_family != AF_INET)
671 				continue;
672 			ia = ifatoia(ifa);
673 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
674 			    ip->ip_dst.s_addr) {
675 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
676 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
677 				    m->m_pkthdr.len);
678 				IF_ADDR_RUNLOCK(ifp);
679 				goto ours;
680 			}
681 #ifdef BOOTP_COMPAT
682 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
683 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
684 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
685 				    m->m_pkthdr.len);
686 				IF_ADDR_RUNLOCK(ifp);
687 				goto ours;
688 			}
689 #endif
690 		}
691 		IF_ADDR_RUNLOCK(ifp);
692 		ia = NULL;
693 	}
694 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
695 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
696 		IPSTAT_INC(ips_cantforward);
697 		m_freem(m);
698 		return;
699 	}
700 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
701 		if (V_ip_mrouter) {
702 			/*
703 			 * If we are acting as a multicast router, all
704 			 * incoming multicast packets are passed to the
705 			 * kernel-level multicast forwarding function.
706 			 * The packet is returned (relatively) intact; if
707 			 * ip_mforward() returns a non-zero value, the packet
708 			 * must be discarded, else it may be accepted below.
709 			 */
710 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
711 				IPSTAT_INC(ips_cantforward);
712 				m_freem(m);
713 				return;
714 			}
715 
716 			/*
717 			 * The process-level routing daemon needs to receive
718 			 * all multicast IGMP packets, whether or not this
719 			 * host belongs to their destination groups.
720 			 */
721 			if (ip->ip_p == IPPROTO_IGMP)
722 				goto ours;
723 			IPSTAT_INC(ips_forward);
724 		}
725 		/*
726 		 * Assume the packet is for us, to avoid prematurely taking
727 		 * a lock on the in_multi hash. Protocols must perform
728 		 * their own filtering and update statistics accordingly.
729 		 */
730 		goto ours;
731 	}
732 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
733 		goto ours;
734 	if (ip->ip_dst.s_addr == INADDR_ANY)
735 		goto ours;
736 
737 	/*
738 	 * Not for us; forward if possible and desirable.
739 	 */
740 	if (V_ipforwarding == 0) {
741 		IPSTAT_INC(ips_cantforward);
742 		m_freem(m);
743 	} else {
744 		ip_forward(m, dchg);
745 	}
746 	return;
747 
748 ours:
749 #ifdef IPSTEALTH
750 	/*
751 	 * IPSTEALTH: Process non-routing options only
752 	 * if the packet is destined for us.
753 	 */
754 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
755 		return;
756 #endif /* IPSTEALTH */
757 
758 	/*
759 	 * Attempt reassembly; if it succeeds, proceed.
760 	 * ip_reass() will return a different mbuf.
761 	 */
762 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
763 		/* XXXGL: shouldn't we save & set m_flags? */
764 		m = ip_reass(m);
765 		if (m == NULL)
766 			return;
767 		ip = mtod(m, struct ip *);
768 		/* Get the header length of the reassembled packet */
769 		hlen = ip->ip_hl << 2;
770 	}
771 
772 #ifdef IPSEC
773 	/*
774 	 * enforce IPsec policy checking if we are seeing last header.
775 	 * note that we do not visit this with protocols with pcb layer
776 	 * code - like udp/tcp/raw ip.
777 	 */
778 	if (ip_ipsec_input(m, ip->ip_p) != 0)
779 		goto bad;
780 #endif /* IPSEC */
781 
782 	/*
783 	 * Switch out to protocol's input routine.
784 	 */
785 	IPSTAT_INC(ips_delivered);
786 
787 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
788 	return;
789 bad:
790 	m_freem(m);
791 }
792 
793 /*
794  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
795  * max has slightly different semantics than the sysctl, for historical
796  * reasons.
797  */
798 static void
799 maxnipq_update(void)
800 {
801 
802 	/*
803 	 * -1 for unlimited allocation.
804 	 */
805 	if (V_maxnipq < 0)
806 		uma_zone_set_max(V_ipq_zone, 0);
807 	/*
808 	 * Positive number for specific bound.
809 	 */
810 	if (V_maxnipq > 0)
811 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
812 	/*
813 	 * Zero specifies no further fragment queue allocation -- set the
814 	 * bound very low, but rely on implementation elsewhere to actually
815 	 * prevent allocation and reclaim current queues.
816 	 */
817 	if (V_maxnipq == 0)
818 		uma_zone_set_max(V_ipq_zone, 1);
819 }
820 
821 static void
822 ipq_zone_change(void *tag)
823 {
824 
825 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
826 		V_maxnipq = nmbclusters / 32;
827 		maxnipq_update();
828 	}
829 }
830 
831 static int
832 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
833 {
834 	int error, i;
835 
836 	i = V_maxnipq;
837 	error = sysctl_handle_int(oidp, &i, 0, req);
838 	if (error || !req->newptr)
839 		return (error);
840 
841 	/*
842 	 * XXXRW: Might be a good idea to sanity check the argument and place
843 	 * an extreme upper bound.
844 	 */
845 	if (i < -1)
846 		return (EINVAL);
847 	V_maxnipq = i;
848 	maxnipq_update();
849 	return (0);
850 }
851 
852 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
853     NULL, 0, sysctl_maxnipq, "I",
854     "Maximum number of IPv4 fragment reassembly queue entries");
855 
856 #define	M_IP_FRAG	M_PROTO9
857 
858 /*
859  * Take incoming datagram fragment and try to reassemble it into
860  * whole datagram.  If the argument is the first fragment or one
861  * in between the function will return NULL and store the mbuf
862  * in the fragment chain.  If the argument is the last fragment
863  * the packet will be reassembled and the pointer to the new
864  * mbuf returned for further processing.  Only m_tags attached
865  * to the first packet/fragment are preserved.
866  * The IP header is *NOT* adjusted out of iplen.
867  */
868 struct mbuf *
869 ip_reass(struct mbuf *m)
870 {
871 	struct ip *ip;
872 	struct mbuf *p, *q, *nq, *t;
873 	struct ipq *fp = NULL;
874 	struct ipqhead *head;
875 	int i, hlen, next;
876 	u_int8_t ecn, ecn0;
877 	u_short hash;
878 #ifdef	RSS
879 	uint32_t rss_hash, rss_type;
880 #endif
881 
882 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
883 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
884 		IPSTAT_INC(ips_fragments);
885 		IPSTAT_INC(ips_fragdropped);
886 		m_freem(m);
887 		return (NULL);
888 	}
889 
890 	ip = mtod(m, struct ip *);
891 	hlen = ip->ip_hl << 2;
892 
893 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
894 	head = &V_ipq[hash];
895 	IPQ_LOCK();
896 
897 	/*
898 	 * Look for queue of fragments
899 	 * of this datagram.
900 	 */
901 	TAILQ_FOREACH(fp, head, ipq_list)
902 		if (ip->ip_id == fp->ipq_id &&
903 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
904 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
905 #ifdef MAC
906 		    mac_ipq_match(m, fp) &&
907 #endif
908 		    ip->ip_p == fp->ipq_p)
909 			goto found;
910 
911 	fp = NULL;
912 
913 	/*
914 	 * Attempt to trim the number of allocated fragment queues if it
915 	 * exceeds the administrative limit.
916 	 */
917 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
918 		/*
919 		 * drop something from the tail of the current queue
920 		 * before proceeding further
921 		 */
922 		struct ipq *q = TAILQ_LAST(head, ipqhead);
923 		if (q == NULL) {   /* gak */
924 			for (i = 0; i < IPREASS_NHASH; i++) {
925 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
926 				if (r) {
927 					IPSTAT_ADD(ips_fragtimeout,
928 					    r->ipq_nfrags);
929 					ip_freef(&V_ipq[i], r);
930 					break;
931 				}
932 			}
933 		} else {
934 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
935 			ip_freef(head, q);
936 		}
937 	}
938 
939 found:
940 	/*
941 	 * Adjust ip_len to not reflect header,
942 	 * convert offset of this to bytes.
943 	 */
944 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
945 	if (ip->ip_off & htons(IP_MF)) {
946 		/*
947 		 * Make sure that fragments have a data length
948 		 * that's a non-zero multiple of 8 bytes.
949 		 */
950 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
951 			IPSTAT_INC(ips_toosmall); /* XXX */
952 			goto dropfrag;
953 		}
954 		m->m_flags |= M_IP_FRAG;
955 	} else
956 		m->m_flags &= ~M_IP_FRAG;
957 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
958 
959 	/*
960 	 * Attempt reassembly; if it succeeds, proceed.
961 	 * ip_reass() will return a different mbuf.
962 	 */
963 	IPSTAT_INC(ips_fragments);
964 	m->m_pkthdr.PH_loc.ptr = ip;
965 
966 	/* Previous ip_reass() started here. */
967 	/*
968 	 * Presence of header sizes in mbufs
969 	 * would confuse code below.
970 	 */
971 	m->m_data += hlen;
972 	m->m_len -= hlen;
973 
974 	/*
975 	 * If first fragment to arrive, create a reassembly queue.
976 	 */
977 	if (fp == NULL) {
978 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
979 		if (fp == NULL)
980 			goto dropfrag;
981 #ifdef MAC
982 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
983 			uma_zfree(V_ipq_zone, fp);
984 			fp = NULL;
985 			goto dropfrag;
986 		}
987 		mac_ipq_create(m, fp);
988 #endif
989 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
990 		V_nipq++;
991 		fp->ipq_nfrags = 1;
992 		fp->ipq_ttl = IPFRAGTTL;
993 		fp->ipq_p = ip->ip_p;
994 		fp->ipq_id = ip->ip_id;
995 		fp->ipq_src = ip->ip_src;
996 		fp->ipq_dst = ip->ip_dst;
997 		fp->ipq_frags = m;
998 		m->m_nextpkt = NULL;
999 		goto done;
1000 	} else {
1001 		fp->ipq_nfrags++;
1002 #ifdef MAC
1003 		mac_ipq_update(m, fp);
1004 #endif
1005 	}
1006 
1007 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1008 
1009 	/*
1010 	 * Handle ECN by comparing this segment with the first one;
1011 	 * if CE is set, do not lose CE.
1012 	 * drop if CE and not-ECT are mixed for the same packet.
1013 	 */
1014 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1015 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1016 	if (ecn == IPTOS_ECN_CE) {
1017 		if (ecn0 == IPTOS_ECN_NOTECT)
1018 			goto dropfrag;
1019 		if (ecn0 != IPTOS_ECN_CE)
1020 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1021 	}
1022 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1023 		goto dropfrag;
1024 
1025 	/*
1026 	 * Find a segment which begins after this one does.
1027 	 */
1028 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1029 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1030 			break;
1031 
1032 	/*
1033 	 * If there is a preceding segment, it may provide some of
1034 	 * our data already.  If so, drop the data from the incoming
1035 	 * segment.  If it provides all of our data, drop us, otherwise
1036 	 * stick new segment in the proper place.
1037 	 *
1038 	 * If some of the data is dropped from the preceding
1039 	 * segment, then it's checksum is invalidated.
1040 	 */
1041 	if (p) {
1042 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1043 		    ntohs(ip->ip_off);
1044 		if (i > 0) {
1045 			if (i >= ntohs(ip->ip_len))
1046 				goto dropfrag;
1047 			m_adj(m, i);
1048 			m->m_pkthdr.csum_flags = 0;
1049 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1050 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1051 		}
1052 		m->m_nextpkt = p->m_nextpkt;
1053 		p->m_nextpkt = m;
1054 	} else {
1055 		m->m_nextpkt = fp->ipq_frags;
1056 		fp->ipq_frags = m;
1057 	}
1058 
1059 	/*
1060 	 * While we overlap succeeding segments trim them or,
1061 	 * if they are completely covered, dequeue them.
1062 	 */
1063 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1064 	    ntohs(GETIP(q)->ip_off); q = nq) {
1065 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1066 		    ntohs(GETIP(q)->ip_off);
1067 		if (i < ntohs(GETIP(q)->ip_len)) {
1068 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1069 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1070 			m_adj(q, i);
1071 			q->m_pkthdr.csum_flags = 0;
1072 			break;
1073 		}
1074 		nq = q->m_nextpkt;
1075 		m->m_nextpkt = nq;
1076 		IPSTAT_INC(ips_fragdropped);
1077 		fp->ipq_nfrags--;
1078 		m_freem(q);
1079 	}
1080 
1081 	/*
1082 	 * Check for complete reassembly and perform frag per packet
1083 	 * limiting.
1084 	 *
1085 	 * Frag limiting is performed here so that the nth frag has
1086 	 * a chance to complete the packet before we drop the packet.
1087 	 * As a result, n+1 frags are actually allowed per packet, but
1088 	 * only n will ever be stored. (n = maxfragsperpacket.)
1089 	 *
1090 	 */
1091 	next = 0;
1092 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1093 		if (ntohs(GETIP(q)->ip_off) != next) {
1094 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1095 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1096 				ip_freef(head, fp);
1097 			}
1098 			goto done;
1099 		}
1100 		next += ntohs(GETIP(q)->ip_len);
1101 	}
1102 	/* Make sure the last packet didn't have the IP_MF flag */
1103 	if (p->m_flags & M_IP_FRAG) {
1104 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1105 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1106 			ip_freef(head, fp);
1107 		}
1108 		goto done;
1109 	}
1110 
1111 	/*
1112 	 * Reassembly is complete.  Make sure the packet is a sane size.
1113 	 */
1114 	q = fp->ipq_frags;
1115 	ip = GETIP(q);
1116 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1117 		IPSTAT_INC(ips_toolong);
1118 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1119 		ip_freef(head, fp);
1120 		goto done;
1121 	}
1122 
1123 	/*
1124 	 * Concatenate fragments.
1125 	 */
1126 	m = q;
1127 	t = m->m_next;
1128 	m->m_next = NULL;
1129 	m_cat(m, t);
1130 	nq = q->m_nextpkt;
1131 	q->m_nextpkt = NULL;
1132 	for (q = nq; q != NULL; q = nq) {
1133 		nq = q->m_nextpkt;
1134 		q->m_nextpkt = NULL;
1135 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1136 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1137 		m_cat(m, q);
1138 	}
1139 	/*
1140 	 * In order to do checksumming faster we do 'end-around carry' here
1141 	 * (and not in for{} loop), though it implies we are not going to
1142 	 * reassemble more than 64k fragments.
1143 	 */
1144 	while (m->m_pkthdr.csum_data & 0xffff0000)
1145 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1146 		    (m->m_pkthdr.csum_data >> 16);
1147 #ifdef MAC
1148 	mac_ipq_reassemble(fp, m);
1149 	mac_ipq_destroy(fp);
1150 #endif
1151 
1152 	/*
1153 	 * Create header for new ip packet by modifying header of first
1154 	 * packet;  dequeue and discard fragment reassembly header.
1155 	 * Make header visible.
1156 	 */
1157 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1158 	ip->ip_src = fp->ipq_src;
1159 	ip->ip_dst = fp->ipq_dst;
1160 	TAILQ_REMOVE(head, fp, ipq_list);
1161 	V_nipq--;
1162 	uma_zfree(V_ipq_zone, fp);
1163 	m->m_len += (ip->ip_hl << 2);
1164 	m->m_data -= (ip->ip_hl << 2);
1165 	/* some debugging cruft by sklower, below, will go away soon */
1166 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1167 		m_fixhdr(m);
1168 	IPSTAT_INC(ips_reassembled);
1169 	IPQ_UNLOCK();
1170 
1171 #ifdef	RSS
1172 	/*
1173 	 * Query the RSS layer for the flowid / flowtype for the
1174 	 * mbuf payload.
1175 	 *
1176 	 * For now, just assume we have to calculate a new one.
1177 	 * Later on we should check to see if the assigned flowid matches
1178 	 * what RSS wants for the given IP protocol and if so, just keep it.
1179 	 *
1180 	 * We then queue into the relevant netisr so it can be dispatched
1181 	 * to the correct CPU.
1182 	 *
1183 	 * Note - this may return 1, which means the flowid in the mbuf
1184 	 * is correct for the configured RSS hash types and can be used.
1185 	 */
1186 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1187 		m->m_pkthdr.flowid = rss_hash;
1188 		M_HASHTYPE_SET(m, rss_type);
1189 	}
1190 
1191 	/*
1192 	 * Queue/dispatch for reprocessing.
1193 	 *
1194 	 * Note: this is much slower than just handling the frame in the
1195 	 * current receive context.  It's likely worth investigating
1196 	 * why this is.
1197 	 */
1198 	netisr_dispatch(NETISR_IP_DIRECT, m);
1199 	return (NULL);
1200 #endif
1201 
1202 	/* Handle in-line */
1203 	return (m);
1204 
1205 dropfrag:
1206 	IPSTAT_INC(ips_fragdropped);
1207 	if (fp != NULL)
1208 		fp->ipq_nfrags--;
1209 	m_freem(m);
1210 done:
1211 	IPQ_UNLOCK();
1212 	return (NULL);
1213 
1214 #undef GETIP
1215 }
1216 
1217 /*
1218  * Free a fragment reassembly header and all
1219  * associated datagrams.
1220  */
1221 static void
1222 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1223 {
1224 	struct mbuf *q;
1225 
1226 	IPQ_LOCK_ASSERT();
1227 
1228 	while (fp->ipq_frags) {
1229 		q = fp->ipq_frags;
1230 		fp->ipq_frags = q->m_nextpkt;
1231 		m_freem(q);
1232 	}
1233 	TAILQ_REMOVE(fhp, fp, ipq_list);
1234 	uma_zfree(V_ipq_zone, fp);
1235 	V_nipq--;
1236 }
1237 
1238 /*
1239  * IP timer processing;
1240  * if a timer expires on a reassembly
1241  * queue, discard it.
1242  */
1243 void
1244 ip_slowtimo(void)
1245 {
1246 	VNET_ITERATOR_DECL(vnet_iter);
1247 	struct ipq *fp;
1248 	int i;
1249 
1250 	VNET_LIST_RLOCK_NOSLEEP();
1251 	IPQ_LOCK();
1252 	VNET_FOREACH(vnet_iter) {
1253 		CURVNET_SET(vnet_iter);
1254 		for (i = 0; i < IPREASS_NHASH; i++) {
1255 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1256 				struct ipq *fpp;
1257 
1258 				fpp = fp;
1259 				fp = TAILQ_NEXT(fp, ipq_list);
1260 				if(--fpp->ipq_ttl == 0) {
1261 					IPSTAT_ADD(ips_fragtimeout,
1262 					    fpp->ipq_nfrags);
1263 					ip_freef(&V_ipq[i], fpp);
1264 				}
1265 			}
1266 		}
1267 		/*
1268 		 * If we are over the maximum number of fragments
1269 		 * (due to the limit being lowered), drain off
1270 		 * enough to get down to the new limit.
1271 		 */
1272 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1273 			for (i = 0; i < IPREASS_NHASH; i++) {
1274 				while (V_nipq > V_maxnipq &&
1275 				    !TAILQ_EMPTY(&V_ipq[i])) {
1276 					IPSTAT_ADD(ips_fragdropped,
1277 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1278 					ip_freef(&V_ipq[i],
1279 					    TAILQ_FIRST(&V_ipq[i]));
1280 				}
1281 			}
1282 		}
1283 		CURVNET_RESTORE();
1284 	}
1285 	IPQ_UNLOCK();
1286 	VNET_LIST_RUNLOCK_NOSLEEP();
1287 }
1288 
1289 /*
1290  * Drain off all datagram fragments.
1291  */
1292 static void
1293 ip_drain_locked(void)
1294 {
1295 	int     i;
1296 
1297 	IPQ_LOCK_ASSERT();
1298 
1299 	for (i = 0; i < IPREASS_NHASH; i++) {
1300 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1301 			IPSTAT_ADD(ips_fragdropped,
1302 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1303 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1304 		}
1305 	}
1306 }
1307 
1308 void
1309 ip_drain(void)
1310 {
1311 	VNET_ITERATOR_DECL(vnet_iter);
1312 
1313 	VNET_LIST_RLOCK_NOSLEEP();
1314 	IPQ_LOCK();
1315 	VNET_FOREACH(vnet_iter) {
1316 		CURVNET_SET(vnet_iter);
1317 		ip_drain_locked();
1318 		CURVNET_RESTORE();
1319 	}
1320 	IPQ_UNLOCK();
1321 	VNET_LIST_RUNLOCK_NOSLEEP();
1322 }
1323 
1324 /*
1325  * The protocol to be inserted into ip_protox[] must be already registered
1326  * in inetsw[], either statically or through pf_proto_register().
1327  */
1328 int
1329 ipproto_register(short ipproto)
1330 {
1331 	struct protosw *pr;
1332 
1333 	/* Sanity checks. */
1334 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1335 		return (EPROTONOSUPPORT);
1336 
1337 	/*
1338 	 * The protocol slot must not be occupied by another protocol
1339 	 * already.  An index pointing to IPPROTO_RAW is unused.
1340 	 */
1341 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1342 	if (pr == NULL)
1343 		return (EPFNOSUPPORT);
1344 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1345 		return (EEXIST);
1346 
1347 	/* Find the protocol position in inetsw[] and set the index. */
1348 	for (pr = inetdomain.dom_protosw;
1349 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1350 		if (pr->pr_domain->dom_family == PF_INET &&
1351 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1352 			ip_protox[pr->pr_protocol] = pr - inetsw;
1353 			return (0);
1354 		}
1355 	}
1356 	return (EPROTONOSUPPORT);
1357 }
1358 
1359 int
1360 ipproto_unregister(short ipproto)
1361 {
1362 	struct protosw *pr;
1363 
1364 	/* Sanity checks. */
1365 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1366 		return (EPROTONOSUPPORT);
1367 
1368 	/* Check if the protocol was indeed registered. */
1369 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1370 	if (pr == NULL)
1371 		return (EPFNOSUPPORT);
1372 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1373 		return (ENOENT);
1374 
1375 	/* Reset the protocol slot to IPPROTO_RAW. */
1376 	ip_protox[ipproto] = pr - inetsw;
1377 	return (0);
1378 }
1379 
1380 /*
1381  * Given address of next destination (final or next hop), return (referenced)
1382  * internet address info of interface to be used to get there.
1383  */
1384 struct in_ifaddr *
1385 ip_rtaddr(struct in_addr dst, u_int fibnum)
1386 {
1387 	struct route sro;
1388 	struct sockaddr_in *sin;
1389 	struct in_ifaddr *ia;
1390 
1391 	bzero(&sro, sizeof(sro));
1392 	sin = (struct sockaddr_in *)&sro.ro_dst;
1393 	sin->sin_family = AF_INET;
1394 	sin->sin_len = sizeof(*sin);
1395 	sin->sin_addr = dst;
1396 	in_rtalloc_ign(&sro, 0, fibnum);
1397 
1398 	if (sro.ro_rt == NULL)
1399 		return (NULL);
1400 
1401 	ia = ifatoia(sro.ro_rt->rt_ifa);
1402 	ifa_ref(&ia->ia_ifa);
1403 	RTFREE(sro.ro_rt);
1404 	return (ia);
1405 }
1406 
1407 u_char inetctlerrmap[PRC_NCMDS] = {
1408 	0,		0,		0,		0,
1409 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1410 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1411 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1412 	0,		0,		EHOSTUNREACH,	0,
1413 	ENOPROTOOPT,	ECONNREFUSED
1414 };
1415 
1416 /*
1417  * Forward a packet.  If some error occurs return the sender
1418  * an icmp packet.  Note we can't always generate a meaningful
1419  * icmp message because icmp doesn't have a large enough repertoire
1420  * of codes and types.
1421  *
1422  * If not forwarding, just drop the packet.  This could be confusing
1423  * if ipforwarding was zero but some routing protocol was advancing
1424  * us as a gateway to somewhere.  However, we must let the routing
1425  * protocol deal with that.
1426  *
1427  * The srcrt parameter indicates whether the packet is being forwarded
1428  * via a source route.
1429  */
1430 void
1431 ip_forward(struct mbuf *m, int srcrt)
1432 {
1433 	struct ip *ip = mtod(m, struct ip *);
1434 	struct in_ifaddr *ia;
1435 	struct mbuf *mcopy;
1436 	struct in_addr dest;
1437 	struct route ro;
1438 	int error, type = 0, code = 0, mtu = 0;
1439 
1440 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1441 		IPSTAT_INC(ips_cantforward);
1442 		m_freem(m);
1443 		return;
1444 	}
1445 #ifdef IPSEC
1446 	if (ip_ipsec_fwd(m) != 0) {
1447 		IPSTAT_INC(ips_cantforward);
1448 		m_freem(m);
1449 		return;
1450 	}
1451 #endif /* IPSEC */
1452 #ifdef IPSTEALTH
1453 	if (!V_ipstealth) {
1454 #endif
1455 		if (ip->ip_ttl <= IPTTLDEC) {
1456 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1457 			    0, 0);
1458 			return;
1459 		}
1460 #ifdef IPSTEALTH
1461 	}
1462 #endif
1463 
1464 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1465 #ifndef IPSEC
1466 	/*
1467 	 * 'ia' may be NULL if there is no route for this destination.
1468 	 * In case of IPsec, Don't discard it just yet, but pass it to
1469 	 * ip_output in case of outgoing IPsec policy.
1470 	 */
1471 	if (!srcrt && ia == NULL) {
1472 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1473 		return;
1474 	}
1475 #endif
1476 
1477 	/*
1478 	 * Save the IP header and at most 8 bytes of the payload,
1479 	 * in case we need to generate an ICMP message to the src.
1480 	 *
1481 	 * XXX this can be optimized a lot by saving the data in a local
1482 	 * buffer on the stack (72 bytes at most), and only allocating the
1483 	 * mbuf if really necessary. The vast majority of the packets
1484 	 * are forwarded without having to send an ICMP back (either
1485 	 * because unnecessary, or because rate limited), so we are
1486 	 * really we are wasting a lot of work here.
1487 	 *
1488 	 * We don't use m_copy() because it might return a reference
1489 	 * to a shared cluster. Both this function and ip_output()
1490 	 * assume exclusive access to the IP header in `m', so any
1491 	 * data in a cluster may change before we reach icmp_error().
1492 	 */
1493 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1494 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1495 		/*
1496 		 * It's probably ok if the pkthdr dup fails (because
1497 		 * the deep copy of the tag chain failed), but for now
1498 		 * be conservative and just discard the copy since
1499 		 * code below may some day want the tags.
1500 		 */
1501 		m_free(mcopy);
1502 		mcopy = NULL;
1503 	}
1504 	if (mcopy != NULL) {
1505 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1506 		mcopy->m_pkthdr.len = mcopy->m_len;
1507 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1508 	}
1509 
1510 #ifdef IPSTEALTH
1511 	if (!V_ipstealth) {
1512 #endif
1513 		ip->ip_ttl -= IPTTLDEC;
1514 #ifdef IPSTEALTH
1515 	}
1516 #endif
1517 
1518 	/*
1519 	 * If forwarding packet using same interface that it came in on,
1520 	 * perhaps should send a redirect to sender to shortcut a hop.
1521 	 * Only send redirect if source is sending directly to us,
1522 	 * and if packet was not source routed (or has any options).
1523 	 * Also, don't send redirect if forwarding using a default route
1524 	 * or a route modified by a redirect.
1525 	 */
1526 	dest.s_addr = 0;
1527 	if (!srcrt && V_ipsendredirects &&
1528 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1529 		struct sockaddr_in *sin;
1530 		struct rtentry *rt;
1531 
1532 		bzero(&ro, sizeof(ro));
1533 		sin = (struct sockaddr_in *)&ro.ro_dst;
1534 		sin->sin_family = AF_INET;
1535 		sin->sin_len = sizeof(*sin);
1536 		sin->sin_addr = ip->ip_dst;
1537 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1538 
1539 		rt = ro.ro_rt;
1540 
1541 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1542 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1543 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1544 			u_long src = ntohl(ip->ip_src.s_addr);
1545 
1546 			if (RTA(rt) &&
1547 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1548 				if (rt->rt_flags & RTF_GATEWAY)
1549 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1550 				else
1551 					dest.s_addr = ip->ip_dst.s_addr;
1552 				/* Router requirements says to only send host redirects */
1553 				type = ICMP_REDIRECT;
1554 				code = ICMP_REDIRECT_HOST;
1555 			}
1556 		}
1557 		if (rt)
1558 			RTFREE(rt);
1559 	}
1560 
1561 	/*
1562 	 * Try to cache the route MTU from ip_output so we can consider it for
1563 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1564 	 */
1565 	bzero(&ro, sizeof(ro));
1566 
1567 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1568 
1569 	if (error == EMSGSIZE && ro.ro_rt)
1570 		mtu = ro.ro_rt->rt_mtu;
1571 	RO_RTFREE(&ro);
1572 
1573 	if (error)
1574 		IPSTAT_INC(ips_cantforward);
1575 	else {
1576 		IPSTAT_INC(ips_forward);
1577 		if (type)
1578 			IPSTAT_INC(ips_redirectsent);
1579 		else {
1580 			if (mcopy)
1581 				m_freem(mcopy);
1582 			if (ia != NULL)
1583 				ifa_free(&ia->ia_ifa);
1584 			return;
1585 		}
1586 	}
1587 	if (mcopy == NULL) {
1588 		if (ia != NULL)
1589 			ifa_free(&ia->ia_ifa);
1590 		return;
1591 	}
1592 
1593 	switch (error) {
1594 
1595 	case 0:				/* forwarded, but need redirect */
1596 		/* type, code set above */
1597 		break;
1598 
1599 	case ENETUNREACH:
1600 	case EHOSTUNREACH:
1601 	case ENETDOWN:
1602 	case EHOSTDOWN:
1603 	default:
1604 		type = ICMP_UNREACH;
1605 		code = ICMP_UNREACH_HOST;
1606 		break;
1607 
1608 	case EMSGSIZE:
1609 		type = ICMP_UNREACH;
1610 		code = ICMP_UNREACH_NEEDFRAG;
1611 
1612 #ifdef IPSEC
1613 		/*
1614 		 * If IPsec is configured for this path,
1615 		 * override any possibly mtu value set by ip_output.
1616 		 */
1617 		mtu = ip_ipsec_mtu(mcopy, mtu);
1618 #endif /* IPSEC */
1619 		/*
1620 		 * If the MTU was set before make sure we are below the
1621 		 * interface MTU.
1622 		 * If the MTU wasn't set before use the interface mtu or
1623 		 * fall back to the next smaller mtu step compared to the
1624 		 * current packet size.
1625 		 */
1626 		if (mtu != 0) {
1627 			if (ia != NULL)
1628 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1629 		} else {
1630 			if (ia != NULL)
1631 				mtu = ia->ia_ifp->if_mtu;
1632 			else
1633 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1634 		}
1635 		IPSTAT_INC(ips_cantfrag);
1636 		break;
1637 
1638 	case ENOBUFS:
1639 	case EACCES:			/* ipfw denied packet */
1640 		m_freem(mcopy);
1641 		if (ia != NULL)
1642 			ifa_free(&ia->ia_ifa);
1643 		return;
1644 	}
1645 	if (ia != NULL)
1646 		ifa_free(&ia->ia_ifa);
1647 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1648 }
1649 
1650 void
1651 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1652     struct mbuf *m)
1653 {
1654 
1655 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1656 		struct bintime bt;
1657 
1658 		bintime(&bt);
1659 		if (inp->inp_socket->so_options & SO_BINTIME) {
1660 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1661 			    SCM_BINTIME, SOL_SOCKET);
1662 			if (*mp)
1663 				mp = &(*mp)->m_next;
1664 		}
1665 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1666 			struct timeval tv;
1667 
1668 			bintime2timeval(&bt, &tv);
1669 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1670 			    SCM_TIMESTAMP, SOL_SOCKET);
1671 			if (*mp)
1672 				mp = &(*mp)->m_next;
1673 		}
1674 	}
1675 	if (inp->inp_flags & INP_RECVDSTADDR) {
1676 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1677 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1678 		if (*mp)
1679 			mp = &(*mp)->m_next;
1680 	}
1681 	if (inp->inp_flags & INP_RECVTTL) {
1682 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1683 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1684 		if (*mp)
1685 			mp = &(*mp)->m_next;
1686 	}
1687 #ifdef notyet
1688 	/* XXX
1689 	 * Moving these out of udp_input() made them even more broken
1690 	 * than they already were.
1691 	 */
1692 	/* options were tossed already */
1693 	if (inp->inp_flags & INP_RECVOPTS) {
1694 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1695 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1696 		if (*mp)
1697 			mp = &(*mp)->m_next;
1698 	}
1699 	/* ip_srcroute doesn't do what we want here, need to fix */
1700 	if (inp->inp_flags & INP_RECVRETOPTS) {
1701 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1702 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1703 		if (*mp)
1704 			mp = &(*mp)->m_next;
1705 	}
1706 #endif
1707 	if (inp->inp_flags & INP_RECVIF) {
1708 		struct ifnet *ifp;
1709 		struct sdlbuf {
1710 			struct sockaddr_dl sdl;
1711 			u_char	pad[32];
1712 		} sdlbuf;
1713 		struct sockaddr_dl *sdp;
1714 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1715 
1716 		if ((ifp = m->m_pkthdr.rcvif) &&
1717 		    ifp->if_index && ifp->if_index <= V_if_index) {
1718 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1719 			/*
1720 			 * Change our mind and don't try copy.
1721 			 */
1722 			if (sdp->sdl_family != AF_LINK ||
1723 			    sdp->sdl_len > sizeof(sdlbuf)) {
1724 				goto makedummy;
1725 			}
1726 			bcopy(sdp, sdl2, sdp->sdl_len);
1727 		} else {
1728 makedummy:
1729 			sdl2->sdl_len =
1730 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1731 			sdl2->sdl_family = AF_LINK;
1732 			sdl2->sdl_index = 0;
1733 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1734 		}
1735 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1736 		    IP_RECVIF, IPPROTO_IP);
1737 		if (*mp)
1738 			mp = &(*mp)->m_next;
1739 	}
1740 	if (inp->inp_flags & INP_RECVTOS) {
1741 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1742 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1743 		if (*mp)
1744 			mp = &(*mp)->m_next;
1745 	}
1746 
1747 	if (inp->inp_flags2 & INP_RECVFLOWID) {
1748 		uint32_t flowid, flow_type;
1749 
1750 		flowid = m->m_pkthdr.flowid;
1751 		flow_type = M_HASHTYPE_GET(m);
1752 
1753 		/*
1754 		 * XXX should handle the failure of one or the
1755 		 * other - don't populate both?
1756 		 */
1757 		*mp = sbcreatecontrol((caddr_t) &flowid,
1758 		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1759 		if (*mp)
1760 			mp = &(*mp)->m_next;
1761 		*mp = sbcreatecontrol((caddr_t) &flow_type,
1762 		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1763 		if (*mp)
1764 			mp = &(*mp)->m_next;
1765 	}
1766 
1767 #ifdef	RSS
1768 	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1769 		uint32_t flowid, flow_type;
1770 		uint32_t rss_bucketid;
1771 
1772 		flowid = m->m_pkthdr.flowid;
1773 		flow_type = M_HASHTYPE_GET(m);
1774 
1775 		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1776 			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1777 			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1778 			if (*mp)
1779 				mp = &(*mp)->m_next;
1780 		}
1781 	}
1782 #endif
1783 }
1784 
1785 /*
1786  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1787  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1788  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1789  * compiled.
1790  */
1791 static VNET_DEFINE(int, ip_rsvp_on);
1792 VNET_DEFINE(struct socket *, ip_rsvpd);
1793 
1794 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1795 
1796 int
1797 ip_rsvp_init(struct socket *so)
1798 {
1799 
1800 	if (so->so_type != SOCK_RAW ||
1801 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1802 		return EOPNOTSUPP;
1803 
1804 	if (V_ip_rsvpd != NULL)
1805 		return EADDRINUSE;
1806 
1807 	V_ip_rsvpd = so;
1808 	/*
1809 	 * This may seem silly, but we need to be sure we don't over-increment
1810 	 * the RSVP counter, in case something slips up.
1811 	 */
1812 	if (!V_ip_rsvp_on) {
1813 		V_ip_rsvp_on = 1;
1814 		V_rsvp_on++;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 int
1821 ip_rsvp_done(void)
1822 {
1823 
1824 	V_ip_rsvpd = NULL;
1825 	/*
1826 	 * This may seem silly, but we need to be sure we don't over-decrement
1827 	 * the RSVP counter, in case something slips up.
1828 	 */
1829 	if (V_ip_rsvp_on) {
1830 		V_ip_rsvp_on = 0;
1831 		V_rsvp_on--;
1832 	}
1833 	return 0;
1834 }
1835 
1836 int
1837 rsvp_input(struct mbuf **mp, int *offp, int proto)
1838 {
1839 	struct mbuf *m;
1840 
1841 	m = *mp;
1842 	*mp = NULL;
1843 
1844 	if (rsvp_input_p) { /* call the real one if loaded */
1845 		*mp = m;
1846 		rsvp_input_p(mp, offp, proto);
1847 		return (IPPROTO_DONE);
1848 	}
1849 
1850 	/* Can still get packets with rsvp_on = 0 if there is a local member
1851 	 * of the group to which the RSVP packet is addressed.  But in this
1852 	 * case we want to throw the packet away.
1853 	 */
1854 
1855 	if (!V_rsvp_on) {
1856 		m_freem(m);
1857 		return (IPPROTO_DONE);
1858 	}
1859 
1860 	if (V_ip_rsvpd != NULL) {
1861 		*mp = m;
1862 		rip_input(mp, offp, proto);
1863 		return (IPPROTO_DONE);
1864 	}
1865 	/* Drop the packet */
1866 	m_freem(m);
1867 	return (IPPROTO_DONE);
1868 }
1869