xref: /freebsd/sys/netinet/ip_input.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_kdtrace.h"
40 #include "opt_route.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/sdt.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/vnet.h>
65 #include <net/flowtable.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_kdtrace.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_fw.h>
75 #include <netinet/ip_icmp.h>
76 #include <netinet/ip_options.h>
77 #include <machine/in_cksum.h>
78 #include <netinet/ip_carp.h>
79 #ifdef IPSEC
80 #include <netinet/ip_ipsec.h>
81 #endif /* IPSEC */
82 
83 #include <sys/socketvar.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef CTASSERT
88 CTASSERT(sizeof(struct ip) == 20);
89 #endif
90 
91 struct	rwlock in_ifaddr_lock;
92 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
93 
94 VNET_DEFINE(int, rsvp_on);
95 
96 VNET_DEFINE(int, ipforwarding);
97 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98     &VNET_NAME(ipforwarding), 0,
99     "Enable IP forwarding between interfaces");
100 
101 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
102 #define	V_ipsendredirects	VNET(ipsendredirects)
103 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
104     &VNET_NAME(ipsendredirects), 0,
105     "Enable sending IP redirects");
106 
107 static VNET_DEFINE(int, ip_keepfaith);
108 #define	V_ip_keepfaith		VNET(ip_keepfaith)
109 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
110     &VNET_NAME(ip_keepfaith), 0,
111     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
112 
113 static VNET_DEFINE(int, ip_sendsourcequench);
114 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
115 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
116     &VNET_NAME(ip_sendsourcequench), 0,
117     "Enable the transmission of source quench packets");
118 
119 VNET_DEFINE(int, ip_do_randomid);
120 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
121     &VNET_NAME(ip_do_randomid), 0,
122     "Assign random ip_id values");
123 
124 /*
125  * XXX - Setting ip_checkinterface mostly implements the receive side of
126  * the Strong ES model described in RFC 1122, but since the routing table
127  * and transmit implementation do not implement the Strong ES model,
128  * setting this to 1 results in an odd hybrid.
129  *
130  * XXX - ip_checkinterface currently must be disabled if you use ipnat
131  * to translate the destination address to another local interface.
132  *
133  * XXX - ip_checkinterface must be disabled if you add IP aliases
134  * to the loopback interface instead of the interface where the
135  * packets for those addresses are received.
136  */
137 static VNET_DEFINE(int, ip_checkinterface);
138 #define	V_ip_checkinterface	VNET(ip_checkinterface)
139 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &VNET_NAME(ip_checkinterface), 0,
141     "Verify packet arrives on correct interface");
142 
143 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
144 
145 static struct netisr_handler ip_nh = {
146 	.nh_name = "ip",
147 	.nh_handler = ip_input,
148 	.nh_proto = NETISR_IP,
149 	.nh_policy = NETISR_POLICY_FLOW,
150 };
151 
152 extern	struct domain inetdomain;
153 extern	struct protosw inetsw[];
154 u_char	ip_protox[IPPROTO_MAX];
155 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
156 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
157 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
158 
159 static VNET_DEFINE(uma_zone_t, ipq_zone);
160 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
161 static struct mtx ipqlock;
162 
163 #define	V_ipq_zone		VNET(ipq_zone)
164 #define	V_ipq			VNET(ipq)
165 
166 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
167 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
168 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
169 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
170 
171 static void	maxnipq_update(void);
172 static void	ipq_zone_change(void *);
173 static void	ip_drain_locked(void);
174 
175 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
176 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
177 #define	V_maxnipq		VNET(maxnipq)
178 #define	V_nipq			VNET(nipq)
179 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
180     &VNET_NAME(nipq), 0,
181     "Current number of IPv4 fragment reassembly queue entries");
182 
183 static VNET_DEFINE(int, maxfragsperpacket);
184 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
185 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
186     &VNET_NAME(maxfragsperpacket), 0,
187     "Maximum number of IPv4 fragments allowed per packet");
188 
189 #ifdef IPCTL_DEFMTU
190 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
191     &ip_mtu, 0, "Default MTU");
192 #endif
193 
194 #ifdef IPSTEALTH
195 VNET_DEFINE(int, ipstealth);
196 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
197     &VNET_NAME(ipstealth), 0,
198     "IP stealth mode, no TTL decrementation on forwarding");
199 #endif
200 
201 #ifdef FLOWTABLE
202 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
203 VNET_DEFINE(struct flowtable *, ip_ft);
204 #define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
205 
206 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
207     &VNET_NAME(ip_output_flowtable_size), 2048,
208     "number of entries in the per-cpu output flow caches");
209 #endif
210 
211 static void	ip_freef(struct ipqhead *, struct ipq *);
212 
213 /*
214  * IP statistics are stored in the "array" of counter(9)s.
215  */
216 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
217 VNET_PCPUSTAT_SYSINIT(ipstat);
218 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
219     "IP statistics (struct ipstat, netinet/ip_var.h)");
220 
221 #ifdef VIMAGE
222 VNET_PCPUSTAT_SYSUNINIT(ipstat);
223 #endif /* VIMAGE */
224 
225 /*
226  * Kernel module interface for updating ipstat.  The argument is an index
227  * into ipstat treated as an array.
228  */
229 void
230 kmod_ipstat_inc(int statnum)
231 {
232 
233 	counter_u64_add(VNET(ipstat)[statnum], 1);
234 }
235 
236 void
237 kmod_ipstat_dec(int statnum)
238 {
239 
240 	counter_u64_add(VNET(ipstat)[statnum], -1);
241 }
242 
243 static int
244 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
245 {
246 	int error, qlimit;
247 
248 	netisr_getqlimit(&ip_nh, &qlimit);
249 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
250 	if (error || !req->newptr)
251 		return (error);
252 	if (qlimit < 1)
253 		return (EINVAL);
254 	return (netisr_setqlimit(&ip_nh, qlimit));
255 }
256 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
257     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
258     "Maximum size of the IP input queue");
259 
260 static int
261 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
262 {
263 	u_int64_t qdrops_long;
264 	int error, qdrops;
265 
266 	netisr_getqdrops(&ip_nh, &qdrops_long);
267 	qdrops = qdrops_long;
268 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
269 	if (error || !req->newptr)
270 		return (error);
271 	if (qdrops != 0)
272 		return (EINVAL);
273 	netisr_clearqdrops(&ip_nh);
274 	return (0);
275 }
276 
277 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
278     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
279     "Number of packets dropped from the IP input queue");
280 
281 /*
282  * IP initialization: fill in IP protocol switch table.
283  * All protocols not implemented in kernel go to raw IP protocol handler.
284  */
285 void
286 ip_init(void)
287 {
288 	struct protosw *pr;
289 	int i;
290 
291 	V_ip_id = time_second & 0xffff;
292 
293 	TAILQ_INIT(&V_in_ifaddrhead);
294 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
295 
296 	/* Initialize IP reassembly queue. */
297 	for (i = 0; i < IPREASS_NHASH; i++)
298 		TAILQ_INIT(&V_ipq[i]);
299 	V_maxnipq = nmbclusters / 32;
300 	V_maxfragsperpacket = 16;
301 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
302 	    NULL, UMA_ALIGN_PTR, 0);
303 	maxnipq_update();
304 
305 	/* Initialize packet filter hooks. */
306 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
307 	V_inet_pfil_hook.ph_af = AF_INET;
308 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
309 		printf("%s: WARNING: unable to register pfil hook, "
310 			"error %d\n", __func__, i);
311 
312 #ifdef FLOWTABLE
313 	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
314 		&V_ip_output_flowtable_size)) {
315 		if (V_ip_output_flowtable_size < 256)
316 			V_ip_output_flowtable_size = 256;
317 		if (!powerof2(V_ip_output_flowtable_size)) {
318 			printf("flowtable must be power of 2 size\n");
319 			V_ip_output_flowtable_size = 2048;
320 		}
321 	} else {
322 		/*
323 		 * round up to the next power of 2
324 		 */
325 		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
326 	}
327 	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
328 #endif
329 
330 	/* Skip initialization of globals for non-default instances. */
331 	if (!IS_DEFAULT_VNET(curvnet))
332 		return;
333 
334 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
335 	if (pr == NULL)
336 		panic("ip_init: PF_INET not found");
337 
338 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
339 	for (i = 0; i < IPPROTO_MAX; i++)
340 		ip_protox[i] = pr - inetsw;
341 	/*
342 	 * Cycle through IP protocols and put them into the appropriate place
343 	 * in ip_protox[].
344 	 */
345 	for (pr = inetdomain.dom_protosw;
346 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
347 		if (pr->pr_domain->dom_family == PF_INET &&
348 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
349 			/* Be careful to only index valid IP protocols. */
350 			if (pr->pr_protocol < IPPROTO_MAX)
351 				ip_protox[pr->pr_protocol] = pr - inetsw;
352 		}
353 
354 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
355 		NULL, EVENTHANDLER_PRI_ANY);
356 
357 	/* Initialize various other remaining things. */
358 	IPQ_LOCK_INIT();
359 	netisr_register(&ip_nh);
360 }
361 
362 #ifdef VIMAGE
363 void
364 ip_destroy(void)
365 {
366 	int i;
367 
368 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
369 		printf("%s: WARNING: unable to unregister pfil hook, "
370 		    "error %d\n", __func__, i);
371 
372 	/* Cleanup in_ifaddr hash table; should be empty. */
373 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
374 
375 	IPQ_LOCK();
376 	ip_drain_locked();
377 	IPQ_UNLOCK();
378 
379 	uma_zdestroy(V_ipq_zone);
380 }
381 #endif
382 
383 /*
384  * Ip input routine.  Checksum and byte swap header.  If fragmented
385  * try to reassemble.  Process options.  Pass to next level.
386  */
387 void
388 ip_input(struct mbuf *m)
389 {
390 	struct ip *ip = NULL;
391 	struct in_ifaddr *ia = NULL;
392 	struct ifaddr *ifa;
393 	struct ifnet *ifp;
394 	int    checkif, hlen = 0;
395 	uint16_t sum, ip_len;
396 	int dchg = 0;				/* dest changed after fw */
397 	struct in_addr odst;			/* original dst address */
398 
399 	M_ASSERTPKTHDR(m);
400 
401 	if (m->m_flags & M_FASTFWD_OURS) {
402 		m->m_flags &= ~M_FASTFWD_OURS;
403 		/* Set up some basics that will be used later. */
404 		ip = mtod(m, struct ip *);
405 		hlen = ip->ip_hl << 2;
406 		ip_len = ntohs(ip->ip_len);
407 		goto ours;
408 	}
409 
410 	IPSTAT_INC(ips_total);
411 
412 	if (m->m_pkthdr.len < sizeof(struct ip))
413 		goto tooshort;
414 
415 	if (m->m_len < sizeof (struct ip) &&
416 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
417 		IPSTAT_INC(ips_toosmall);
418 		return;
419 	}
420 	ip = mtod(m, struct ip *);
421 
422 	if (ip->ip_v != IPVERSION) {
423 		IPSTAT_INC(ips_badvers);
424 		goto bad;
425 	}
426 
427 	hlen = ip->ip_hl << 2;
428 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
429 		IPSTAT_INC(ips_badhlen);
430 		goto bad;
431 	}
432 	if (hlen > m->m_len) {
433 		if ((m = m_pullup(m, hlen)) == NULL) {
434 			IPSTAT_INC(ips_badhlen);
435 			return;
436 		}
437 		ip = mtod(m, struct ip *);
438 	}
439 
440 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
441 
442 	/* 127/8 must not appear on wire - RFC1122 */
443 	ifp = m->m_pkthdr.rcvif;
444 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
445 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
446 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
447 			IPSTAT_INC(ips_badaddr);
448 			goto bad;
449 		}
450 	}
451 
452 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
453 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
454 	} else {
455 		if (hlen == sizeof(struct ip)) {
456 			sum = in_cksum_hdr(ip);
457 		} else {
458 			sum = in_cksum(m, hlen);
459 		}
460 	}
461 	if (sum) {
462 		IPSTAT_INC(ips_badsum);
463 		goto bad;
464 	}
465 
466 #ifdef ALTQ
467 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
468 		/* packet is dropped by traffic conditioner */
469 		return;
470 #endif
471 
472 	ip_len = ntohs(ip->ip_len);
473 	if (ip_len < hlen) {
474 		IPSTAT_INC(ips_badlen);
475 		goto bad;
476 	}
477 
478 	/*
479 	 * Check that the amount of data in the buffers
480 	 * is as at least much as the IP header would have us expect.
481 	 * Trim mbufs if longer than we expect.
482 	 * Drop packet if shorter than we expect.
483 	 */
484 	if (m->m_pkthdr.len < ip_len) {
485 tooshort:
486 		IPSTAT_INC(ips_tooshort);
487 		goto bad;
488 	}
489 	if (m->m_pkthdr.len > ip_len) {
490 		if (m->m_len == m->m_pkthdr.len) {
491 			m->m_len = ip_len;
492 			m->m_pkthdr.len = ip_len;
493 		} else
494 			m_adj(m, ip_len - m->m_pkthdr.len);
495 	}
496 #ifdef IPSEC
497 	/*
498 	 * Bypass packet filtering for packets previously handled by IPsec.
499 	 */
500 	if (ip_ipsec_filtertunnel(m))
501 		goto passin;
502 #endif /* IPSEC */
503 
504 	/*
505 	 * Run through list of hooks for input packets.
506 	 *
507 	 * NB: Beware of the destination address changing (e.g.
508 	 *     by NAT rewriting).  When this happens, tell
509 	 *     ip_forward to do the right thing.
510 	 */
511 
512 	/* Jump over all PFIL processing if hooks are not active. */
513 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
514 		goto passin;
515 
516 	odst = ip->ip_dst;
517 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
518 		return;
519 	if (m == NULL)			/* consumed by filter */
520 		return;
521 
522 	ip = mtod(m, struct ip *);
523 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
524 	ifp = m->m_pkthdr.rcvif;
525 
526 	if (m->m_flags & M_FASTFWD_OURS) {
527 		m->m_flags &= ~M_FASTFWD_OURS;
528 		goto ours;
529 	}
530 	if (m->m_flags & M_IP_NEXTHOP) {
531 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
532 		if (dchg != 0) {
533 			/*
534 			 * Directly ship the packet on.  This allows
535 			 * forwarding packets originally destined to us
536 			 * to some other directly connected host.
537 			 */
538 			ip_forward(m, 1);
539 			return;
540 		}
541 	}
542 passin:
543 
544 	/*
545 	 * Process options and, if not destined for us,
546 	 * ship it on.  ip_dooptions returns 1 when an
547 	 * error was detected (causing an icmp message
548 	 * to be sent and the original packet to be freed).
549 	 */
550 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
551 		return;
552 
553         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
554          * matter if it is destined to another node, or whether it is
555          * a multicast one, RSVP wants it! and prevents it from being forwarded
556          * anywhere else. Also checks if the rsvp daemon is running before
557 	 * grabbing the packet.
558          */
559 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
560 		goto ours;
561 
562 	/*
563 	 * Check our list of addresses, to see if the packet is for us.
564 	 * If we don't have any addresses, assume any unicast packet
565 	 * we receive might be for us (and let the upper layers deal
566 	 * with it).
567 	 */
568 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
569 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
570 		goto ours;
571 
572 	/*
573 	 * Enable a consistency check between the destination address
574 	 * and the arrival interface for a unicast packet (the RFC 1122
575 	 * strong ES model) if IP forwarding is disabled and the packet
576 	 * is not locally generated and the packet is not subject to
577 	 * 'ipfw fwd'.
578 	 *
579 	 * XXX - Checking also should be disabled if the destination
580 	 * address is ipnat'ed to a different interface.
581 	 *
582 	 * XXX - Checking is incompatible with IP aliases added
583 	 * to the loopback interface instead of the interface where
584 	 * the packets are received.
585 	 *
586 	 * XXX - This is the case for carp vhost IPs as well so we
587 	 * insert a workaround. If the packet got here, we already
588 	 * checked with carp_iamatch() and carp_forus().
589 	 */
590 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
591 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
592 	    ifp->if_carp == NULL && (dchg == 0);
593 
594 	/*
595 	 * Check for exact addresses in the hash bucket.
596 	 */
597 	/* IN_IFADDR_RLOCK(); */
598 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
599 		/*
600 		 * If the address matches, verify that the packet
601 		 * arrived via the correct interface if checking is
602 		 * enabled.
603 		 */
604 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
605 		    (!checkif || ia->ia_ifp == ifp)) {
606 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
607 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
608 			    m->m_pkthdr.len);
609 			/* IN_IFADDR_RUNLOCK(); */
610 			goto ours;
611 		}
612 	}
613 	/* IN_IFADDR_RUNLOCK(); */
614 
615 	/*
616 	 * Check for broadcast addresses.
617 	 *
618 	 * Only accept broadcast packets that arrive via the matching
619 	 * interface.  Reception of forwarded directed broadcasts would
620 	 * be handled via ip_forward() and ether_output() with the loopback
621 	 * into the stack for SIMPLEX interfaces handled by ether_output().
622 	 */
623 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
624 		IF_ADDR_RLOCK(ifp);
625 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
626 			if (ifa->ifa_addr->sa_family != AF_INET)
627 				continue;
628 			ia = ifatoia(ifa);
629 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
630 			    ip->ip_dst.s_addr) {
631 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
632 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
633 				    m->m_pkthdr.len);
634 				IF_ADDR_RUNLOCK(ifp);
635 				goto ours;
636 			}
637 #ifdef BOOTP_COMPAT
638 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
639 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
640 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
641 				    m->m_pkthdr.len);
642 				IF_ADDR_RUNLOCK(ifp);
643 				goto ours;
644 			}
645 #endif
646 		}
647 		IF_ADDR_RUNLOCK(ifp);
648 		ia = NULL;
649 	}
650 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
651 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
652 		IPSTAT_INC(ips_cantforward);
653 		m_freem(m);
654 		return;
655 	}
656 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
657 		if (V_ip_mrouter) {
658 			/*
659 			 * If we are acting as a multicast router, all
660 			 * incoming multicast packets are passed to the
661 			 * kernel-level multicast forwarding function.
662 			 * The packet is returned (relatively) intact; if
663 			 * ip_mforward() returns a non-zero value, the packet
664 			 * must be discarded, else it may be accepted below.
665 			 */
666 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
667 				IPSTAT_INC(ips_cantforward);
668 				m_freem(m);
669 				return;
670 			}
671 
672 			/*
673 			 * The process-level routing daemon needs to receive
674 			 * all multicast IGMP packets, whether or not this
675 			 * host belongs to their destination groups.
676 			 */
677 			if (ip->ip_p == IPPROTO_IGMP)
678 				goto ours;
679 			IPSTAT_INC(ips_forward);
680 		}
681 		/*
682 		 * Assume the packet is for us, to avoid prematurely taking
683 		 * a lock on the in_multi hash. Protocols must perform
684 		 * their own filtering and update statistics accordingly.
685 		 */
686 		goto ours;
687 	}
688 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
689 		goto ours;
690 	if (ip->ip_dst.s_addr == INADDR_ANY)
691 		goto ours;
692 
693 	/*
694 	 * FAITH(Firewall Aided Internet Translator)
695 	 */
696 	if (ifp && ifp->if_type == IFT_FAITH) {
697 		if (V_ip_keepfaith) {
698 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
699 				goto ours;
700 		}
701 		m_freem(m);
702 		return;
703 	}
704 
705 	/*
706 	 * Not for us; forward if possible and desirable.
707 	 */
708 	if (V_ipforwarding == 0) {
709 		IPSTAT_INC(ips_cantforward);
710 		m_freem(m);
711 	} else {
712 #ifdef IPSEC
713 		if (ip_ipsec_fwd(m))
714 			goto bad;
715 #endif /* IPSEC */
716 		ip_forward(m, dchg);
717 	}
718 	return;
719 
720 ours:
721 #ifdef IPSTEALTH
722 	/*
723 	 * IPSTEALTH: Process non-routing options only
724 	 * if the packet is destined for us.
725 	 */
726 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
727 		return;
728 #endif /* IPSTEALTH */
729 
730 	/*
731 	 * Attempt reassembly; if it succeeds, proceed.
732 	 * ip_reass() will return a different mbuf.
733 	 */
734 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
735 		m = ip_reass(m);
736 		if (m == NULL)
737 			return;
738 		ip = mtod(m, struct ip *);
739 		/* Get the header length of the reassembled packet */
740 		hlen = ip->ip_hl << 2;
741 	}
742 
743 #ifdef IPSEC
744 	/*
745 	 * enforce IPsec policy checking if we are seeing last header.
746 	 * note that we do not visit this with protocols with pcb layer
747 	 * code - like udp/tcp/raw ip.
748 	 */
749 	if (ip_ipsec_input(m))
750 		goto bad;
751 #endif /* IPSEC */
752 
753 	/*
754 	 * Switch out to protocol's input routine.
755 	 */
756 	IPSTAT_INC(ips_delivered);
757 
758 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
759 	return;
760 bad:
761 	m_freem(m);
762 }
763 
764 /*
765  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
766  * max has slightly different semantics than the sysctl, for historical
767  * reasons.
768  */
769 static void
770 maxnipq_update(void)
771 {
772 
773 	/*
774 	 * -1 for unlimited allocation.
775 	 */
776 	if (V_maxnipq < 0)
777 		uma_zone_set_max(V_ipq_zone, 0);
778 	/*
779 	 * Positive number for specific bound.
780 	 */
781 	if (V_maxnipq > 0)
782 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
783 	/*
784 	 * Zero specifies no further fragment queue allocation -- set the
785 	 * bound very low, but rely on implementation elsewhere to actually
786 	 * prevent allocation and reclaim current queues.
787 	 */
788 	if (V_maxnipq == 0)
789 		uma_zone_set_max(V_ipq_zone, 1);
790 }
791 
792 static void
793 ipq_zone_change(void *tag)
794 {
795 
796 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
797 		V_maxnipq = nmbclusters / 32;
798 		maxnipq_update();
799 	}
800 }
801 
802 static int
803 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
804 {
805 	int error, i;
806 
807 	i = V_maxnipq;
808 	error = sysctl_handle_int(oidp, &i, 0, req);
809 	if (error || !req->newptr)
810 		return (error);
811 
812 	/*
813 	 * XXXRW: Might be a good idea to sanity check the argument and place
814 	 * an extreme upper bound.
815 	 */
816 	if (i < -1)
817 		return (EINVAL);
818 	V_maxnipq = i;
819 	maxnipq_update();
820 	return (0);
821 }
822 
823 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
824     NULL, 0, sysctl_maxnipq, "I",
825     "Maximum number of IPv4 fragment reassembly queue entries");
826 
827 /*
828  * Take incoming datagram fragment and try to reassemble it into
829  * whole datagram.  If the argument is the first fragment or one
830  * in between the function will return NULL and store the mbuf
831  * in the fragment chain.  If the argument is the last fragment
832  * the packet will be reassembled and the pointer to the new
833  * mbuf returned for further processing.  Only m_tags attached
834  * to the first packet/fragment are preserved.
835  * The IP header is *NOT* adjusted out of iplen.
836  */
837 struct mbuf *
838 ip_reass(struct mbuf *m)
839 {
840 	struct ip *ip;
841 	struct mbuf *p, *q, *nq, *t;
842 	struct ipq *fp = NULL;
843 	struct ipqhead *head;
844 	int i, hlen, next;
845 	u_int8_t ecn, ecn0;
846 	u_short hash;
847 
848 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
849 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
850 		IPSTAT_INC(ips_fragments);
851 		IPSTAT_INC(ips_fragdropped);
852 		m_freem(m);
853 		return (NULL);
854 	}
855 
856 	ip = mtod(m, struct ip *);
857 	hlen = ip->ip_hl << 2;
858 
859 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
860 	head = &V_ipq[hash];
861 	IPQ_LOCK();
862 
863 	/*
864 	 * Look for queue of fragments
865 	 * of this datagram.
866 	 */
867 	TAILQ_FOREACH(fp, head, ipq_list)
868 		if (ip->ip_id == fp->ipq_id &&
869 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
870 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
871 #ifdef MAC
872 		    mac_ipq_match(m, fp) &&
873 #endif
874 		    ip->ip_p == fp->ipq_p)
875 			goto found;
876 
877 	fp = NULL;
878 
879 	/*
880 	 * Attempt to trim the number of allocated fragment queues if it
881 	 * exceeds the administrative limit.
882 	 */
883 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
884 		/*
885 		 * drop something from the tail of the current queue
886 		 * before proceeding further
887 		 */
888 		struct ipq *q = TAILQ_LAST(head, ipqhead);
889 		if (q == NULL) {   /* gak */
890 			for (i = 0; i < IPREASS_NHASH; i++) {
891 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
892 				if (r) {
893 					IPSTAT_ADD(ips_fragtimeout,
894 					    r->ipq_nfrags);
895 					ip_freef(&V_ipq[i], r);
896 					break;
897 				}
898 			}
899 		} else {
900 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
901 			ip_freef(head, q);
902 		}
903 	}
904 
905 found:
906 	/*
907 	 * Adjust ip_len to not reflect header,
908 	 * convert offset of this to bytes.
909 	 */
910 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
911 	if (ip->ip_off & htons(IP_MF)) {
912 		/*
913 		 * Make sure that fragments have a data length
914 		 * that's a non-zero multiple of 8 bytes.
915 		 */
916 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
917 			IPSTAT_INC(ips_toosmall); /* XXX */
918 			goto dropfrag;
919 		}
920 		m->m_flags |= M_IP_FRAG;
921 	} else
922 		m->m_flags &= ~M_IP_FRAG;
923 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
924 
925 	/*
926 	 * Attempt reassembly; if it succeeds, proceed.
927 	 * ip_reass() will return a different mbuf.
928 	 */
929 	IPSTAT_INC(ips_fragments);
930 	m->m_pkthdr.PH_loc.ptr = ip;
931 
932 	/* Previous ip_reass() started here. */
933 	/*
934 	 * Presence of header sizes in mbufs
935 	 * would confuse code below.
936 	 */
937 	m->m_data += hlen;
938 	m->m_len -= hlen;
939 
940 	/*
941 	 * If first fragment to arrive, create a reassembly queue.
942 	 */
943 	if (fp == NULL) {
944 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
945 		if (fp == NULL)
946 			goto dropfrag;
947 #ifdef MAC
948 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
949 			uma_zfree(V_ipq_zone, fp);
950 			fp = NULL;
951 			goto dropfrag;
952 		}
953 		mac_ipq_create(m, fp);
954 #endif
955 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
956 		V_nipq++;
957 		fp->ipq_nfrags = 1;
958 		fp->ipq_ttl = IPFRAGTTL;
959 		fp->ipq_p = ip->ip_p;
960 		fp->ipq_id = ip->ip_id;
961 		fp->ipq_src = ip->ip_src;
962 		fp->ipq_dst = ip->ip_dst;
963 		fp->ipq_frags = m;
964 		m->m_nextpkt = NULL;
965 		goto done;
966 	} else {
967 		fp->ipq_nfrags++;
968 #ifdef MAC
969 		mac_ipq_update(m, fp);
970 #endif
971 	}
972 
973 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
974 
975 	/*
976 	 * Handle ECN by comparing this segment with the first one;
977 	 * if CE is set, do not lose CE.
978 	 * drop if CE and not-ECT are mixed for the same packet.
979 	 */
980 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
981 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
982 	if (ecn == IPTOS_ECN_CE) {
983 		if (ecn0 == IPTOS_ECN_NOTECT)
984 			goto dropfrag;
985 		if (ecn0 != IPTOS_ECN_CE)
986 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
987 	}
988 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
989 		goto dropfrag;
990 
991 	/*
992 	 * Find a segment which begins after this one does.
993 	 */
994 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
995 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
996 			break;
997 
998 	/*
999 	 * If there is a preceding segment, it may provide some of
1000 	 * our data already.  If so, drop the data from the incoming
1001 	 * segment.  If it provides all of our data, drop us, otherwise
1002 	 * stick new segment in the proper place.
1003 	 *
1004 	 * If some of the data is dropped from the preceding
1005 	 * segment, then it's checksum is invalidated.
1006 	 */
1007 	if (p) {
1008 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1009 		    ntohs(ip->ip_off);
1010 		if (i > 0) {
1011 			if (i >= ntohs(ip->ip_len))
1012 				goto dropfrag;
1013 			m_adj(m, i);
1014 			m->m_pkthdr.csum_flags = 0;
1015 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1016 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1017 		}
1018 		m->m_nextpkt = p->m_nextpkt;
1019 		p->m_nextpkt = m;
1020 	} else {
1021 		m->m_nextpkt = fp->ipq_frags;
1022 		fp->ipq_frags = m;
1023 	}
1024 
1025 	/*
1026 	 * While we overlap succeeding segments trim them or,
1027 	 * if they are completely covered, dequeue them.
1028 	 */
1029 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1030 	    ntohs(GETIP(q)->ip_off); q = nq) {
1031 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1032 		    ntohs(GETIP(q)->ip_off);
1033 		if (i < ntohs(GETIP(q)->ip_len)) {
1034 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1035 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1036 			m_adj(q, i);
1037 			q->m_pkthdr.csum_flags = 0;
1038 			break;
1039 		}
1040 		nq = q->m_nextpkt;
1041 		m->m_nextpkt = nq;
1042 		IPSTAT_INC(ips_fragdropped);
1043 		fp->ipq_nfrags--;
1044 		m_freem(q);
1045 	}
1046 
1047 	/*
1048 	 * Check for complete reassembly and perform frag per packet
1049 	 * limiting.
1050 	 *
1051 	 * Frag limiting is performed here so that the nth frag has
1052 	 * a chance to complete the packet before we drop the packet.
1053 	 * As a result, n+1 frags are actually allowed per packet, but
1054 	 * only n will ever be stored. (n = maxfragsperpacket.)
1055 	 *
1056 	 */
1057 	next = 0;
1058 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1059 		if (ntohs(GETIP(q)->ip_off) != next) {
1060 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1061 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1062 				ip_freef(head, fp);
1063 			}
1064 			goto done;
1065 		}
1066 		next += ntohs(GETIP(q)->ip_len);
1067 	}
1068 	/* Make sure the last packet didn't have the IP_MF flag */
1069 	if (p->m_flags & M_IP_FRAG) {
1070 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1071 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1072 			ip_freef(head, fp);
1073 		}
1074 		goto done;
1075 	}
1076 
1077 	/*
1078 	 * Reassembly is complete.  Make sure the packet is a sane size.
1079 	 */
1080 	q = fp->ipq_frags;
1081 	ip = GETIP(q);
1082 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1083 		IPSTAT_INC(ips_toolong);
1084 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1085 		ip_freef(head, fp);
1086 		goto done;
1087 	}
1088 
1089 	/*
1090 	 * Concatenate fragments.
1091 	 */
1092 	m = q;
1093 	t = m->m_next;
1094 	m->m_next = NULL;
1095 	m_cat(m, t);
1096 	nq = q->m_nextpkt;
1097 	q->m_nextpkt = NULL;
1098 	for (q = nq; q != NULL; q = nq) {
1099 		nq = q->m_nextpkt;
1100 		q->m_nextpkt = NULL;
1101 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1102 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1103 		m_cat(m, q);
1104 	}
1105 	/*
1106 	 * In order to do checksumming faster we do 'end-around carry' here
1107 	 * (and not in for{} loop), though it implies we are not going to
1108 	 * reassemble more than 64k fragments.
1109 	 */
1110 	m->m_pkthdr.csum_data =
1111 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1112 #ifdef MAC
1113 	mac_ipq_reassemble(fp, m);
1114 	mac_ipq_destroy(fp);
1115 #endif
1116 
1117 	/*
1118 	 * Create header for new ip packet by modifying header of first
1119 	 * packet;  dequeue and discard fragment reassembly header.
1120 	 * Make header visible.
1121 	 */
1122 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1123 	ip->ip_src = fp->ipq_src;
1124 	ip->ip_dst = fp->ipq_dst;
1125 	TAILQ_REMOVE(head, fp, ipq_list);
1126 	V_nipq--;
1127 	uma_zfree(V_ipq_zone, fp);
1128 	m->m_len += (ip->ip_hl << 2);
1129 	m->m_data -= (ip->ip_hl << 2);
1130 	/* some debugging cruft by sklower, below, will go away soon */
1131 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1132 		m_fixhdr(m);
1133 	IPSTAT_INC(ips_reassembled);
1134 	IPQ_UNLOCK();
1135 	return (m);
1136 
1137 dropfrag:
1138 	IPSTAT_INC(ips_fragdropped);
1139 	if (fp != NULL)
1140 		fp->ipq_nfrags--;
1141 	m_freem(m);
1142 done:
1143 	IPQ_UNLOCK();
1144 	return (NULL);
1145 
1146 #undef GETIP
1147 }
1148 
1149 /*
1150  * Free a fragment reassembly header and all
1151  * associated datagrams.
1152  */
1153 static void
1154 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1155 {
1156 	struct mbuf *q;
1157 
1158 	IPQ_LOCK_ASSERT();
1159 
1160 	while (fp->ipq_frags) {
1161 		q = fp->ipq_frags;
1162 		fp->ipq_frags = q->m_nextpkt;
1163 		m_freem(q);
1164 	}
1165 	TAILQ_REMOVE(fhp, fp, ipq_list);
1166 	uma_zfree(V_ipq_zone, fp);
1167 	V_nipq--;
1168 }
1169 
1170 /*
1171  * IP timer processing;
1172  * if a timer expires on a reassembly
1173  * queue, discard it.
1174  */
1175 void
1176 ip_slowtimo(void)
1177 {
1178 	VNET_ITERATOR_DECL(vnet_iter);
1179 	struct ipq *fp;
1180 	int i;
1181 
1182 	VNET_LIST_RLOCK_NOSLEEP();
1183 	IPQ_LOCK();
1184 	VNET_FOREACH(vnet_iter) {
1185 		CURVNET_SET(vnet_iter);
1186 		for (i = 0; i < IPREASS_NHASH; i++) {
1187 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1188 				struct ipq *fpp;
1189 
1190 				fpp = fp;
1191 				fp = TAILQ_NEXT(fp, ipq_list);
1192 				if(--fpp->ipq_ttl == 0) {
1193 					IPSTAT_ADD(ips_fragtimeout,
1194 					    fpp->ipq_nfrags);
1195 					ip_freef(&V_ipq[i], fpp);
1196 				}
1197 			}
1198 		}
1199 		/*
1200 		 * If we are over the maximum number of fragments
1201 		 * (due to the limit being lowered), drain off
1202 		 * enough to get down to the new limit.
1203 		 */
1204 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1205 			for (i = 0; i < IPREASS_NHASH; i++) {
1206 				while (V_nipq > V_maxnipq &&
1207 				    !TAILQ_EMPTY(&V_ipq[i])) {
1208 					IPSTAT_ADD(ips_fragdropped,
1209 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1210 					ip_freef(&V_ipq[i],
1211 					    TAILQ_FIRST(&V_ipq[i]));
1212 				}
1213 			}
1214 		}
1215 		CURVNET_RESTORE();
1216 	}
1217 	IPQ_UNLOCK();
1218 	VNET_LIST_RUNLOCK_NOSLEEP();
1219 }
1220 
1221 /*
1222  * Drain off all datagram fragments.
1223  */
1224 static void
1225 ip_drain_locked(void)
1226 {
1227 	int     i;
1228 
1229 	IPQ_LOCK_ASSERT();
1230 
1231 	for (i = 0; i < IPREASS_NHASH; i++) {
1232 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1233 			IPSTAT_ADD(ips_fragdropped,
1234 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1235 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1236 		}
1237 	}
1238 }
1239 
1240 void
1241 ip_drain(void)
1242 {
1243 	VNET_ITERATOR_DECL(vnet_iter);
1244 
1245 	VNET_LIST_RLOCK_NOSLEEP();
1246 	IPQ_LOCK();
1247 	VNET_FOREACH(vnet_iter) {
1248 		CURVNET_SET(vnet_iter);
1249 		ip_drain_locked();
1250 		CURVNET_RESTORE();
1251 	}
1252 	IPQ_UNLOCK();
1253 	VNET_LIST_RUNLOCK_NOSLEEP();
1254 	in_rtqdrain();
1255 }
1256 
1257 /*
1258  * The protocol to be inserted into ip_protox[] must be already registered
1259  * in inetsw[], either statically or through pf_proto_register().
1260  */
1261 int
1262 ipproto_register(short ipproto)
1263 {
1264 	struct protosw *pr;
1265 
1266 	/* Sanity checks. */
1267 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1268 		return (EPROTONOSUPPORT);
1269 
1270 	/*
1271 	 * The protocol slot must not be occupied by another protocol
1272 	 * already.  An index pointing to IPPROTO_RAW is unused.
1273 	 */
1274 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1275 	if (pr == NULL)
1276 		return (EPFNOSUPPORT);
1277 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1278 		return (EEXIST);
1279 
1280 	/* Find the protocol position in inetsw[] and set the index. */
1281 	for (pr = inetdomain.dom_protosw;
1282 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1283 		if (pr->pr_domain->dom_family == PF_INET &&
1284 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1285 			ip_protox[pr->pr_protocol] = pr - inetsw;
1286 			return (0);
1287 		}
1288 	}
1289 	return (EPROTONOSUPPORT);
1290 }
1291 
1292 int
1293 ipproto_unregister(short ipproto)
1294 {
1295 	struct protosw *pr;
1296 
1297 	/* Sanity checks. */
1298 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1299 		return (EPROTONOSUPPORT);
1300 
1301 	/* Check if the protocol was indeed registered. */
1302 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1303 	if (pr == NULL)
1304 		return (EPFNOSUPPORT);
1305 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1306 		return (ENOENT);
1307 
1308 	/* Reset the protocol slot to IPPROTO_RAW. */
1309 	ip_protox[ipproto] = pr - inetsw;
1310 	return (0);
1311 }
1312 
1313 /*
1314  * Given address of next destination (final or next hop), return (referenced)
1315  * internet address info of interface to be used to get there.
1316  */
1317 struct in_ifaddr *
1318 ip_rtaddr(struct in_addr dst, u_int fibnum)
1319 {
1320 	struct route sro;
1321 	struct sockaddr_in *sin;
1322 	struct in_ifaddr *ia;
1323 
1324 	bzero(&sro, sizeof(sro));
1325 	sin = (struct sockaddr_in *)&sro.ro_dst;
1326 	sin->sin_family = AF_INET;
1327 	sin->sin_len = sizeof(*sin);
1328 	sin->sin_addr = dst;
1329 	in_rtalloc_ign(&sro, 0, fibnum);
1330 
1331 	if (sro.ro_rt == NULL)
1332 		return (NULL);
1333 
1334 	ia = ifatoia(sro.ro_rt->rt_ifa);
1335 	ifa_ref(&ia->ia_ifa);
1336 	RTFREE(sro.ro_rt);
1337 	return (ia);
1338 }
1339 
1340 u_char inetctlerrmap[PRC_NCMDS] = {
1341 	0,		0,		0,		0,
1342 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1343 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1344 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1345 	0,		0,		EHOSTUNREACH,	0,
1346 	ENOPROTOOPT,	ECONNREFUSED
1347 };
1348 
1349 /*
1350  * Forward a packet.  If some error occurs return the sender
1351  * an icmp packet.  Note we can't always generate a meaningful
1352  * icmp message because icmp doesn't have a large enough repertoire
1353  * of codes and types.
1354  *
1355  * If not forwarding, just drop the packet.  This could be confusing
1356  * if ipforwarding was zero but some routing protocol was advancing
1357  * us as a gateway to somewhere.  However, we must let the routing
1358  * protocol deal with that.
1359  *
1360  * The srcrt parameter indicates whether the packet is being forwarded
1361  * via a source route.
1362  */
1363 void
1364 ip_forward(struct mbuf *m, int srcrt)
1365 {
1366 	struct ip *ip = mtod(m, struct ip *);
1367 	struct in_ifaddr *ia;
1368 	struct mbuf *mcopy;
1369 	struct in_addr dest;
1370 	struct route ro;
1371 	int error, type = 0, code = 0, mtu = 0;
1372 
1373 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1374 		IPSTAT_INC(ips_cantforward);
1375 		m_freem(m);
1376 		return;
1377 	}
1378 #ifdef IPSTEALTH
1379 	if (!V_ipstealth) {
1380 #endif
1381 		if (ip->ip_ttl <= IPTTLDEC) {
1382 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1383 			    0, 0);
1384 			return;
1385 		}
1386 #ifdef IPSTEALTH
1387 	}
1388 #endif
1389 
1390 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1391 #ifndef IPSEC
1392 	/*
1393 	 * 'ia' may be NULL if there is no route for this destination.
1394 	 * In case of IPsec, Don't discard it just yet, but pass it to
1395 	 * ip_output in case of outgoing IPsec policy.
1396 	 */
1397 	if (!srcrt && ia == NULL) {
1398 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1399 		return;
1400 	}
1401 #endif
1402 
1403 	/*
1404 	 * Save the IP header and at most 8 bytes of the payload,
1405 	 * in case we need to generate an ICMP message to the src.
1406 	 *
1407 	 * XXX this can be optimized a lot by saving the data in a local
1408 	 * buffer on the stack (72 bytes at most), and only allocating the
1409 	 * mbuf if really necessary. The vast majority of the packets
1410 	 * are forwarded without having to send an ICMP back (either
1411 	 * because unnecessary, or because rate limited), so we are
1412 	 * really we are wasting a lot of work here.
1413 	 *
1414 	 * We don't use m_copy() because it might return a reference
1415 	 * to a shared cluster. Both this function and ip_output()
1416 	 * assume exclusive access to the IP header in `m', so any
1417 	 * data in a cluster may change before we reach icmp_error().
1418 	 */
1419 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1420 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1421 		/*
1422 		 * It's probably ok if the pkthdr dup fails (because
1423 		 * the deep copy of the tag chain failed), but for now
1424 		 * be conservative and just discard the copy since
1425 		 * code below may some day want the tags.
1426 		 */
1427 		m_free(mcopy);
1428 		mcopy = NULL;
1429 	}
1430 	if (mcopy != NULL) {
1431 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1432 		mcopy->m_pkthdr.len = mcopy->m_len;
1433 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1434 	}
1435 
1436 #ifdef IPSTEALTH
1437 	if (!V_ipstealth) {
1438 #endif
1439 		ip->ip_ttl -= IPTTLDEC;
1440 #ifdef IPSTEALTH
1441 	}
1442 #endif
1443 
1444 	/*
1445 	 * If forwarding packet using same interface that it came in on,
1446 	 * perhaps should send a redirect to sender to shortcut a hop.
1447 	 * Only send redirect if source is sending directly to us,
1448 	 * and if packet was not source routed (or has any options).
1449 	 * Also, don't send redirect if forwarding using a default route
1450 	 * or a route modified by a redirect.
1451 	 */
1452 	dest.s_addr = 0;
1453 	if (!srcrt && V_ipsendredirects &&
1454 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1455 		struct sockaddr_in *sin;
1456 		struct rtentry *rt;
1457 
1458 		bzero(&ro, sizeof(ro));
1459 		sin = (struct sockaddr_in *)&ro.ro_dst;
1460 		sin->sin_family = AF_INET;
1461 		sin->sin_len = sizeof(*sin);
1462 		sin->sin_addr = ip->ip_dst;
1463 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1464 
1465 		rt = ro.ro_rt;
1466 
1467 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1468 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1469 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1470 			u_long src = ntohl(ip->ip_src.s_addr);
1471 
1472 			if (RTA(rt) &&
1473 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1474 				if (rt->rt_flags & RTF_GATEWAY)
1475 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1476 				else
1477 					dest.s_addr = ip->ip_dst.s_addr;
1478 				/* Router requirements says to only send host redirects */
1479 				type = ICMP_REDIRECT;
1480 				code = ICMP_REDIRECT_HOST;
1481 			}
1482 		}
1483 		if (rt)
1484 			RTFREE(rt);
1485 	}
1486 
1487 	/*
1488 	 * Try to cache the route MTU from ip_output so we can consider it for
1489 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1490 	 */
1491 	bzero(&ro, sizeof(ro));
1492 
1493 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1494 
1495 	if (error == EMSGSIZE && ro.ro_rt)
1496 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1497 	RO_RTFREE(&ro);
1498 
1499 	if (error)
1500 		IPSTAT_INC(ips_cantforward);
1501 	else {
1502 		IPSTAT_INC(ips_forward);
1503 		if (type)
1504 			IPSTAT_INC(ips_redirectsent);
1505 		else {
1506 			if (mcopy)
1507 				m_freem(mcopy);
1508 			if (ia != NULL)
1509 				ifa_free(&ia->ia_ifa);
1510 			return;
1511 		}
1512 	}
1513 	if (mcopy == NULL) {
1514 		if (ia != NULL)
1515 			ifa_free(&ia->ia_ifa);
1516 		return;
1517 	}
1518 
1519 	switch (error) {
1520 
1521 	case 0:				/* forwarded, but need redirect */
1522 		/* type, code set above */
1523 		break;
1524 
1525 	case ENETUNREACH:
1526 	case EHOSTUNREACH:
1527 	case ENETDOWN:
1528 	case EHOSTDOWN:
1529 	default:
1530 		type = ICMP_UNREACH;
1531 		code = ICMP_UNREACH_HOST;
1532 		break;
1533 
1534 	case EMSGSIZE:
1535 		type = ICMP_UNREACH;
1536 		code = ICMP_UNREACH_NEEDFRAG;
1537 
1538 #ifdef IPSEC
1539 		/*
1540 		 * If IPsec is configured for this path,
1541 		 * override any possibly mtu value set by ip_output.
1542 		 */
1543 		mtu = ip_ipsec_mtu(mcopy, mtu);
1544 #endif /* IPSEC */
1545 		/*
1546 		 * If the MTU was set before make sure we are below the
1547 		 * interface MTU.
1548 		 * If the MTU wasn't set before use the interface mtu or
1549 		 * fall back to the next smaller mtu step compared to the
1550 		 * current packet size.
1551 		 */
1552 		if (mtu != 0) {
1553 			if (ia != NULL)
1554 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1555 		} else {
1556 			if (ia != NULL)
1557 				mtu = ia->ia_ifp->if_mtu;
1558 			else
1559 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1560 		}
1561 		IPSTAT_INC(ips_cantfrag);
1562 		break;
1563 
1564 	case ENOBUFS:
1565 		/*
1566 		 * A router should not generate ICMP_SOURCEQUENCH as
1567 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1568 		 * Source quench could be a big problem under DoS attacks,
1569 		 * or if the underlying interface is rate-limited.
1570 		 * Those who need source quench packets may re-enable them
1571 		 * via the net.inet.ip.sendsourcequench sysctl.
1572 		 */
1573 		if (V_ip_sendsourcequench == 0) {
1574 			m_freem(mcopy);
1575 			if (ia != NULL)
1576 				ifa_free(&ia->ia_ifa);
1577 			return;
1578 		} else {
1579 			type = ICMP_SOURCEQUENCH;
1580 			code = 0;
1581 		}
1582 		break;
1583 
1584 	case EACCES:			/* ipfw denied packet */
1585 		m_freem(mcopy);
1586 		if (ia != NULL)
1587 			ifa_free(&ia->ia_ifa);
1588 		return;
1589 	}
1590 	if (ia != NULL)
1591 		ifa_free(&ia->ia_ifa);
1592 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1593 }
1594 
1595 void
1596 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1597     struct mbuf *m)
1598 {
1599 
1600 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1601 		struct bintime bt;
1602 
1603 		bintime(&bt);
1604 		if (inp->inp_socket->so_options & SO_BINTIME) {
1605 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1606 			    SCM_BINTIME, SOL_SOCKET);
1607 			if (*mp)
1608 				mp = &(*mp)->m_next;
1609 		}
1610 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1611 			struct timeval tv;
1612 
1613 			bintime2timeval(&bt, &tv);
1614 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1615 			    SCM_TIMESTAMP, SOL_SOCKET);
1616 			if (*mp)
1617 				mp = &(*mp)->m_next;
1618 		}
1619 	}
1620 	if (inp->inp_flags & INP_RECVDSTADDR) {
1621 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1622 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1623 		if (*mp)
1624 			mp = &(*mp)->m_next;
1625 	}
1626 	if (inp->inp_flags & INP_RECVTTL) {
1627 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1628 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1629 		if (*mp)
1630 			mp = &(*mp)->m_next;
1631 	}
1632 #ifdef notyet
1633 	/* XXX
1634 	 * Moving these out of udp_input() made them even more broken
1635 	 * than they already were.
1636 	 */
1637 	/* options were tossed already */
1638 	if (inp->inp_flags & INP_RECVOPTS) {
1639 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1640 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1641 		if (*mp)
1642 			mp = &(*mp)->m_next;
1643 	}
1644 	/* ip_srcroute doesn't do what we want here, need to fix */
1645 	if (inp->inp_flags & INP_RECVRETOPTS) {
1646 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1647 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1648 		if (*mp)
1649 			mp = &(*mp)->m_next;
1650 	}
1651 #endif
1652 	if (inp->inp_flags & INP_RECVIF) {
1653 		struct ifnet *ifp;
1654 		struct sdlbuf {
1655 			struct sockaddr_dl sdl;
1656 			u_char	pad[32];
1657 		} sdlbuf;
1658 		struct sockaddr_dl *sdp;
1659 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1660 
1661 		if ((ifp = m->m_pkthdr.rcvif) &&
1662 		    ifp->if_index && ifp->if_index <= V_if_index) {
1663 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1664 			/*
1665 			 * Change our mind and don't try copy.
1666 			 */
1667 			if (sdp->sdl_family != AF_LINK ||
1668 			    sdp->sdl_len > sizeof(sdlbuf)) {
1669 				goto makedummy;
1670 			}
1671 			bcopy(sdp, sdl2, sdp->sdl_len);
1672 		} else {
1673 makedummy:
1674 			sdl2->sdl_len =
1675 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1676 			sdl2->sdl_family = AF_LINK;
1677 			sdl2->sdl_index = 0;
1678 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1679 		}
1680 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1681 		    IP_RECVIF, IPPROTO_IP);
1682 		if (*mp)
1683 			mp = &(*mp)->m_next;
1684 	}
1685 	if (inp->inp_flags & INP_RECVTOS) {
1686 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1687 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1688 		if (*mp)
1689 			mp = &(*mp)->m_next;
1690 	}
1691 }
1692 
1693 /*
1694  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1695  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1696  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1697  * compiled.
1698  */
1699 static VNET_DEFINE(int, ip_rsvp_on);
1700 VNET_DEFINE(struct socket *, ip_rsvpd);
1701 
1702 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1703 
1704 int
1705 ip_rsvp_init(struct socket *so)
1706 {
1707 
1708 	if (so->so_type != SOCK_RAW ||
1709 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1710 		return EOPNOTSUPP;
1711 
1712 	if (V_ip_rsvpd != NULL)
1713 		return EADDRINUSE;
1714 
1715 	V_ip_rsvpd = so;
1716 	/*
1717 	 * This may seem silly, but we need to be sure we don't over-increment
1718 	 * the RSVP counter, in case something slips up.
1719 	 */
1720 	if (!V_ip_rsvp_on) {
1721 		V_ip_rsvp_on = 1;
1722 		V_rsvp_on++;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 int
1729 ip_rsvp_done(void)
1730 {
1731 
1732 	V_ip_rsvpd = NULL;
1733 	/*
1734 	 * This may seem silly, but we need to be sure we don't over-decrement
1735 	 * the RSVP counter, in case something slips up.
1736 	 */
1737 	if (V_ip_rsvp_on) {
1738 		V_ip_rsvp_on = 0;
1739 		V_rsvp_on--;
1740 	}
1741 	return 0;
1742 }
1743 
1744 void
1745 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1746 {
1747 
1748 	if (rsvp_input_p) { /* call the real one if loaded */
1749 		rsvp_input_p(m, off);
1750 		return;
1751 	}
1752 
1753 	/* Can still get packets with rsvp_on = 0 if there is a local member
1754 	 * of the group to which the RSVP packet is addressed.  But in this
1755 	 * case we want to throw the packet away.
1756 	 */
1757 
1758 	if (!V_rsvp_on) {
1759 		m_freem(m);
1760 		return;
1761 	}
1762 
1763 	if (V_ip_rsvpd != NULL) {
1764 		rip_input(m, off);
1765 		return;
1766 	}
1767 	/* Drop the packet */
1768 	m_freem(m);
1769 }
1770