1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 86 #include <netipsec/ipsec_support.h> 87 88 #include <sys/socketvar.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #ifdef CTASSERT 93 CTASSERT(sizeof(struct ip) == 20); 94 #endif 95 96 /* IP reassembly functions are defined in ip_reass.c. */ 97 extern void ipreass_init(void); 98 extern void ipreass_drain(void); 99 extern void ipreass_slowtimo(void); 100 #ifdef VIMAGE 101 extern void ipreass_destroy(void); 102 #endif 103 104 VNET_DEFINE(int, rsvp_on); 105 106 VNET_DEFINE(int, ipforwarding); 107 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 108 &VNET_NAME(ipforwarding), 0, 109 "Enable IP forwarding between interfaces"); 110 111 /* 112 * Respond with an ICMP host redirect when we forward a packet out of 113 * the same interface on which it was received. See RFC 792. 114 */ 115 VNET_DEFINE(int, ipsendredirects) = 1; 116 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 117 &VNET_NAME(ipsendredirects), 0, 118 "Enable sending IP redirects"); 119 120 VNET_DEFINE_STATIC(bool, ip_strong_es) = false; 121 #define V_ip_strong_es VNET(ip_strong_es) 122 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, rfc1122_strong_es, 123 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_strong_es), false, 124 "Packet's IP destination address must match address on arrival interface"); 125 126 VNET_DEFINE_STATIC(bool, ip_sav) = true; 127 #define V_ip_sav VNET(ip_sav) 128 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, source_address_validation, 129 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_sav), true, 130 "Drop incoming packets with source address that is a local address"); 131 132 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 133 134 static struct netisr_handler ip_nh = { 135 .nh_name = "ip", 136 .nh_handler = ip_input, 137 .nh_proto = NETISR_IP, 138 #ifdef RSS 139 .nh_m2cpuid = rss_soft_m2cpuid_v4, 140 .nh_policy = NETISR_POLICY_CPU, 141 .nh_dispatch = NETISR_DISPATCH_HYBRID, 142 #else 143 .nh_policy = NETISR_POLICY_FLOW, 144 #endif 145 }; 146 147 #ifdef RSS 148 /* 149 * Directly dispatched frames are currently assumed 150 * to have a flowid already calculated. 151 * 152 * It should likely have something that assert it 153 * actually has valid flow details. 154 */ 155 static struct netisr_handler ip_direct_nh = { 156 .nh_name = "ip_direct", 157 .nh_handler = ip_direct_input, 158 .nh_proto = NETISR_IP_DIRECT, 159 .nh_m2cpuid = rss_soft_m2cpuid_v4, 160 .nh_policy = NETISR_POLICY_CPU, 161 .nh_dispatch = NETISR_DISPATCH_HYBRID, 162 }; 163 #endif 164 165 extern struct domain inetdomain; 166 extern struct protosw inetsw[]; 167 u_char ip_protox[IPPROTO_MAX]; 168 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 169 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 170 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 171 172 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 173 CTASSERT(sizeof(struct in_ifaddrhashhead) == sizeof(LIST_HEAD(, in_addr))); 174 175 #ifdef IPCTL_DEFMTU 176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 177 &ip_mtu, 0, "Default MTU"); 178 #endif 179 180 #ifdef IPSTEALTH 181 VNET_DEFINE(int, ipstealth); 182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 183 &VNET_NAME(ipstealth), 0, 184 "IP stealth mode, no TTL decrementation on forwarding"); 185 #endif 186 187 /* 188 * IP statistics are stored in the "array" of counter(9)s. 189 */ 190 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 191 VNET_PCPUSTAT_SYSINIT(ipstat); 192 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 193 "IP statistics (struct ipstat, netinet/ip_var.h)"); 194 195 #ifdef VIMAGE 196 VNET_PCPUSTAT_SYSUNINIT(ipstat); 197 #endif /* VIMAGE */ 198 199 /* 200 * Kernel module interface for updating ipstat. The argument is an index 201 * into ipstat treated as an array. 202 */ 203 void 204 kmod_ipstat_inc(int statnum) 205 { 206 207 counter_u64_add(VNET(ipstat)[statnum], 1); 208 } 209 210 void 211 kmod_ipstat_dec(int statnum) 212 { 213 214 counter_u64_add(VNET(ipstat)[statnum], -1); 215 } 216 217 static int 218 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 219 { 220 int error, qlimit; 221 222 netisr_getqlimit(&ip_nh, &qlimit); 223 error = sysctl_handle_int(oidp, &qlimit, 0, req); 224 if (error || !req->newptr) 225 return (error); 226 if (qlimit < 1) 227 return (EINVAL); 228 return (netisr_setqlimit(&ip_nh, qlimit)); 229 } 230 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 231 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 232 sysctl_netinet_intr_queue_maxlen, "I", 233 "Maximum size of the IP input queue"); 234 235 static int 236 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 237 { 238 u_int64_t qdrops_long; 239 int error, qdrops; 240 241 netisr_getqdrops(&ip_nh, &qdrops_long); 242 qdrops = qdrops_long; 243 error = sysctl_handle_int(oidp, &qdrops, 0, req); 244 if (error || !req->newptr) 245 return (error); 246 if (qdrops != 0) 247 return (EINVAL); 248 netisr_clearqdrops(&ip_nh); 249 return (0); 250 } 251 252 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 253 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 254 0, 0, sysctl_netinet_intr_queue_drops, "I", 255 "Number of packets dropped from the IP input queue"); 256 257 #ifdef RSS 258 static int 259 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 260 { 261 int error, qlimit; 262 263 netisr_getqlimit(&ip_direct_nh, &qlimit); 264 error = sysctl_handle_int(oidp, &qlimit, 0, req); 265 if (error || !req->newptr) 266 return (error); 267 if (qlimit < 1) 268 return (EINVAL); 269 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 270 } 271 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 272 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 273 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 274 "I", "Maximum size of the IP direct input queue"); 275 276 static int 277 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 278 { 279 u_int64_t qdrops_long; 280 int error, qdrops; 281 282 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 283 qdrops = qdrops_long; 284 error = sysctl_handle_int(oidp, &qdrops, 0, req); 285 if (error || !req->newptr) 286 return (error); 287 if (qdrops != 0) 288 return (EINVAL); 289 netisr_clearqdrops(&ip_direct_nh); 290 return (0); 291 } 292 293 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 294 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 295 sysctl_netinet_intr_direct_queue_drops, "I", 296 "Number of packets dropped from the IP direct input queue"); 297 #endif /* RSS */ 298 299 /* 300 * IP initialization: fill in IP protocol switch table. 301 * All protocols not implemented in kernel go to raw IP protocol handler. 302 */ 303 static void 304 ip_vnet_init(void *arg __unused) 305 { 306 struct pfil_head_args args; 307 308 CK_STAILQ_INIT(&V_in_ifaddrhead); 309 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 310 311 /* Initialize IP reassembly queue. */ 312 ipreass_init(); 313 314 /* Initialize packet filter hooks. */ 315 args.pa_version = PFIL_VERSION; 316 args.pa_flags = PFIL_IN | PFIL_OUT; 317 args.pa_type = PFIL_TYPE_IP4; 318 args.pa_headname = PFIL_INET_NAME; 319 V_inet_pfil_head = pfil_head_register(&args); 320 321 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 322 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 323 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 324 printf("%s: WARNING: unable to register input helper hook\n", 325 __func__); 326 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 327 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 328 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 329 printf("%s: WARNING: unable to register output helper hook\n", 330 __func__); 331 332 #ifdef VIMAGE 333 netisr_register_vnet(&ip_nh); 334 #ifdef RSS 335 netisr_register_vnet(&ip_direct_nh); 336 #endif 337 #endif 338 } 339 VNET_SYSINIT(ip_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 340 ip_vnet_init, NULL); 341 342 343 static void 344 ip_init(const void *unused __unused) 345 { 346 struct protosw *pr; 347 348 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 349 KASSERT(pr, ("%s: PF_INET not found", __func__)); 350 351 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 352 for (int i = 0; i < IPPROTO_MAX; i++) 353 ip_protox[i] = pr - inetsw; 354 /* 355 * Cycle through IP protocols and put them into the appropriate place 356 * in ip_protox[]. 357 */ 358 for (pr = inetdomain.dom_protosw; 359 pr < inetdomain.dom_protoswNPROTOSW; pr++) 360 if (pr->pr_domain->dom_family == PF_INET && 361 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 362 /* Be careful to only index valid IP protocols. */ 363 if (pr->pr_protocol < IPPROTO_MAX) 364 ip_protox[pr->pr_protocol] = pr - inetsw; 365 } 366 367 netisr_register(&ip_nh); 368 #ifdef RSS 369 netisr_register(&ip_direct_nh); 370 #endif 371 } 372 SYSINIT(ip_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_init, NULL); 373 374 #ifdef VIMAGE 375 static void 376 ip_destroy(void *unused __unused) 377 { 378 int error; 379 380 #ifdef RSS 381 netisr_unregister_vnet(&ip_direct_nh); 382 #endif 383 netisr_unregister_vnet(&ip_nh); 384 385 pfil_head_unregister(V_inet_pfil_head); 386 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 387 if (error != 0) { 388 printf("%s: WARNING: unable to deregister input helper hook " 389 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 390 "error %d returned\n", __func__, error); 391 } 392 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 393 if (error != 0) { 394 printf("%s: WARNING: unable to deregister output helper hook " 395 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 396 "error %d returned\n", __func__, error); 397 } 398 399 /* Remove the IPv4 addresses from all interfaces. */ 400 in_ifscrub_all(); 401 402 /* Make sure the IPv4 routes are gone as well. */ 403 rib_flush_routes_family(AF_INET); 404 405 /* Destroy IP reassembly queue. */ 406 ipreass_destroy(); 407 408 /* Cleanup in_ifaddr hash table; should be empty. */ 409 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 410 } 411 412 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 413 #endif 414 415 #ifdef RSS 416 /* 417 * IP direct input routine. 418 * 419 * This is called when reinjecting completed fragments where 420 * all of the previous checking and book-keeping has been done. 421 */ 422 void 423 ip_direct_input(struct mbuf *m) 424 { 425 struct ip *ip; 426 int hlen; 427 428 ip = mtod(m, struct ip *); 429 hlen = ip->ip_hl << 2; 430 431 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 432 if (IPSEC_ENABLED(ipv4)) { 433 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 434 return; 435 } 436 #endif /* IPSEC */ 437 IPSTAT_INC(ips_delivered); 438 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 439 return; 440 } 441 #endif 442 443 /* 444 * Ip input routine. Checksum and byte swap header. If fragmented 445 * try to reassemble. Process options. Pass to next level. 446 */ 447 void 448 ip_input(struct mbuf *m) 449 { 450 struct ip *ip = NULL; 451 struct in_ifaddr *ia = NULL; 452 struct ifaddr *ifa; 453 struct ifnet *ifp; 454 int hlen = 0; 455 uint16_t sum, ip_len; 456 int dchg = 0; /* dest changed after fw */ 457 struct in_addr odst; /* original dst address */ 458 bool strong_es; 459 460 M_ASSERTPKTHDR(m); 461 NET_EPOCH_ASSERT(); 462 463 if (m->m_flags & M_FASTFWD_OURS) { 464 m->m_flags &= ~M_FASTFWD_OURS; 465 /* Set up some basics that will be used later. */ 466 ip = mtod(m, struct ip *); 467 hlen = ip->ip_hl << 2; 468 ip_len = ntohs(ip->ip_len); 469 goto ours; 470 } 471 472 IPSTAT_INC(ips_total); 473 474 if (__predict_false(m->m_pkthdr.len < sizeof(struct ip))) 475 goto tooshort; 476 477 if (m->m_len < sizeof(struct ip)) { 478 m = m_pullup(m, sizeof(struct ip)); 479 if (__predict_false(m == NULL)) { 480 IPSTAT_INC(ips_toosmall); 481 return; 482 } 483 } 484 ip = mtod(m, struct ip *); 485 486 if (__predict_false(ip->ip_v != IPVERSION)) { 487 IPSTAT_INC(ips_badvers); 488 goto bad; 489 } 490 491 hlen = ip->ip_hl << 2; 492 if (__predict_false(hlen < sizeof(struct ip))) { /* minimum header length */ 493 IPSTAT_INC(ips_badhlen); 494 goto bad; 495 } 496 if (hlen > m->m_len) { 497 m = m_pullup(m, hlen); 498 if (__predict_false(m == NULL)) { 499 IPSTAT_INC(ips_badhlen); 500 return; 501 } 502 ip = mtod(m, struct ip *); 503 } 504 505 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 506 507 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 508 ifp = m->m_pkthdr.rcvif; 509 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 510 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 511 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 512 IPSTAT_INC(ips_badaddr); 513 goto bad; 514 } 515 } 516 517 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 518 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 519 } else { 520 if (hlen == sizeof(struct ip)) { 521 sum = in_cksum_hdr(ip); 522 } else { 523 sum = in_cksum(m, hlen); 524 } 525 } 526 if (__predict_false(sum)) { 527 IPSTAT_INC(ips_badsum); 528 goto bad; 529 } 530 531 #ifdef ALTQ 532 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 533 /* packet is dropped by traffic conditioner */ 534 return; 535 #endif 536 537 ip_len = ntohs(ip->ip_len); 538 if (__predict_false(ip_len < hlen)) { 539 IPSTAT_INC(ips_badlen); 540 goto bad; 541 } 542 543 /* 544 * Check that the amount of data in the buffers 545 * is as at least much as the IP header would have us expect. 546 * Trim mbufs if longer than we expect. 547 * Drop packet if shorter than we expect. 548 */ 549 if (__predict_false(m->m_pkthdr.len < ip_len)) { 550 tooshort: 551 IPSTAT_INC(ips_tooshort); 552 goto bad; 553 } 554 if (m->m_pkthdr.len > ip_len) { 555 if (m->m_len == m->m_pkthdr.len) { 556 m->m_len = ip_len; 557 m->m_pkthdr.len = ip_len; 558 } else 559 m_adj(m, ip_len - m->m_pkthdr.len); 560 } 561 562 /* 563 * Try to forward the packet, but if we fail continue. 564 * ip_tryforward() may generate redirects these days. 565 * XXX the logic below falling through to normal processing 566 * if redirects are required should be revisited as well. 567 * ip_tryforward() does inbound and outbound packet firewall 568 * processing. If firewall has decided that destination becomes 569 * our local address, it sets M_FASTFWD_OURS flag. In this 570 * case skip another inbound firewall processing and update 571 * ip pointer. 572 */ 573 if (V_ipforwarding != 0 574 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 575 && (!IPSEC_ENABLED(ipv4) || 576 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 577 #endif 578 ) { 579 /* 580 * ip_dooptions() was run so we can ignore the source route (or 581 * any IP options case) case for redirects in ip_tryforward(). 582 */ 583 if ((m = ip_tryforward(m)) == NULL) 584 return; 585 if (m->m_flags & M_FASTFWD_OURS) { 586 m->m_flags &= ~M_FASTFWD_OURS; 587 ip = mtod(m, struct ip *); 588 goto ours; 589 } 590 } 591 592 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 593 /* 594 * Bypass packet filtering for packets previously handled by IPsec. 595 */ 596 if (IPSEC_ENABLED(ipv4) && 597 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 598 goto passin; 599 #endif 600 601 /* 602 * Run through list of hooks for input packets. 603 * 604 * NB: Beware of the destination address changing (e.g. 605 * by NAT rewriting). When this happens, tell 606 * ip_forward to do the right thing. 607 */ 608 609 /* Jump over all PFIL processing if hooks are not active. */ 610 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 611 goto passin; 612 613 odst = ip->ip_dst; 614 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 615 PFIL_PASS) 616 return; 617 if (m == NULL) /* consumed by filter */ 618 return; 619 620 ip = mtod(m, struct ip *); 621 dchg = (odst.s_addr != ip->ip_dst.s_addr); 622 623 if (m->m_flags & M_FASTFWD_OURS) { 624 m->m_flags &= ~M_FASTFWD_OURS; 625 goto ours; 626 } 627 if (m->m_flags & M_IP_NEXTHOP) { 628 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 629 /* 630 * Directly ship the packet on. This allows 631 * forwarding packets originally destined to us 632 * to some other directly connected host. 633 */ 634 ip_forward(m, 1); 635 return; 636 } 637 } 638 passin: 639 640 /* 641 * Process options and, if not destined for us, 642 * ship it on. ip_dooptions returns 1 when an 643 * error was detected (causing an icmp message 644 * to be sent and the original packet to be freed). 645 */ 646 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 647 return; 648 649 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 650 * matter if it is destined to another node, or whether it is 651 * a multicast one, RSVP wants it! and prevents it from being forwarded 652 * anywhere else. Also checks if the rsvp daemon is running before 653 * grabbing the packet. 654 */ 655 if (ip->ip_p == IPPROTO_RSVP && V_rsvp_on) 656 goto ours; 657 658 /* 659 * Check our list of addresses, to see if the packet is for us. 660 * If we don't have any addresses, assume any unicast packet 661 * we receive might be for us (and let the upper layers deal 662 * with it). 663 */ 664 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 665 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 666 goto ours; 667 668 /* 669 * Enable a consistency check between the destination address 670 * and the arrival interface for a unicast packet (the RFC 1122 671 * strong ES model) with a list of additional predicates: 672 * - if IP forwarding is disabled 673 * - the packet is not locally generated 674 * - the packet is not subject to 'ipfw fwd' 675 * - Interface is not running CARP. If the packet got here, we already 676 * checked it with carp_iamatch() and carp_forus(). 677 */ 678 strong_es = V_ip_strong_es && (V_ipforwarding == 0) && 679 ((ifp->if_flags & IFF_LOOPBACK) == 0) && 680 ifp->if_carp == NULL && (dchg == 0); 681 682 /* 683 * Check for exact addresses in the hash bucket. 684 */ 685 CK_LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 686 if (IA_SIN(ia)->sin_addr.s_addr != ip->ip_dst.s_addr) 687 continue; 688 689 /* 690 * net.inet.ip.rfc1122_strong_es: the address matches, verify 691 * that the packet arrived via the correct interface. 692 */ 693 if (__predict_false(strong_es && ia->ia_ifp != ifp)) { 694 IPSTAT_INC(ips_badaddr); 695 goto bad; 696 } 697 698 /* 699 * net.inet.ip.source_address_validation: drop incoming 700 * packets that pretend to be ours. 701 */ 702 if (V_ip_sav && !(ifp->if_flags & IFF_LOOPBACK) && 703 __predict_false(in_localip_fib(ip->ip_src, ifp->if_fib))) { 704 IPSTAT_INC(ips_badaddr); 705 goto bad; 706 } 707 708 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 709 counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); 710 goto ours; 711 } 712 713 /* 714 * Check for broadcast addresses. 715 * 716 * Only accept broadcast packets that arrive via the matching 717 * interface. Reception of forwarded directed broadcasts would 718 * be handled via ip_forward() and ether_output() with the loopback 719 * into the stack for SIMPLEX interfaces handled by ether_output(). 720 */ 721 if (ifp->if_flags & IFF_BROADCAST) { 722 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 723 if (ifa->ifa_addr->sa_family != AF_INET) 724 continue; 725 ia = ifatoia(ifa); 726 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 727 ip->ip_dst.s_addr) { 728 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 729 counter_u64_add(ia->ia_ifa.ifa_ibytes, 730 m->m_pkthdr.len); 731 goto ours; 732 } 733 #ifdef BOOTP_COMPAT 734 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 735 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 736 counter_u64_add(ia->ia_ifa.ifa_ibytes, 737 m->m_pkthdr.len); 738 goto ours; 739 } 740 #endif 741 } 742 ia = NULL; 743 } 744 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 745 /* 746 * RFC 3927 2.7: Do not forward multicast packets from 747 * IN_LINKLOCAL. 748 */ 749 if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 750 /* 751 * If we are acting as a multicast router, all 752 * incoming multicast packets are passed to the 753 * kernel-level multicast forwarding function. 754 * The packet is returned (relatively) intact; if 755 * ip_mforward() returns a non-zero value, the packet 756 * must be discarded, else it may be accepted below. 757 */ 758 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 759 IPSTAT_INC(ips_cantforward); 760 m_freem(m); 761 return; 762 } 763 764 /* 765 * The process-level routing daemon needs to receive 766 * all multicast IGMP packets, whether or not this 767 * host belongs to their destination groups. 768 */ 769 if (ip->ip_p == IPPROTO_IGMP) { 770 goto ours; 771 } 772 IPSTAT_INC(ips_forward); 773 } 774 /* 775 * Assume the packet is for us, to avoid prematurely taking 776 * a lock on the in_multi hash. Protocols must perform 777 * their own filtering and update statistics accordingly. 778 */ 779 goto ours; 780 } 781 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 782 goto ours; 783 if (ip->ip_dst.s_addr == INADDR_ANY) 784 goto ours; 785 /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */ 786 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || 787 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 788 IPSTAT_INC(ips_cantforward); 789 m_freem(m); 790 return; 791 } 792 793 /* 794 * Not for us; forward if possible and desirable. 795 */ 796 if (V_ipforwarding == 0) { 797 IPSTAT_INC(ips_cantforward); 798 m_freem(m); 799 } else { 800 ip_forward(m, dchg); 801 } 802 return; 803 804 ours: 805 #ifdef IPSTEALTH 806 /* 807 * IPSTEALTH: Process non-routing options only 808 * if the packet is destined for us. 809 */ 810 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 811 return; 812 #endif /* IPSTEALTH */ 813 814 /* 815 * Attempt reassembly; if it succeeds, proceed. 816 * ip_reass() will return a different mbuf. 817 */ 818 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 819 /* XXXGL: shouldn't we save & set m_flags? */ 820 m = ip_reass(m); 821 if (m == NULL) 822 return; 823 ip = mtod(m, struct ip *); 824 /* Get the header length of the reassembled packet */ 825 hlen = ip->ip_hl << 2; 826 } 827 828 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 829 if (IPSEC_ENABLED(ipv4)) { 830 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 831 return; 832 } 833 #endif /* IPSEC */ 834 835 /* 836 * Switch out to protocol's input routine. 837 */ 838 IPSTAT_INC(ips_delivered); 839 840 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 841 return; 842 bad: 843 m_freem(m); 844 } 845 846 /* 847 * IP timer processing; 848 * if a timer expires on a reassembly 849 * queue, discard it. 850 */ 851 void 852 ip_slowtimo(void) 853 { 854 VNET_ITERATOR_DECL(vnet_iter); 855 856 VNET_LIST_RLOCK_NOSLEEP(); 857 VNET_FOREACH(vnet_iter) { 858 CURVNET_SET(vnet_iter); 859 ipreass_slowtimo(); 860 CURVNET_RESTORE(); 861 } 862 VNET_LIST_RUNLOCK_NOSLEEP(); 863 } 864 865 void 866 ip_drain(void) 867 { 868 VNET_ITERATOR_DECL(vnet_iter); 869 870 VNET_LIST_RLOCK_NOSLEEP(); 871 VNET_FOREACH(vnet_iter) { 872 CURVNET_SET(vnet_iter); 873 ipreass_drain(); 874 CURVNET_RESTORE(); 875 } 876 VNET_LIST_RUNLOCK_NOSLEEP(); 877 } 878 879 /* 880 * The protocol to be inserted into ip_protox[] must be already registered 881 * in inetsw[], either statically or through pf_proto_register(). 882 */ 883 int 884 ipproto_register(short ipproto) 885 { 886 struct protosw *pr; 887 888 /* Sanity checks. */ 889 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 890 return (EPROTONOSUPPORT); 891 892 /* 893 * The protocol slot must not be occupied by another protocol 894 * already. An index pointing to IPPROTO_RAW is unused. 895 */ 896 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 897 if (pr == NULL) 898 return (EPFNOSUPPORT); 899 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 900 return (EEXIST); 901 902 /* Find the protocol position in inetsw[] and set the index. */ 903 for (pr = inetdomain.dom_protosw; 904 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 905 if (pr->pr_domain->dom_family == PF_INET && 906 pr->pr_protocol && pr->pr_protocol == ipproto) { 907 ip_protox[pr->pr_protocol] = pr - inetsw; 908 return (0); 909 } 910 } 911 return (EPROTONOSUPPORT); 912 } 913 914 int 915 ipproto_unregister(short ipproto) 916 { 917 struct protosw *pr; 918 919 /* Sanity checks. */ 920 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 921 return (EPROTONOSUPPORT); 922 923 /* Check if the protocol was indeed registered. */ 924 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 925 if (pr == NULL) 926 return (EPFNOSUPPORT); 927 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 928 return (ENOENT); 929 930 /* Reset the protocol slot to IPPROTO_RAW. */ 931 ip_protox[ipproto] = pr - inetsw; 932 return (0); 933 } 934 935 u_char inetctlerrmap[PRC_NCMDS] = { 936 0, 0, 0, 0, 937 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 938 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 939 EMSGSIZE, EHOSTUNREACH, 0, 0, 940 0, 0, EHOSTUNREACH, 0, 941 ENOPROTOOPT, ECONNREFUSED 942 }; 943 944 /* 945 * Forward a packet. If some error occurs return the sender 946 * an icmp packet. Note we can't always generate a meaningful 947 * icmp message because icmp doesn't have a large enough repertoire 948 * of codes and types. 949 * 950 * If not forwarding, just drop the packet. This could be confusing 951 * if ipforwarding was zero but some routing protocol was advancing 952 * us as a gateway to somewhere. However, we must let the routing 953 * protocol deal with that. 954 * 955 * The srcrt parameter indicates whether the packet is being forwarded 956 * via a source route. 957 */ 958 void 959 ip_forward(struct mbuf *m, int srcrt) 960 { 961 struct ip *ip = mtod(m, struct ip *); 962 struct in_ifaddr *ia; 963 struct mbuf *mcopy; 964 struct sockaddr_in *sin; 965 struct in_addr dest; 966 struct route ro; 967 uint32_t flowid; 968 int error, type = 0, code = 0, mtu = 0; 969 970 NET_EPOCH_ASSERT(); 971 972 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 973 IPSTAT_INC(ips_cantforward); 974 m_freem(m); 975 return; 976 } 977 if ( 978 #ifdef IPSTEALTH 979 V_ipstealth == 0 && 980 #endif 981 ip->ip_ttl <= IPTTLDEC) { 982 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 983 return; 984 } 985 986 bzero(&ro, sizeof(ro)); 987 sin = (struct sockaddr_in *)&ro.ro_dst; 988 sin->sin_family = AF_INET; 989 sin->sin_len = sizeof(*sin); 990 sin->sin_addr = ip->ip_dst; 991 flowid = m->m_pkthdr.flowid; 992 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 993 if (ro.ro_nh != NULL) { 994 ia = ifatoia(ro.ro_nh->nh_ifa); 995 } else 996 ia = NULL; 997 /* 998 * Save the IP header and at most 8 bytes of the payload, 999 * in case we need to generate an ICMP message to the src. 1000 * 1001 * XXX this can be optimized a lot by saving the data in a local 1002 * buffer on the stack (72 bytes at most), and only allocating the 1003 * mbuf if really necessary. The vast majority of the packets 1004 * are forwarded without having to send an ICMP back (either 1005 * because unnecessary, or because rate limited), so we are 1006 * really we are wasting a lot of work here. 1007 * 1008 * We don't use m_copym() because it might return a reference 1009 * to a shared cluster. Both this function and ip_output() 1010 * assume exclusive access to the IP header in `m', so any 1011 * data in a cluster may change before we reach icmp_error(). 1012 */ 1013 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1014 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1015 /* 1016 * It's probably ok if the pkthdr dup fails (because 1017 * the deep copy of the tag chain failed), but for now 1018 * be conservative and just discard the copy since 1019 * code below may some day want the tags. 1020 */ 1021 m_free(mcopy); 1022 mcopy = NULL; 1023 } 1024 if (mcopy != NULL) { 1025 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1026 mcopy->m_pkthdr.len = mcopy->m_len; 1027 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1028 } 1029 #ifdef IPSTEALTH 1030 if (V_ipstealth == 0) 1031 #endif 1032 ip->ip_ttl -= IPTTLDEC; 1033 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1034 if (IPSEC_ENABLED(ipv4)) { 1035 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1036 /* mbuf consumed by IPsec */ 1037 RO_NHFREE(&ro); 1038 m_freem(mcopy); 1039 if (error != EINPROGRESS) 1040 IPSTAT_INC(ips_cantforward); 1041 return; 1042 } 1043 /* No IPsec processing required */ 1044 } 1045 #endif /* IPSEC */ 1046 /* 1047 * If forwarding packet using same interface that it came in on, 1048 * perhaps should send a redirect to sender to shortcut a hop. 1049 * Only send redirect if source is sending directly to us, 1050 * and if packet was not source routed (or has any options). 1051 * Also, don't send redirect if forwarding using a default route 1052 * or a route modified by a redirect. 1053 */ 1054 dest.s_addr = 0; 1055 if (!srcrt && V_ipsendredirects && 1056 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1057 struct nhop_object *nh; 1058 1059 nh = ro.ro_nh; 1060 1061 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1062 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1063 u_long src = ntohl(ip->ip_src.s_addr); 1064 1065 if (nh_ia != NULL && 1066 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1067 /* Router requirements says to only send host redirects */ 1068 type = ICMP_REDIRECT; 1069 code = ICMP_REDIRECT_HOST; 1070 if (nh->nh_flags & NHF_GATEWAY) { 1071 if (nh->gw_sa.sa_family == AF_INET) 1072 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1073 else /* Do not redirect in case gw is AF_INET6 */ 1074 type = 0; 1075 } else 1076 dest.s_addr = ip->ip_dst.s_addr; 1077 } 1078 } 1079 } 1080 1081 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1082 1083 if (error == EMSGSIZE && ro.ro_nh) 1084 mtu = ro.ro_nh->nh_mtu; 1085 RO_NHFREE(&ro); 1086 1087 if (error) 1088 IPSTAT_INC(ips_cantforward); 1089 else { 1090 IPSTAT_INC(ips_forward); 1091 if (type) 1092 IPSTAT_INC(ips_redirectsent); 1093 else { 1094 if (mcopy) 1095 m_freem(mcopy); 1096 return; 1097 } 1098 } 1099 if (mcopy == NULL) 1100 return; 1101 1102 switch (error) { 1103 case 0: /* forwarded, but need redirect */ 1104 /* type, code set above */ 1105 break; 1106 1107 case ENETUNREACH: 1108 case EHOSTUNREACH: 1109 case ENETDOWN: 1110 case EHOSTDOWN: 1111 default: 1112 type = ICMP_UNREACH; 1113 code = ICMP_UNREACH_HOST; 1114 break; 1115 1116 case EMSGSIZE: 1117 type = ICMP_UNREACH; 1118 code = ICMP_UNREACH_NEEDFRAG; 1119 /* 1120 * If the MTU was set before make sure we are below the 1121 * interface MTU. 1122 * If the MTU wasn't set before use the interface mtu or 1123 * fall back to the next smaller mtu step compared to the 1124 * current packet size. 1125 */ 1126 if (mtu != 0) { 1127 if (ia != NULL) 1128 mtu = min(mtu, ia->ia_ifp->if_mtu); 1129 } else { 1130 if (ia != NULL) 1131 mtu = ia->ia_ifp->if_mtu; 1132 else 1133 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1134 } 1135 IPSTAT_INC(ips_cantfrag); 1136 break; 1137 1138 case ENOBUFS: 1139 case EACCES: /* ipfw denied packet */ 1140 m_freem(mcopy); 1141 return; 1142 } 1143 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1144 } 1145 1146 #define CHECK_SO_CT(sp, ct) \ 1147 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1148 1149 void 1150 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1151 struct mbuf *m) 1152 { 1153 bool stamped; 1154 1155 stamped = false; 1156 if ((inp->inp_socket->so_options & SO_BINTIME) || 1157 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1158 struct bintime boottimebin, bt; 1159 struct timespec ts1; 1160 1161 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1162 M_TSTMP)) { 1163 mbuf_tstmp2timespec(m, &ts1); 1164 timespec2bintime(&ts1, &bt); 1165 getboottimebin(&boottimebin); 1166 bintime_add(&bt, &boottimebin); 1167 } else { 1168 bintime(&bt); 1169 } 1170 *mp = sbcreatecontrol(&bt, sizeof(bt), SCM_BINTIME, 1171 SOL_SOCKET, M_NOWAIT); 1172 if (*mp != NULL) { 1173 mp = &(*mp)->m_next; 1174 stamped = true; 1175 } 1176 } 1177 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1178 struct bintime boottimebin, bt1; 1179 struct timespec ts1; 1180 struct timeval tv; 1181 1182 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1183 M_TSTMP)) { 1184 mbuf_tstmp2timespec(m, &ts1); 1185 timespec2bintime(&ts1, &bt1); 1186 getboottimebin(&boottimebin); 1187 bintime_add(&bt1, &boottimebin); 1188 bintime2timeval(&bt1, &tv); 1189 } else { 1190 microtime(&tv); 1191 } 1192 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), SCM_TIMESTAMP, 1193 SOL_SOCKET, M_NOWAIT); 1194 if (*mp != NULL) { 1195 mp = &(*mp)->m_next; 1196 stamped = true; 1197 } 1198 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1199 struct bintime boottimebin; 1200 struct timespec ts, ts1; 1201 1202 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1203 M_TSTMP)) { 1204 mbuf_tstmp2timespec(m, &ts); 1205 getboottimebin(&boottimebin); 1206 bintime2timespec(&boottimebin, &ts1); 1207 timespecadd(&ts, &ts1, &ts); 1208 } else { 1209 nanotime(&ts); 1210 } 1211 *mp = sbcreatecontrol(&ts, sizeof(ts), SCM_REALTIME, 1212 SOL_SOCKET, M_NOWAIT); 1213 if (*mp != NULL) { 1214 mp = &(*mp)->m_next; 1215 stamped = true; 1216 } 1217 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1218 struct timespec ts; 1219 1220 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1221 M_TSTMP)) 1222 mbuf_tstmp2timespec(m, &ts); 1223 else 1224 nanouptime(&ts); 1225 *mp = sbcreatecontrol(&ts, sizeof(ts), SCM_MONOTONIC, 1226 SOL_SOCKET, M_NOWAIT); 1227 if (*mp != NULL) { 1228 mp = &(*mp)->m_next; 1229 stamped = true; 1230 } 1231 } 1232 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1233 M_TSTMP)) { 1234 struct sock_timestamp_info sti; 1235 1236 bzero(&sti, sizeof(sti)); 1237 sti.st_info_flags = ST_INFO_HW; 1238 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1239 sti.st_info_flags |= ST_INFO_HW_HPREC; 1240 *mp = sbcreatecontrol(&sti, sizeof(sti), SCM_TIME_INFO, 1241 SOL_SOCKET, M_NOWAIT); 1242 if (*mp != NULL) 1243 mp = &(*mp)->m_next; 1244 } 1245 if (inp->inp_flags & INP_RECVDSTADDR) { 1246 *mp = sbcreatecontrol(&ip->ip_dst, sizeof(struct in_addr), 1247 IP_RECVDSTADDR, IPPROTO_IP, M_NOWAIT); 1248 if (*mp) 1249 mp = &(*mp)->m_next; 1250 } 1251 if (inp->inp_flags & INP_RECVTTL) { 1252 *mp = sbcreatecontrol(&ip->ip_ttl, sizeof(u_char), IP_RECVTTL, 1253 IPPROTO_IP, M_NOWAIT); 1254 if (*mp) 1255 mp = &(*mp)->m_next; 1256 } 1257 #ifdef notyet 1258 /* XXX 1259 * Moving these out of udp_input() made them even more broken 1260 * than they already were. 1261 */ 1262 /* options were tossed already */ 1263 if (inp->inp_flags & INP_RECVOPTS) { 1264 *mp = sbcreatecontrol(opts_deleted_above, 1265 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP, M_NOWAIT); 1266 if (*mp) 1267 mp = &(*mp)->m_next; 1268 } 1269 /* ip_srcroute doesn't do what we want here, need to fix */ 1270 if (inp->inp_flags & INP_RECVRETOPTS) { 1271 *mp = sbcreatecontrol(ip_srcroute(m), sizeof(struct in_addr), 1272 IP_RECVRETOPTS, IPPROTO_IP, M_NOWAIT); 1273 if (*mp) 1274 mp = &(*mp)->m_next; 1275 } 1276 #endif 1277 if (inp->inp_flags & INP_RECVIF) { 1278 struct ifnet *ifp; 1279 struct sdlbuf { 1280 struct sockaddr_dl sdl; 1281 u_char pad[32]; 1282 } sdlbuf; 1283 struct sockaddr_dl *sdp; 1284 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1285 1286 if ((ifp = m->m_pkthdr.rcvif)) { 1287 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1288 /* 1289 * Change our mind and don't try copy. 1290 */ 1291 if (sdp->sdl_family != AF_LINK || 1292 sdp->sdl_len > sizeof(sdlbuf)) { 1293 goto makedummy; 1294 } 1295 bcopy(sdp, sdl2, sdp->sdl_len); 1296 } else { 1297 makedummy: 1298 sdl2->sdl_len = 1299 offsetof(struct sockaddr_dl, sdl_data[0]); 1300 sdl2->sdl_family = AF_LINK; 1301 sdl2->sdl_index = 0; 1302 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1303 } 1304 *mp = sbcreatecontrol(sdl2, sdl2->sdl_len, IP_RECVIF, 1305 IPPROTO_IP, M_NOWAIT); 1306 if (*mp) 1307 mp = &(*mp)->m_next; 1308 } 1309 if (inp->inp_flags & INP_RECVTOS) { 1310 *mp = sbcreatecontrol(&ip->ip_tos, sizeof(u_char), IP_RECVTOS, 1311 IPPROTO_IP, M_NOWAIT); 1312 if (*mp) 1313 mp = &(*mp)->m_next; 1314 } 1315 1316 if (inp->inp_flags2 & INP_RECVFLOWID) { 1317 uint32_t flowid, flow_type; 1318 1319 flowid = m->m_pkthdr.flowid; 1320 flow_type = M_HASHTYPE_GET(m); 1321 1322 /* 1323 * XXX should handle the failure of one or the 1324 * other - don't populate both? 1325 */ 1326 *mp = sbcreatecontrol(&flowid, sizeof(uint32_t), IP_FLOWID, 1327 IPPROTO_IP, M_NOWAIT); 1328 if (*mp) 1329 mp = &(*mp)->m_next; 1330 *mp = sbcreatecontrol(&flow_type, sizeof(uint32_t), 1331 IP_FLOWTYPE, IPPROTO_IP, M_NOWAIT); 1332 if (*mp) 1333 mp = &(*mp)->m_next; 1334 } 1335 1336 #ifdef RSS 1337 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1338 uint32_t flowid, flow_type; 1339 uint32_t rss_bucketid; 1340 1341 flowid = m->m_pkthdr.flowid; 1342 flow_type = M_HASHTYPE_GET(m); 1343 1344 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1345 *mp = sbcreatecontrol(&rss_bucketid, sizeof(uint32_t), 1346 IP_RSSBUCKETID, IPPROTO_IP, M_NOWAIT); 1347 if (*mp) 1348 mp = &(*mp)->m_next; 1349 } 1350 } 1351 #endif 1352 } 1353 1354 /* 1355 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1356 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1357 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1358 * compiled. 1359 */ 1360 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1361 VNET_DEFINE(struct socket *, ip_rsvpd); 1362 1363 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1364 1365 int 1366 ip_rsvp_init(struct socket *so) 1367 { 1368 1369 if (so->so_type != SOCK_RAW || 1370 so->so_proto->pr_protocol != IPPROTO_RSVP) 1371 return EOPNOTSUPP; 1372 1373 if (V_ip_rsvpd != NULL) 1374 return EADDRINUSE; 1375 1376 V_ip_rsvpd = so; 1377 /* 1378 * This may seem silly, but we need to be sure we don't over-increment 1379 * the RSVP counter, in case something slips up. 1380 */ 1381 if (!V_ip_rsvp_on) { 1382 V_ip_rsvp_on = 1; 1383 V_rsvp_on++; 1384 } 1385 1386 return 0; 1387 } 1388 1389 int 1390 ip_rsvp_done(void) 1391 { 1392 1393 V_ip_rsvpd = NULL; 1394 /* 1395 * This may seem silly, but we need to be sure we don't over-decrement 1396 * the RSVP counter, in case something slips up. 1397 */ 1398 if (V_ip_rsvp_on) { 1399 V_ip_rsvp_on = 0; 1400 V_rsvp_on--; 1401 } 1402 return 0; 1403 } 1404 1405 int 1406 rsvp_input(struct mbuf **mp, int *offp, int proto) 1407 { 1408 struct mbuf *m; 1409 1410 m = *mp; 1411 *mp = NULL; 1412 1413 if (rsvp_input_p) { /* call the real one if loaded */ 1414 *mp = m; 1415 rsvp_input_p(mp, offp, proto); 1416 return (IPPROTO_DONE); 1417 } 1418 1419 /* Can still get packets with rsvp_on = 0 if there is a local member 1420 * of the group to which the RSVP packet is addressed. But in this 1421 * case we want to throw the packet away. 1422 */ 1423 1424 if (!V_rsvp_on) { 1425 m_freem(m); 1426 return (IPPROTO_DONE); 1427 } 1428 1429 if (V_ip_rsvpd != NULL) { 1430 *mp = m; 1431 rip_input(mp, offp, proto); 1432 return (IPPROTO_DONE); 1433 } 1434 /* Drop the packet */ 1435 m_freem(m); 1436 return (IPPROTO_DONE); 1437 } 1438