xref: /freebsd/sys/netinet/ip_input.c (revision 8655c70597b0e0918c82114b1186df5669b83eb6)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_mac.h"
41 #include "opt_carp.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/rwlock.h>
55 #include <sys/syslog.h>
56 #include <sys/sysctl.h>
57 #include <sys/vimage.h>
58 
59 #include <net/pfil.h>
60 #include <net/if.h>
61 #include <net/if_types.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/route.h>
65 #include <net/netisr.h>
66 #include <net/vnet.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #include <netinet/vinet.h>
78 #ifdef DEV_CARP
79 #include <netinet/ip_carp.h>
80 #endif
81 #ifdef IPSEC
82 #include <netinet/ip_ipsec.h>
83 #endif /* IPSEC */
84 
85 #include <sys/socketvar.h>
86 
87 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
88 #include <netinet/ip_fw.h>
89 #include <netinet/ip_dummynet.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #ifdef CTASSERT
94 CTASSERT(sizeof(struct ip) == 20);
95 #endif
96 
97 #ifndef VIMAGE
98 #ifndef VIMAGE_GLOBALS
99 struct vnet_inet vnet_inet_0;
100 #endif
101 #endif
102 
103 #ifdef VIMAGE_GLOBALS
104 static int	ipsendredirects;
105 static int	ip_checkinterface;
106 static int	ip_keepfaith;
107 static int	ip_sendsourcequench;
108 int	ip_defttl;
109 int	ip_do_randomid;
110 int	ipforwarding;
111 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
112 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
113 u_long 	in_ifaddrhmask;				/* mask for hash table */
114 struct ipstat ipstat;
115 static int ip_rsvp_on;
116 struct socket *ip_rsvpd;
117 int	rsvp_on;
118 static struct ipqhead ipq[IPREASS_NHASH];
119 static int	maxnipq;	/* Administrative limit on # reass queues. */
120 static int	maxfragsperpacket;
121 int	ipstealth;
122 static int	nipq;	/* Total # of reass queues */
123 #endif
124 
125 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
126     forwarding, CTLFLAG_RW, ipforwarding, 0,
127     "Enable IP forwarding between interfaces");
128 
129 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
130     redirect, CTLFLAG_RW, ipsendredirects, 0,
131     "Enable sending IP redirects");
132 
133 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
134     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
135 
136 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
137     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
138     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
139 
140 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
141     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
142     "Enable the transmission of source quench packets");
143 
144 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
145     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
146 
147 /*
148  * XXX - Setting ip_checkinterface mostly implements the receive side of
149  * the Strong ES model described in RFC 1122, but since the routing table
150  * and transmit implementation do not implement the Strong ES model,
151  * setting this to 1 results in an odd hybrid.
152  *
153  * XXX - ip_checkinterface currently must be disabled if you use ipnat
154  * to translate the destination address to another local interface.
155  *
156  * XXX - ip_checkinterface must be disabled if you add IP aliases
157  * to the loopback interface instead of the interface where the
158  * packets for those addresses are received.
159  */
160 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
161     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
162     "Verify packet arrives on correct interface");
163 
164 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
165 
166 static struct	ifqueue ipintrq;
167 static int	ipqmaxlen = IFQ_MAXLEN;
168 
169 extern	struct domain inetdomain;
170 extern	struct protosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 
173 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
174     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
175 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
176     &ipintrq.ifq_drops, 0,
177     "Number of packets dropped from the IP input queue");
178 
179 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
180     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
181 
182 #ifdef VIMAGE_GLOBALS
183 static uma_zone_t ipq_zone;
184 #endif
185 static struct mtx ipqlock;
186 
187 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
188 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
189 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
190 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
191 
192 static void	maxnipq_update(void);
193 static void	ipq_zone_change(void *);
194 
195 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
196     CTLFLAG_RD, nipq, 0,
197     "Current number of IPv4 fragment reassembly queue entries");
198 
199 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
200     CTLFLAG_RW, maxfragsperpacket, 0,
201     "Maximum number of IPv4 fragments allowed per packet");
202 
203 struct callout	ipport_tick_callout;
204 
205 #ifdef IPCTL_DEFMTU
206 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
207     &ip_mtu, 0, "Default MTU");
208 #endif
209 
210 #ifdef IPSTEALTH
211 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
212     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
213 #endif
214 
215 /*
216  * ipfw_ether and ipfw_bridge hooks.
217  * XXX: Temporary until those are converted to pfil_hooks as well.
218  */
219 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
220 ip_dn_io_t *ip_dn_io_ptr = NULL;
221 #ifdef VIMAGE_GLOBALS
222 int fw_one_pass;
223 #endif
224 
225 static void	ip_freef(struct ipqhead *, struct ipq *);
226 
227 /*
228  * IP initialization: fill in IP protocol switch table.
229  * All protocols not implemented in kernel go to raw IP protocol handler.
230  */
231 void
232 ip_init(void)
233 {
234 	INIT_VNET_INET(curvnet);
235 	struct protosw *pr;
236 	int i;
237 
238 	V_ipsendredirects = 1; /* XXX */
239 	V_ip_checkinterface = 0;
240 	V_ip_keepfaith = 0;
241 	V_ip_sendsourcequench = 0;
242 	V_rsvp_on = 0;
243 	V_ip_defttl = IPDEFTTL;
244 	V_ip_do_randomid = 0;
245 	V_ipforwarding = 0;
246 	V_ipstealth = 0;
247 	V_nipq = 0;	/* Total # of reass queues */
248 
249 	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
250 	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
251 	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
252 	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
253 	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
254 	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
255 	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
256 	V_ipport_reservedlow = 0;
257 	V_ipport_randomized = 1;	/* user controlled via sysctl */
258 	V_ipport_randomcps = 10;	/* user controlled via sysctl */
259 	V_ipport_randomtime = 45;	/* user controlled via sysctl */
260 	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
261 
262 	V_fw_one_pass = 1;
263 
264 #ifdef NOTYET
265 	/* XXX global static but not instantiated in this file */
266 	V_ipfastforward_active = 0;
267 	V_subnetsarelocal = 0;
268 	V_sameprefixcarponly = 0;
269 #endif
270 
271 	TAILQ_INIT(&V_in_ifaddrhead);
272 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
273 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
274 	if (pr == NULL)
275 		panic("ip_init: PF_INET not found");
276 
277 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
278 	for (i = 0; i < IPPROTO_MAX; i++)
279 		ip_protox[i] = pr - inetsw;
280 	/*
281 	 * Cycle through IP protocols and put them into the appropriate place
282 	 * in ip_protox[].
283 	 */
284 	for (pr = inetdomain.dom_protosw;
285 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
286 		if (pr->pr_domain->dom_family == PF_INET &&
287 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
288 			/* Be careful to only index valid IP protocols. */
289 			if (pr->pr_protocol < IPPROTO_MAX)
290 				ip_protox[pr->pr_protocol] = pr - inetsw;
291 		}
292 
293 	/* Initialize packet filter hooks. */
294 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
295 	inet_pfil_hook.ph_af = AF_INET;
296 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
297 		printf("%s: WARNING: unable to register pfil hook, "
298 			"error %d\n", __func__, i);
299 
300 	/* Initialize IP reassembly queue. */
301 	IPQ_LOCK_INIT();
302 	for (i = 0; i < IPREASS_NHASH; i++)
303 	    TAILQ_INIT(&V_ipq[i]);
304 	V_maxnipq = nmbclusters / 32;
305 	V_maxfragsperpacket = 16;
306 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
307 	    NULL, UMA_ALIGN_PTR, 0);
308 	maxnipq_update();
309 
310 	/* Start ipport_tick. */
311 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
312 	ipport_tick(NULL);
313 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
314 		SHUTDOWN_PRI_DEFAULT);
315 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
316 		NULL, EVENTHANDLER_PRI_ANY);
317 
318 	/* Initialize various other remaining things. */
319 	V_ip_id = time_second & 0xffff;
320 	ipintrq.ifq_maxlen = ipqmaxlen;
321 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
322 	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
323 }
324 
325 void
326 ip_fini(void *xtp)
327 {
328 
329 	callout_stop(&ipport_tick_callout);
330 }
331 
332 /*
333  * Ip input routine.  Checksum and byte swap header.  If fragmented
334  * try to reassemble.  Process options.  Pass to next level.
335  */
336 void
337 ip_input(struct mbuf *m)
338 {
339 	INIT_VNET_INET(curvnet);
340 	struct ip *ip = NULL;
341 	struct in_ifaddr *ia = NULL;
342 	struct ifaddr *ifa;
343 	int    checkif, hlen = 0;
344 	u_short sum;
345 	int dchg = 0;				/* dest changed after fw */
346 	struct in_addr odst;			/* original dst address */
347 
348 	M_ASSERTPKTHDR(m);
349 
350 	if (m->m_flags & M_FASTFWD_OURS) {
351 		/*
352 		 * Firewall or NAT changed destination to local.
353 		 * We expect ip_len and ip_off to be in host byte order.
354 		 */
355 		m->m_flags &= ~M_FASTFWD_OURS;
356 		/* Set up some basics that will be used later. */
357 		ip = mtod(m, struct ip *);
358 		hlen = ip->ip_hl << 2;
359 		goto ours;
360 	}
361 
362 	V_ipstat.ips_total++;
363 
364 	if (m->m_pkthdr.len < sizeof(struct ip))
365 		goto tooshort;
366 
367 	if (m->m_len < sizeof (struct ip) &&
368 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
369 		V_ipstat.ips_toosmall++;
370 		return;
371 	}
372 	ip = mtod(m, struct ip *);
373 
374 	if (ip->ip_v != IPVERSION) {
375 		V_ipstat.ips_badvers++;
376 		goto bad;
377 	}
378 
379 	hlen = ip->ip_hl << 2;
380 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
381 		V_ipstat.ips_badhlen++;
382 		goto bad;
383 	}
384 	if (hlen > m->m_len) {
385 		if ((m = m_pullup(m, hlen)) == NULL) {
386 			V_ipstat.ips_badhlen++;
387 			return;
388 		}
389 		ip = mtod(m, struct ip *);
390 	}
391 
392 	/* 127/8 must not appear on wire - RFC1122 */
393 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
394 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
395 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
396 			V_ipstat.ips_badaddr++;
397 			goto bad;
398 		}
399 	}
400 
401 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
402 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
403 	} else {
404 		if (hlen == sizeof(struct ip)) {
405 			sum = in_cksum_hdr(ip);
406 		} else {
407 			sum = in_cksum(m, hlen);
408 		}
409 	}
410 	if (sum) {
411 		V_ipstat.ips_badsum++;
412 		goto bad;
413 	}
414 
415 #ifdef ALTQ
416 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
417 		/* packet is dropped by traffic conditioner */
418 		return;
419 #endif
420 
421 	/*
422 	 * Convert fields to host representation.
423 	 */
424 	ip->ip_len = ntohs(ip->ip_len);
425 	if (ip->ip_len < hlen) {
426 		V_ipstat.ips_badlen++;
427 		goto bad;
428 	}
429 	ip->ip_off = ntohs(ip->ip_off);
430 
431 	/*
432 	 * Check that the amount of data in the buffers
433 	 * is as at least much as the IP header would have us expect.
434 	 * Trim mbufs if longer than we expect.
435 	 * Drop packet if shorter than we expect.
436 	 */
437 	if (m->m_pkthdr.len < ip->ip_len) {
438 tooshort:
439 		V_ipstat.ips_tooshort++;
440 		goto bad;
441 	}
442 	if (m->m_pkthdr.len > ip->ip_len) {
443 		if (m->m_len == m->m_pkthdr.len) {
444 			m->m_len = ip->ip_len;
445 			m->m_pkthdr.len = ip->ip_len;
446 		} else
447 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
448 	}
449 #ifdef IPSEC
450 	/*
451 	 * Bypass packet filtering for packets from a tunnel (gif).
452 	 */
453 	if (ip_ipsec_filtertunnel(m))
454 		goto passin;
455 #endif /* IPSEC */
456 
457 	/*
458 	 * Run through list of hooks for input packets.
459 	 *
460 	 * NB: Beware of the destination address changing (e.g.
461 	 *     by NAT rewriting).  When this happens, tell
462 	 *     ip_forward to do the right thing.
463 	 */
464 
465 	/* Jump over all PFIL processing if hooks are not active. */
466 	if (!PFIL_HOOKED(&inet_pfil_hook))
467 		goto passin;
468 
469 	odst = ip->ip_dst;
470 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
471 	    PFIL_IN, NULL) != 0)
472 		return;
473 	if (m == NULL)			/* consumed by filter */
474 		return;
475 
476 	ip = mtod(m, struct ip *);
477 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
478 
479 #ifdef IPFIREWALL_FORWARD
480 	if (m->m_flags & M_FASTFWD_OURS) {
481 		m->m_flags &= ~M_FASTFWD_OURS;
482 		goto ours;
483 	}
484 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
485 		/*
486 		 * Directly ship on the packet.  This allows to forward packets
487 		 * that were destined for us to some other directly connected
488 		 * host.
489 		 */
490 		ip_forward(m, dchg);
491 		return;
492 	}
493 #endif /* IPFIREWALL_FORWARD */
494 
495 passin:
496 	/*
497 	 * Process options and, if not destined for us,
498 	 * ship it on.  ip_dooptions returns 1 when an
499 	 * error was detected (causing an icmp message
500 	 * to be sent and the original packet to be freed).
501 	 */
502 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
503 		return;
504 
505         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
506          * matter if it is destined to another node, or whether it is
507          * a multicast one, RSVP wants it! and prevents it from being forwarded
508          * anywhere else. Also checks if the rsvp daemon is running before
509 	 * grabbing the packet.
510          */
511 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
512 		goto ours;
513 
514 	/*
515 	 * Check our list of addresses, to see if the packet is for us.
516 	 * If we don't have any addresses, assume any unicast packet
517 	 * we receive might be for us (and let the upper layers deal
518 	 * with it).
519 	 */
520 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
521 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
522 		goto ours;
523 
524 	/*
525 	 * Enable a consistency check between the destination address
526 	 * and the arrival interface for a unicast packet (the RFC 1122
527 	 * strong ES model) if IP forwarding is disabled and the packet
528 	 * is not locally generated and the packet is not subject to
529 	 * 'ipfw fwd'.
530 	 *
531 	 * XXX - Checking also should be disabled if the destination
532 	 * address is ipnat'ed to a different interface.
533 	 *
534 	 * XXX - Checking is incompatible with IP aliases added
535 	 * to the loopback interface instead of the interface where
536 	 * the packets are received.
537 	 *
538 	 * XXX - This is the case for carp vhost IPs as well so we
539 	 * insert a workaround. If the packet got here, we already
540 	 * checked with carp_iamatch() and carp_forus().
541 	 */
542 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
543 	    m->m_pkthdr.rcvif != NULL &&
544 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
545 #ifdef DEV_CARP
546 	    !m->m_pkthdr.rcvif->if_carp &&
547 #endif
548 	    (dchg == 0);
549 
550 	/*
551 	 * Check for exact addresses in the hash bucket.
552 	 */
553 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
554 		/*
555 		 * If the address matches, verify that the packet
556 		 * arrived via the correct interface if checking is
557 		 * enabled.
558 		 */
559 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
560 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
561 			goto ours;
562 	}
563 	/*
564 	 * Check for broadcast addresses.
565 	 *
566 	 * Only accept broadcast packets that arrive via the matching
567 	 * interface.  Reception of forwarded directed broadcasts would
568 	 * be handled via ip_forward() and ether_output() with the loopback
569 	 * into the stack for SIMPLEX interfaces handled by ether_output().
570 	 */
571 	if (m->m_pkthdr.rcvif != NULL &&
572 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
573 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
574 			if (ifa->ifa_addr->sa_family != AF_INET)
575 				continue;
576 			ia = ifatoia(ifa);
577 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
578 			    ip->ip_dst.s_addr)
579 				goto ours;
580 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
581 				goto ours;
582 #ifdef BOOTP_COMPAT
583 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
584 				goto ours;
585 #endif
586 		}
587 	}
588 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
589 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
590 		V_ipstat.ips_cantforward++;
591 		m_freem(m);
592 		return;
593 	}
594 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
595 		struct in_multi *inm;
596 		if (V_ip_mrouter) {
597 			/*
598 			 * If we are acting as a multicast router, all
599 			 * incoming multicast packets are passed to the
600 			 * kernel-level multicast forwarding function.
601 			 * The packet is returned (relatively) intact; if
602 			 * ip_mforward() returns a non-zero value, the packet
603 			 * must be discarded, else it may be accepted below.
604 			 */
605 			if (ip_mforward &&
606 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
607 				V_ipstat.ips_cantforward++;
608 				m_freem(m);
609 				return;
610 			}
611 
612 			/*
613 			 * The process-level routing daemon needs to receive
614 			 * all multicast IGMP packets, whether or not this
615 			 * host belongs to their destination groups.
616 			 */
617 			if (ip->ip_p == IPPROTO_IGMP)
618 				goto ours;
619 			V_ipstat.ips_forward++;
620 		}
621 		/*
622 		 * See if we belong to the destination multicast group on the
623 		 * arrival interface.
624 		 */
625 		IN_MULTI_LOCK();
626 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
627 		IN_MULTI_UNLOCK();
628 		if (inm == NULL) {
629 			V_ipstat.ips_notmember++;
630 			m_freem(m);
631 			return;
632 		}
633 		goto ours;
634 	}
635 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
636 		goto ours;
637 	if (ip->ip_dst.s_addr == INADDR_ANY)
638 		goto ours;
639 
640 	/*
641 	 * FAITH(Firewall Aided Internet Translator)
642 	 */
643 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
644 		if (V_ip_keepfaith) {
645 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
646 				goto ours;
647 		}
648 		m_freem(m);
649 		return;
650 	}
651 
652 	/*
653 	 * Not for us; forward if possible and desirable.
654 	 */
655 	if (V_ipforwarding == 0) {
656 		V_ipstat.ips_cantforward++;
657 		m_freem(m);
658 	} else {
659 #ifdef IPSEC
660 		if (ip_ipsec_fwd(m))
661 			goto bad;
662 #endif /* IPSEC */
663 		ip_forward(m, dchg);
664 	}
665 	return;
666 
667 ours:
668 #ifdef IPSTEALTH
669 	/*
670 	 * IPSTEALTH: Process non-routing options only
671 	 * if the packet is destined for us.
672 	 */
673 	if (V_ipstealth && hlen > sizeof (struct ip) &&
674 	    ip_dooptions(m, 1))
675 		return;
676 #endif /* IPSTEALTH */
677 
678 	/* Count the packet in the ip address stats */
679 	if (ia != NULL) {
680 		ia->ia_ifa.if_ipackets++;
681 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
682 	}
683 
684 	/*
685 	 * Attempt reassembly; if it succeeds, proceed.
686 	 * ip_reass() will return a different mbuf.
687 	 */
688 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
689 		m = ip_reass(m);
690 		if (m == NULL)
691 			return;
692 		ip = mtod(m, struct ip *);
693 		/* Get the header length of the reassembled packet */
694 		hlen = ip->ip_hl << 2;
695 	}
696 
697 	/*
698 	 * Further protocols expect the packet length to be w/o the
699 	 * IP header.
700 	 */
701 	ip->ip_len -= hlen;
702 
703 #ifdef IPSEC
704 	/*
705 	 * enforce IPsec policy checking if we are seeing last header.
706 	 * note that we do not visit this with protocols with pcb layer
707 	 * code - like udp/tcp/raw ip.
708 	 */
709 	if (ip_ipsec_input(m))
710 		goto bad;
711 #endif /* IPSEC */
712 
713 	/*
714 	 * Switch out to protocol's input routine.
715 	 */
716 	V_ipstat.ips_delivered++;
717 
718 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
719 	return;
720 bad:
721 	m_freem(m);
722 }
723 
724 /*
725  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
726  * max has slightly different semantics than the sysctl, for historical
727  * reasons.
728  */
729 static void
730 maxnipq_update(void)
731 {
732 	INIT_VNET_INET(curvnet);
733 
734 	/*
735 	 * -1 for unlimited allocation.
736 	 */
737 	if (V_maxnipq < 0)
738 		uma_zone_set_max(V_ipq_zone, 0);
739 	/*
740 	 * Positive number for specific bound.
741 	 */
742 	if (V_maxnipq > 0)
743 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
744 	/*
745 	 * Zero specifies no further fragment queue allocation -- set the
746 	 * bound very low, but rely on implementation elsewhere to actually
747 	 * prevent allocation and reclaim current queues.
748 	 */
749 	if (V_maxnipq == 0)
750 		uma_zone_set_max(V_ipq_zone, 1);
751 }
752 
753 static void
754 ipq_zone_change(void *tag)
755 {
756 	INIT_VNET_INET(curvnet);
757 
758 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
759 		V_maxnipq = nmbclusters / 32;
760 		maxnipq_update();
761 	}
762 }
763 
764 static int
765 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
766 {
767 	INIT_VNET_INET(curvnet);
768 	int error, i;
769 
770 	i = V_maxnipq;
771 	error = sysctl_handle_int(oidp, &i, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 
775 	/*
776 	 * XXXRW: Might be a good idea to sanity check the argument and place
777 	 * an extreme upper bound.
778 	 */
779 	if (i < -1)
780 		return (EINVAL);
781 	V_maxnipq = i;
782 	maxnipq_update();
783 	return (0);
784 }
785 
786 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
787     NULL, 0, sysctl_maxnipq, "I",
788     "Maximum number of IPv4 fragment reassembly queue entries");
789 
790 /*
791  * Take incoming datagram fragment and try to reassemble it into
792  * whole datagram.  If the argument is the first fragment or one
793  * in between the function will return NULL and store the mbuf
794  * in the fragment chain.  If the argument is the last fragment
795  * the packet will be reassembled and the pointer to the new
796  * mbuf returned for further processing.  Only m_tags attached
797  * to the first packet/fragment are preserved.
798  * The IP header is *NOT* adjusted out of iplen.
799  */
800 struct mbuf *
801 ip_reass(struct mbuf *m)
802 {
803 	INIT_VNET_INET(curvnet);
804 	struct ip *ip;
805 	struct mbuf *p, *q, *nq, *t;
806 	struct ipq *fp = NULL;
807 	struct ipqhead *head;
808 	int i, hlen, next;
809 	u_int8_t ecn, ecn0;
810 	u_short hash;
811 
812 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
813 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
814 		V_ipstat.ips_fragments++;
815 		V_ipstat.ips_fragdropped++;
816 		m_freem(m);
817 		return (NULL);
818 	}
819 
820 	ip = mtod(m, struct ip *);
821 	hlen = ip->ip_hl << 2;
822 
823 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
824 	head = &V_ipq[hash];
825 	IPQ_LOCK();
826 
827 	/*
828 	 * Look for queue of fragments
829 	 * of this datagram.
830 	 */
831 	TAILQ_FOREACH(fp, head, ipq_list)
832 		if (ip->ip_id == fp->ipq_id &&
833 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
834 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
835 #ifdef MAC
836 		    mac_ipq_match(m, fp) &&
837 #endif
838 		    ip->ip_p == fp->ipq_p)
839 			goto found;
840 
841 	fp = NULL;
842 
843 	/*
844 	 * Attempt to trim the number of allocated fragment queues if it
845 	 * exceeds the administrative limit.
846 	 */
847 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
848 		/*
849 		 * drop something from the tail of the current queue
850 		 * before proceeding further
851 		 */
852 		struct ipq *q = TAILQ_LAST(head, ipqhead);
853 		if (q == NULL) {   /* gak */
854 			for (i = 0; i < IPREASS_NHASH; i++) {
855 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
856 				if (r) {
857 					V_ipstat.ips_fragtimeout +=
858 					    r->ipq_nfrags;
859 					ip_freef(&V_ipq[i], r);
860 					break;
861 				}
862 			}
863 		} else {
864 			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
865 			ip_freef(head, q);
866 		}
867 	}
868 
869 found:
870 	/*
871 	 * Adjust ip_len to not reflect header,
872 	 * convert offset of this to bytes.
873 	 */
874 	ip->ip_len -= hlen;
875 	if (ip->ip_off & IP_MF) {
876 		/*
877 		 * Make sure that fragments have a data length
878 		 * that's a non-zero multiple of 8 bytes.
879 		 */
880 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
881 			V_ipstat.ips_toosmall++; /* XXX */
882 			goto dropfrag;
883 		}
884 		m->m_flags |= M_FRAG;
885 	} else
886 		m->m_flags &= ~M_FRAG;
887 	ip->ip_off <<= 3;
888 
889 
890 	/*
891 	 * Attempt reassembly; if it succeeds, proceed.
892 	 * ip_reass() will return a different mbuf.
893 	 */
894 	V_ipstat.ips_fragments++;
895 	m->m_pkthdr.header = ip;
896 
897 	/* Previous ip_reass() started here. */
898 	/*
899 	 * Presence of header sizes in mbufs
900 	 * would confuse code below.
901 	 */
902 	m->m_data += hlen;
903 	m->m_len -= hlen;
904 
905 	/*
906 	 * If first fragment to arrive, create a reassembly queue.
907 	 */
908 	if (fp == NULL) {
909 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
910 		if (fp == NULL)
911 			goto dropfrag;
912 #ifdef MAC
913 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
914 			uma_zfree(V_ipq_zone, fp);
915 			fp = NULL;
916 			goto dropfrag;
917 		}
918 		mac_ipq_create(m, fp);
919 #endif
920 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
921 		V_nipq++;
922 		fp->ipq_nfrags = 1;
923 		fp->ipq_ttl = IPFRAGTTL;
924 		fp->ipq_p = ip->ip_p;
925 		fp->ipq_id = ip->ip_id;
926 		fp->ipq_src = ip->ip_src;
927 		fp->ipq_dst = ip->ip_dst;
928 		fp->ipq_frags = m;
929 		m->m_nextpkt = NULL;
930 		goto done;
931 	} else {
932 		fp->ipq_nfrags++;
933 #ifdef MAC
934 		mac_ipq_update(m, fp);
935 #endif
936 	}
937 
938 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
939 
940 	/*
941 	 * Handle ECN by comparing this segment with the first one;
942 	 * if CE is set, do not lose CE.
943 	 * drop if CE and not-ECT are mixed for the same packet.
944 	 */
945 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
946 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
947 	if (ecn == IPTOS_ECN_CE) {
948 		if (ecn0 == IPTOS_ECN_NOTECT)
949 			goto dropfrag;
950 		if (ecn0 != IPTOS_ECN_CE)
951 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
952 	}
953 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
954 		goto dropfrag;
955 
956 	/*
957 	 * Find a segment which begins after this one does.
958 	 */
959 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
960 		if (GETIP(q)->ip_off > ip->ip_off)
961 			break;
962 
963 	/*
964 	 * If there is a preceding segment, it may provide some of
965 	 * our data already.  If so, drop the data from the incoming
966 	 * segment.  If it provides all of our data, drop us, otherwise
967 	 * stick new segment in the proper place.
968 	 *
969 	 * If some of the data is dropped from the the preceding
970 	 * segment, then it's checksum is invalidated.
971 	 */
972 	if (p) {
973 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
974 		if (i > 0) {
975 			if (i >= ip->ip_len)
976 				goto dropfrag;
977 			m_adj(m, i);
978 			m->m_pkthdr.csum_flags = 0;
979 			ip->ip_off += i;
980 			ip->ip_len -= i;
981 		}
982 		m->m_nextpkt = p->m_nextpkt;
983 		p->m_nextpkt = m;
984 	} else {
985 		m->m_nextpkt = fp->ipq_frags;
986 		fp->ipq_frags = m;
987 	}
988 
989 	/*
990 	 * While we overlap succeeding segments trim them or,
991 	 * if they are completely covered, dequeue them.
992 	 */
993 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
994 	     q = nq) {
995 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
996 		if (i < GETIP(q)->ip_len) {
997 			GETIP(q)->ip_len -= i;
998 			GETIP(q)->ip_off += i;
999 			m_adj(q, i);
1000 			q->m_pkthdr.csum_flags = 0;
1001 			break;
1002 		}
1003 		nq = q->m_nextpkt;
1004 		m->m_nextpkt = nq;
1005 		V_ipstat.ips_fragdropped++;
1006 		fp->ipq_nfrags--;
1007 		m_freem(q);
1008 	}
1009 
1010 	/*
1011 	 * Check for complete reassembly and perform frag per packet
1012 	 * limiting.
1013 	 *
1014 	 * Frag limiting is performed here so that the nth frag has
1015 	 * a chance to complete the packet before we drop the packet.
1016 	 * As a result, n+1 frags are actually allowed per packet, but
1017 	 * only n will ever be stored. (n = maxfragsperpacket.)
1018 	 *
1019 	 */
1020 	next = 0;
1021 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1022 		if (GETIP(q)->ip_off != next) {
1023 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1024 				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1025 				ip_freef(head, fp);
1026 			}
1027 			goto done;
1028 		}
1029 		next += GETIP(q)->ip_len;
1030 	}
1031 	/* Make sure the last packet didn't have the IP_MF flag */
1032 	if (p->m_flags & M_FRAG) {
1033 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1034 			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1035 			ip_freef(head, fp);
1036 		}
1037 		goto done;
1038 	}
1039 
1040 	/*
1041 	 * Reassembly is complete.  Make sure the packet is a sane size.
1042 	 */
1043 	q = fp->ipq_frags;
1044 	ip = GETIP(q);
1045 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1046 		V_ipstat.ips_toolong++;
1047 		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1048 		ip_freef(head, fp);
1049 		goto done;
1050 	}
1051 
1052 	/*
1053 	 * Concatenate fragments.
1054 	 */
1055 	m = q;
1056 	t = m->m_next;
1057 	m->m_next = NULL;
1058 	m_cat(m, t);
1059 	nq = q->m_nextpkt;
1060 	q->m_nextpkt = NULL;
1061 	for (q = nq; q != NULL; q = nq) {
1062 		nq = q->m_nextpkt;
1063 		q->m_nextpkt = NULL;
1064 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1065 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1066 		m_cat(m, q);
1067 	}
1068 	/*
1069 	 * In order to do checksumming faster we do 'end-around carry' here
1070 	 * (and not in for{} loop), though it implies we are not going to
1071 	 * reassemble more than 64k fragments.
1072 	 */
1073 	m->m_pkthdr.csum_data =
1074 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1075 #ifdef MAC
1076 	mac_ipq_reassemble(fp, m);
1077 	mac_ipq_destroy(fp);
1078 #endif
1079 
1080 	/*
1081 	 * Create header for new ip packet by modifying header of first
1082 	 * packet;  dequeue and discard fragment reassembly header.
1083 	 * Make header visible.
1084 	 */
1085 	ip->ip_len = (ip->ip_hl << 2) + next;
1086 	ip->ip_src = fp->ipq_src;
1087 	ip->ip_dst = fp->ipq_dst;
1088 	TAILQ_REMOVE(head, fp, ipq_list);
1089 	V_nipq--;
1090 	uma_zfree(V_ipq_zone, fp);
1091 	m->m_len += (ip->ip_hl << 2);
1092 	m->m_data -= (ip->ip_hl << 2);
1093 	/* some debugging cruft by sklower, below, will go away soon */
1094 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1095 		m_fixhdr(m);
1096 	V_ipstat.ips_reassembled++;
1097 	IPQ_UNLOCK();
1098 	return (m);
1099 
1100 dropfrag:
1101 	V_ipstat.ips_fragdropped++;
1102 	if (fp != NULL)
1103 		fp->ipq_nfrags--;
1104 	m_freem(m);
1105 done:
1106 	IPQ_UNLOCK();
1107 	return (NULL);
1108 
1109 #undef GETIP
1110 }
1111 
1112 /*
1113  * Free a fragment reassembly header and all
1114  * associated datagrams.
1115  */
1116 static void
1117 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1118 {
1119 	INIT_VNET_INET(curvnet);
1120 	struct mbuf *q;
1121 
1122 	IPQ_LOCK_ASSERT();
1123 
1124 	while (fp->ipq_frags) {
1125 		q = fp->ipq_frags;
1126 		fp->ipq_frags = q->m_nextpkt;
1127 		m_freem(q);
1128 	}
1129 	TAILQ_REMOVE(fhp, fp, ipq_list);
1130 	uma_zfree(V_ipq_zone, fp);
1131 	V_nipq--;
1132 }
1133 
1134 /*
1135  * IP timer processing;
1136  * if a timer expires on a reassembly
1137  * queue, discard it.
1138  */
1139 void
1140 ip_slowtimo(void)
1141 {
1142 	VNET_ITERATOR_DECL(vnet_iter);
1143 	struct ipq *fp;
1144 	int i;
1145 
1146 	IPQ_LOCK();
1147 	VNET_LIST_RLOCK();
1148 	VNET_FOREACH(vnet_iter) {
1149 		CURVNET_SET(vnet_iter);
1150 		INIT_VNET_INET(vnet_iter);
1151 		for (i = 0; i < IPREASS_NHASH; i++) {
1152 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1153 				struct ipq *fpp;
1154 
1155 				fpp = fp;
1156 				fp = TAILQ_NEXT(fp, ipq_list);
1157 				if(--fpp->ipq_ttl == 0) {
1158 					V_ipstat.ips_fragtimeout +=
1159 					    fpp->ipq_nfrags;
1160 					ip_freef(&V_ipq[i], fpp);
1161 				}
1162 			}
1163 		}
1164 		/*
1165 		 * If we are over the maximum number of fragments
1166 		 * (due to the limit being lowered), drain off
1167 		 * enough to get down to the new limit.
1168 		 */
1169 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1170 			for (i = 0; i < IPREASS_NHASH; i++) {
1171 				while (V_nipq > V_maxnipq &&
1172 				    !TAILQ_EMPTY(&V_ipq[i])) {
1173 					V_ipstat.ips_fragdropped +=
1174 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1175 					ip_freef(&V_ipq[i],
1176 					    TAILQ_FIRST(&V_ipq[i]));
1177 				}
1178 			}
1179 		}
1180 		CURVNET_RESTORE();
1181 	}
1182 	VNET_LIST_RUNLOCK();
1183 	IPQ_UNLOCK();
1184 }
1185 
1186 /*
1187  * Drain off all datagram fragments.
1188  */
1189 void
1190 ip_drain(void)
1191 {
1192 	VNET_ITERATOR_DECL(vnet_iter);
1193 	int     i;
1194 
1195 	IPQ_LOCK();
1196 	VNET_LIST_RLOCK();
1197 	VNET_FOREACH(vnet_iter) {
1198 		CURVNET_SET(vnet_iter);
1199 		INIT_VNET_INET(vnet_iter);
1200 		for (i = 0; i < IPREASS_NHASH; i++) {
1201 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1202 				V_ipstat.ips_fragdropped +=
1203 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1204 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1205 			}
1206 		}
1207 		CURVNET_RESTORE();
1208 	}
1209 	VNET_LIST_RUNLOCK();
1210 	IPQ_UNLOCK();
1211 	in_rtqdrain();
1212 }
1213 
1214 /*
1215  * The protocol to be inserted into ip_protox[] must be already registered
1216  * in inetsw[], either statically or through pf_proto_register().
1217  */
1218 int
1219 ipproto_register(u_char ipproto)
1220 {
1221 	struct protosw *pr;
1222 
1223 	/* Sanity checks. */
1224 	if (ipproto == 0)
1225 		return (EPROTONOSUPPORT);
1226 
1227 	/*
1228 	 * The protocol slot must not be occupied by another protocol
1229 	 * already.  An index pointing to IPPROTO_RAW is unused.
1230 	 */
1231 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1232 	if (pr == NULL)
1233 		return (EPFNOSUPPORT);
1234 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1235 		return (EEXIST);
1236 
1237 	/* Find the protocol position in inetsw[] and set the index. */
1238 	for (pr = inetdomain.dom_protosw;
1239 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1240 		if (pr->pr_domain->dom_family == PF_INET &&
1241 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1242 			/* Be careful to only index valid IP protocols. */
1243 			if (pr->pr_protocol < IPPROTO_MAX) {
1244 				ip_protox[pr->pr_protocol] = pr - inetsw;
1245 				return (0);
1246 			} else
1247 				return (EINVAL);
1248 		}
1249 	}
1250 	return (EPROTONOSUPPORT);
1251 }
1252 
1253 int
1254 ipproto_unregister(u_char ipproto)
1255 {
1256 	struct protosw *pr;
1257 
1258 	/* Sanity checks. */
1259 	if (ipproto == 0)
1260 		return (EPROTONOSUPPORT);
1261 
1262 	/* Check if the protocol was indeed registered. */
1263 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1264 	if (pr == NULL)
1265 		return (EPFNOSUPPORT);
1266 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1267 		return (ENOENT);
1268 
1269 	/* Reset the protocol slot to IPPROTO_RAW. */
1270 	ip_protox[ipproto] = pr - inetsw;
1271 	return (0);
1272 }
1273 
1274 /*
1275  * Given address of next destination (final or next hop),
1276  * return internet address info of interface to be used to get there.
1277  */
1278 struct in_ifaddr *
1279 ip_rtaddr(struct in_addr dst, u_int fibnum)
1280 {
1281 	struct route sro;
1282 	struct sockaddr_in *sin;
1283 	struct in_ifaddr *ifa;
1284 
1285 	bzero(&sro, sizeof(sro));
1286 	sin = (struct sockaddr_in *)&sro.ro_dst;
1287 	sin->sin_family = AF_INET;
1288 	sin->sin_len = sizeof(*sin);
1289 	sin->sin_addr = dst;
1290 	in_rtalloc_ign(&sro, 0, fibnum);
1291 
1292 	if (sro.ro_rt == NULL)
1293 		return (NULL);
1294 
1295 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1296 	RTFREE(sro.ro_rt);
1297 	return (ifa);
1298 }
1299 
1300 u_char inetctlerrmap[PRC_NCMDS] = {
1301 	0,		0,		0,		0,
1302 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1303 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1304 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1305 	0,		0,		EHOSTUNREACH,	0,
1306 	ENOPROTOOPT,	ECONNREFUSED
1307 };
1308 
1309 /*
1310  * Forward a packet.  If some error occurs return the sender
1311  * an icmp packet.  Note we can't always generate a meaningful
1312  * icmp message because icmp doesn't have a large enough repertoire
1313  * of codes and types.
1314  *
1315  * If not forwarding, just drop the packet.  This could be confusing
1316  * if ipforwarding was zero but some routing protocol was advancing
1317  * us as a gateway to somewhere.  However, we must let the routing
1318  * protocol deal with that.
1319  *
1320  * The srcrt parameter indicates whether the packet is being forwarded
1321  * via a source route.
1322  */
1323 void
1324 ip_forward(struct mbuf *m, int srcrt)
1325 {
1326 	INIT_VNET_INET(curvnet);
1327 	struct ip *ip = mtod(m, struct ip *);
1328 	struct in_ifaddr *ia = NULL;
1329 	struct mbuf *mcopy;
1330 	struct in_addr dest;
1331 	struct route ro;
1332 	int error, type = 0, code = 0, mtu = 0;
1333 
1334 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1335 		V_ipstat.ips_cantforward++;
1336 		m_freem(m);
1337 		return;
1338 	}
1339 #ifdef IPSTEALTH
1340 	if (!V_ipstealth) {
1341 #endif
1342 		if (ip->ip_ttl <= IPTTLDEC) {
1343 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1344 			    0, 0);
1345 			return;
1346 		}
1347 #ifdef IPSTEALTH
1348 	}
1349 #endif
1350 
1351 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1352 	if (!srcrt && ia == NULL) {
1353 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1354 		return;
1355 	}
1356 
1357 	/*
1358 	 * Save the IP header and at most 8 bytes of the payload,
1359 	 * in case we need to generate an ICMP message to the src.
1360 	 *
1361 	 * XXX this can be optimized a lot by saving the data in a local
1362 	 * buffer on the stack (72 bytes at most), and only allocating the
1363 	 * mbuf if really necessary. The vast majority of the packets
1364 	 * are forwarded without having to send an ICMP back (either
1365 	 * because unnecessary, or because rate limited), so we are
1366 	 * really we are wasting a lot of work here.
1367 	 *
1368 	 * We don't use m_copy() because it might return a reference
1369 	 * to a shared cluster. Both this function and ip_output()
1370 	 * assume exclusive access to the IP header in `m', so any
1371 	 * data in a cluster may change before we reach icmp_error().
1372 	 */
1373 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1374 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1375 		/*
1376 		 * It's probably ok if the pkthdr dup fails (because
1377 		 * the deep copy of the tag chain failed), but for now
1378 		 * be conservative and just discard the copy since
1379 		 * code below may some day want the tags.
1380 		 */
1381 		m_free(mcopy);
1382 		mcopy = NULL;
1383 	}
1384 	if (mcopy != NULL) {
1385 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1386 		mcopy->m_pkthdr.len = mcopy->m_len;
1387 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1388 	}
1389 
1390 #ifdef IPSTEALTH
1391 	if (!V_ipstealth) {
1392 #endif
1393 		ip->ip_ttl -= IPTTLDEC;
1394 #ifdef IPSTEALTH
1395 	}
1396 #endif
1397 
1398 	/*
1399 	 * If forwarding packet using same interface that it came in on,
1400 	 * perhaps should send a redirect to sender to shortcut a hop.
1401 	 * Only send redirect if source is sending directly to us,
1402 	 * and if packet was not source routed (or has any options).
1403 	 * Also, don't send redirect if forwarding using a default route
1404 	 * or a route modified by a redirect.
1405 	 */
1406 	dest.s_addr = 0;
1407 	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1408 		struct sockaddr_in *sin;
1409 		struct rtentry *rt;
1410 
1411 		bzero(&ro, sizeof(ro));
1412 		sin = (struct sockaddr_in *)&ro.ro_dst;
1413 		sin->sin_family = AF_INET;
1414 		sin->sin_len = sizeof(*sin);
1415 		sin->sin_addr = ip->ip_dst;
1416 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1417 
1418 		rt = ro.ro_rt;
1419 
1420 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1421 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1422 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1423 			u_long src = ntohl(ip->ip_src.s_addr);
1424 
1425 			if (RTA(rt) &&
1426 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1427 				if (rt->rt_flags & RTF_GATEWAY)
1428 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1429 				else
1430 					dest.s_addr = ip->ip_dst.s_addr;
1431 				/* Router requirements says to only send host redirects */
1432 				type = ICMP_REDIRECT;
1433 				code = ICMP_REDIRECT_HOST;
1434 			}
1435 		}
1436 		if (rt)
1437 			RTFREE(rt);
1438 	}
1439 
1440 	/*
1441 	 * Try to cache the route MTU from ip_output so we can consider it for
1442 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1443 	 */
1444 	bzero(&ro, sizeof(ro));
1445 
1446 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1447 
1448 	if (error == EMSGSIZE && ro.ro_rt)
1449 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1450 	if (ro.ro_rt)
1451 		RTFREE(ro.ro_rt);
1452 
1453 	if (error)
1454 		V_ipstat.ips_cantforward++;
1455 	else {
1456 		V_ipstat.ips_forward++;
1457 		if (type)
1458 			V_ipstat.ips_redirectsent++;
1459 		else {
1460 			if (mcopy)
1461 				m_freem(mcopy);
1462 			return;
1463 		}
1464 	}
1465 	if (mcopy == NULL)
1466 		return;
1467 
1468 	switch (error) {
1469 
1470 	case 0:				/* forwarded, but need redirect */
1471 		/* type, code set above */
1472 		break;
1473 
1474 	case ENETUNREACH:		/* shouldn't happen, checked above */
1475 	case EHOSTUNREACH:
1476 	case ENETDOWN:
1477 	case EHOSTDOWN:
1478 	default:
1479 		type = ICMP_UNREACH;
1480 		code = ICMP_UNREACH_HOST;
1481 		break;
1482 
1483 	case EMSGSIZE:
1484 		type = ICMP_UNREACH;
1485 		code = ICMP_UNREACH_NEEDFRAG;
1486 
1487 #ifdef IPSEC
1488 		/*
1489 		 * If IPsec is configured for this path,
1490 		 * override any possibly mtu value set by ip_output.
1491 		 */
1492 		mtu = ip_ipsec_mtu(m, mtu);
1493 #endif /* IPSEC */
1494 		/*
1495 		 * If the MTU was set before make sure we are below the
1496 		 * interface MTU.
1497 		 * If the MTU wasn't set before use the interface mtu or
1498 		 * fall back to the next smaller mtu step compared to the
1499 		 * current packet size.
1500 		 */
1501 		if (mtu != 0) {
1502 			if (ia != NULL)
1503 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1504 		} else {
1505 			if (ia != NULL)
1506 				mtu = ia->ia_ifp->if_mtu;
1507 			else
1508 				mtu = ip_next_mtu(ip->ip_len, 0);
1509 		}
1510 		V_ipstat.ips_cantfrag++;
1511 		break;
1512 
1513 	case ENOBUFS:
1514 		/*
1515 		 * A router should not generate ICMP_SOURCEQUENCH as
1516 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1517 		 * Source quench could be a big problem under DoS attacks,
1518 		 * or if the underlying interface is rate-limited.
1519 		 * Those who need source quench packets may re-enable them
1520 		 * via the net.inet.ip.sendsourcequench sysctl.
1521 		 */
1522 		if (V_ip_sendsourcequench == 0) {
1523 			m_freem(mcopy);
1524 			return;
1525 		} else {
1526 			type = ICMP_SOURCEQUENCH;
1527 			code = 0;
1528 		}
1529 		break;
1530 
1531 	case EACCES:			/* ipfw denied packet */
1532 		m_freem(mcopy);
1533 		return;
1534 	}
1535 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1536 }
1537 
1538 void
1539 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1540     struct mbuf *m)
1541 {
1542 	INIT_VNET_NET(inp->inp_vnet);
1543 
1544 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1545 		struct bintime bt;
1546 
1547 		bintime(&bt);
1548 		if (inp->inp_socket->so_options & SO_BINTIME) {
1549 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1550 			SCM_BINTIME, SOL_SOCKET);
1551 			if (*mp)
1552 				mp = &(*mp)->m_next;
1553 		}
1554 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1555 			struct timeval tv;
1556 
1557 			bintime2timeval(&bt, &tv);
1558 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1559 				SCM_TIMESTAMP, SOL_SOCKET);
1560 			if (*mp)
1561 				mp = &(*mp)->m_next;
1562 		}
1563 	}
1564 	if (inp->inp_flags & INP_RECVDSTADDR) {
1565 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1566 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1567 		if (*mp)
1568 			mp = &(*mp)->m_next;
1569 	}
1570 	if (inp->inp_flags & INP_RECVTTL) {
1571 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1572 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1573 		if (*mp)
1574 			mp = &(*mp)->m_next;
1575 	}
1576 #ifdef notyet
1577 	/* XXX
1578 	 * Moving these out of udp_input() made them even more broken
1579 	 * than they already were.
1580 	 */
1581 	/* options were tossed already */
1582 	if (inp->inp_flags & INP_RECVOPTS) {
1583 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1584 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1585 		if (*mp)
1586 			mp = &(*mp)->m_next;
1587 	}
1588 	/* ip_srcroute doesn't do what we want here, need to fix */
1589 	if (inp->inp_flags & INP_RECVRETOPTS) {
1590 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1591 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1592 		if (*mp)
1593 			mp = &(*mp)->m_next;
1594 	}
1595 #endif
1596 	if (inp->inp_flags & INP_RECVIF) {
1597 		struct ifnet *ifp;
1598 		struct sdlbuf {
1599 			struct sockaddr_dl sdl;
1600 			u_char	pad[32];
1601 		} sdlbuf;
1602 		struct sockaddr_dl *sdp;
1603 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1604 
1605 		if (((ifp = m->m_pkthdr.rcvif))
1606 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1607 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1608 			/*
1609 			 * Change our mind and don't try copy.
1610 			 */
1611 			if ((sdp->sdl_family != AF_LINK)
1612 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1613 				goto makedummy;
1614 			}
1615 			bcopy(sdp, sdl2, sdp->sdl_len);
1616 		} else {
1617 makedummy:
1618 			sdl2->sdl_len
1619 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1620 			sdl2->sdl_family = AF_LINK;
1621 			sdl2->sdl_index = 0;
1622 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1623 		}
1624 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1625 			IP_RECVIF, IPPROTO_IP);
1626 		if (*mp)
1627 			mp = &(*mp)->m_next;
1628 	}
1629 }
1630 
1631 /*
1632  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1633  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1634  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1635  * compiled.
1636  */
1637 int
1638 ip_rsvp_init(struct socket *so)
1639 {
1640 	INIT_VNET_INET(so->so_vnet);
1641 
1642 	if (so->so_type != SOCK_RAW ||
1643 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1644 		return EOPNOTSUPP;
1645 
1646 	if (V_ip_rsvpd != NULL)
1647 		return EADDRINUSE;
1648 
1649 	V_ip_rsvpd = so;
1650 	/*
1651 	 * This may seem silly, but we need to be sure we don't over-increment
1652 	 * the RSVP counter, in case something slips up.
1653 	 */
1654 	if (!V_ip_rsvp_on) {
1655 		V_ip_rsvp_on = 1;
1656 		V_rsvp_on++;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 int
1663 ip_rsvp_done(void)
1664 {
1665 	INIT_VNET_INET(curvnet);
1666 
1667 	V_ip_rsvpd = NULL;
1668 	/*
1669 	 * This may seem silly, but we need to be sure we don't over-decrement
1670 	 * the RSVP counter, in case something slips up.
1671 	 */
1672 	if (V_ip_rsvp_on) {
1673 		V_ip_rsvp_on = 0;
1674 		V_rsvp_on--;
1675 	}
1676 	return 0;
1677 }
1678 
1679 void
1680 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1681 {
1682 	INIT_VNET_INET(curvnet);
1683 
1684 	if (rsvp_input_p) { /* call the real one if loaded */
1685 		rsvp_input_p(m, off);
1686 		return;
1687 	}
1688 
1689 	/* Can still get packets with rsvp_on = 0 if there is a local member
1690 	 * of the group to which the RSVP packet is addressed.  But in this
1691 	 * case we want to throw the packet away.
1692 	 */
1693 
1694 	if (!V_rsvp_on) {
1695 		m_freem(m);
1696 		return;
1697 	}
1698 
1699 	if (V_ip_rsvpd != NULL) {
1700 		rip_input(m, off);
1701 		return;
1702 	}
1703 	/* Drop the packet */
1704 	m_freem(m);
1705 }
1706