xref: /freebsd/sys/netinet/ip_input.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipstealth.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_carp.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mac.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/pfil.h>
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/netisr.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <netinet/ip_options.h>
70 #include <machine/in_cksum.h>
71 #ifdef DEV_CARP
72 #include <netinet/ip_carp.h>
73 #endif
74 #if defined(IPSEC) || defined(FAST_IPSEC)
75 #include <netinet/ip_ipsec.h>
76 #endif /* IPSEC */
77 
78 #include <sys/socketvar.h>
79 
80 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 int rsvp_on = 0;
85 
86 int	ipforwarding = 0;
87 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
88     &ipforwarding, 0, "Enable IP forwarding between interfaces");
89 
90 static int	ipsendredirects = 1; /* XXX */
91 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
92     &ipsendredirects, 0, "Enable sending IP redirects");
93 
94 int	ip_defttl = IPDEFTTL;
95 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
96     &ip_defttl, 0, "Maximum TTL on IP packets");
97 
98 static int	ip_keepfaith = 0;
99 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
100 	&ip_keepfaith,	0,
101 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
102 
103 static int	ip_sendsourcequench = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
105 	&ip_sendsourcequench, 0,
106 	"Enable the transmission of source quench packets");
107 
108 int	ip_do_randomid = 0;
109 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
110 	&ip_do_randomid, 0,
111 	"Assign random ip_id values");
112 
113 /*
114  * XXX - Setting ip_checkinterface mostly implements the receive side of
115  * the Strong ES model described in RFC 1122, but since the routing table
116  * and transmit implementation do not implement the Strong ES model,
117  * setting this to 1 results in an odd hybrid.
118  *
119  * XXX - ip_checkinterface currently must be disabled if you use ipnat
120  * to translate the destination address to another local interface.
121  *
122  * XXX - ip_checkinterface must be disabled if you add IP aliases
123  * to the loopback interface instead of the interface where the
124  * packets for those addresses are received.
125  */
126 static int	ip_checkinterface = 0;
127 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
128     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
129 
130 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
131 
132 static struct	ifqueue ipintrq;
133 static int	ipqmaxlen = IFQ_MAXLEN;
134 
135 extern	struct domain inetdomain;
136 extern	struct protosw inetsw[];
137 u_char	ip_protox[IPPROTO_MAX];
138 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
139 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
140 u_long 	in_ifaddrhmask;				/* mask for hash table */
141 
142 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
143     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
144 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
145     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
146 
147 struct ipstat ipstat;
148 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
149     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
150 
151 /*
152  * IP datagram reassembly.
153  */
154 #define IPREASS_NHASH_LOG2      6
155 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
156 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
157 #define IPREASS_HASH(x,y) \
158 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
159 
160 static uma_zone_t ipq_zone;
161 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
162 static struct mtx ipqlock;
163 
164 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
165 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168 
169 static void	maxnipq_update(void);
170 static void	ipq_zone_change(void *);
171 
172 static int	maxnipq;	/* Administrative limit on # reass queues. */
173 static int	nipq = 0;	/* Total # of reass queues */
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
175 	"Current number of IPv4 fragment reassembly queue entries");
176 
177 static int	maxfragsperpacket;
178 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
179 	&maxfragsperpacket, 0,
180 	"Maximum number of IPv4 fragments allowed per packet");
181 
182 struct callout	ipport_tick_callout;
183 
184 #ifdef IPCTL_DEFMTU
185 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
186     &ip_mtu, 0, "Default MTU");
187 #endif
188 
189 #ifdef IPSTEALTH
190 int	ipstealth = 0;
191 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
192     &ipstealth, 0, "");
193 #endif
194 
195 /*
196  * ipfw_ether and ipfw_bridge hooks.
197  * XXX: Temporary until those are converted to pfil_hooks as well.
198  */
199 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
200 ip_dn_io_t *ip_dn_io_ptr = NULL;
201 int fw_one_pass = 1;
202 
203 static void	ip_freef(struct ipqhead *, struct ipq *);
204 
205 /*
206  * IP initialization: fill in IP protocol switch table.
207  * All protocols not implemented in kernel go to raw IP protocol handler.
208  */
209 void
210 ip_init()
211 {
212 	register struct protosw *pr;
213 	register int i;
214 
215 	TAILQ_INIT(&in_ifaddrhead);
216 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
217 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
218 	if (pr == NULL)
219 		panic("ip_init: PF_INET not found");
220 
221 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
222 	for (i = 0; i < IPPROTO_MAX; i++)
223 		ip_protox[i] = pr - inetsw;
224 	/*
225 	 * Cycle through IP protocols and put them into the appropriate place
226 	 * in ip_protox[].
227 	 */
228 	for (pr = inetdomain.dom_protosw;
229 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
230 		if (pr->pr_domain->dom_family == PF_INET &&
231 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
232 			/* Be careful to only index valid IP protocols. */
233 			if (pr->pr_protocol < IPPROTO_MAX)
234 				ip_protox[pr->pr_protocol] = pr - inetsw;
235 		}
236 
237 	/* Initialize packet filter hooks. */
238 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
239 	inet_pfil_hook.ph_af = AF_INET;
240 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
241 		printf("%s: WARNING: unable to register pfil hook, "
242 			"error %d\n", __func__, i);
243 
244 	/* Initialize IP reassembly queue. */
245 	IPQ_LOCK_INIT();
246 	for (i = 0; i < IPREASS_NHASH; i++)
247 	    TAILQ_INIT(&ipq[i]);
248 	maxnipq = nmbclusters / 32;
249 	maxfragsperpacket = 16;
250 	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
251 	    NULL, UMA_ALIGN_PTR, 0);
252 	maxnipq_update();
253 
254 	/* Start ipport_tick. */
255 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
256 	ipport_tick(NULL);
257 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
258 		SHUTDOWN_PRI_DEFAULT);
259 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
260 		NULL, EVENTHANDLER_PRI_ANY);
261 
262 	/* Initialize various other remaining things. */
263 	ip_id = time_second & 0xffff;
264 	ipintrq.ifq_maxlen = ipqmaxlen;
265 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
266 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
267 }
268 
269 void ip_fini(xtp)
270 	void *xtp;
271 {
272 	callout_stop(&ipport_tick_callout);
273 }
274 
275 /*
276  * Ip input routine.  Checksum and byte swap header.  If fragmented
277  * try to reassemble.  Process options.  Pass to next level.
278  */
279 void
280 ip_input(struct mbuf *m)
281 {
282 	struct ip *ip = NULL;
283 	struct in_ifaddr *ia = NULL;
284 	struct ifaddr *ifa;
285 	int    checkif, hlen = 0;
286 	u_short sum;
287 	int dchg = 0;				/* dest changed after fw */
288 	struct in_addr odst;			/* original dst address */
289 
290   	M_ASSERTPKTHDR(m);
291 
292 	if (m->m_flags & M_FASTFWD_OURS) {
293 		/*
294 		 * Firewall or NAT changed destination to local.
295 		 * We expect ip_len and ip_off to be in host byte order.
296 		 */
297 		m->m_flags &= ~M_FASTFWD_OURS;
298 		/* Set up some basics that will be used later. */
299 		ip = mtod(m, struct ip *);
300 		hlen = ip->ip_hl << 2;
301   		goto ours;
302   	}
303 
304 	ipstat.ips_total++;
305 
306 	if (m->m_pkthdr.len < sizeof(struct ip))
307 		goto tooshort;
308 
309 	if (m->m_len < sizeof (struct ip) &&
310 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
311 		ipstat.ips_toosmall++;
312 		return;
313 	}
314 	ip = mtod(m, struct ip *);
315 
316 	if (ip->ip_v != IPVERSION) {
317 		ipstat.ips_badvers++;
318 		goto bad;
319 	}
320 
321 	hlen = ip->ip_hl << 2;
322 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
323 		ipstat.ips_badhlen++;
324 		goto bad;
325 	}
326 	if (hlen > m->m_len) {
327 		if ((m = m_pullup(m, hlen)) == NULL) {
328 			ipstat.ips_badhlen++;
329 			return;
330 		}
331 		ip = mtod(m, struct ip *);
332 	}
333 
334 	/* 127/8 must not appear on wire - RFC1122 */
335 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
336 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
337 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
338 			ipstat.ips_badaddr++;
339 			goto bad;
340 		}
341 	}
342 
343 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
344 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
345 	} else {
346 		if (hlen == sizeof(struct ip)) {
347 			sum = in_cksum_hdr(ip);
348 		} else {
349 			sum = in_cksum(m, hlen);
350 		}
351 	}
352 	if (sum) {
353 		ipstat.ips_badsum++;
354 		goto bad;
355 	}
356 
357 #ifdef ALTQ
358 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
359 		/* packet is dropped by traffic conditioner */
360 		return;
361 #endif
362 
363 	/*
364 	 * Convert fields to host representation.
365 	 */
366 	ip->ip_len = ntohs(ip->ip_len);
367 	if (ip->ip_len < hlen) {
368 		ipstat.ips_badlen++;
369 		goto bad;
370 	}
371 	ip->ip_off = ntohs(ip->ip_off);
372 
373 	/*
374 	 * Check that the amount of data in the buffers
375 	 * is as at least much as the IP header would have us expect.
376 	 * Trim mbufs if longer than we expect.
377 	 * Drop packet if shorter than we expect.
378 	 */
379 	if (m->m_pkthdr.len < ip->ip_len) {
380 tooshort:
381 		ipstat.ips_tooshort++;
382 		goto bad;
383 	}
384 	if (m->m_pkthdr.len > ip->ip_len) {
385 		if (m->m_len == m->m_pkthdr.len) {
386 			m->m_len = ip->ip_len;
387 			m->m_pkthdr.len = ip->ip_len;
388 		} else
389 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
390 	}
391 #if defined(IPSEC) || defined(FAST_IPSEC)
392 	/*
393 	 * Bypass packet filtering for packets from a tunnel (gif).
394 	 */
395 	if (ip_ipsec_filtergif(m))
396 		goto passin;
397 #endif /* IPSEC */
398 
399 	/*
400 	 * Run through list of hooks for input packets.
401 	 *
402 	 * NB: Beware of the destination address changing (e.g.
403 	 *     by NAT rewriting).  When this happens, tell
404 	 *     ip_forward to do the right thing.
405 	 */
406 
407 	/* Jump over all PFIL processing if hooks are not active. */
408 	if (!PFIL_HOOKED(&inet_pfil_hook))
409 		goto passin;
410 
411 	odst = ip->ip_dst;
412 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
413 	    PFIL_IN, NULL) != 0)
414 		return;
415 	if (m == NULL)			/* consumed by filter */
416 		return;
417 
418 	ip = mtod(m, struct ip *);
419 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
420 
421 #ifdef IPFIREWALL_FORWARD
422 	if (m->m_flags & M_FASTFWD_OURS) {
423 		m->m_flags &= ~M_FASTFWD_OURS;
424 		goto ours;
425 	}
426 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
427 		/*
428 		 * Directly ship on the packet.  This allows to forward packets
429 		 * that were destined for us to some other directly connected
430 		 * host.
431 		 */
432 		ip_forward(m, dchg);
433 		return;
434 	}
435 #endif /* IPFIREWALL_FORWARD */
436 
437 passin:
438 	/*
439 	 * Process options and, if not destined for us,
440 	 * ship it on.  ip_dooptions returns 1 when an
441 	 * error was detected (causing an icmp message
442 	 * to be sent and the original packet to be freed).
443 	 */
444 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
445 		return;
446 
447         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
448          * matter if it is destined to another node, or whether it is
449          * a multicast one, RSVP wants it! and prevents it from being forwarded
450          * anywhere else. Also checks if the rsvp daemon is running before
451 	 * grabbing the packet.
452          */
453 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
454 		goto ours;
455 
456 	/*
457 	 * Check our list of addresses, to see if the packet is for us.
458 	 * If we don't have any addresses, assume any unicast packet
459 	 * we receive might be for us (and let the upper layers deal
460 	 * with it).
461 	 */
462 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
463 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
464 		goto ours;
465 
466 	/*
467 	 * Enable a consistency check between the destination address
468 	 * and the arrival interface for a unicast packet (the RFC 1122
469 	 * strong ES model) if IP forwarding is disabled and the packet
470 	 * is not locally generated and the packet is not subject to
471 	 * 'ipfw fwd'.
472 	 *
473 	 * XXX - Checking also should be disabled if the destination
474 	 * address is ipnat'ed to a different interface.
475 	 *
476 	 * XXX - Checking is incompatible with IP aliases added
477 	 * to the loopback interface instead of the interface where
478 	 * the packets are received.
479 	 *
480 	 * XXX - This is the case for carp vhost IPs as well so we
481 	 * insert a workaround. If the packet got here, we already
482 	 * checked with carp_iamatch() and carp_forus().
483 	 */
484 	checkif = ip_checkinterface && (ipforwarding == 0) &&
485 	    m->m_pkthdr.rcvif != NULL &&
486 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
487 #ifdef DEV_CARP
488 	    !m->m_pkthdr.rcvif->if_carp &&
489 #endif
490 	    (dchg == 0);
491 
492 	/*
493 	 * Check for exact addresses in the hash bucket.
494 	 */
495 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
496 		/*
497 		 * If the address matches, verify that the packet
498 		 * arrived via the correct interface if checking is
499 		 * enabled.
500 		 */
501 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
502 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
503 			goto ours;
504 	}
505 	/*
506 	 * Check for broadcast addresses.
507 	 *
508 	 * Only accept broadcast packets that arrive via the matching
509 	 * interface.  Reception of forwarded directed broadcasts would
510 	 * be handled via ip_forward() and ether_output() with the loopback
511 	 * into the stack for SIMPLEX interfaces handled by ether_output().
512 	 */
513 	if (m->m_pkthdr.rcvif != NULL &&
514 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
515 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
516 			if (ifa->ifa_addr->sa_family != AF_INET)
517 				continue;
518 			ia = ifatoia(ifa);
519 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
520 			    ip->ip_dst.s_addr)
521 				goto ours;
522 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
523 				goto ours;
524 #ifdef BOOTP_COMPAT
525 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
526 				goto ours;
527 #endif
528 		}
529 	}
530 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
531 		struct in_multi *inm;
532 		if (ip_mrouter) {
533 			/*
534 			 * If we are acting as a multicast router, all
535 			 * incoming multicast packets are passed to the
536 			 * kernel-level multicast forwarding function.
537 			 * The packet is returned (relatively) intact; if
538 			 * ip_mforward() returns a non-zero value, the packet
539 			 * must be discarded, else it may be accepted below.
540 			 */
541 			if (ip_mforward &&
542 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
543 				ipstat.ips_cantforward++;
544 				m_freem(m);
545 				return;
546 			}
547 
548 			/*
549 			 * The process-level routing daemon needs to receive
550 			 * all multicast IGMP packets, whether or not this
551 			 * host belongs to their destination groups.
552 			 */
553 			if (ip->ip_p == IPPROTO_IGMP)
554 				goto ours;
555 			ipstat.ips_forward++;
556 		}
557 		/*
558 		 * See if we belong to the destination multicast group on the
559 		 * arrival interface.
560 		 */
561 		IN_MULTI_LOCK();
562 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
563 		IN_MULTI_UNLOCK();
564 		if (inm == NULL) {
565 			ipstat.ips_notmember++;
566 			m_freem(m);
567 			return;
568 		}
569 		goto ours;
570 	}
571 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
572 		goto ours;
573 	if (ip->ip_dst.s_addr == INADDR_ANY)
574 		goto ours;
575 
576 	/*
577 	 * FAITH(Firewall Aided Internet Translator)
578 	 */
579 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
580 		if (ip_keepfaith) {
581 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
582 				goto ours;
583 		}
584 		m_freem(m);
585 		return;
586 	}
587 
588 	/*
589 	 * Not for us; forward if possible and desirable.
590 	 */
591 	if (ipforwarding == 0) {
592 		ipstat.ips_cantforward++;
593 		m_freem(m);
594 	} else {
595 #if defined(IPSEC) || defined(FAST_IPSEC)
596 		if (ip_ipsec_fwd(m))
597 			goto bad;
598 #endif /* IPSEC */
599 		ip_forward(m, dchg);
600 	}
601 	return;
602 
603 ours:
604 #ifdef IPSTEALTH
605 	/*
606 	 * IPSTEALTH: Process non-routing options only
607 	 * if the packet is destined for us.
608 	 */
609 	if (ipstealth && hlen > sizeof (struct ip) &&
610 	    ip_dooptions(m, 1))
611 		return;
612 #endif /* IPSTEALTH */
613 
614 	/* Count the packet in the ip address stats */
615 	if (ia != NULL) {
616 		ia->ia_ifa.if_ipackets++;
617 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
618 	}
619 
620 	/*
621 	 * Attempt reassembly; if it succeeds, proceed.
622 	 * ip_reass() will return a different mbuf.
623 	 */
624 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
625 		m = ip_reass(m);
626 		if (m == NULL)
627 			return;
628 		ip = mtod(m, struct ip *);
629 		/* Get the header length of the reassembled packet */
630 		hlen = ip->ip_hl << 2;
631 	}
632 
633 	/*
634 	 * Further protocols expect the packet length to be w/o the
635 	 * IP header.
636 	 */
637 	ip->ip_len -= hlen;
638 
639 #if defined(IPSEC) || defined(FAST_IPSEC)
640 	/*
641 	 * enforce IPsec policy checking if we are seeing last header.
642 	 * note that we do not visit this with protocols with pcb layer
643 	 * code - like udp/tcp/raw ip.
644 	 */
645 	if (ip_ipsec_input(m))
646 		goto bad;
647 #endif /* IPSEC */
648 
649 	/*
650 	 * Switch out to protocol's input routine.
651 	 */
652 	ipstat.ips_delivered++;
653 
654 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
655 	return;
656 bad:
657 	m_freem(m);
658 }
659 
660 /*
661  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
662  * max has slightly different semantics than the sysctl, for historical
663  * reasons.
664  */
665 static void
666 maxnipq_update(void)
667 {
668 
669 	/*
670 	 * -1 for unlimited allocation.
671 	 */
672 	if (maxnipq < 0)
673 		uma_zone_set_max(ipq_zone, 0);
674 	/*
675 	 * Positive number for specific bound.
676 	 */
677 	if (maxnipq > 0)
678 		uma_zone_set_max(ipq_zone, maxnipq);
679 	/*
680 	 * Zero specifies no further fragment queue allocation -- set the
681 	 * bound very low, but rely on implementation elsewhere to actually
682 	 * prevent allocation and reclaim current queues.
683 	 */
684 	if (maxnipq == 0)
685 		uma_zone_set_max(ipq_zone, 1);
686 }
687 
688 static void
689 ipq_zone_change(void *tag)
690 {
691 
692 	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
693 		maxnipq = nmbclusters / 32;
694 		maxnipq_update();
695 	}
696 }
697 
698 static int
699 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
700 {
701 	int error, i;
702 
703 	i = maxnipq;
704 	error = sysctl_handle_int(oidp, &i, 0, req);
705 	if (error || !req->newptr)
706 		return (error);
707 
708 	/*
709 	 * XXXRW: Might be a good idea to sanity check the argument and place
710 	 * an extreme upper bound.
711 	 */
712 	if (i < -1)
713 		return (EINVAL);
714 	maxnipq = i;
715 	maxnipq_update();
716 	return (0);
717 }
718 
719 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
720     NULL, 0, sysctl_maxnipq, "I",
721     "Maximum number of IPv4 fragment reassembly queue entries");
722 
723 /*
724  * Take incoming datagram fragment and try to reassemble it into
725  * whole datagram.  If the argument is the first fragment or one
726  * in between the function will return NULL and store the mbuf
727  * in the fragment chain.  If the argument is the last fragment
728  * the packet will be reassembled and the pointer to the new
729  * mbuf returned for further processing.  Only m_tags attached
730  * to the first packet/fragment are preserved.
731  * The IP header is *NOT* adjusted out of iplen.
732  */
733 
734 struct mbuf *
735 ip_reass(struct mbuf *m)
736 {
737 	struct ip *ip;
738 	struct mbuf *p, *q, *nq, *t;
739 	struct ipq *fp = NULL;
740 	struct ipqhead *head;
741 	int i, hlen, next;
742 	u_int8_t ecn, ecn0;
743 	u_short hash;
744 
745 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
746 	if (maxnipq == 0 || maxfragsperpacket == 0) {
747 		ipstat.ips_fragments++;
748 		ipstat.ips_fragdropped++;
749 		m_freem(m);
750 		return (NULL);
751 	}
752 
753 	ip = mtod(m, struct ip *);
754 	hlen = ip->ip_hl << 2;
755 
756 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
757 	head = &ipq[hash];
758 	IPQ_LOCK();
759 
760 	/*
761 	 * Look for queue of fragments
762 	 * of this datagram.
763 	 */
764 	TAILQ_FOREACH(fp, head, ipq_list)
765 		if (ip->ip_id == fp->ipq_id &&
766 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
767 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
768 #ifdef MAC
769 		    mac_fragment_match(m, fp) &&
770 #endif
771 		    ip->ip_p == fp->ipq_p)
772 			goto found;
773 
774 	fp = NULL;
775 
776 	/*
777 	 * Attempt to trim the number of allocated fragment queues if it
778 	 * exceeds the administrative limit.
779 	 */
780 	if ((nipq > maxnipq) && (maxnipq > 0)) {
781 		/*
782 		 * drop something from the tail of the current queue
783 		 * before proceeding further
784 		 */
785 		struct ipq *q = TAILQ_LAST(head, ipqhead);
786 		if (q == NULL) {   /* gak */
787 			for (i = 0; i < IPREASS_NHASH; i++) {
788 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
789 				if (r) {
790 					ipstat.ips_fragtimeout += r->ipq_nfrags;
791 					ip_freef(&ipq[i], r);
792 					break;
793 				}
794 			}
795 		} else {
796 			ipstat.ips_fragtimeout += q->ipq_nfrags;
797 			ip_freef(head, q);
798 		}
799 	}
800 
801 found:
802 	/*
803 	 * Adjust ip_len to not reflect header,
804 	 * convert offset of this to bytes.
805 	 */
806 	ip->ip_len -= hlen;
807 	if (ip->ip_off & IP_MF) {
808 		/*
809 		 * Make sure that fragments have a data length
810 		 * that's a non-zero multiple of 8 bytes.
811 		 */
812 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
813 			ipstat.ips_toosmall++; /* XXX */
814 			goto dropfrag;
815 		}
816 		m->m_flags |= M_FRAG;
817 	} else
818 		m->m_flags &= ~M_FRAG;
819 	ip->ip_off <<= 3;
820 
821 
822 	/*
823 	 * Attempt reassembly; if it succeeds, proceed.
824 	 * ip_reass() will return a different mbuf.
825 	 */
826 	ipstat.ips_fragments++;
827 	m->m_pkthdr.header = ip;
828 
829 	/* Previous ip_reass() started here. */
830 	/*
831 	 * Presence of header sizes in mbufs
832 	 * would confuse code below.
833 	 */
834 	m->m_data += hlen;
835 	m->m_len -= hlen;
836 
837 	/*
838 	 * If first fragment to arrive, create a reassembly queue.
839 	 */
840 	if (fp == NULL) {
841 		fp = uma_zalloc(ipq_zone, M_NOWAIT);
842 		if (fp == NULL)
843 			goto dropfrag;
844 #ifdef MAC
845 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
846 			uma_zfree(ipq_zone, fp);
847 			fp = NULL;
848 			goto dropfrag;
849 		}
850 		mac_create_ipq(m, fp);
851 #endif
852 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
853 		nipq++;
854 		fp->ipq_nfrags = 1;
855 		fp->ipq_ttl = IPFRAGTTL;
856 		fp->ipq_p = ip->ip_p;
857 		fp->ipq_id = ip->ip_id;
858 		fp->ipq_src = ip->ip_src;
859 		fp->ipq_dst = ip->ip_dst;
860 		fp->ipq_frags = m;
861 		m->m_nextpkt = NULL;
862 		goto done;
863 	} else {
864 		fp->ipq_nfrags++;
865 #ifdef MAC
866 		mac_update_ipq(m, fp);
867 #endif
868 	}
869 
870 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
871 
872 	/*
873 	 * Handle ECN by comparing this segment with the first one;
874 	 * if CE is set, do not lose CE.
875 	 * drop if CE and not-ECT are mixed for the same packet.
876 	 */
877 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
878 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
879 	if (ecn == IPTOS_ECN_CE) {
880 		if (ecn0 == IPTOS_ECN_NOTECT)
881 			goto dropfrag;
882 		if (ecn0 != IPTOS_ECN_CE)
883 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
884 	}
885 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
886 		goto dropfrag;
887 
888 	/*
889 	 * Find a segment which begins after this one does.
890 	 */
891 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
892 		if (GETIP(q)->ip_off > ip->ip_off)
893 			break;
894 
895 	/*
896 	 * If there is a preceding segment, it may provide some of
897 	 * our data already.  If so, drop the data from the incoming
898 	 * segment.  If it provides all of our data, drop us, otherwise
899 	 * stick new segment in the proper place.
900 	 *
901 	 * If some of the data is dropped from the the preceding
902 	 * segment, then it's checksum is invalidated.
903 	 */
904 	if (p) {
905 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
906 		if (i > 0) {
907 			if (i >= ip->ip_len)
908 				goto dropfrag;
909 			m_adj(m, i);
910 			m->m_pkthdr.csum_flags = 0;
911 			ip->ip_off += i;
912 			ip->ip_len -= i;
913 		}
914 		m->m_nextpkt = p->m_nextpkt;
915 		p->m_nextpkt = m;
916 	} else {
917 		m->m_nextpkt = fp->ipq_frags;
918 		fp->ipq_frags = m;
919 	}
920 
921 	/*
922 	 * While we overlap succeeding segments trim them or,
923 	 * if they are completely covered, dequeue them.
924 	 */
925 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
926 	     q = nq) {
927 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
928 		if (i < GETIP(q)->ip_len) {
929 			GETIP(q)->ip_len -= i;
930 			GETIP(q)->ip_off += i;
931 			m_adj(q, i);
932 			q->m_pkthdr.csum_flags = 0;
933 			break;
934 		}
935 		nq = q->m_nextpkt;
936 		m->m_nextpkt = nq;
937 		ipstat.ips_fragdropped++;
938 		fp->ipq_nfrags--;
939 		m_freem(q);
940 	}
941 
942 	/*
943 	 * Check for complete reassembly and perform frag per packet
944 	 * limiting.
945 	 *
946 	 * Frag limiting is performed here so that the nth frag has
947 	 * a chance to complete the packet before we drop the packet.
948 	 * As a result, n+1 frags are actually allowed per packet, but
949 	 * only n will ever be stored. (n = maxfragsperpacket.)
950 	 *
951 	 */
952 	next = 0;
953 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
954 		if (GETIP(q)->ip_off != next) {
955 			if (fp->ipq_nfrags > maxfragsperpacket) {
956 				ipstat.ips_fragdropped += fp->ipq_nfrags;
957 				ip_freef(head, fp);
958 			}
959 			goto done;
960 		}
961 		next += GETIP(q)->ip_len;
962 	}
963 	/* Make sure the last packet didn't have the IP_MF flag */
964 	if (p->m_flags & M_FRAG) {
965 		if (fp->ipq_nfrags > maxfragsperpacket) {
966 			ipstat.ips_fragdropped += fp->ipq_nfrags;
967 			ip_freef(head, fp);
968 		}
969 		goto done;
970 	}
971 
972 	/*
973 	 * Reassembly is complete.  Make sure the packet is a sane size.
974 	 */
975 	q = fp->ipq_frags;
976 	ip = GETIP(q);
977 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
978 		ipstat.ips_toolong++;
979 		ipstat.ips_fragdropped += fp->ipq_nfrags;
980 		ip_freef(head, fp);
981 		goto done;
982 	}
983 
984 	/*
985 	 * Concatenate fragments.
986 	 */
987 	m = q;
988 	t = m->m_next;
989 	m->m_next = NULL;
990 	m_cat(m, t);
991 	nq = q->m_nextpkt;
992 	q->m_nextpkt = NULL;
993 	for (q = nq; q != NULL; q = nq) {
994 		nq = q->m_nextpkt;
995 		q->m_nextpkt = NULL;
996 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
997 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
998 		m_cat(m, q);
999 	}
1000 	/*
1001 	 * In order to do checksumming faster we do 'end-around carry' here
1002 	 * (and not in for{} loop), though it implies we are not going to
1003 	 * reassemble more than 64k fragments.
1004 	 */
1005 	m->m_pkthdr.csum_data =
1006 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1007 #ifdef MAC
1008 	mac_create_datagram_from_ipq(fp, m);
1009 	mac_destroy_ipq(fp);
1010 #endif
1011 
1012 	/*
1013 	 * Create header for new ip packet by modifying header of first
1014 	 * packet;  dequeue and discard fragment reassembly header.
1015 	 * Make header visible.
1016 	 */
1017 	ip->ip_len = (ip->ip_hl << 2) + next;
1018 	ip->ip_src = fp->ipq_src;
1019 	ip->ip_dst = fp->ipq_dst;
1020 	TAILQ_REMOVE(head, fp, ipq_list);
1021 	nipq--;
1022 	uma_zfree(ipq_zone, fp);
1023 	m->m_len += (ip->ip_hl << 2);
1024 	m->m_data -= (ip->ip_hl << 2);
1025 	/* some debugging cruft by sklower, below, will go away soon */
1026 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1027 		m_fixhdr(m);
1028 	ipstat.ips_reassembled++;
1029 	IPQ_UNLOCK();
1030 	return (m);
1031 
1032 dropfrag:
1033 	ipstat.ips_fragdropped++;
1034 	if (fp != NULL)
1035 		fp->ipq_nfrags--;
1036 	m_freem(m);
1037 done:
1038 	IPQ_UNLOCK();
1039 	return (NULL);
1040 
1041 #undef GETIP
1042 }
1043 
1044 /*
1045  * Free a fragment reassembly header and all
1046  * associated datagrams.
1047  */
1048 static void
1049 ip_freef(fhp, fp)
1050 	struct ipqhead *fhp;
1051 	struct ipq *fp;
1052 {
1053 	register struct mbuf *q;
1054 
1055 	IPQ_LOCK_ASSERT();
1056 
1057 	while (fp->ipq_frags) {
1058 		q = fp->ipq_frags;
1059 		fp->ipq_frags = q->m_nextpkt;
1060 		m_freem(q);
1061 	}
1062 	TAILQ_REMOVE(fhp, fp, ipq_list);
1063 	uma_zfree(ipq_zone, fp);
1064 	nipq--;
1065 }
1066 
1067 /*
1068  * IP timer processing;
1069  * if a timer expires on a reassembly
1070  * queue, discard it.
1071  */
1072 void
1073 ip_slowtimo()
1074 {
1075 	register struct ipq *fp;
1076 	int i;
1077 
1078 	IPQ_LOCK();
1079 	for (i = 0; i < IPREASS_NHASH; i++) {
1080 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1081 			struct ipq *fpp;
1082 
1083 			fpp = fp;
1084 			fp = TAILQ_NEXT(fp, ipq_list);
1085 			if(--fpp->ipq_ttl == 0) {
1086 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1087 				ip_freef(&ipq[i], fpp);
1088 			}
1089 		}
1090 	}
1091 	/*
1092 	 * If we are over the maximum number of fragments
1093 	 * (due to the limit being lowered), drain off
1094 	 * enough to get down to the new limit.
1095 	 */
1096 	if (maxnipq >= 0 && nipq > maxnipq) {
1097 		for (i = 0; i < IPREASS_NHASH; i++) {
1098 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1099 				ipstat.ips_fragdropped +=
1100 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1101 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1102 			}
1103 		}
1104 	}
1105 	IPQ_UNLOCK();
1106 }
1107 
1108 /*
1109  * Drain off all datagram fragments.
1110  */
1111 void
1112 ip_drain()
1113 {
1114 	int     i;
1115 
1116 	IPQ_LOCK();
1117 	for (i = 0; i < IPREASS_NHASH; i++) {
1118 		while(!TAILQ_EMPTY(&ipq[i])) {
1119 			ipstat.ips_fragdropped +=
1120 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1121 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1122 		}
1123 	}
1124 	IPQ_UNLOCK();
1125 	in_rtqdrain();
1126 }
1127 
1128 /*
1129  * The protocol to be inserted into ip_protox[] must be already registered
1130  * in inetsw[], either statically or through pf_proto_register().
1131  */
1132 int
1133 ipproto_register(u_char ipproto)
1134 {
1135 	struct protosw *pr;
1136 
1137 	/* Sanity checks. */
1138 	if (ipproto == 0)
1139 		return (EPROTONOSUPPORT);
1140 
1141 	/*
1142 	 * The protocol slot must not be occupied by another protocol
1143 	 * already.  An index pointing to IPPROTO_RAW is unused.
1144 	 */
1145 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1146 	if (pr == NULL)
1147 		return (EPFNOSUPPORT);
1148 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1149 		return (EEXIST);
1150 
1151 	/* Find the protocol position in inetsw[] and set the index. */
1152 	for (pr = inetdomain.dom_protosw;
1153 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1154 		if (pr->pr_domain->dom_family == PF_INET &&
1155 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1156 			/* Be careful to only index valid IP protocols. */
1157 			if (pr->pr_protocol < IPPROTO_MAX) {
1158 				ip_protox[pr->pr_protocol] = pr - inetsw;
1159 				return (0);
1160 			} else
1161 				return (EINVAL);
1162 		}
1163 	}
1164 	return (EPROTONOSUPPORT);
1165 }
1166 
1167 int
1168 ipproto_unregister(u_char ipproto)
1169 {
1170 	struct protosw *pr;
1171 
1172 	/* Sanity checks. */
1173 	if (ipproto == 0)
1174 		return (EPROTONOSUPPORT);
1175 
1176 	/* Check if the protocol was indeed registered. */
1177 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1178 	if (pr == NULL)
1179 		return (EPFNOSUPPORT);
1180 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1181 		return (ENOENT);
1182 
1183 	/* Reset the protocol slot to IPPROTO_RAW. */
1184 	ip_protox[ipproto] = pr - inetsw;
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Given address of next destination (final or next hop),
1190  * return internet address info of interface to be used to get there.
1191  */
1192 struct in_ifaddr *
1193 ip_rtaddr(dst)
1194 	struct in_addr dst;
1195 {
1196 	struct route sro;
1197 	struct sockaddr_in *sin;
1198 	struct in_ifaddr *ifa;
1199 
1200 	bzero(&sro, sizeof(sro));
1201 	sin = (struct sockaddr_in *)&sro.ro_dst;
1202 	sin->sin_family = AF_INET;
1203 	sin->sin_len = sizeof(*sin);
1204 	sin->sin_addr = dst;
1205 	rtalloc_ign(&sro, RTF_CLONING);
1206 
1207 	if (sro.ro_rt == NULL)
1208 		return (NULL);
1209 
1210 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1211 	RTFREE(sro.ro_rt);
1212 	return (ifa);
1213 }
1214 
1215 u_char inetctlerrmap[PRC_NCMDS] = {
1216 	0,		0,		0,		0,
1217 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1218 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1219 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1220 	0,		0,		EHOSTUNREACH,	0,
1221 	ENOPROTOOPT,	ECONNREFUSED
1222 };
1223 
1224 /*
1225  * Forward a packet.  If some error occurs return the sender
1226  * an icmp packet.  Note we can't always generate a meaningful
1227  * icmp message because icmp doesn't have a large enough repertoire
1228  * of codes and types.
1229  *
1230  * If not forwarding, just drop the packet.  This could be confusing
1231  * if ipforwarding was zero but some routing protocol was advancing
1232  * us as a gateway to somewhere.  However, we must let the routing
1233  * protocol deal with that.
1234  *
1235  * The srcrt parameter indicates whether the packet is being forwarded
1236  * via a source route.
1237  */
1238 void
1239 ip_forward(struct mbuf *m, int srcrt)
1240 {
1241 	struct ip *ip = mtod(m, struct ip *);
1242 	struct in_ifaddr *ia = NULL;
1243 	struct mbuf *mcopy;
1244 	struct in_addr dest;
1245 	int error, type = 0, code = 0, mtu = 0;
1246 
1247 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1248 		ipstat.ips_cantforward++;
1249 		m_freem(m);
1250 		return;
1251 	}
1252 #ifdef IPSTEALTH
1253 	if (!ipstealth) {
1254 #endif
1255 		if (ip->ip_ttl <= IPTTLDEC) {
1256 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1257 			    0, 0);
1258 			return;
1259 		}
1260 #ifdef IPSTEALTH
1261 	}
1262 #endif
1263 
1264 	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1265 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1266 		return;
1267 	}
1268 
1269 	/*
1270 	 * Save the IP header and at most 8 bytes of the payload,
1271 	 * in case we need to generate an ICMP message to the src.
1272 	 *
1273 	 * XXX this can be optimized a lot by saving the data in a local
1274 	 * buffer on the stack (72 bytes at most), and only allocating the
1275 	 * mbuf if really necessary. The vast majority of the packets
1276 	 * are forwarded without having to send an ICMP back (either
1277 	 * because unnecessary, or because rate limited), so we are
1278 	 * really we are wasting a lot of work here.
1279 	 *
1280 	 * We don't use m_copy() because it might return a reference
1281 	 * to a shared cluster. Both this function and ip_output()
1282 	 * assume exclusive access to the IP header in `m', so any
1283 	 * data in a cluster may change before we reach icmp_error().
1284 	 */
1285 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1286 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1287 		/*
1288 		 * It's probably ok if the pkthdr dup fails (because
1289 		 * the deep copy of the tag chain failed), but for now
1290 		 * be conservative and just discard the copy since
1291 		 * code below may some day want the tags.
1292 		 */
1293 		m_free(mcopy);
1294 		mcopy = NULL;
1295 	}
1296 	if (mcopy != NULL) {
1297 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1298 		mcopy->m_pkthdr.len = mcopy->m_len;
1299 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1300 	}
1301 
1302 #ifdef IPSTEALTH
1303 	if (!ipstealth) {
1304 #endif
1305 		ip->ip_ttl -= IPTTLDEC;
1306 #ifdef IPSTEALTH
1307 	}
1308 #endif
1309 
1310 	/*
1311 	 * If forwarding packet using same interface that it came in on,
1312 	 * perhaps should send a redirect to sender to shortcut a hop.
1313 	 * Only send redirect if source is sending directly to us,
1314 	 * and if packet was not source routed (or has any options).
1315 	 * Also, don't send redirect if forwarding using a default route
1316 	 * or a route modified by a redirect.
1317 	 */
1318 	dest.s_addr = 0;
1319 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1320 		struct sockaddr_in *sin;
1321 		struct route ro;
1322 		struct rtentry *rt;
1323 
1324 		bzero(&ro, sizeof(ro));
1325 		sin = (struct sockaddr_in *)&ro.ro_dst;
1326 		sin->sin_family = AF_INET;
1327 		sin->sin_len = sizeof(*sin);
1328 		sin->sin_addr = ip->ip_dst;
1329 		rtalloc_ign(&ro, RTF_CLONING);
1330 
1331 		rt = ro.ro_rt;
1332 
1333 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1334 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1335 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1336 			u_long src = ntohl(ip->ip_src.s_addr);
1337 
1338 			if (RTA(rt) &&
1339 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1340 				if (rt->rt_flags & RTF_GATEWAY)
1341 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1342 				else
1343 					dest.s_addr = ip->ip_dst.s_addr;
1344 				/* Router requirements says to only send host redirects */
1345 				type = ICMP_REDIRECT;
1346 				code = ICMP_REDIRECT_HOST;
1347 			}
1348 		}
1349 		if (rt)
1350 			RTFREE(rt);
1351 	}
1352 
1353 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1354 	if (error)
1355 		ipstat.ips_cantforward++;
1356 	else {
1357 		ipstat.ips_forward++;
1358 		if (type)
1359 			ipstat.ips_redirectsent++;
1360 		else {
1361 			if (mcopy)
1362 				m_freem(mcopy);
1363 			return;
1364 		}
1365 	}
1366 	if (mcopy == NULL)
1367 		return;
1368 
1369 	switch (error) {
1370 
1371 	case 0:				/* forwarded, but need redirect */
1372 		/* type, code set above */
1373 		break;
1374 
1375 	case ENETUNREACH:		/* shouldn't happen, checked above */
1376 	case EHOSTUNREACH:
1377 	case ENETDOWN:
1378 	case EHOSTDOWN:
1379 	default:
1380 		type = ICMP_UNREACH;
1381 		code = ICMP_UNREACH_HOST;
1382 		break;
1383 
1384 	case EMSGSIZE:
1385 		type = ICMP_UNREACH;
1386 		code = ICMP_UNREACH_NEEDFRAG;
1387 
1388 #if defined(IPSEC) || defined(FAST_IPSEC)
1389 		mtu = ip_ipsec_mtu(m);
1390 #endif /* IPSEC */
1391 		/*
1392 		 * If the MTU wasn't set before use the interface mtu or
1393 		 * fall back to the next smaller mtu step compared to the
1394 		 * current packet size.
1395 		 */
1396 		if (mtu == 0) {
1397 			if (ia != NULL)
1398 				mtu = ia->ia_ifp->if_mtu;
1399 			else
1400 				mtu = ip_next_mtu(ip->ip_len, 0);
1401 		}
1402 		ipstat.ips_cantfrag++;
1403 		break;
1404 
1405 	case ENOBUFS:
1406 		/*
1407 		 * A router should not generate ICMP_SOURCEQUENCH as
1408 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1409 		 * Source quench could be a big problem under DoS attacks,
1410 		 * or if the underlying interface is rate-limited.
1411 		 * Those who need source quench packets may re-enable them
1412 		 * via the net.inet.ip.sendsourcequench sysctl.
1413 		 */
1414 		if (ip_sendsourcequench == 0) {
1415 			m_freem(mcopy);
1416 			return;
1417 		} else {
1418 			type = ICMP_SOURCEQUENCH;
1419 			code = 0;
1420 		}
1421 		break;
1422 
1423 	case EACCES:			/* ipfw denied packet */
1424 		m_freem(mcopy);
1425 		return;
1426 	}
1427 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1428 }
1429 
1430 void
1431 ip_savecontrol(inp, mp, ip, m)
1432 	register struct inpcb *inp;
1433 	register struct mbuf **mp;
1434 	register struct ip *ip;
1435 	register struct mbuf *m;
1436 {
1437 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1438 		struct bintime bt;
1439 
1440 		bintime(&bt);
1441 		if (inp->inp_socket->so_options & SO_BINTIME) {
1442 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1443 			SCM_BINTIME, SOL_SOCKET);
1444 			if (*mp)
1445 				mp = &(*mp)->m_next;
1446 		}
1447 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1448 			struct timeval tv;
1449 
1450 			bintime2timeval(&bt, &tv);
1451 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1452 				SCM_TIMESTAMP, SOL_SOCKET);
1453 			if (*mp)
1454 				mp = &(*mp)->m_next;
1455 		}
1456 	}
1457 	if (inp->inp_flags & INP_RECVDSTADDR) {
1458 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1459 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1460 		if (*mp)
1461 			mp = &(*mp)->m_next;
1462 	}
1463 	if (inp->inp_flags & INP_RECVTTL) {
1464 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1465 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1466 		if (*mp)
1467 			mp = &(*mp)->m_next;
1468 	}
1469 #ifdef notyet
1470 	/* XXX
1471 	 * Moving these out of udp_input() made them even more broken
1472 	 * than they already were.
1473 	 */
1474 	/* options were tossed already */
1475 	if (inp->inp_flags & INP_RECVOPTS) {
1476 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1477 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1478 		if (*mp)
1479 			mp = &(*mp)->m_next;
1480 	}
1481 	/* ip_srcroute doesn't do what we want here, need to fix */
1482 	if (inp->inp_flags & INP_RECVRETOPTS) {
1483 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1484 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1485 		if (*mp)
1486 			mp = &(*mp)->m_next;
1487 	}
1488 #endif
1489 	if (inp->inp_flags & INP_RECVIF) {
1490 		struct ifnet *ifp;
1491 		struct sdlbuf {
1492 			struct sockaddr_dl sdl;
1493 			u_char	pad[32];
1494 		} sdlbuf;
1495 		struct sockaddr_dl *sdp;
1496 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1497 
1498 		if (((ifp = m->m_pkthdr.rcvif))
1499 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1500 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1501 			/*
1502 			 * Change our mind and don't try copy.
1503 			 */
1504 			if ((sdp->sdl_family != AF_LINK)
1505 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1506 				goto makedummy;
1507 			}
1508 			bcopy(sdp, sdl2, sdp->sdl_len);
1509 		} else {
1510 makedummy:
1511 			sdl2->sdl_len
1512 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1513 			sdl2->sdl_family = AF_LINK;
1514 			sdl2->sdl_index = 0;
1515 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1516 		}
1517 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1518 			IP_RECVIF, IPPROTO_IP);
1519 		if (*mp)
1520 			mp = &(*mp)->m_next;
1521 	}
1522 }
1523 
1524 /*
1525  * XXX these routines are called from the upper part of the kernel.
1526  * They need to be locked when we remove Giant.
1527  *
1528  * They could also be moved to ip_mroute.c, since all the RSVP
1529  *  handling is done there already.
1530  */
1531 static int ip_rsvp_on;
1532 struct socket *ip_rsvpd;
1533 int
1534 ip_rsvp_init(struct socket *so)
1535 {
1536 	if (so->so_type != SOCK_RAW ||
1537 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1538 		return EOPNOTSUPP;
1539 
1540 	if (ip_rsvpd != NULL)
1541 		return EADDRINUSE;
1542 
1543 	ip_rsvpd = so;
1544 	/*
1545 	 * This may seem silly, but we need to be sure we don't over-increment
1546 	 * the RSVP counter, in case something slips up.
1547 	 */
1548 	if (!ip_rsvp_on) {
1549 		ip_rsvp_on = 1;
1550 		rsvp_on++;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 int
1557 ip_rsvp_done(void)
1558 {
1559 	ip_rsvpd = NULL;
1560 	/*
1561 	 * This may seem silly, but we need to be sure we don't over-decrement
1562 	 * the RSVP counter, in case something slips up.
1563 	 */
1564 	if (ip_rsvp_on) {
1565 		ip_rsvp_on = 0;
1566 		rsvp_on--;
1567 	}
1568 	return 0;
1569 }
1570 
1571 void
1572 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1573 {
1574 	if (rsvp_input_p) { /* call the real one if loaded */
1575 		rsvp_input_p(m, off);
1576 		return;
1577 	}
1578 
1579 	/* Can still get packets with rsvp_on = 0 if there is a local member
1580 	 * of the group to which the RSVP packet is addressed.  But in this
1581 	 * case we want to throw the packet away.
1582 	 */
1583 
1584 	if (!rsvp_on) {
1585 		m_freem(m);
1586 		return;
1587 	}
1588 
1589 	if (ip_rsvpd != NULL) {
1590 		rip_input(m, off);
1591 		return;
1592 	}
1593 	/* Drop the packet */
1594 	m_freem(m);
1595 }
1596